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Saito (1988) establishes a relationship between two invariants associated with a smooth projec-
tive curve, the conductor and discriminant. Saito defined the conductor of an arbitrary scheme
of finite type using p-adic etale cohomology. He used a definition of Deligne for the discriminant
as measuring defects in a canonical isomorphism between powers of relative dualizing sheaf of
smooth projective curves. The researcher in this paper uses the fact that this relationship is
analogous to that of conductor to discriminant in the case of elliptic curves, Saito’s result, as
well as analysis of data on conductors and discriminants to determine whether patterns exist
between discriminant and conductor of elliptic curves. The researcher finds such patterns do
in fact exist and discusses two main patterns: that of the conductor dividing the discriminant
and that of the conductor ”branching” in a predictable way. These patterns also allow for
easier algorithms for computing conductors.

1 Introduction and Definitions

Definition 1.1. An elliptic curve over a number field K is defined as a cubic, projective curve of
the form:

f(x, y) : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

When the characteristic of K is different from 2 or 3, this curve can be written in the form:

y2 = x3 +Ax+B

The main purpose of the study of elliptic curves is to look at rational solutions to f(x, y) = 0.1

There is no general, efficient algorithm for finding these points of an elliptic curve, which is deeply2

related to the Discrete Logarithm Problem. This makes elliptic curves very efficient ”one way3

functions”, i.e, it is easy to find a curve given points, but very hard to find points given a curve.4

For this reason, elliptic curves are used all over mathematics, physics, and computer science. They5

are also the basis of modern cryptography. (Silverman 1986)6

Definition 1.2. The discriminant of an elliptic curve y2 = x3 + Ax + B is defined to be the
constant:

∆ = −16(4A3 + 27B2)

When considered on the projective plane, the discriminant has a geometric interpretation. If ∆ is7

nonzero, the elliptic curve has three roots of multiplicity one. Otherwise, the elliptic curve has a8

singularity, which is either additive (if it is a cusp) or multiplicative (if it is a node). (Silverman9

1986)10

Definition 1.3. The conductor of an elliptic curve is a measure of the ramification of the field11

extensions of the curve generated by the torsion points (the points of finite order under our group12

law for elliptic curves, which we omit for brevity’s sake). (Liu 2010)13



It can be written as a product of primes with exponent ε + δ, where ε is the tame reduction14

and δ the wild reduction of the curve at that prime. The tame reduction is simple: ε = 0 for good15

reduction, ε = 1 for multiplicative reduction and ε = 2 for additive reduction.16

The wild reduction vanishes if and only if the p-Sylow acts trivially on the Tate module and is17

given by:18

δ = dimZ/pZ HomZp[G](P,M).

Where M is the group of points on the elliptic curve of order p for a prime p, P is the Swan19

representation, and G the Galois group of a finite extension of K such that the points of M are20

defined over it (Weil 1967)21

By the Néron–Ogg–Shafarevich criterion, the primes that divide the conductor of an elliptic22

curve are the primes of bad reduction for that curve (bad reduction for a prime p means a singularity23

when considering the curve over Fp).24

This means there is a relatively simple formula for the conductor of an elliptic curve E:

f(E) =
∏
p

pfp

Where the product is taken over the p for which the curve has bad reduction, and the exponent25

fp is a measure of how ”bad” the reduction is, equal to the sum ε+ δ seen above.26

The conductor of an elliptic curve comes up in many different scenarios, perhaps most notably27

as the least level of the modular form with a nontrivial map to the elliptic curve. It also appears28

in the L-function of an elliptic curve. (Liu 2010)29

Definition 1.4. Not to be confused with the conductor of an elliptic curve above, next defined is the30

Artin conductor. Let S = Spec(R) where R is a discrete valuation ring with algebraically closed31

residue field where Hensel’s lemma holds. Let p be the closed point of S, p0 and p1 respectively for32

the generic and geometric point. If X is an S-scheme, then the Artin conductor of X/S is:33

Art(X/S) = χ(Xp1
)− χ(Xp) + Swan Conductor

Where χ is the Euler characteristic.34

It should be clear to the astute reader that the Artin conductor is deeply related to the conductor35

of an elliptic curve. In fact, in the special case that X is a regular model of an elliptic curve, the36

Artin conductor is essentially the conductor of X except that χ(Xp1
) has an H2-contribution from37

the irreducible components of the special fibre. Specifically:38

−Art(X/S) = f + n− 1

Where f is the classical exponent of the conductor of the elliptic curve, and n is the number of39

components of the special fibre of the regular model of X.40

2 Purpose41

The conductor appears in the L-function of the elliptic curve, as well as the functional equation for42

it’s associated modular form. This means it has connections to many of the big conjectures about43



those objects (and ex-conjectures) in algebraic geometry (BSD, Tanyiama-Shimura, Szpiro, etc).44

(Lozano-Robledo 2011)45

The conductor and discriminant are undoubtedly the most referenced invariants when talking46

about elliptic curves, so it is natural to ask if there is a relationship between the two. The subject47

of this paper will be to study the relationship between elliptic discriminant and conductor through48

various experimental methods.49

The hypothesis in this experiment is that the conductor will vary linearly with the discriminant,50

and the null hypothesis in this experiment is that there is no quantifiable relationship between the51

two numbers.52

3 Materials and Methods53

The materials the researcher will be using in this experiment are:54

• SageMath (for generating conductors and discriminants)55

• Mathematica (for analysis)56

• A Dell Inspirion 3000 Laptop (to host the above two)57

• ShareLatex (to write the paper)58

The procedure for this experiment will be to generate sets of data on the discriminant and59

conductor of different sets of elliptic curves, and use Mathematica as well as general mathematical60

analysis to find patterns and make conjectures.61

The SageMath code used to generate the discriminants and conductor can be found in Appendix62

A.63

4 Results and Analysis64

Fig. 1 is a plot of the conductor and absolute value of the discriminant for the Mordell curve65

y2 = x3 + b with b varying on the x-axis. The patterns here exemplify what happens for all elliptic66

curves, so it will be used to show some of the patterns observed.67

The conductor, while following an exponential pattern, switches intermittently between different68

”branches”. The researcher observes as a main result that every branch of the conductor is a factor69

of the absolute value of the discriminant, and in fact there is a blue branch exactly following70

the discriminant not visible in the figure.71

Upon further investigation, this fact follows from Saito (1988) who gives the following result:72

Let R by a discrete valuation ring with perfect residue field, let C be a projective smooth and73

geometrically connected curve of positive genus over the field of fractions of R, and let X be the74

minimal regular projective model of C over R. As explained in the definitions, the Artin conductor75

Art(X/R) is equal to f + n − 1, where f is the classical exponent of the conductor and n is the76

number of irreducible components of the fiber at p of the minimal regular projective model of E77

over Z (Weil 1967). Saito proved that:78

Art(X/R) = ν(∆) (1)



The ∆ here does not represent, as usual in this paper, the discriminant of an elliptic curve. For a
scheme T and a proper, geometric connected curve g : Y → T , there exists a functorial isomorphism:

∆ : detRg∗(ω⊗2
Y/T )→ (detRg∗ωY/T )⊗13

(Deligne, letter to Quillen) Where det represents the the determinant invertible sheaf of a perfect79

complex. Let OK be a discrete valuation ring with algebraically closed residue field where Hensel’s80

lemma holds, and let S be it’s spectrum. and let f : X → S be a regular, relative curve. The81

canonical isomorphism above has a nonzero rational section ∆ = ∆X/S of an invertible OK-module82

Hom(detRg∗(ω⊗2
X/S), (detRg∗ωX/S)⊗13)

The discriminant ∆ of X is defined as the order of this rational section.83

The researcher here notes that Deligne’s referenced letter was later found to have an error84

in it (mistakenly applying Bismut–Freed’s curvature theorem for Quillen connections). How-85

ever, Deligne’s theorem on the isomorphism can be recovered by appealing to the results of Bis-86

mut–Gillet–Soule (Pippich 2016).87

Saito proves that ∆ is the discriminant (in the way defined in the introduction) of the minimal88

Weierstrass equation of C. Applying (1) means, for a prime p:89

νp(∆) = fp + 1− n

Where fp is the exponent of the conductor at p and once again n is the number of irreducible90

components of the fiber at p of the minimal regular projective model of E over Z.91

And, in particular:92

fp = νp(∆)− n+ 1 (2)

This formula implies the primes that divide the conductor are exactly those dividing the discrim-93

inant, and the exponent of each prime dividing the conductor is less than or equal to the exponent94

of that prime in the discriminant.95

This supports the researcher’s hypothesis somewhat, as the conductor does vary linearly with96

the discriminant, however, it does so in different branches.97

Formula (2) is referred to as Ogg’s Formula, referencing Ogg (1967), where it was conjectured98

and discussed in Weil (1967).99

Before the second pattern found is explored, some terminology must be defined. Given integral100

A, take y2 = x3 + Ax + b and consider the conductor and discriminant of the curve as a function101

of b (an example of this is Fig. 1 for A = 0). We say the curve has a conductor ”branch” of order102

n if there are an infinite number of conductors of y2 = x3 + Ax + b that go into the discriminant103

of y2 = x3 +Ax+ b exactly n times. Or, put informally, if on the conductor vs discriminant graph104

(see Fig. 1), there is a ”branch” of the conductor that follows the discriminant but is divided by105

n. This curve is uniquely determined by A, because b is taken to vary. For example, one can take106

A = 3 to get y2 = x3 + 3x + b, and then look at the plot of the conductor and discriminant as b107

varies to realize it has a branch of order 2 and a branch of order 3 among others.108

109

The researcher has used SageMath to experimentally verify the pattern laid out in Table 1. Past110

order 8, one loses statistical integrity because of how close together all the branches are. But with111

order 1-8, all patterns are verified with 100 percent accuracy, looking at values of the branches from112

1 to 10000 and A from 0 to 1000.113



Mathematically, the researcher has failed to meaningfully prove these patterns. However, inves-114

tigation reveals some of their nature.115

Formally put, a family of elliptic curves having a branch of order n means that on the branch116

the p-adic valuation of the conductor is one less than the p-adic valuation of the discriminant for117

all prime factors p of n.118

Using our prime-by-prime product definition of the conductor, the p-adic valuation of the con-
ductor and discriminant concerns the exponent of the conductor fp. And applying (2), one can see
that:

fp = νp(∆)− n+ 1

Where n is the number of irreducible components of the fiber at p of the minimal regular119

projective model of E over Z. But for the conductor to be on a branch of order p we are looking120

for fp to equal νp(∆)− 1, so for a point on a branch of order p, n must equal 2 for all primes that121

divide the order of the branch and only those primes.122

5 Conclusion123

Investigating patterns in the number of components of fibers is outside the scope of this paper so124

the researcher leaves it to someone more qualified in topology as an opportunity for future research.125

Though it is interesting that although branches of prime order take less constraints on n, the A’s126

that satisfy them seem to follow more complicated patterns (as evidenced by Table 1 above).127

However, proving these patterns will always apply is not necessary to use them. Using these128

patterns, as well as the first pattern discussed, one can create much more efficient algorithms for129

computing the conductor, by simply placing the point on one of these branches according to Table130

1 instead of calculating ramification. These algorithms will not give exact values for the conductor131

but should be very helpful in establishing probabilistic values for the conductor for asymptotic or132

growth analysis of the conductor.133

The data did support the researcher’s hypothesis, though the researcher did not predict the134

”branching” behavior of the conductor. Two main patterns have been uncovered, the conductor135

dividing the discriminant and the conductor branching in predictable, modular ways.136

The conductor and discriminant might seem like useless constants, but they are used every sec-137

ond through the flow of encrypted data online, as well as in cutting-edge physical and mathematical138

research. The researcher is able to conclude that perhaps they are not as unpredictable as once139

thought and follow strict patterns within some parameters.140
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Appendix A SageMath Code151

The code used to generate conductors and discriminants was:152

153

conductors=[EllipticCurve([0, 0, 0, F, j+1]).conductor() for j in range(1000)]154

discriminants=[abs(EllipticCurve([0, 0, 0, F, (j+1)]).discriminant()) for j in155

range(1000)]156
157

The code used to check if a certain family of curves had a certain branch was:158

159

def branch(A,n):160

conductors=[EllipticCurve([0, 0, 0, F, j+1]).conductor() for j in range(1000)]161

discriminants=[abs(EllipticCurve([0, 0, 0, F, (j+1)]).discriminant()) for j in162

range(1000)]163

return [x for x in conductors if n*x in discriminants]164
165

Which is runnable using:166

167

len(branch(A,o))168
169

Where A is A in the curve y2 = x3 + Ax+ b, and o is the order of the branch to check. With the170

len, it will return a number which is the number of points on that branch taking b from 0 to 1000.171

The higher the number, the denser the branch.172
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Figure 1: Discriminant (red), Conductor (Blue)

Table 1: For a curve y2 = x3 +Ax+ b
Branch of Order: Requirement for A:

1 All A
2 A 6≡ 0 mod 4
3 A ≡ 0 mod 3
4 A ≡ 0, 3 mod 4
5 A ≡ 0, 2, 3 mod 5
6 A ≡ 0 mod 3
7 A ≡ 0, 1, 2, 4 mod 7
8 A ≡ 0 mod 3


