CHAPTER FOUR
METHODOLOGY

The methodology used in the recovery of archaeological data from Strawberry Ferry and Childsbury Towne was consistent with problems associated with an archaeological site that contains multiple environments. The integration of this data allows a holistic understanding of overall site context and associated socio-economic aspects related to the inter-connected and multiple communal use of the town and ferry crossing. The make up of the people that lived there, as well as temporal and spatial factors related to Strawberry Ferry and Childsbury Towne's place in regional settlement patterns is also determined from this methodology.

A map of Childsbury Towne, drawn by founder James Child in 1707 (Fig. 7, 8), and a land survey conducted by John Diamond in 1811 (Fig. 9), was extensively studied to determine lot size and the overall spatial relationship between the two existing key structures, Strawberry Ferry and Strawberry Chapel. The proposed size of Childsbury Towne was determined by a comparison of the Child map and a historic land indenture that described individual lot size (Smith 1914; South Carolina Historical Society, Elias Ball Muniments, 33-83-2-5; Appendix I, Fig. 7). Information from this indenture was synthesized and extrapolated to form an accurate drawing of the settlements physical layout.

The establishment of the site grid was based on a number of factors relevant to the project. Site size, a lack of archaeological and historical documentation concerning the
FIGURE 7. Plat map of Childsbury Towne. (By James Child, 1707.)
FIGURE 8. Addendum to plat map of Childsbury Towne. (By James Child, 1707.)
FIGURE 9. Plat map of Strawberry Plantation. (By John Diamond, 1811.)
extent of structures constructed within the southwestern quadrant of the town, site accessibility, personal time constraints, and potentially adverse impacts from current development, were all considerations. No formal archaeological investigations have ever taken place within Childsbury Towne.

On the original plat, Childsbury Towne consisted of 24 blocks that covered approximately 100 acres (Fig. 7). Laid out in rectangular blocks, similar to planned towns found in England, the eastern 12 blocks were an overlay image of the western 12 blocks. Each half of the town contains six blocks, running north-south, 100m x 140m and six blocks, running east-west 100m x 175m. Divided into four quarters, each quadrant contains six blocks, three running north-south and two running east-west (Fig. 10).

The ownership of certain lots within the northeastern and southeastern quadrants is historically documented through wills and indentures (Moore and Simmons 1960:65-66, 203; Rogers et al., 1974:592, 597-598; Smith 1914; South Carolina Historical Society, Elias Ball Muniments, 33-83-2-5). Presently the northeastern quadrant of the Child plat map is heavily forested in low swampy ground. The southeastern quadrant is open pasture. The river bluff section of this quadrant contains a fish camp with a number of modern structures.

From a review of historical documents pertaining to Childsbury Towne, none have been found showing that private or commercial structures ever existed in the northwestern quadrant of the town. The northwestern quadrant is heavily wooded with dense undergrowth and divided by South Carolina state Highway #402, locally known as "Comingtee Road." The southwestern quadrant is covered in grass with sporadic windrows of felled trees resulting from cleanup operations in October of 1989 after hurricane Hugo (Plate 1).
The southwestern quadrant was chosen for the focus of these investigations for a number of reasons. The southwestern quadrant covers approximately 25 acres (Fig. 10). This size was compatible with the limited time-frame allotted for the survey. The lack of historical documentation related to the southwestern quadrant of the town increased its archaeological potential for additional information concerning studies of colonial low country settlement. It contains the only extant key structures within the original town of Childsbury; Strawberry Chapel and the northeastern landing of Strawberry Ferry. The remains of the tavern and inn, historically known to have been associated with the ferry crossing, would possibly be present.
FIGURE 10. Map of southwestern quadrant, Childsbury Towne.
The southwestern quadrant was sub-divided into four alphabetically designated sections (Fig. 11). Heavy flora and a slightly rolling topography required the establishment of the main base line along a cleared power line right-of-way south of Strawberry Chapel. The bluff edge was used as a marker for the extent of collection because of a lack of knowledge concerning geographical changes, due to erosion, slumpage, or fill along the bluff. The distance from the Chapel to the ferry landing was unknown.

The main datum was designated “A.” All subsequent points were derived alphabetically and in the sequential order of their placement. All additional points were placed at 90 degree angles from the main base line and followed the previous alphabetical designation related to the time of placement. The main datum line ran northwest to southwest and a second line was established, at a 60m interval, northeast of and parallel to the main base line. This expanded the grid to encompass the two block sections between Mulberry Street and Church Street and the two block section between Church Street and Market Street (Fig. 8, 11). No parallel lines were established southwest of the main datum line between Mulberry Street and Bay Street because of unknown factors related to topographical irregularities along the bluff that fronted the river, the width of Bay Street, reported to be 30m wide, and the actual distance between Bay Street and the ferry landing.

Survey

The terrestrial portion of the project-area was subjected to an intensive visual survey. This survey defined those areas in the southwestern quadrant considered to have the highest and lowest probability of artifact concentrations. The establishment of the main datum line, parallel lines, and their subsequent 90 degree turns allowed the layout of a 10m x 10m grid over the southwestern quadrant (Fig. 12). This grid included both the
FIGURE 11. Sectional map for survey of southwestern quadrant, Childsbury Towne.
terrestrial and submerged areas of the site. Sequential numerical designations were assigned, west to east, to each of the grid squares.

An intensive, site inclusive, 20cm x 20cm shovel test in the northwest corner of each 10m x 10m grid square was selected as the strategy for the location and recovery of sub-surface artifacts. Due to late 20th century landscaping, begun by the present owner with a bulldozer and track hoe shortly after the survey was initiated, the original methodology was revised (Plate 2).

PLATE 2. Back hoe operations at present-day Childsbury Towne.
Time restraints, related to the newly emerging topographical aspects of the site, coupled with the size of the site, 25 acres, suggested the use of a simple random sample of shovel tests as the most expedient manner in which to recover data from the site.

A simple random sample requires a designated number of overall units within the sampling frame. This determines the actual number of random units to be assigned and tested (Bernard 1988:84-85). The smaller the overall number of units within the sampling frame the easier it is to determine the random sample (Bernard 1988:83-85). The numbers were assigned in a random order as defined by the tables in H. Russell Bernard’s *Research Methods in Cultural Anthropology* (Bernard 1988:460-462). A 25% simple random sample was taken from the highest probability areas, as delineated from the visual survey, in an effort to locate possible structural remains. A 05% sample was taken from those areas containing the least amount of probability.

Unit Provenience

Artifacts recovered from each of the 10m x 10m squares were designated as coming from either surface recovery finds (SF) or shovel tests (ST). Artifacts from surface finds constituted the majority recovered but, came from the smallest overall area of the site (Fig. 12). They are designated as SF#1, SF#2, SF#3, etc., depending upon the grid square in which they were recovered (Appendix II). Shovel tests, which constituted the smallest number of artifacts recovered, came from the largest area of the site (Fig. 13). These finds are designated as ST#1, ST#2, ST#3, etc. (Appendix III).

Surface Finds

Observations determined that surface find locations were impacted by bulldozer and track hoe operations during the late 20th century. Physical evidence, such as the impressions of the machines tracks, fresh breaks in the ceramic and glass assemblage, and
FIGURE 13. Positive shovel tests in southwestern quadrant, Childsbury Towne.
the centralized location of most of these artifacts along the bluff edge, confirms this problem. Many artifacts within 10m to 30m of the bluff edge were exposed from these operations. Statistics were run to determine the extent of artifacts along the bluff and their relationship to the site as well as other features. These determined that 05% of the shovel tests were located within 10m to 30m of the bluff, whereas 66% of surface finds fell within this area. This would suggest that a majority of the surface finds along the bluff edge were pushed there. According to Diamond’s (1811) survey, they may be related to the proximity of buildings found along the bluff edge. The majority of data from surface finds was used sparingly in the analysis of the overall site, in general, and in particularly, with features found there.

Surface artifacts were collected within each grid square when present. Each grid square contained at least one artifact. Surface features, when ascertained, were sequentially numbered upon discovery and their location and size plotted on the overall site map (Fig. 14). Features were designated as such if they contained extensive amounts of artifacts in association with substantial brick scatters.

Shovel Tests

All shovel tests were taken from the northwestern corner of each 10m x 10m grid square. All soils, including sod were screened and artifacts collected except within modern features, such as gravel roads. All shovel tests were made using a standard “D” handle shovel and were approximately 20cm x 20cm square. Shovel tests ranged from 20cm to 55cm in depth. Variations in depth depended upon the presence of sterile yellow sand or red clay. All materials were screened through 1/4-inch hardware cloth.

Recording

A separate record was maintained for the surface collections and artifacts from the shovel tests (Appendix II, III). Surface collections and artifacts recovered from shovel
FIGURE 14. Distribution of brick features. (From surface finds.)
tests were bagged and labeled with the designated number assigned to the grid square or test pit hole in which they were found. Each was recorded in a field book at the time of collection. These data included surface square or test pit number, overall depth, and soil conditions. Artifacts from the two collections were used as comparative data in the final analysis.

Surface finds and shovel test locations were transferred from the field book to a master site map prepared in the field. Locations of extant key structures; i.e., Strawberry Chapel, the landings for Strawberry Ferry, and other features were also recorded in the field on the master site map. Comparisons of the spatial arrangement between the map and the physical locations of structures and features were confirmed, daily, on site. Detailed drawings, such as test pit stratigraphy and details of the landing’s construction, were completed in the lab from data recorded in the field.

Analysis

Artifacts were washed (metallic materials were brushed) and re-bagged in the lab in preparation for cataloging and labeling. Cataloging was done according to standards set by the South Carolina Institute of Archaeology and Anthropology curation department. Intensive analysis was conducted on all artifacts recovered. Ceramics were identified through use of artifact collections located at the South Carolina Institute of Archaeology and Anthropology and the University of South Carolina Department of Anthropology. Dating of the ceramic collection was through the use of tables established by Ivor Noel-Hume (1969) and revisions to that table made by Leland Ferguson (1977) and Stanley South (1993). The plain and decorated unglazed earthenware was analyzed with the assistance of Chester DePratter and Leland Ferguson and other studies (Anderson 1975; DePratter et al., 1973; Ferguson 1992). Upon completion of analysis and this thesis, all artifacts will be retained by the Berkeley County Museum in Monck’s Corner, South Carolina per request of the present property owner, Mr. John Cumbie.
Underwater Methodology

The same methodology for conducting studies on the terrestrial portion of the site was used on the submerged areas. This involved the same grid system and the same proveniencing for surface finds. Shovel testing was slightly modified being that the landings are only 2.5m wide. A general review of the work conducted on the underwater portions follows.

A non-intrusive physical survey of the northeastern and southwestern landings was conducted for this thesis. The southwestern landing is considerably deteriorated. Erosion from fluvial action and boat wakes has destroyed a majority of the landing, eroding much of its structure. Studies of the inner construction were conducted using Self Contained Underwater Breathing Apparatus (SCUBA).

During investigations portions of the northeastern and southwestern landings were mapped and drawn in situ. On the northeastern landing, provenience was controlled through the establishment of a temporary 2m grid over both the terrestrial and submerged areas of the site. This temporary grid was incorporated into the overall site grid. Construction details of the northeastern landing were mapped and photographed. The photos were arraigned into a montage form and used as a reference guide and base for comparison with the field drawings. Both of these data sets were of importance to, and useful for, an accurate portrayal of the landing in plan form.

The concurrent use of field drawings, photographic montages, and field notes was essential for the incorporation of various aspects from all three sets of information. This allowed corrections and adjustments to be made, thus enhancing interpretation of the site. Data from the archaeological survey of the northeastern landing was used to map the full extent of the landing.

Four test pits were excavated at random locations along the length of the northeastern landing to delineate the overall extent of the structure. The pits were designed to gather information concerning the landings construction and to acquire
artifactual data. All test pits were negative except for bricks used in the structures' construction. All diagnostic artifacts recovered from surface finds were retained for evaluation and conservation.

Underwater surveys were also conducted in grid squares on either side of the northeastern and southwestern landings. No artifacts were found or recovered during these surveys. Features discovered in these surveys were recorded and transferred to the master site map.

Summary

Primarily because of the extensive ravages of salvage divers in the late 1970s and 1980s, no artifacts were found or recovered from the underwater portion of the study area. The lack of artifacts within the underwater section suggested that collections retained by the South Carolina Institute of Archaeology and Anthropology, be consulted. These artifacts were recovered from investigations conducted by the Underwater Archaeology Division in the 1970s and 1980s. These collections contain colonial period European ceramics and various types of pre-historic artifacts and Colono Wares. The artifacts studied were recovered within a three mile area up and down river of Strawberry Ferry. I felt that comparisons of these underwater collections, to those obtained through terrestrial investigations of Childsbury Towne, would enhance conclusions concerning the socio-economic status of Childsbury's residents.

Few artifacts remain in these collections. This may be because of the propensity of underwater salvors to either not report their finds or, when they are reported, the lack of accurate proveniencing associated with them. Problems related to their recovery and recording has eliminated there use in this thesis except to say that at one time there were a great number of artifacts associated within the riverine environment of the Cooper River near Strawberry Ferry and Childsbury Towne (Harris 1993:6-9).
Both the terrestrial and underwater areas of Strawberry Ferry and Childsbury Towne have been ravaged by salvors and local collectors over the years. Most, if not all of these artifacts, are in personal collections that range from South Carolina to the state of Washington (Kevin Rooney, 1994 pers. comm.). This problem is on going and even affected the course of this investigation. To discourage this practice and their impacts, a base camp was maintained on site during archaeological investigations.

Recommendations

Childsbury Towne is one of the very few locations where a low country colonial settlement may be found in good condition. Many, like Ashley Ferry Town, have been incorporated into modern suburbs (Barr 1995). Others have been used for agricultural purposes. In this way, Childsbury Towne is unique. Although the site has been impacted by late 20th century landscaping, there is no archaeological evidence of the southwestern quadrant of the town ever suffering either of the two above fates.

Much like Childsbury Towne, Strawberry Ferry is also unique. Very few colonial low country ferry landings that do exist are in good condition. Prior to this work there has been no intensive investigation of their physical structure. The southwestern landing of this crossing is in much the same condition as most ferry landings within the low country, but the northeastern landing of Strawberry Ferry is in excellent condition. Because of this, it is in the best interest of the state, through the cooperation of the land owner, to preserve this landing. To do this, techniques to stabilize and preserve the site, similar to those used in the protection and preservation of a historic working class vessel found in the banks of the Ashley River (Amer et al., 1993), have been suggested to the present land owner. This process involves the use of a geo-web placed over the entire site. The site would then be covered with numerous layers of sandbags to hold the geo-web in place. Natural soil from the area should be placed over and around the sandbags and local spartina grass planted to assure the continued integrity of the landing. This will

67
aid in the protection of the landing from future adverse impacts from environmental and possible human factors.