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Concentrations, ratios, and sinking fluxes of major
bioelements at Ocean Station Papa
Montserrat Roca-Marti'?*, Claudia R. Benitez-Nelson?, Blaire P. Umhau?,

Abigale M. Wyatt*, Samantha J. Clevenger'->, Steven Pike', Tristan J. Horner”,
Margaret L. Estapa®’, Laure Resplandy?, and Ken O. Buesseler’

Fluxes of major bioelements associated with sinking particles were quantified in late summer 2018 as part of
the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign near Ocean Station Papa in
the subarctic northeast Pacific. The thorium-234 method was used in conjunction with size-fractionated
(1-5, 5-51, and >51 um) concentrations of particulate nitrogen (PN), total particulate phosphorus (TPP),
biogenic silica (bSi), and particulate inorganic carbon (PIC) collected using large volume filtration via in
situ pumps. We build upon recent work quantifying POC fluxes during EXPORTS. Similar remineralization
length scales were observed for both POC and PN across all particle size classes from depths of 50-500 m.
Unlike bSi and PIC, the soft tissue-associated POC, PN, and TPP fluxes strongly attenuated from 50 m to the
base of the euphotic zone (approximately 120 m). Cruise-average thorium-234-derived fluxes (mmol m™2 d™")
at 120 mwere 1.7 4+ 0.6 for POC, 0.22 + 0.07 for PN, 0.019 4+ 0.007 for TPP, 0.69 + 0.26 for bSi, and 0.055
+ 0.022 for PIC. These bioelement fluxes were similar to previous observations at this site, with the
exception of PIC, which was 1 to 2 orders of magnitude lower. Transfer efficiencies within the upper
twilight zone (flux 220 m/flux 120 m) were highest for PIC (84%) and bSi (79%), followed by POC (61%),
PN (58%), and TPP (49%). These differences indicate preferential remineralization of TPP relative to POC or
PN and larger losses of soft tissue relative to biominerals in sinking particles below the euphotic zone.
Comprehensive characterization of the particulate bioelement fluxes obtained here will support future
efforts linking phytoplankton community composition and food-web dynamics to the composition,
magnitude, and attenuation of material that sinks to deeper waters.

Keywords: Biological pump, Bioelements, Particulate fluxes, Transfer efficiency, Size-fractionated particles,
EXPORTS

1. Introduction

The biological carbon pump redistributes atmospheric car-
bon dioxide into the ocean interior principally through
the formation and export of particulate organic carbon
(POC) via a combination of physical and biological pro-
cesses (Boyd et al., 2019). The biological carbon pump also
redistributes many other bioelements, such as particulate
nitrogen (PN), total particulate phosphorus (TPP), biogenic
silica (bSi), and particulate inorganic carbon (PIC) that play
critical roles in a variety of ecological and chemical pro-
cesses, such as biological production, scavenging of
particle-reactive trace elements, and particle export. As
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these bioelements are cycled through mesopelagic food
webs, they may be transformed back into dissolved phases
(i.e., remineralized), though not necessarily at the same
rate (Aristegui et al., 2009; Twining et al., 2014; Steinberg
and Landry, 2017). This remineralization depth controls
the distribution of carbon and associated bioelements
throughout the water column and determines the time-
scale over which these elements are ultimately stored
(Kwon et al., 2009). Therefore, accurately quantifying par-
ticle flux and attenuation is crucial in order to better
understand the factors that control the transfer of mate-
rial to depth in marine systems.
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EXport Processes in the Ocean from RemoTe Sensing
(EXPORTS) aims to develop a predictive understanding of
the export and fate of global net primary production and
associated bioelements and their implications for climate
(Siegel et al., 2016; Siegel et al., 2021). This goal requires
the use of multiple, complementary approaches to quan-
tify the export of particles from the euphotic zone and
subsequent attenuation in the twilight zone across a range
of ecosystem states. The first EXPORTS field campaign took
place in the northeast Pacific near Ocean Station Papa
(Station P; 50°N, 145°W) in August—September 2018. De-
tails on the sampling strategy are found in Siegel et al.
(2021). Briefly, two types of ship-based sampling were
employed: process-oriented (R/V Roger Revelle, RR1813)
and survey-oriented (R/V Sally Ride, SR1812). The former
focused on the characterization of microbial and plankton
community structures and ecological and particle flux
rates by following a Lagrangian float. The latter sampled
for optical and biogeochemical properties as well as par-
ticle export over a greater spatial area around the process
ship. Sampling on both ships occurred over three time
periods spaced 8 days apart, hereafter termed “epochs.”

During the EXPORTS campaign in the subarctic NE
Pacific, particle fluxes were directly quantified by collect-
ing sinking particles with sediment traps (Estapa et al.,
2021) and indirectly using proxies for particle flux, such
as thorium-234 (***Th, t,,, = 24.1 days). Thorium-234 is
a particle-reactive radionuclide that was measured in the
upper 500 m of the water column at high spatial and
temporal resolution over the three epochs (Buesseler et
al., 2020a). The #**Th proxy has been used widely since the
1990s to quantify POC and PN export fluxes over time-
scales of days to weeks (Buesseler et al., 1992; Le Moigne
et al,, 2013). To a lesser extent, it has also been used to
quantify sinking particle fluxes of biominerals, metals, or
contaminants (Gustafsson et al., 1997; Weinstein and Mor-
an, 2005; Le Moigne et al., 2012). This method is based on
the quantification of ***Th fluxes from the deficiency of
234Th relative to its conservative parent, uranium-238
(**®U, t1,, = 4.5 x 10° years), in seawater and the deter-
mination of the ratio between POC (or the element of
interest) to 2**Th associated with sinking particles. The
23%Th flux modeling and the ***Th-derived POC fluxes esti-
mated for the first EXPORTS field campaign are described
in Buesseler et al. (2020a). Here, we quantified fluxes of
other major bioelements (PN, TPP, bSi, and PIC) associated
with sinking particles and assessed the biological pump
efficiency below the euphotic zone using the 2**Th proxy
and size-fractionated particles collected by large volume
pump filtration during EXPORTS.

2. Methods

2.1. In situ pumps and filter processing
Size-fractionated particles were collected using battery-
powered in situ pumps (McLane Industries) coupled to
142-mm diameter “mini-Multiple Unit Large Volume in-
situ Filtration System” (MULVFS) style filter holders (Bishop
et al,, 2012; Lam et al., 2015) deployed from the R/V Sally
Ride near Station P from August 15 to September 4, 2018
(Figure 1; Table S1). Six pumps equipped with two filter
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Figure 1. Map of in situ pump stations near Station P.
Stations where in situ pumps were deployed near
Station P during the EXport Processes in the Ocean
from RemoTe Sensing field campaign in August—
September 2018. A total of 12 in situ pump casts
were conducted over three time periods, spaced 8
days apart, termed “epochs” (Epoch 1 = dark blue,
Epoch 2 = red, and Epoch 3 = turquoise). Each
symbol represents a specific cast with labels next to
the symbols indicating station details: station number
and whether it was occupied during a small scale (SS) or
large scale (LS) survey (Siegel et al., 2021). DOI: https://
doi.org/10.1525/elementa.2020.00166.f1

holders were each deployed for a total of 12 casts (four per
epoch) in the euphotic zone (50 and 100 m, + 5 m) and
the twilight zone (150, 200, 330, and 500 m, + 5 m). The
base of the euphotic zone (approximately 120 m) was
defined by the depth of 0.1% photosynthetic active radia-
tion (PAR; 118 + 9 m) and the base of the primary pro-
duction zone (PPZ; 117 4+ 5 m), defined as the depth where
fluorescence declined to 10% of the maximum signal mea-
sured in overlying waters (Owens et al., 2015). Pumps were
programmed to sample for 4-5 h at a starting flow rate of 8
L min~' and pumped on average 1,600 L.

The filtration system was divided into two flowpaths.
On the first flowpath, seawater was passed sequentially
through two Nitex screens (51 and 5 pm nominal pore
size) followed by a quartz microfiber filter (QMA; 1 pm
nominal pore size). Size-fractionated particles from this 3-
tier filter system were analyzed for total particulate carbon
(PC, includes both POC and PIC), PN, TPP (includes both
organic and inorganic phosphorus), bSi (analyzed only on
the Nitex screens), PIC, and ***Th. Further subsamples
were analyzed for pigments, carbon and nitrogen isotopes,
barium isotopic composition, and polonium-210 and lead-
210, whose results will be presented elsewhere. On the
second flowpath, a 2-tier filter holder was equipped with
a 51 um Nitex screen followed by a polyethersulfone
membrane filter (Supor, 0.8 pm nominal pore size) used
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for bSi (analyzed only on the Supor filters) and trace metal
analyses, as well as bulk and compound-specific isotope
analysis of amino acids (which will be presented
elsewhere).

Additional filter holders were mounted on the deepest
pump to obtain process or “dipped blank” filters from
both filter holder configurations (Lam et al., 2015). On the
process blanks, a prefilter (0.2 or 0.8 um Supor) was
placed on top of the 51 um Nitex screen to avoid the
collection of particles while filters were exposed to seawa-
ter. After recovering the in situ pumps, the prefilter was
discarded and the process blanks were processed in the
same manner as the samples. During three casts, addi-
tional in situ pumps were deployed at 20, 85, and 320
m to allow further analysis of amino acids (presented
elsewhere) in four particle size fractions using a single
mini-MULVFS filter holder equipped with a 51 and a 6
um Nitex screen, paired QMA filters, and paired GF75
filters (0.3 um nominal pore size). A total of five QMA
samples from these extra pumps were analyzed for PC,
PN, PIC, and #3*Th.

All filter holders were acid-leached prior to the cruise
and cleaned after each cast by rinsing with Milli-Q water.
Prior to use, QMAs were precombusted at 500 °C for at
least 12 h. Nitex screens and Supor filters were acid-
leached (10% or 20% HCI; Cutter et al., 2017). Immedi-
ately after recovering the pumps, residual water from each
filter holder was removed by vacuum. Filter processing
was conducted in a clean-air bench (except rinsing of the
Nitex screens, see below).

Zooplankton that were not part of the passive sinking
flux (“swimmers”) and were visible to the naked eye were
handpicked from the 51 um Nitex screens using forceps.
At three stations, Nitex screens were cut into “pie-wedges”
using a stainless-steel rotary blade (45 mm) to allow for
further analyses (Cutter et al., 2017). Particles were gently
rinsed off the Nitex screens onto 25-mm diameter 1.2-um
pore-size silver (Ag) filters using 1.0 um prefiltered seawa-
ter. Filtered seawater was kept at 4 °C and was produced
once per epoch using 330-500 m seawater. Quartz micro-
fiber filters were subsampled for PC, PN, TPP, PIC, and
23Th using circular punches of varying size (21-26 mm
diameter; Maiti et al., 2012). Samples were dried in a 60 °C
oven at sea for several hours, except for two subsets of
QMA punches for TPP analysis that were frozen (-20 °C) or
stored at room temperature. Supor filters were also frozen
(=20 °C or —80 °C) until further processing for bSi.

2.2. Sample analysis

Details regarding 2**Th analyses are provided in Buesseler
et al. (2020a). After nondestructive measurement of **Th
activity on shore, Ag filters were split by weight (Lamborg
et al., 2008) into thirds and analyzed for PC and PN, PIC,
and bSi.

PC and PN were analyzed using high-temperature com-
bustion at the Woods Hole Oceanographic Institution
(WHOI) Nutrient Analytical Facility. Briefly, dried samples
of particulate matter were prepared inside an ultraclean
tin disk and combusted at high temperature. Carbon was
converted into carbon dioxide and nitrogen into nitrogen
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gas. These elements were separated by gas chromatogra-
phy and measured by thermal conductivity on an Elemen-
tal Microanalysis Flash EA 1112 (Ehrhardt and Koeve,
1999). PIC was determined by closed-system digestion
with phosphoric acid by coulometry (Honjo et al., 1995).
POC was obtained from the difference between blank-
corrected PC and PIC results.

Analyses of TPP on dried and frozen QMA punches
were conducted using a modification of the Aspila phos-
phomolybdate method (Aspila et al., 1976; Benitez-Nelson
et al., 2007b) at the University of South Carolina (UofSC).
In brief, filters were combusted at 550 °C to convert any
organic phosphorus to inorganic phosphorus and ex-
tracted using 1.2 M hydrochloric acid (Aspila et al.,
1976). To monitor run-to-run variability and validate ana-
lytical accuracy, standard reference materials of tomato
leaves (NIST# 1573a) and estuarine sediment (NIST#
1646a) were analyzed with each run (Benitez-Nelson et
al., 2007b). Additional TPP analyses were conducted on
QMA punches and screen subsections (1/10) that were
stored at room temperature at WHOIL. Filters were leached
with 0.6 M hydrochloric acid at 60 °C for approximately
16 h (Bishop and Wood, 2008). Leachates were reconsti-
tuted in 2% nitric acid (by volume), doped to an indium
concentration of 1 ng mL™', and analyzed for multiele-
ment concentrations using a Thermo Scientific iCAP quad-
rupole inductively coupled plasma mass spectrometer
(ICP-MS) situated at the WHOI Plasma Facility. Quantifica-
tion of TPP was achieved via comparison of blank- and
drift-corrected sample ion beam intensities to those of
reference solutions containing known TPP concentrations.
Several samples were measured using both the Aspila and
ICP-MS methods (see Section 2.3).

To determine bSi content, filters were extracted in 0.2
M NaOH for 1 h at 95 °C and then neutralized with 1 M
HCI (Brzezinski and Nelson, 1989). Subsamples were
analyzed for dissolved silicate on the same day using
a UV-Visible Spectrophotometer (UV-2550, Shimadzu), fol-
lowing standard spectrophotometric methods (Strickland
and Parsons, 1972). bSi was measured on a subsection
(1/8) of the Supor filters (2-tier filter holder, 0.8-51 um)
and the Nitex screens (3-tier filter holder, 5-51 um and
>51 pm). Therefore, the analog of the small size fraction
for bSi was obtained from the difference between that
measured in the 0.8-51 pm and 5-51 pm fractions (for
simplicity referred to as 1-5 um). Hereafter, we refer to
each particle size fraction as small (1-5 pwm), midsized (5—
51 pm), and large (>51 pm).

2.3. Uncertainties and quality control

For all parameters, the average of the process blanks was
subtracted from each measurement before dividing by the
filtered volume. Process blanks were also used for the
determination of uncertainty and limit of detection (Lam
et al., 2018). Table 1 shows the absolute and relative
contribution of the blanks for each sample type and
parameter. Blanks contributed on average <5% of the
total signal of PC, PN, bSi, and ***Th in all size classes and
TPP in midsized and large particles. However, blanks were
on average 31% of TPP in the small size class and 42%—
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Table 1. Blank correction. DOI: https://doi.org/10.1525/elementa.2020.00166.t1

Fraction

% Contribution

Analyzed Size Class to Samples, Limit of
Parameter Units  Filter Type (%) (um) Avg. + SD Avg. (Min—Max) Detection®
Small particles
Particulate carbon  pmol C QMA (142 mm) 2.7 1-5 015+ 021 (n=3) 10(0.3-3.5) 0.63
Particulate nitrogen pmol N QMA (142 mm) 2.7 1-5 009 + 005(n=3) 38(1.2-14) 0.15
Total particulate  pmol P QMA (142 mm)® 2.7 1-5 0.053 + 0017 (n=3) 31(13-79)  0.05
phosphorus
Biogenic silica pmol Si Supor (142 mm) 12.5 0.8-51 0.06 + 003 (n=12) 3.3(14-19) 0.08
Particulate inorganic pmol C QMA (142 mm) 2.7 1-5 023 + 001 (n=3) 42(16-100) 0.04
carbon
Thorium-234 dpm  QMA (142 mm) 42 1-5 013 + 006 (n=3) 11(06-17) 0.18
Midsized and large particles
Particulate carbon ~ pmol C Ag (25 mm) 333 5-51,>51 0.17 + 028 (h=6) 15(0.5-10) 0.83
Particulate nitrogen pmol N Ag (25 mm)* 333 5-51, >51 <0.03 (n = 6) - —
Total particulate pumol P Nitex screen (142 mm)? 10.0 5-51,>51 5.8 + 2.6 (x107% 15(04-5.1) 7.7-x 107*
phosphorus n=4)
Biogenic silica pmol Si- Ag (25 mm) 333 5-51,>51 0.03 + 0.02(n=6) 0.8(0.1-9.1) 0.06
Particulate inorganic pmol C Ag (25 mm) 333 5-51,>51 047 + 0.03(n=6) 82(16-100) 0.10
carbon
Thorium-234 dpm Ag (25 mm) 100 5-51,>51 0.15 + 0.11 (n = 6) 0.8 (0.2-74) 0.34

QMA = quartz microfiber filter.

*Defined as 3 times the standard deviation of the process blanks.

"Dried QMA punches analyzed at the University of South Carolina (see Section 2.2).

“Process blanks for particulate nitrogen in midsized and large particles were below the instrumental limit of detection (no blank

correction).

dNitex screen subsections analyzed at the Woods Hole Oceanographic Institution (see Section 2.2).

82% of PIC in all size classes. Blank-corrected TPP results
were below the limit of detection (3 x standard deviation
of the process blanks) in 16% of the samples for the small
size class. Blank-corrected PIC results were below that
limit in 12%, 94%, and 40% of the samples for small,
midsized, and large particles, respectively, given the low
PIC concentrations measured. Concentrations below the
limit of detection were excluded from data analysis. As
such, average PIC concentrations should be considered
maximum estimates.

Data for each parameter have an associated uncertainty
obtained by propagating the uncertainties from the blank
correction (i.e., standard deviation, Table 1), and other
sources of error including the weighing error of the analytical
balance used for splitting the Agfilters (i.e., PC, PN, PIC, bSiin
midsized and large particles), and measurement of ***Th.

Triplicate QMA punches from two samples (50 and 500
m) were measured for PC, PN, TPP, and PIC, with a relative
standard deviation (RSD) of 1%-5%, 6%—8%, 2%, and
4%—-5%, respectively (Table S2). These values indicate that
particle distribution was relatively even across the QMA
filters and support the reproducibility of the subsampling
method (Maiti et al.,, 2012). In addition, the analytical

precision for bSi was determined to be 0.1% based on five
consecutive measurements of the same samples in the
spectrophotometer.

We further conducted a TPP intercomparison of three
subsets of QMA punches from three pump casts that were
preserved differently (dried, frozen, room temperature)
and analyzed using the two different techniques described
above at the UofSC (dried, frozen) and WHOI (room tem-
perature). The results show good agreement between the
three subsets of filters (RSD 2%—19%; Figure S1). Here, we
use only the results from the QMA punches dried at sea, as
data from punches preserved frozen or at room tempera-
ture were not available for all stations. However, we use
the TPP data from the screen subsamples stored at room
temperature and analyzed by ICP-MS, as these samples
were only measured using this method.

Seven >51 pum samples were likely contaminated by
the presence of swimmers as indicated by high POC/***Th
ratios (see Buesseler et al., 2020a). We therefore excluded
the POC, PN, and TPP data for these samples. The complete
data set can be found at the SeaBASS data repository
(https://seabass.gsfc.nasa.gov/archive/WHOI/buesseler/
EXPORTS/EXPORTSNP/archive/).
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Figure 2. Size-fractionated concentrations of bioelements and thorium-234 (***Th) versus depth. Particulate organic
carbon (POC), particulate nitrogen (PN), total particulate phosphorus (TPP), biogenic silica (bSi), particulate inorganic
carbon (PIC), and ***Th concentrations versus depth in small (1-5 pum), midsized (5-51 pm), and large (>51 pm)
particles collected during the EXport Processes in the Ocean from RemoTe Sensing cruise near Station P. Each symbol
represents a specific in situ pump cast color-coded by sampling “epoch” (Epoch 1 = dark blue, Epoch 2 = red, and
Epoch 3 = turquoise), as in Figure 1. Data from each epoch are offset by 10 m to facilitate visualization. In most cases,
error bars are not visible because they are smaller than the symbols. Error bars were obtained by propagating the
standard deviation of the process blanks and other sources of error (see Section 2.3). Black crosses show average
(+standard deviation) concentrations at 50, 100, 150, 200, 330, and 500 m. Five additional data points for POC, PN,
PIC, and ***Th in small particles from 20, 85, and 320 m (Epochs 2 and 3) are shown on the left panels. Note different
scales on the x-axes between small versus midsized and large particles, except for bSi. DOI: https://doi.org/10.1525/

elementa.2020.00166.f2

3. Results

3.1. Profiles of major bioelements and ?**Th in
size-fractionated particles

POC and PN concentrations in small particles were an
order of magnitude higher than those measured in mid-
sized and large particles (Figures 2 and 3). In small par-
ticles, POC concentrations were on average (+ standard
deviation) 1.4 + 0.4 uM (n = 11) at 50 m decreasing to
0.144 + 0.016 uM (n = 12) by 500 m, with the largest
decline (factor of 4) occurring between 50 and 150 m.
Over that 100-m depth range, POC concentrations in large
particles also decreased but to a lesser degree (factor of 2),
while POC concentrations in midsized particles were rela-
tively constant. The relative contribution of midsized and
large particles to POC concentrations increased between
50 and 500 m by a factor of 3 and 4, respectively (Figure
3). Variability in POC concentrations was highest at 50 m
for the three particle sizes (RSD = 29%-55%), decreasing
in deeper waters especially for small particles (RSD <
14%). PN concentrations in the smallest particle size were
on average 0.25 + 0.08 uM (n = 11) at 50 m and declined
to 0.022 + 0.003 uM (n = 12) by 500 m, showing the
same distribution with depth as POC (Figures 2—4). PN

vertical distribution in midsized and large particles also
resembled that of POC.

Concentrations of TPP were also an order of magnitude
higher in small particles compared to midsized and large
particles, with maximum values at 50 m (0.011 + 0.004
uM, n = 11; 0.0010 + 0.0005 uM, n = 3; 0.0004 +
0.0002 puM, n = 3; respectively; Figures 2 and 3). TPP
concentrations decreased by a factor of 2 from 50 to
100 m for small and midsized particles but did not change
significantly with depth for large particles (one-way anal-
ysis of variance [ANOVA], P = 0.578). The relative amount
of TPP associated with the large size class increased by
a factor of 4 from 50 to 500 m as observed for POC and
PN (Figure 3).

Unlike the soft-tissue elements, bSi concentrations
were similar across all particle sizes and varied signifi-
cantly throughout the water column (RSD = 27%-72%;
Figures 2 and 3). The highest bSi concentrations were
found in small particles, decreasing from an average of
0.05 + 0.02 uM (n = 11) at 50 m to 0.017 + 0.008
puM (n = 12) by 500 m. The largest decline (factor of 2)
occurred between 50 and 100 m and between 330 and
500 m. Large particles showed a similar decline from 50 to
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Figure 3. Cruise-average size-fractionated concentrations of bioelements and thorium-234 (***Th) versus depth. Cruise-
average particulate organic carbon (POC), particulate nitrogen (PN), total particulate phosphorus (TPP), biogenic silica
(bSi), particulate inorganic carbon (PIC), and 2**Th concentrations versus depth in small (1-5 pm, black), midsized (5—
51 pm, red), and large (>51 um, green) particles. The left and right panels for each element show the absolute and
relative concentrations, respectively, across particle size classes. DOI: https://doi.org/10.1525/

elementa.2020.00166.f3

100 m, while bSi concentrations in midsized particles
increased over this depth range. Below 100 m, bSi con-
centrations in midsized and large particles were relatively
constant and comparable between both size classes
(Mann-Whitney rank-sum test, P = 0.236). The combined
contribution of midsized and large particles to bSi con-
centrations was similar to small particles between 100 and
200 m (t test, P > 0.078) and exceeded that of small
particles at 500 m (t test, P = 0.003; Figure 3).
Concentrations of PIC spanned 3 orders of magnitude,
with the distribution among particle size classes being:
small > large > midsized (Figure 3). Variability was espe-
cially high at 50 m (RSD of approximately 100%; Figure

2). At 100 m, the relative contribution of small particles to
PIC concentrations was smaller than in deeper waters due
to a greater contribution from the large size class (Figure
3). All but four midsized particulate samples were below
the limit of detection. PIC concentrations represented on
average <4% of the PC measured in all particle size classes
and depths, except between 200 and 500 m, where PIC
contributed up to 7% of the PC measured in small
particles.

Activities of **Th were an order of magnitude larger in
small particles compared to midsized and large particles,
as observed for POC, PN, and TPP (Figures 2 and 3). In
small and large particles, the highest activities were found
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Figure 4. Size-fractionated molar ratios versus depth. Molar ratios of particulate organic carbon (POC)/particulate
nitrogen (PN), POC/total particulate phosphorus (TPP), biogenic silica (bSi)/POC, and particulate inorganic carbon
(PIC)/POC in small (1-5 pm), midsized (5-51 um), and large (>51 pm) particles. The same horizontal scales are used
for each size class but differ among elements. Each symbol represents a specific in situ pump cast color-coded by
sampling “epoch” (Epoch 1 = dark blue, Epoch 2 = red, and Epoch 3 = turquoise), as in Figure 1. Error bars were
obtained by propagating the uncertainties of POC and the other bioelement considered for each molar ratio. Black
crosses show average (+standard deviation) ratios. Vertical gray lines in POC/PN and POC/TPP panels show the
Redfield ratio for reference. DOI: https://doi.org/10.1525/elementa.2020.00166.f4
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Figure 5. Relationship between particulate organic carbon (POC) and particulate nitrogen (PN) in size-fractionated
particles. POC versus PN for small (1-5 um), midsized (5-51 pm), and large (>51 pum) particles combining all pump
casts and depths (50-500 m). Note the different scales on both axes between small versus midsized and large
particles. Colors show different depths, with lighter colors indicative of shallower waters and darker colors of
deeper waters. The dotted line shows the mean POC/PN ratio computed by type-Il linear regression for each size
fraction. DOL: https://doi.org/10.1525/elementa.2020.00166.f5

at 50 m (0.49 + 0.12dpm L 'and 0.030 + 0.018 dpm L™,
respectively, n = 11 each) before decreasing by a factor of 2
to relatively constant activities between 100 and 500 m. In
contrast, in midsized particles, ***Th activities increased
from 50 to 150 m (0.027 + 0.010 dpm L', n = 12), before
declining in deeper waters (Figure 2).

3.2. Molar ratios in size-fractionated particles
Elemental molar ratios for each particle size class were
determined by the arithmetic mean (+standard devia-
tion) at each depth horizon combining all pump casts.
In cases of a strong correlation (R* > 0.60), mean molar
ratios were also determined by the slope ( + standard devi-
ation) of type-II linear regressions obtained for each pair
of elements either at a specific depth horizon or by com-
bining different depths. For easier comparison with previ-
ous studies, we hereafter use POC in the numerator for
POC/PN, POC/TPP (e.g., Martiny et al., 2014), and POC in
the denominator for bSi/POC and PIC/POC (e.g., Timothy
et al,, 2013).

Mean POC/PN ratios were lower in small particles (6.0
+ 0.3t0 6.9 + 06, n = 11, for each depth), followed by
large particles (6.3 + 0.4 to 10.5 + 5.0, n = 10-12) and
midsized particles (7.1 + 0.5t0 9.5 + 4.4, n = 11-12) with
no clear trends with depth for any particle size class (Figure
4). POC was strongly correlated to PN in all particle size
classes across all depths (Figure 5). The slopes were 5.76 +
0.06 for small, 6.90 + 0.29 for midsized, and 7.03 + 0.37
for large particles. A positive intercept was obtained for
small particles, unlike for midsized and large particles.

Ratios of POC/TPP in small and large particles did not
show a clear trend with depth, with mean ratios of 118 +
32 (n=58) and 175 + 100 (n = 15), respectively, when
combining all data (Figure 4). Ratios of POC/TPP in mid-
sized particles were below the Redfield ratio (106) in shal-
low waters with a mean ratio of only 26 + 9 (n = 3) at 50
m, which increased with depth to 152 + 35 (n=2)at 330

m, indicating stronger TPP attenuation relative to POC.
POC was strongly correlated with TPP only in small parti-
cles combining all depths (slope = 132 + 6, R* = 0.88,
P < 0.001).

Mean bSi/POC ratios were lower in the small size class
(0.03 + 0.02t00.16 + 0.07, n= 11 for each depth) relative
to midsized (0.16 + 0.04 to 0.94 + 0.26, n = 11-12) and
large (0.34 + 0.09 to 0.48 + 0.14, n = 12) particles in the
upper 500 m (Figure 4). Interestingly, bSi/POC ratios
increased with depth in small and midsized particles, while
they did not show a trend with depth in large particles. In
small particles, bSi/POC ratios increased by a factor of 4
between 50 and 500 m, indicating stronger attenuation of
POC relative to bSi. In midsized particles, the bSi/POC ratios
increased by a factor of 6 over this depth range due to an
increase in bSi concurrent with a decrease in POC. bSi was
correlated to POC in large particles combining all depths
(slope = 0.50 + 0.04, R* = 0.70, P < 0.001) and midsized
particles only for data from 50 m (slope = 0.10 4+ 0.01, R* =
0.82, P < 0.001). Weak or nonsignificant correlations
between bSi and POC were found for small particles and
midsized particles below 50 m.

Mean PIC/POC ratios were more variable in small par-
ticles (0.003 + 0.002 to 0.09 4+ 0.03, n = 7-11 for each
depth) than in midsized and large particles (Figure 4). In
small particles, PIC/POC ratios increased by an order of
magnitude from 50-100 m to 330-500 m driven by POC
attenuation. In contrast, PIC/POC ratios in midsized and
large particles showed no clear trend with depth and were
comparable (Mann-Whitney rank-sum test, P = 0.618).
PIC was correlated to POC in large particles combining all
depths (slope = 0.052 + 0.006, R* = 0.69, P < 0.001).

3.3. Ratios between bioelements and 2>*Th in
size-fractionated particles

The determination of element to 2**Th ratios (hereafter
referred to as element/Th) on particles is fundamental for
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Table 2. Cruise-average element/***Th ratios.? DOI: https://doi.org/10.1525/elementa.2020.00166.t2

PN/?**Th (umol dpm™")

bSi/?3*Th (wmol dpm™)

1-5 um 5-51 um >51 pm 1-5 um 5-51 pm >51 um
Depth (m)  Average SD Average sD Average SD Average SD Average SD Average sD
50 0.50 0.08 0.80 0.36 0.29 0.08 0.10 0.05 0.78 0.24 0.89 0.38
65 049 0.08 0.63 023 0.30 0.08 0.10 0.05 0.72 0.21 0.83 033
80 0.49 0.08 0.46 0.13 032 0.08 0.11 0.06 0.67 0.18 0.78 0.28
100 0.48 0.08 0.23 0.04 0.34 0.08 0.12 0.06 0.59 0.15 0.71 0.21
120 041 0.08 0.18 0.03 032 0.09 0.12 0.07 0.56 0.17 0.72 0.23
150 0.30 0.06 0.12 0.03 0.28 0.09 0.11 0.07 0.53 0.19 0.74 0.25
200 0.20 0.04 0.13 0.02 0.34 0.11 0.11 0.06 0.53 0.20 0.80 0.34
280 0.16 0.02 0.13 0.03 0.29 0.13 0.13 0.07 0.53 0.19 0.78 032
330 0.13 0.02 0.11 0.03 0.27 0.13 0.14 0.07 0.52 0.19 0.77 0.30
500 0.13 0.02 0.12 0.05 0.27 0.09 0.10 0.05 0.80 0.18 0.86 0.33

TPP/?3**Th (umol dpm™) PIC/?3*Th (umol dpm™)®

50 0.023 0.006 0.184 0.077  0.014 0.003 0.035 0.028 0.058 0.019 0.074 0.050
65 0022 0005 0137 0048 0015 0004 — - - - - -
80 0022 0004 0089 0025 0015 0004 — - - — — —
100 0.022 0.003 0.024 0.004 0.017 0.005 0.009 0.005 LOD - 0.032 0.016
120 0.021 0.006 0016 0004 0017 0006 — - - — — —
150 0.020 0.010 0.009 0.003 0.017 0.007 0.040 0.009 LOD - 0.037 0.016
200 0.012 0.002 0.009 0.002 0.012 0.001 0.064 0.012 0.010 0.002 0.046 0.022
280 0.009 0.002 0007 0.001 0.009 0001 — - - — — -
330 0.008 0.002 0.007 0.000 0.008 0.001 0.079 0.022 LOD - 0.056 0.043
500 0.010 0.001 0.008  0.001 0.013 0.011 0.062 0.016 0.031 0.006 0.055 0.018

LOD = limit of detection; ?**Th = thorium-234; PN = particulate nitrogen; bSi = biogenic silica; TPP = total particulate phosphorus;

PIC = particulate inorganic carbon.

2Element/***Th ratios for size-fractionated particles were measured at 50, 100, 150, 200, 330, and 500 m. Average ratios at these
depths were obtained from the arithmetic mean (+standard deviation). Values shown in italics are interpolated linearly.

PPIC/23*Th ratios in midsized particles at 50 and 200 m represent just one station (others were below the LOD), where the
uncertainty was obtained by propagating the uncertainties of the PIC and ***Th measurements.

estimating particulate export fluxes of any element by
using the 2**Th proxy (Buesseler et al., 2006). In this study,
cruise-average element/Th ratios were determined at each
sampled depth from the arithmetic mean (+standard
deviation) of the ratios in each particle size class by com-
bining all pump casts (Table 2), following the same
method detailed in Buesseler et al. (2020a) for POC/Th
ratios.

Ratios of PN/Th showed a decrease with depth in small
and midsized particles but did not significantly change
with depth in large particles, exhibiting the same trends
as POC/Th ratios (Figure 6). In small particles, the mean
PN/Th ratios were 0.48-0.50 pmol dpm™' (n = 11-12
each) at 50-100 m decreasing to 0.13 + 0.02 pmol
dpm™' (n = 11-12 each) by 330-500 m. Additional sam-
ples collected in the mixed layer (20 m) had the highest

ratios (0.64 + 0.02 pmol dpm™', n = 2; Figure 6). In
midsized particles, PN/Th ratios decreased steeply from
50 m (0.80 + 0.36 umol dpm™, n = 11) to 150-500 m
(0.11-0.13 pmol dpm™, n = 9-11 each). Ratios of PN/Th
in large particles were on average 0.30 + 0.10 pmol
dpm™' (n = 58) combining all depths. The lack of
a decrease in POC/Th and PN/Th ratios in large particles
with depth is likely due to the presence of zooplankton
swimmers that could not be easily removed from the fil-
ters (see details in Buesseler et al., 2020a).

Ratios of TPP/Th also decreased with depth in small
and midsized particles but remained constant throughout
the water column in the largest size class (Figure 6).
Ratios of TPP/Th in small particles decreased by a factor
of 2 from 50-150 m (means of 0.020-0.023 pmol dpm ™",
n = 11 for each depth) to 330-500 m. Ratios of TPP/Th in
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Figure 6. Size-fractionated element/thorium-234 (***Th) ratios versus depth. Ratios of particulate organic carbon
(POC)/***Th, particulate nitrogen (PN)/?**Th, total particulate phosphorus (TPP)/***Th, biogenic silica (bSi)/***Th,
and particulate inorganic carbon (PIC)/***Th in small (1-5 pum), midsized (5-51 pum), and large (>51 pm) particles.
Each symbol represents a specific in situ pump cast color-coded by sampling “epoch” (Epoch 1 = dark blue, Epoch 2 =
red, and Epoch 3 = turquoise), as in Figure 1. Error bars were obtained by propagating the uncertainties of ***Th and
the bioelement considered for each element/***Th ratio. Black crosses show average (+standard deviation)
element/?**Th ratios. Ratios of POC/?**Th from Buesseler et al. (2020a) are shown for comparison. DOI: https://

doi.org/10.1525/elementa.2020.00166.f6

midsized particles at 50 m (0.184 + 0.077 pmol dpm™,
n = 3) were an order of magnitude higher than in deeper
waters. In large particles, TPP/Th ratios averaged 0.014 +
0.006 pmol dpm™ (n = 15) combining all depths. Below
50 m, TPP/Th ratios were comparable across the three
particle size classes (Kruskal-Wallis ANOVA on ranks, P =
0.120).

Ratios of bSi/Th were constant with depth in all parti-
cle classes, with the exception of higher bSi/Th ratios
found at 50 and 500 m in midsized particles (one-way
ANOVA, P < 0.001; Figure 6). We therefore computed
depth-averaged bSi/Th ratios and compared them by
epoch and particle class to sediment trap material (Estapa
et al., 2021; Figure 7). Ratios of bSi/Th in size-
fractionated particles in Epoch 1 were higher than in
Epochs 2 and 3 by 30%—-50%, a temporal trend not sup-
ported by trap data. The mean bSi/Th ratio in small par-
ticles (0.11 4+ 0.06 umol dpm™', n = 70) was 5 to 7 times
lower than in midsized and large particles (0.63 + 0.22
and 0.79 + 0.30 pmol dpm™", respectively, n = 70 each).
Ratios of bSi/Th in midsized particles were not signifi-
cantly different than those found in trap material (0.59
+ 0.22 umol dpm™, n = 32; t test, P = 0.867; Figure 7).

Ratios of PIC/Th were highly variable, peaking at 50 m
for large particles and between 200 and 500 m for small
particles (Figure 6). Combining all data, PIC/Th ratios

were not significantly different across size classes (Krus-
kal-Wallis ANOVA on ranks, P = 0.253; Figure S2), aver-
aging 0.052 + 0.027 umol dpm™' (n = 62) in small, 0.033
+ 0.020 pmol dpm™ (n = 4) in midsized, and 0.052 +
0.032 pumol dpm™ (n = 42) in large particles.

In addition to bSi, PN, TPP and PIC were measured in
trap material. However, as discussed in Estapa et al.
(2021), many of the measurements were affected substan-
tially by swimmer contamination. A small subset of sam-
ples (n = 7) covering depths from 100 to 500 m were
considered to be uncontaminated and were characterized
by median ratios of 0.37 umol dpm™" for PN/Th, 0.007
pumol dpm™' for TPP/Th, and 0.080 pmol dpm™! for PIC/
Th (Estapa et al., 2021). Trap PN/Th and PIC/Th ratios were
within the range of those measured in size-fractionated
particles, but TPP/Th ratios tended to be lower, consistent
with possible solubilization of TPP in trap samples (Antia,
2005; Buesseler et al., 2007b; Estapa et al., 2021).

3.4. Fluxes of major bioelements derived from 234Th

In this study, we calculated cruise-average export fluxes of
PN, TPP, bSi, and PIC following the same approach pre-
sented in Buesseler et al. (2020a) for POC flux. The fluxes
of these bioelements were determined from the ***Th
fluxes estimated using an average of the steady-state and
non-steady-state models based on numerous ***Th
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Figure 7. Biogenic silica (bSi)/thorium-234 (***Th) ratios
in different particle classes. Ratios of bSi/***Th in small
(1-5 pm), midsized (5-51 pm), large (>51 pm), and
sediment trap (Estapa et al., 2021) particles combining
samples from 100 to 500 m. Colors represent sampling
“epochs” (Epoch 1 = dark blue, Epoch 2 = red, and
Epoch 3 = turquoise), as in Figure 1. The thick black
lines show the cruise-average bSi/***Th ratios for each
particle class. The base of the boxes indicates the 25th
percentile, the line within the boxes marks the median,
and the top of the boxes indicates the 75th percentile.
Error bars above and below the boxes indicate the 90th
and 10th percentiles. Black dots show the data points
outside the 10th-90th percentile range. DOI: https://
doi.org/10.1525/elementa.2020.00166.f7

measurements (see Buesseler et al., 2020a, for details)
and the element/Th ratios measured in midsized particles
(usually from n = 12 measurements at each depth for
PN and bSi, n = 3 for TPP, and a single mean for all
particle size classes and depths for PIC based on
n = 108 measurements, see below). These results are
presented in Table 3 and Figure 8. In addition, fluxes
measured at each individual station sampled during the
cruise are given in Table S3.

In using midsized particle ratios to convert **Th fluxes
to bioelement fluxes, we assumed that this particle size
class represented the composition of sinking material at
Station P. This assumption is based on several reasons.
First, ratios of POC/Th, PN/Th, and TPP/Th in midsized
particles decreased with depth (Figure 6). A decreasing
trend is typically reported in 2**Th studies and is hypoth-
esized to be due to the preferential remineralization of
major bioelements relative to ***Th and continued ***Th
scavenging as particles sink (Buesseler et al., 2006; Puig-
corbé et al., 2020). Second, visual inspection of the >51
um pore-size filters and the absence of a decrease in POC/
Th, PN/Th, and TPP/Th ratios with depth in large particles
(Figure 6) suggests zooplankton contamination (Buesse-
ler et al., 2020a). Third, the agreement between POC fluxes
measured by sediment traps after swimmer correction and
those modeled from microscopic analyses of sinking par-
ticles collected in polyacrylamide gel traps that exclude
our small size fraction (Estapa et al., 2021) suggests
a minor contribution of small particles to sinking particle
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fluxes during EXPORTS. Finally, the agreement between
the bSi/Th ratios in midsized particles and trap material
(Figure 7) supports that midsized particles were represen-
tative of sinking particle composition.

In order to estimate sinking fluxes of PIC, we used the
mean PIC/Th ratio obtained by combining all depths and
particle size classes (0.045 + 0.016 umol dpm™'). This
approach was used because most of the PIC measured in
midsized particles fell below the limit of detection and
PIC/Th ratios were not significantly different across size
classes (Figure S2). PIC fluxes should therefore be consid-
ered upper estimates.

Cruise-average PN and TPP fluxes were highest at 50 m
and decreased sharply by a factor of 4 and 10, respectively,
t00.22 + 0.07 mmol N m2d~"and 0.019 + 0.007 mmol
P m™> d' at the base of the euphotic zone at 120 m
(Figure 8). Below this depth horizon, PN and TPP fluxes
were constant. The POC flux profile showed a similar ver-
tical distribution to PN and TPP fluxes but decreased by
a factor of 3 from 50 to 120 m (Buesseler et al., 2020a;
Figure 8). Fluxes of bSi and PIC varied to a much lesser
extent, ranging from 0.55 + 0.40 to 1.06 + 1.09 mmol Si
m~2d~" and from 0.047 + 0.015 to 0.062 + 0.051 mmol
C m2 d! over the depth range sampled; indeed, these
fluxes were the same within uncertainties across all
depths (Figure 8).

4. Discussion
4.1. Profiles of major bioelements and ?>*Th in size-
fractionated particles
4.1.1. Particle concentrations from in situ pumps
In this study, we distinguish three distinct patterns in the
vertical profiles of size-fractionated particles (Figures 2
and 3). First, the profiles of POC, PN, bSi, and #**Th are
characterized by a decrease in concentrations in small and
large particles from 50 to 150 m and constant or increas-
ing concentrations in midsized particles. Below 150 m,
POC, PN, bSi, and ***Th concentrations remained relatively
constant or slightly decreased in all particle sizes. Second,
TPP concentrations decreased from 50 to 150 m in small
and midsized particles and remained relatively constant at
deeper depths. Large particles, however, showed similar
TPP concentrations throughout the upper 500 m. Lastly,
the PIC profiles in small particles showed peak concentra-
tions at 50 m and in deep waters between 200 and 500 m.
Decreases in POC, PN, bSi, and ?**Th concentrations in
small and large particles within the euphotic zone and the
upper twilight zone are consistent with particle consump-
tion and disaggregation (Ploug et al., 1999; Kiorboe, 2000;
Lam and Marchal, 2015). The largest concentration
decrease was observed for POC and PN in small particles
from 50 to 150 m, which is 2 times greater than for bSi
and ***Th over the same depth range and particle size. This
strong decrease indicates a preferential consumption of
particulate organic matter by bacterial remineralization
and zooplankton grazing (Ragueneau et al., 2002; Buesse-
ler et al., 2006). Interestingly, concentrations in midsized
particles did not decrease between 50 and 150 m and, in
fact, bSi and 2**Th increased. The concurrent loss of bSi
and ***Th in small and large particles suggests that the
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Table 3. Cruise-average ***Th, POC, PN, TPP, bSi and PIC fluxes. DOI: https://doi.org/10.1525/elementa.2020.00166.t3

234Th Flux
(dpm m2 d7")?

POC Flux PN Flux

TPP Flux bSi Flux PIC Flux

(mmol Cm2d')®> (mmolNm2d")® (mmolPm2d’')® (mmolSim?2d")® (mmolCm?2d")

Depth (m) Average Uncert. Average Uncert. Average Uncert. Average Uncert. Average Uncert. Average Uncert.
50 1,033 184 55 17 0.82 0.31 0.191 0.067  0.81 0.23 0.047 0.015
65 1,157 231 4.9 1.4 0.73 0.24 0.159 0.051 0.84 0.24 0.052 0.017
80 1,220 273 3.8 1.1 0.56 0.17 0.109 0.033 081 0.24 0.055 0.019
100 1,238 312 2.0 0.6 0.28 0.08 0.029 0.008 0.73 0.23 0.056 0.020
120 1,227 383 17 0.6 0.22 0.07 0.019 0.007 0.69 0.26 0.055 0.022
150 1,163 479 13 0.6 0.14 0.06 0.011 0.005 061 0.30 0.053 0.026
200 1,029 696 1.1 0.7 0.13 0.09 0.009 0.007  0.55 0.40 0.047 0.034
280 1,146 726 1.1 0.7 0.15 0.09 0.008 0.005 0.60 041 0.052 0.035
330 1,367 1,076 13 1.0 0.15 0.12 0.010 0.008  0.71 0.59 0.062 0.051
500 1,322 1,341 12 12 0.16 0.17 0.011 0.011 1.06 1.09 0.060 0.063

234Th = thorium-234; POC = particulate organic carbon; PN = particulate nitrogen; TPP = total particulate phosphorus; bSi =

biogenic silica; PIC = particulate inorganic carbon.

3Cruise-average 2**Th and POC fluxes at Station P during the EXport Processes in the Ocean from RemoTe Sensing field campaign as
reported by Buesseler et al. (2020a). POC fluxes were calculated by using the 2**Th fluxes and POC/***Th ratios in midsized particles

collected using in situ pumps.

PPN, TPP, and bSi fluxes were calculated by using the corresponding element/?**Th ratio in midsized particles (Table 2) and the
cruise-average 2**Th fluxes. Uncertainties were calculated by propagating the uncertainties from the steady-state and non-steady-
state flux estimates as detailed in Buesseler et al. (2020a) for POC flux.

“PIC fluxes were calculated as PN, TPP, and bSi except that a single value of PIC/?**Th was used combining all particle size classes and

depths (Table 2; see details in Section 3.4).

midsized particle pool was sustained by aggregation of
small particles and/or disaggregation of large particles.
However, the lower POC/TPP ratios in midsized particles
compared to small and large particles at 100 m (Figure 4)
suggest that there was also in situ production of midsized
particles with low POC/TPP ratios in the lower euphotic
zone (e.g., dinoflagellates or diatoms; see Section 4.2).

TPP concentrations in small particles decreased in a sim-
ilar manner to POC and PN between 50 and 150 m,
although at some stations, the decrease was less pro-
nounced for TPP. In contrast to POC and PN, the steep
decrease in TPP in midsized particles between 50 and
150 m (factor of 5) suggests preferential attenuation of
TPP at these depths for this size class. In large particles,
relatively invariant TPP concentrations and high POC/TPP
ratios throughout 50-500 m (Figures 2 and 4) may be
the result of enhanced remineralization of TPP in the
upper euphotic zone.

Small particle PIC concentrations exhibit a distinct pro-
file, with minimum concentrations at 100 m and maxi-
mum concentrations at 50 m and between 200 and 500
m. This pattern is of interest as the calcite saturation hori-
zon around Station P lies between 250 and 500 m, while
aragonite, a minor component of PIC in the NE Pacific
subarctic gyre, becomes undersaturated at 100-200 m
(Feely et al., 2002; Dong et al., 2019). PIC concentrations
in midsized and large particles were low throughout the
upper 500 m (Figure 3), suggesting that disaggregation

cannot explain the increase in PIC concentrations mea-
sured at depth in small particles. One explanation could
be the production of fecal pellets by vertically migrating
zooplankton that feed in surface waters at night and
migrate to depth during the day (Steinberg and Landry,
2017). Other EXPORTS data sets show evidence of cocco-
lithophores in both shallow and deep waters near Station
P, including the microscopic identification of individual
coccolithophore cells in gel traps between 100 and 500
m (Bodel et al., 2020).

4.1.2. Comparison of pump-derived POC, PN, and bSi
concentrations with other EXPORTS data sets

Size-fractionated POC and PN concentrations in the upper
70 m of the water column were also determined from the
R/V Roger Revelle using Niskin bottles. This data set shows
that at 50 m 21% of POC and 24% of PN were in the >5
pm size fraction (n = 3; A Marchetti, personal communi-
cation, October 2020). In contrast, only 6% of the pump
POC and PN was measured in this size fraction at the same
depth. The difference between bottles and pumps across
size classes may be due to multiple factors. First, bottle
size-fractionated POC and PN were obtained from 24-h
incubations to determine *C uptake rates. As such, sam-
ples were not filtered immediately after collection and
may have been altered by time and handling (e.g., aggre-
gation). Also, in situ pump sampling was conducted on
the R/V Sally Ride, which covered a larger spatial scale and
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Figure 8. Cruise-average sinking fluxes of major
bioelements versus depth. Cruise-average fluxes of (a)
particulate organic carbon (gray; Buesseler et al.,
2020a), particulate nitrogen (blue), total particulate
phosphorus (red), and particulate inorganic carbon
(black) and (b) biogenic silica (green), all estimated
using the thorium-234 proxy and in situ pumps (see
Section 3.4). The gray-shaded area shows the euphotic
zone defined by the primary production zone (117 + 5
m) and 0.1% photosynthetic active radiation (118 + 9
m). Fluxes for each element are offset by 5 m to facilitate
visualization. Note different scales on the x-axes. DOL:
https://doi.org/10.1525/elementa.2020.00166.f8

a wider range of conditions compared to the sampling
conducted on the R/V Roger Revelle (Siegel et al., 2021).
Moreover, lower pump POC and PN concentrations in the
larger size fractions may reflect particle loss from the Ni-
tex screens during pumping by means of disaggregation
or breakage of fragile particles, and/or inefficient rinsing
of the Nitex screens. Maiti et al. (2012) showed that ***Th
activity in large particles decreases with increasing pump
flow rate (2-9 L min™") with varying intensity depending
on the site. As such, >5 um particles would have been
collected on the QMA filters and classified as small parti-
cles. Buesseler et al. (1998) further found that up to 20%
of particulate **Th may remain on the Nitex screens after
rinsing. However, even assuming a loss of 20% of POC and
PN in the midsized and large fractions, the discrepancy
between bottle and pump results would still remain. The
concentrations of POC and PN obtained using Niskin bot-
tles and in situ pumps during EXPORTS will be compared
in detail elsewhere.

bSi concentrations can also be compared to those ob-
tained in the upper 70 m from Niskin bottles on the R/V
Roger Revelle. Average total bSi concentrations at 50 m
from bottles (0.08 4+ 0.03 uM, n = 3; M Brzezinski,
personal communication, October 2020) agree with the
concentrations measured with pumps (0.08 + 0.04 pM,
n = 11). However, size-fractionated bottle data show that
69% of bSi was on the >5 um size fraction at this depth (M
Brzezinski, personal communication, October 2020),
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compared to 39% based on pump samples despite the
agreement in total bSi. To some extent, bSi concentrations
in our midsized and large fractions may be underesti-
mated and concentrations in small particles overestimated
if vertically oriented and elongated diatoms passed
through the Nitex screens during filtration. Indeed, am-
plicon sequencing data show that sequences encoded by
Pseudo-nitzschia (pennate), followed by Thalassiosira (cen-
tric) and Fragilariopsis (pennate), were relatively abundant
in the amplified sequences from the euphotic zone dia-
tom community, accounting together for >70% of the
sequences (S Lerch, personal communication, February
2021). Indeed, the needle-shaped Pseudo-nitzschia were
found to have widths smaller than 5 um and form chains
longer than 51 um (H. Sosik, personal communication,
February 2021). Alternatively, the disruption of diatom
chains (such as Pseudo-nitzschia) during pump filtration
could have resulted in the release of single diatom cells
relative to bottle filtration. In fact, fucoxanthin to total
chlorophyll-a ratios obtained by high-performance liquid
chromatography from R/V Sally Ride bottle and QMA
pump samples are very similar (e.g., at 50 m: 0.157 +
0.018, n = 38, for bottles; 0.147 + 0.007, n = 11, for
pumps; DOI: 10.5067/SeaBASS/EXPORTS/DATA001), yet
bottle samples should represent all size classes while
pump samples should only represent a subfraction (1-5
um). This similarity suggests that >5 pm diatoms may
have passed through the Nitex screens leading to an over-
estimation of bSi concentrations in small particles using in
situ pumps.

Taken together, we acknowledge that size-fractionated
POC, PN, and bSi bottle data from the R/V Roger Revelle
suggest that large volume filtration may have resulted in
lower POC, PN, and bSi concentrations in midsized and
large particles and higher bSi concentrations in small par-
ticles. In contrast to bSi, the lower concentrations of POC
and PN in midsized and large particles suggest that these
effects would not result in significant overestimates in the
small size class. We found no evidence that under- or over-
estimates in concentrations occurred below the shallowest
in situ pump at 50 m. Furthermore, molar and element/
Th ratios are not impacted in the same way as concentra-
tions. The loss of material from a given size class would
only change a given ratio if the amount of material lost
was significant and characterized by a different composi-
tion relative to the bulk material. Likewise, the gain of
material to a given size class would only affect the ratio
if the amount of material added was significant and pos-
sessed a different composition relative to the bulk. Future
experiments involving collocated measurements in bottle
and in situ pump samples will be needed, ideally using the
same filters and similar sample handling procedures.

4.2. Molar ratios in size-fractionated particles

Molar ratios of POC/PN from in situ pump filtration dur-
ing EXPORTS were relatively close to the Redfield ratio
(6.6) and in agreement with previous observations at Sta-
tion P. Specifically, mean POC/PN ratios were 6.4 + 0.8
(n=70) in small, 8.2 4+ 2.6 (n = 64) in midsized, and 7.6
+ 2.7 (n=58) in large particles. These POC/PN ratios are
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comparable to those measured in sediment trap samples
collected during EXPORTS at depths from 100 to 500 m
(median: 7.0, n = 7; Estapa et al., 2021). Ratios of POC/PN
on suspended matter collected at Station P from 50-500
m in August 1996 (6.7 + 1.2, n = 31) are within the range
of EXPORTS observations, but literature values from Sep-
tember show much higher variability (Martiny et al.,
2014). Other studies using moored sediment traps at Sta-
tion P have reported POC/PN ratios of 13 at 200 m during
the same season, but these elevated ratios were attributed
to lipid accumulation by <1,000 pm swimmers that were
not removed from trap samples (Timothy et al., 2013).
High POC/PN ratios obtained from time-series measure-
ments of surface-tethered traps were also hypothesized to
be affected by swimmers that passed through the 500 or
1,000 pm screens used to separate swimmers from sam-
ples (Wong et al., 2002).

Another way to examine POC/PN ratios is from POC
versus PN relationships. In this study, POC was strongly
correlated to PN in each size fraction (Figure 5). Previous
work has used the slope of such relationships to deter-
mine remineralization or particle degradation ratios based
on sinking (Lamborg et al., 2008) and suspended (Lam et
al,, 2018) particles. Here, we identified a lower POC/PN
slope in small particles compared to the mean POC/PN
(5.8 vs. 6.4; t test, P< 0.001) and a small positive intercept
(PN = 0 and POC = 0.027 + 0.017 puM). These results
suggest the existence of a POC component that does not
degrade over the 50-500 m range. The POC/PN slope is
also lower in midsized particles compared to the mean,
but in large particles, POC/PN ratios obtained from both
methods (Figures 4 and 5) are comparable (midsized: 6.9
vs. 8.2, ttest, P< 0.001; large: 7.0 vs. 7.6, t test, P = 0.131).
The lack of a significant intercept in midsized particles (PN
= 0 and POC = 0.002 + 0.016 uM) suggests that the
lower POC/PN from the slope is likely due to higher var-
iability in POC/PN ratios. Combined, these results suggest
that POC and PN have similar remineralization length
scales in all size classes, resulting in invariant POC/PN
ratios in the upper 500 m (Figure 4). Similar conclusions
were drawn by Lamborg et al. (2008) and Lam et al.
(2018). They are also consistent with the findings by Wong
et al. (2002) who determined a remineralization ratio
close to the Redfield ratio by using three independent
methods and data from the upper 1,000 m of the water
column at Station P.

Ratios of POC/TPP in small and large particles showed
no clear trends with depth, with mean ratios of 118 + 32
and 175 + 100, respectively (Figure 4). In contrast, POC/
TPP ratios in midsized particles were very low (17-35) at
50 m, which may reflect the elemental stoichiometry of
the plankton community. During EXPORTS, the 5-51 pm
phytoplankton carbon biomass at 50 m was dominated by
dinoflagellates with a small fraction comprised of diatoms
(approximately 30% vs. <10%; H. Sosik, personal commu-
nication, November 2020) consistent with low bSi concen-
trations (Figure 2). Both dinoflagellates and diatoms may
exhibit low POC/TPP ratios due to reduced cell wall mate-
rial or to accumulation of inorganic phosphorus com-
pounds, such as polyphosphate (Twining et al., 2004;
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Price, 2005; Martiny et al., 2013; Lomas et al., 2019; Zhang
et al., 2019). Below 50 m, POC/TPP ratios in midsized
particles (109 + 35, n = 14) were more similar to the
other size classes and close to those reported for sus-
pended organic matter from the upper 300 m in the
Pacific subarctic region (Teng et al., 2014). The POC/TPP
ratios measured in sediment traps during EXPORTS
(median: 264, n = 7; Estapa et al., 2021) are substantially
higher than those determined by in situ filtration, poten-
tially due to solubilization of TPP in traps prior to sample
processing (Antia, 2005; Buesseler et al., 2007b; Estapa et
al., 2021).

Ratios of bSi/POC were consistently higher in midsized
and large particles compared to small particles, suggesting
a larger contribution of siliceous plankton to the larger
particle pools and/or a different degree of diatom silicifi-
cation between size classes. The average bSi/POC ratios
measured in >5 pm particles were on average 0.4-0.5,
but at 50 m, ratios were significantly lower for midsized
particles compared to large particles (0.16 + 0.04 vs. 0.41
+ 0.21, respectively). The bSi/POC ratio measured in large
particles is 3 times higher than that typical of diatom
cultures growing under nutrient-replete conditions (0.13;
Brzezinski, 1985). Low levels of iron affect the elemental
stoichiometry of diatoms leading to an increase in their
cellular bSi/POC and bSi/PN ratios (Hutchins and Bruland,
1998; Firme et al., 2003; Marchetti and Cassar, 2009).
Given that large phytoplankton at Station P are iron-
limited (Harrison, 2002), these high bSi/POC ratios may
reflect a significant contribution of iron-stressed diatoms
to the >51 pm particle pool in the euphotic zone. The bSi/
POC ratio determined from the correlation between bSi
and POC fluxes measured with sediment traps during EX-
PORTS (0.29 + 0.02; Estapa et al,, 2021) falls between
that measured in the small and larger size fractions. Fur-
thermore, the average bSi/POC ratios measured using
moored sediment traps at 200 m at Station P in summer
and the fall from 1989 to 2006 (0.46—0.55; Timothy et al.,
2013) are similar to those presented here for midsized and
large particles.

Another important finding is that bSi/POC ratios in
small and midsized particles clearly increased with depth
(Figure 4), providing evidence of heterotrophic consump-
tion of organic matter as these smaller particles sink
through the water column. In contrast, bSi/POC ratios in
large particles remained relatively constant with depth.
This finding suggests that large, ballasted particles escape
POC loss due to rapid sinking (Armstrong et al., 2002;
Klaas and Archer, 2002; De La Rocha and Passow, 2007;
Honjo et al., 2008). Indeed, gel traps collected a large
number of heavily silicified diatoms that sank as individ-
ual cells or in chains, predominantly composed of Fragi-
lariopsis-like cells which spanned sizes from 43 to 107 um
(Bodel et al., 2020). However, high and invariant POC/Th
ratios with depth in large particles (Figure 6) and visual
analysis of the >51 um filters suggested contamination by
C-rich swimmers especially in the deeper samples (Bues-
seler et al., 2020a). The presence of swimmers may there-
fore partially explain the lack of bSi/POC vertical change
in this size class. Furthermore, large Rhizaria with siliceous
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tests, which were identified in the gel traps (Bodel et al.,
2020), could have also affected bSi/POC ratios in large
particles.

Ratios of PIC/POC in small particles increased from the
base of the euphotic zone up to 0.08-0.09 at 330-500 m
(Figure 4) reflecting a more rapid loss of POC relative to
calcium carbonate. In contrast, PIC/POC ratios in midsized
and large particles did not show a clear trend with depth
and remained at very low values throughout the upper
500 m (0.026 + 0.014). The PIC/POC ratios measured in
the larger size fractions are in good agreement with those
measured in sediment trap material during EXPORTS
(median: 0.035, n = 7; Estapa et al., 2021). Compared to
previous studies, PIC/POC ratios obtained from size-
fractionated particles are consistent with those measured
in sediment trap material collected over the 150-500 m
depth range in the NW Pacific subarctic gyre (Lamborg
et al., 2008). However, much higher PIC/POC ratios have
been measured in sediment trap material at 100—200 m
in the NE Pacific subarctic gyre in summer and fall (0.28—
0.44; Wong et al., 2002; Timothy et al., 2013; Dong et al.,
2019; see Section 4.3).

4.3. Comparison of ?**Th-derived fluxes of major
bioelements with other data sets

Fluxes of PN, TPP, bSi, and PIC derived from water column
234Th/238U disequilibrium and in situ pumps are com-
pared to the POC fluxes estimated using the same
approach (Buesseler et al., 2020a) and PN, TPP, bSi, and
PIC fluxes measured with sediment traps (Estapa et al,
2021) during EXPORTS. These results are also discussed
considering previous particle flux studies at Station P and
elsewhere.

The clearest feature of EXPORTS biogenic fluxes is the
steep and shallow attenuation of the soft tissue-associated
POC, PN, and TPP fluxes from 50 m to the base of the
euphotic zone (approximately 120 m), in contrast to the
little to no significant change in the mineral bSi and PIC
fluxes with depth (Figure 8). This difference suggests
more rapid recycling of organic matter relative to biomin-
erals and is consistent with the general increase in the
bSi/POC and PIC/POC flux ratio observed throughout the
water column in different regions of the world ocean
(Ragueneau et al., 2002; Berelson et al., 2007) and specif-
ically at Station P (Timothy et al., 2013).

Fluxes of PN, TPP, and PIC from 100 to 500 m measured
with sediment traps during EXPORTS are similar to those
derived from #**Th (Estapa et al., 2021; Table 4). In con-
trast, trap-derived bSi fluxes were generally lower than
those measured with ***Th (though we acknowledge the
high uncertainties; Table 4). These differences are driven
by the discrepancy in #**Th fluxes measured by traps and
those predicted from #**Th disequilibrium in seawater, as
the relative composition of bSi to **Th in trap particles
and the midsized class is very similar. The potential rea-
sons underlying the differences in #**Th-derived particle
fluxes are discussed in detail in Estapa et al. (2021), includ-
ing the undersampling of small (<40 pm) and large par-
ticles (>1 mm) by traps and the active transport of ***Th
(and other elements) by vertically migrating zooplankton.
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Of importance to this study is the summary of 10 years
of surface-tethered free-drifting sediment trap data (50—
1,000 m, 1987-1998) at Station P by Wong et al. (2002)
complemented with additional data to 2005 (Buesseler et
al,, 2020a), and the climatology of particle flux measured
at Station P using moored sediment traps (200, 1,000, and
3,800 m, 1980s—2006) summarized in Timothy et al.
(2013). We henceforth refer to the average fluxes obtained
from July to September for drifting sediment traps (Wong
et al., 2002) and the average seasonal fluxes from summer
(mid-May to mid-August) and the fall (mid-August to mid-
November) for moored sediment traps (Timothy et al.,
2013). Drifting sediment traps show a strong attenuation
of PN fluxes from 50 to 100 m and low fluxes at 500 m
similar to those measured during EXPORTS (Wong et al.,
2002; Table 4). Yet, their average PN fluxes above 500 m
tend to be higher than in this study, possibly due to swim-
mer contamination in the trap samples as discussed by
Wong et al. (2002). On the other hand, seasonal PN fluxes
measured at 200 m with moored sediment traps are 0.09—
0.18 mmol N m™ d™" and bSi fluxes are 0.48-1.02 mmol
Si m™2 d”', encompassing the ***Th-derived fluxes during
EXPORTS (Table 4). However, Timothy et al. (2013) re-
ported consistently higher bSi fluxes at 1,000 m than at
200 m, which was hypothesized to be related to a lower
trapping efficiency of the shallow trap. Therefore, their bSi
and PN fluxes at 200 m should be considered minimum
estimates as noted for POC flux.

Regarding PIC, the average fluxes reported by Wong et
al. (2002) and Timothy et al. (2013) are strikingly higher
than the EXPORTS fluxes by 1 to 2 orders of magnitude
(Table 4). These higher values are consistent with the PIC
fluxes measured with surface-tethered free-drifting sedi-
ment traps at 100 and 200 m about 4° west of Station P in
August 2017 (0.75-1.03 mmol C m2 d'; Dong et al,,
2019). However, a closer look at the time-series trap data
reveals that the PIC fluxes during EXPORTS are similar to
the minimum fluxes reported by Wong et al. (2002) and
Timothy et al. (2013) in the upper 1,000 m in July—-Sep-
tember during their entire period of observations (approx-
imately 0.10 mmol C m™2 d™"). PIC fluxes at Station P are
mainly composed of coccolithophores, pteropods, and
foraminifera (Wong et al., 1999, 2002; Tsurumi et al.,
2005; Timothy et al., 2013). We cannot rule out the pos-
sibility that trap measurements may in part reflect the
presence of live zooplankton, such as small pteropods or
shell fragments, that were not part of the passive sinking
flux. For example, Wong et al. (1999) reported that 200-
m trap samples were frequently impacted by hundreds of
swimmers, mostly copepods, amphipods, and pteropods.
However, high average PIC/POC ratios found by previous
trap studies (Wong et al., 2002; Timothy et al., 2013;
Dong et al., 2019) cannot be explained by swimmer con-
tamination because the collection of live pteropods and
other zooplankton would bias PIC/POC ratios toward low
(rather than high) values. The very low PIC fluxes mea-
sured in 2018 compared to the longer time-series trap
observations at Station P thus likely reflect underlying
differences in community structure. Strong variability in
the relative contribution of PIC to total carbon
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Table 4. Comparison of fluxes of major bioelements at Station P. DOI: https://doi.org/10.1525/

elementa.2020.00166.t4

Bioelement Fluxes 50 m 100 m

150 m 200 m 330 m 500 m

PN fluxes (mmol N m™2 d™")

This study? 0.82 + 0.31
Estapa et al. (2021)° -

Timothy et al. (2013)° — - -
Wong et al. (2002)" 132 + 058 059 + 032  —
TPP fluxes (mmol P m™ d7")

This study?
Estapa et al. (2021)° -

bSi fluxes (mmol Si m™2 d™7)

This study® 0.81 + 0.23 0.73 + 0.23
Estapa et al. (2021)° - 0.34 + 0.24

0.28 + 0.08

Timothy et al. (2013)° — — —
PIC fluxes (mmol C m™2 d™")

This study?
Estapa et al. (2021)° -

Timothy et al. (2013)° — - -
Wong et al. (2002)¢ 376 + 207 277 + 232 -

0.61 + 0.30 0.55 + 0.40
0.26 + 0.14 0.19 + 0.09

0.047 + 0.015 0.056 + 0.020 0.053 + 0.026 0.047 + 0.034 0.062 + 0.051

0.14 + 0.06 0.13 + 0.09 0.15 + 0.12 0.16 + 0.17
0.23 + 0.11
0.09 - 0.18 - -
049 + 0.17 — 0.21 + 0.06

0.191 £ 0.067 0.029 + 0.008 0.011 £+ 0.005 0.009 + 0.007 0.010 + 0.008 0.011 + 0.011

0.007 + 0.007

0.71 + 0.59 1.06 + 1.09
0.13 + 0.05 0.16 + 0.08

0.48 — 1.02 - —
0.060 + 0.063
0.045 + 0.025
0.34 - 0.95 - -
1.14 + 0.49 — 0.66 + 0.18

PN = particulate nitrogen; TPP = total particulate phosphorus; bSi = biogenic silica; PIC = particulate inorganic carbon; EXPORTS =

EXport Processes in the Ocean from RemoTe Sensing.

a234Th-derived cruise-average fluxes during EXPORTS (Table 3).

PTrap-derived cruise-average ( + standard deviation) from three trap deployments (once per epoch) combining surface-tethered traps
and neutrally-buoyant sediment traps during EXPORTS. PN, TPP, and PIC fluxes correspond to the average based on seven samples

spanning depths from 100 to 500 m.

‘Range of the average seasonal fluxes from moored traps (1989-2006) in the summer (mid-May to mid-August) and the fall (mid-

August to mid-November).

dAverage (+ standard deviation) fluxes from surface-tethered traps (1987-2000) in July-September (n = 7 for each depth, except n

= 4 for 50 m).

production at Station P is illustrated with PIC/POC produc-
tion ratios ranging from 0.02 to 0.41 in September from
1998 to 2000 (Lipsen et al., 2007). Interannual and in-
traannual variability in surface PIC concentrations around
Station P is clearly shown by satellite observations (NASA
Goddard Space Flight Center, 2018). In 2018, PIC concen-
trations peaked 3 months prior to EXPORTS and concentra-
tions during sampling were a factor of 2 lower than the
average time-series concentrations in August and Septem-
ber from 2002 to 2018 (Figure S3). Therefore, August—Sep-
tember 2018 may have been a time of anomalously low PIC
production, resulting in low PIC fluxes.

On a broader perspective, Buesseler et al. (2020a) dis-
cussed that POC fluxes measured during EXPORTS place
Station P as one of the more modest POC flux settings in
the global ocean. For example, average POC fluxes
derived from **Th at the base of the euphotic zone
during EXPORTS (1.7 + 0.6 mmol C m™2 d°'; Buesseler
et al., 2020a) are similar to those measured at 150 m at

an oligotrophic station in the central North Pacific
(ALOHA) using ***Th and free-drifting and neutrally-
buoyant sediment traps (Karl et al., 1996; Benitez-
Nelson et al., 2001; Lamborg et al., 2008). The same
holds true for PN and TPP fluxes, with the exception of
lower TPP fluxes measured with neutrally-buoyant sedi-
ment traps at ALOHA during the VERTIGO program
(Lamborg et al., 2008). However, PIC fluxes during EX-
PORTS are toward the low end of those measured at
ALOHA (Lamborg et al., 2008). Fluxes of bSi measured
at the base of the euphotic zone during EXPORTS are
clearly low compared to studies conducted in nonoligo-
trophic and diatom-dominated areas including the K2
site in the NW Pacific and regions of the Southern Ocean
(>10 mmol Si m™2 d™'; Buesseler et al., 2001; Buesseler et
al., 2008b; Lamborg et al., 2008) but higher than those
reported in the Sargasso Sea and at ALOHA during dia-
tom blooms (<0.4 mmol Si m~* d™'; Benitez-Nelson et al.,
2007a; Buesseler et al., 2008a; Lamborg et al., 2008).
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Figure 9. Transfer efficiencies in the upper twilight zone. Mean transfer efficiencies of particulate organic carbon (gray),
particulate nitrogen (blue), total particulate phosphorus (red), biogenic silica (green), and particulate inorganic carbon
fluxes (black; flux at 220 m/flux at 120 m) using the steady-state fluxes determined at each station sampled for
thorium-234 during EXPORTS (Table S3) by sampling “epoch.” Error bars show 1 standard deviation of the mean. Left-
to-right panels indicate Epochs 1-3 with yellow shading denoting boundaries between epochs; dates are year—
month—day. Light gray symbols in the background show data points from individual stations. DOI: https://

doi.org/10.1525/elementa.2020.00166.f9

4.4, Biological pump efficiency below the euphotic
zone

The transfer efficiency, or Tyg, is @ measure of how effi-
ciently biogenic material is exported through the upper
100 m of the twilight zone in different oceanic regions
(Buesseler and Boyd, 2009; Buesseler et al., 2020b). Here,
transfer efficiency was calculated by dividing the bioele-
ment fluxes at 220 m by those estimated at the base of the
euphotic zone (approximately 120 m, defined by 0.1%
PAR and the PPZ; see Methods), as done in Buesseler
et al. (2020a) for POC. The bioelement fluxes at 220 m
were approximated from the fluxes at 200 m since seawa-
ter samples for 23*Th analysis were always collected
around 200 m and flux gradients within the 200-280 m
range were small (Figure 8).

The cruise-average transfer efficiencies using the
fluxes presented in Table 3 are 58% + 44% for PN,
49% + 39% for TPP, 79% + 66% for bSi, and 84% +
70% for PIC. The cruise-average transfer efficiency for
POC was 61% + 46% (Buesseler et al., 2020a). Transfer
efficiencies measured with traps over the three epochs
ranged from 39% to 94% for POC and 41% to 110% for
bSi (Estapa et al., 2021), encompassing the cruise-average
estimates using ***Th. Transfer efficiencies were also cal-
culated at each station sampled for ***Th during EX-
PORTS using the steady-state fluxes (Table S3).
Considering the data from all stations (Figure 9), TPP
is the element that shows the lowest transfer efficiency
(Mann—-Whitney rank-sum test, P < 0.001 for POC, bSi,
and PIC; P = 0.007 for PN), followed by PN and POC,

which show comparable transfer efficiencies (Mann—
Whitney rank-sum test, P = 0.222), and finally by bSi
and PIC, which are also comparable (Mann-Whitney
rank-sum test, P = 0.247). Therefore, transfer efficiencies
of these major bioelements order as PIC ~ bSi > POC ~
PN > TPP, indicating smaller losses of biominerals com-
pared to organic matter as particles sink. Transfer effi-
ciencies appeared to decrease with time during EXPORTS
(Figure 9), but this trend is not statistically significant
for any element (one-way ANOVA, P > 0.489).

To our knowledge, this study is the first to report POC,
PN, TPP, bSi, and PIC transfer efficiencies in the subarctic
NE Pacific. Previous sediment trap studies in this region
have focused on a subset of these bioelements and
reached different conclusions regarding the attenuation
of organic matter versus biominerals within the twilight
zone. Wong et al. (2002) found similar transfer efficiencies
for POC and PN from 100 to 200 m, but the lowest trans-
fer efficiencies for PIC. Over the same depth range, Dong
et al. (2019) found comparable transfer efficiencies for PIC
and POC. In deeper waters, Timothy et al. (2013) found
higher transfer efficiencies for bSi and PIC compared to
POC and PN between 200 and 1,000 m. Therefore, the
EXPORTS results and those obtained from moored sedi-
ment traps indicate that POC and PN are more rapidly lost
than bSi and PIC in the upper water column despite the
shallow calcium carbonate saturation horizon in the NE
Pacific (Feely et al., 2002).

Studies conducted in other regions of the world ocean
support the finding that POC, PN, and TPP are
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preferentially remineralized relative to biomineral fluxes
in the upper water column (Buesseler et al., 2001; Buesse-
ler et al., 2007a; Lamborg et al., 2008; Engel et al., 2017).
This finding is consistent with the view that aggregates
containing sufficient amounts of bSi, calcium carbonate,
or terrigenous material are more likely to reach the ocean
interior than unballasted material by increasing the density
and sinking velocity of aggregates and, therefore, limiting
their residence time in the water column and the impact of
heterotrophic remineralization (De La Rocha and Passow,
2007; Ploug et al., 2008; Iversen and Ploug, 2010).

5. Conclusions

We have presented the distribution of size-fractionated
POC, PN, TPP, bSi, PIC, and 2**Th concentrations in the
upper 500 m of the water column during the EXPORTS
field campaign in the subarctic NE Pacific. Concentration
profiles are discussed in terms of the major processes
controlling particle cycling in the ocean, such as reminer-
alization, (dis)aggregation, and diel vertical migration. We
found similar remineralization length scales for POC and
PN across all particle size classes from depths of 50-500
m. High bSi/POC ratios in large particles may reflect a sig-
nificant contribution of highly silicified diatoms to the
>51 um particle pool in the euphotic zone. Low PIC
concentrations and PIC/POC ratios suggest a small
contribution of coccolithophores to particle stocks in
August—September 2018.

Following the same approach as in Buesseler et al.
(2020a) for POC flux, we calculated cruise-average ***Th-
derived fluxes of PN, TPP, bSi, and PIC associated with
sinking particles. The soft tissue-associated POC, PN, and
TPP fluxes strongly attenuated within the euphotic zone
down to 1.7 + 0.6 mmol Cm=2d~",0.22 + 0.07 mmol N
m~2d’, and 0.019 + 0.007 mmol P m2d~"at 120 m. In
contrast, bSi and PIC fluxes were similar with depth, with
values of 0.69 + 0.26 mmol Si m™2 d~! and 0.055 +
0.022 mmol C m™2 d™" at 120 m. These results are similar
to previous work from Station P, with the notable excep-
tion of PIC fluxes, which were 1 to 2 orders of magnitude
lower than those measured in previous years using sedi-
ment traps. Transfer efficiencies within the upper 100 m
of the twilight zone were PIC (84%) ~ bSi (79%) > POC
(61%) ~ PN (58%) > TPP (49%). These differences indi-
cate preferential remineralization of TPP relative to POC or
PN and larger losses of soft tissue relative to biominerals
in sinking particles below the euphotic zone. These results
provide the foundation for future efforts examining the
role of plankton community composition, food-web
dynamics, and bSi production, among others, in the trans-
fer of material from the surface ocean to depth in the
northeast Pacific Ocean.
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