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Model Sensitivity to Topographic Uncertainty in
Meso- and Microtidal Marshes

Karim Alizad, Stephen C. Medeiros, Madeline R. Foster-Martinez, and Scott C. Hagen

Abstract—Light detection and ranging (Lidar) derived digital
elevation models are widely used in modeling coastal marsh sys-
tems. However, the topographic error in these models can affect
simulations of marsh coverage and characteristics. We investigated
the relevance and impact of this error in micro- and mesotidal
systems. Lidar-derived and RTK-adjusted topography were each
used in a dynamic marsh model, and the resulting marsh coverages
were examined. For two microtidal sites (Apalachicola, FL, USA,
and Grand Bay, MS, USA) using solely lidar-derived topogra-
phy, the model produced Cohen Kappa values of 0.1 for both
estuaries when compared with National Wetland Inventory data
indicating “very poor agreement.” Applying the RTK-adjusted
topography improved the model marsh coverage results to “sub-
stantial agreement” with the values to 0.6 and 0.77, respectively.
The mesotidal site in Plum Island, MA, USA, contained similar
topographic errors, but the model produced a Cohen Kappa value
of 0.73, which categorized it as “very good agreement” with no
need for a further topographic adjustment given its present robust
biomass productivity. The results demonstrate that marsh models
are sensitive to topographic errors when the errors are comparable
to the tidal range. The particular sensitivity of the modeling results
to topographic error in microtidal systems highlights the need for
close scrutiny of lidar-derived topography.

Index Terms—About hydro-Marsh equilibrium model (MEM),
biogeophysical models, digital elevation models, light detection and
ranging (lidar).

I. INTRODUCTION

SALT marshes are responsible for positive impacts on coastal
ecosystems, including wave energy attenuation, shoreline
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stabilization, erosion resistance, and nutrient assimilation [4]–
[8]. They also provide habitat for numerous species and space for
recreational activities. By trapping sediment and increasing the
elevation of the marsh platform, marshes can adapt to water-level
changes and associated effects, such as erosion and increased
inundation from tides and storm surge. This mechanism is
enhanced with greater vegetation density, biomass production,
and marsh coverage [10]. Yet, this marsh accretion may not
be enough to keep pace with accelerated rates of sea-level rise
(SLR), as their low topography puts them at particular risk
for erosion and permanent inundation [12]. Due to the many
services provided by marshes and their dynamic response to
SLR, there has been an effort to create models that predict marsh
coverage and evolution. These models aim to present actionable
information for mitigating marsh loss or to provide restoration
planning and coastal management guidance [14].

Most marsh models rely on the principle that the resiliency
of coastal salt marshes can be assessed by characterizing their
elevation relative to the current tide range [5], [17]. The tide
range is defined as the vertical elevation range between mean
high water (MHW) and mean low water. Areas of marsh higher
in the tidal frame (i.e., above mean sea level) are less threatened
by SLR than areas lower in the tidal frame. When the tide range
is small, as with microtidal systems (<2 m tide range), there is a
smaller vertical difference between these areas, making microti-
dal marshes less resilient to SLR. Research shows that marshes
in a microtidal system are reliant on the allochthonous sediment
from storms and flooding to maintain their vertical elevation
[20] and tend to expand and retreat more quickly than marshes
in a mesotidal (2–4 m) or macrotidal (>2 m) environment [20],
[22]. The sensitivity of microtidal marsh systems is especially
relevant in the northern Gulf of Mexico (NGOM), where the one-
meter elevation contour can extend anywhere from 3 to 10 km
inland [24].

Similarly to marsh resiliency, complex interrelationships be-
tween physics and biology are often characterized in marsh
ecological models by the hydroperiod or the frequency and
duration of tidal inundation [26]. These models require the
coupling of seemingly disparate models to capture sensitivity
and feedback processes [28]. The relationship between topog-
raphy and hydroperiod is directly, but not exclusively, sim-
ulated in salt marsh models, and is largely responsible for
marsh productivity and coverage projections [29]–[36]. Both the
marsh surface topography and elevation strongly influence the
hydroperiod [37].
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A. Light Detection and Ranging (Lidar) Error
in Marsh Systems

Whether assessing resiliency or modeling ecological produc-
tivity, the initial elevation is a critical model input. Considering
the large geographic scale of many salt marshes, airborne lidar
is often utilized as the primary source of topographic data [38]–
[42]. These missions are commonly flown using near-infrared
lasers (1064 nm wavelength) at altitudes from 1000 to 3000 m,
which produce beam divergences resulting in ground footprint
sizes from 0.2 to 0.6 m, respectively [43]. Previous research
shows that there is a high bias in the marsh surface elevation ob-
tained from the bare earth lidar-derived digital elevation models
(DEMs) [25], [44]–[46]. The bias is largely due to the following
four factors. First, less than 0.15 m of bias can be attributed
to the inability of the airborne laser to penetrate the dense
grasses [15]. Second, the “dead zone” defined as the vegetation
structure height that results in only one laser return per pulse
can add approximately 0.10 m [19]. Third, the standing water or
wet substrates often present on the marsh surface that absorbs
the laser pulse [44]. Fourth, the heterogeneity of above-ground
biomass density on small spatial scales [47] can bias the results
up to an amount equal to the difference between the synoptic
water level and the local ground surface elevation. On hard flat
surfaces, often referred to as “open terrain,” lidar typically has
a root-mean-square error (RMSE) in vertical elevation of less
than 10 cm; however, the accepted value for vertical RMSE
over all land cover classes is 15 cm. This value is interpreted
as an accuracy of ±15 cm [14], [15], [48]. A summary of
previous studies examining lidar elevation error in salt marshes
is presented in Table I. Taken in aggregate, these studies have
a pooled mean lidar error of 18 cm and a standard deviation of
14 cm.

B. Impact of Elevation in Marsh Models

Previous studies have explored the influence of elevation
on the outcomes of marsh models. Swanson et al. [49] ap-
plied the Wetland Accretion Model for Ecosystem Resilience
(WARMER) [50] to sites across the Pacific Northwest. They
found that the initial site elevation was the second most influen-
tial variable in determining the persistence of the marsh area with
SLR; elevation was second only to the rate of SLR. Applying
the marsh equilibrium model (MEM) [32] to marshes in San
Francisco Bay [35] also showed that the marsh response to SLR
differed based on the initial elevation.

More specifically, there have been studies that examined the
impact of error in lidar-derived DEMs. Geselbracht et al. [14]
applied the sea-level affecting marshes model (SLAMM) [36]
using the national elevation dataset and a lidar-derived DEM
and found that the resulting habitat distribution area differed
by up to 173%. In addition, SLAMM sensitivity to adjusted
and unadjusted topography was tested in modeling a microtidal
Mediterranean Sea marsh system in Spain [51], which showed
significant dependence of the results on the initial elevation and
demonstrated the need to adjust the marsh platform for future
projections. Buffington et al. [52] applied WARMER to adjusted
and unadjusted lidar-derived DEMs and found predictions on
the timing of marsh loss changed by as much as 30 years.

TABLE I
LIDAR ERROR REPORTED IN PREVIOUS SALT MARSH MODELING STUDIES

Here, we expand upon these studies, examining under what tidal
conditions it is most pressing to adjust lidar-derived DEMs to
achieve accurate marsh modeling results.

We have two main goals: first, to contribute to the building
body of work documenting the difference between lidar-derived
DEMs and RTK measurements in salt marsh systems; second, to
examine how these topographic differences impact marsh model
results in micro- and mesotidal systems. This article will help
inform the increasing number of marsh-model users when it is
or is not critical to adjust lidar-derived DEMs.

II. METHODS

Global navigation satellite system (GNSS) RTK data (herein
referred to as RTK) were collected from three sites to assess error
in lidar-derived DEMs. Two sites from microtidal regions in the
NGOM and one from a mesotidal region in Massachusetts were
used for modeling based on the availability of hydrodynamic
and marsh model results. The lidar-derived DEMs were adjusted
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Fig. 1. Magnetization comparison between RTK surveyed elevations (black
lines) and lidar-derived DEM elevations (red lines) in (a), (b) Grand Bay, MS,
USA, (c), (d) Apalachicola, FL, USA, and (e), (f) Plum Island, MA, USA. Select
transects from each survey are shown on the right. The difference (histograms
and light blue bars) is calculated as the DEM elevation minus the RTK elevation.
Histograms are normalized by probability and the number of samples is given
for each. Map insets and (g) show locations of the study sites.

where needed using RTK data of the marsh platform. Both
adjusted and unadjusted DEMs were used in the hydro-MEM
model [30] to produce marsh coverage maps, as well as inun-
dated regions at high tide. Marsh coverage results generated by
hydro-MEM were then compared with available wetland data to
assess their agreement.

A. Study Sites

There are two study sites in the NGOM: Apalachicola, FL,
USA, and Grand Bay, MS, USA (see Fig. 1). Both sites are
microtidal with tide ranges from 0.5 to 1 m [53]. Grand Bay
has diurnal tides, while Apalachicola has mixed diurnal tides.
Apalachicola Bay is located in the Florida panhandle and is a flu-
vial shallow estuary protected by barrier islands; it receives the
discharge from Apalachicola River, the largest river in discharge
in Florida. Historically, Apalachicola Bay provides 90% of
Florida’s oyster harvest [54]. Grand Bay is a marine-dominated
estuary and is not connected to any fluvial source. It consists
of several bays and contains barrier islands that protect it from
waves from the Gulf of Mexico [55], [56].

The selected mesotidal study site is the Plum Island Estuary
located in northern Massachusetts (see Fig. 1). The tides at this
estuary, which receives the discharge from Parker and Ipswich
rivers, are semidiurnal, and the tidal range is 2.67 m [5]. The
spring-neap tide range varies from 2.6 to 3.6 m [57]. Most of the
estuary is covered by tidal marsh dominated by Spartina patens
and Spartina alterniflora [5], [57].

B. DEM Adjustment Using RTK Data

The RTK data for Apalachicola were obtained in January
2010; it was collected within the marsh system on an approxi-
mately 20 m grid. The RTK data for Grand Bay and Plum Island
were provided by Grand Bay national estuarine research reserve
(GBNERR) and Plum Island ecosystem long-term ecological
research (LTER), respectively, and are in the form of transects
within the marsh system. RTK GNSS data using a single base
station or virtual reference station solution from a network have
typical horizontal and vertical accuracies of 1–3 cm and 2–5 cm,
respectively [9], [58].

The DEM for the Apalachicola estuary was provided by
Northwest Florida Water Management District and was devel-
oped from lidar surveys conducted from May to August 2007.
The DEM for Grand Bay was developed using the topographic
lidar data acquired by the Mississippi Department of Environ-
mental Quality in 2015 and Mobile County/City of Mobile,
Alabama in 2014 [59]. The topographic data for the Plum Island
estuary were obtained from the Massachusetts GIS office and
were collected from lidar surveys in spring 2011 [60].

Elevations were extracted from the lidar-derived DEMs at all
RTK measurement locations. Error is defined as the difference
between the RTK measurement and the DEM elevation. Positive
values indicate that the lidar-derived elevation is higher than
the RTK measurement. To determine outliers, z-scores were
calculated and error measurements with a z-score of 3 or greater
were deemed outliers and were removed from the dataset.

The collected RTK data were used to adjust the lidar-derived
DEM. In Apalachicola, the DEM was first adjusted downward
based on an estimation of above-ground biomass density using
remote sensing data [25]. This reduced the bias in the DEM by
approximately 40%. Since all previous studies mentioned herein
agree that the lidar DEM bias increases with denser and taller
vegetation, the remaining bias was removed by lowering the
DEM by approximately 30 cm at the downstream end (where
vegetation is generally denser and taller) and decreasing the ad-
justment linearly moving upriver (where vegetation is generally
sparser) in a northwesterly direction. In Grand Bay, the DEM
was adjusted by analyzing the distribution of elevations in areas
classified as marsh and adjusting them by numerically restrict-
ing their range to the upper portion of the local hydroperiod,
extended to account for microtopography [61]. This preserved
the natural variability in the DEM while removing the lidar bias.
Note that the lidar DEM for Plum Island was not adjusted, for
reasons explained in Section III.

C. Hydrodynamic-Marsh Model

To investigate the topographic uncertainty effect in marsh
model results, we used hydro-MEM. Unlike other commonly
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used models, such as SLAMM or MEM, that use constant water
level, hydro-MEM is a dynamic model and incorporates highly
accurate modeled water level changes within the creeks and
marsh platform [62]–[64]. The hydro-MEM model [30] was de-
veloped to couple a hydrodynamic model and a parametric marsh
model to capture the biological feedback in marsh systems. This
integrated model incorporates the ADvanced CIRCulation (AD-
CIRC) finite-element code [65] that solves the shallow-water
equations on an unstructured triangular mesh. The ADCIRC
component of the model yields hydrodynamic parameters as
inputs for the MEM [32] that produce marsh productivity in the
form of biomass density. MEM formulates biomass density of a
salt marsh as a parabolic function of MHW and marsh platform
elevation

B = αD2 + bD + c (1)

D = MHW − Elevation. (2)

Constants a, b, and c are unique for individual estuaries
[66] and were derived from previous bioassay experiments in
Apalachicola [67], Grand Bay [61], and Plum Island [5]. Equa-
tion (2) further highlights the important role of accurate water
levels and elevation in the biomass calculation.

D. Validation and Adjustment Criteria

A hydro-MEM simulation was run for each study site with the
unadjusted lidar-derived DEM. The hydro-MEM results in the
form of biomass density (1) were converted to marsh coverage
by categorizing any biomass value above zero as marsh in an
ArcGIS raster cell. The resulting marsh coverage estimations
in the form of polygon shapefiles are then compared with the
wetland region shapefile data of the National Wetland Inventory
(NWI) [2], [68]. The agreement regions are the areas that the
model successfully produced marsh coverage compared with
NWI data. In addition to agreement percentage, we calculated
Cohen’s Kappa to measure the agreement with the NWI data
[69]–[71]. Cohen’s Kappa (Kappa number) is used to measure
agreement between categorical variables and is often used to
assess agreement between maps [71], [72]. Kappa is preferable
to direct comparisons because it accounts for agreement due to
random chance; a value of 1 shows a perfect agreement, and a
value of 0 is disagreement. A value above 0.6 shows “substantial
agreement” [70], or in another measuring table, a value above
0.55 is called “good agreement” [71]. Therefore, for this study,
if Kappa was less than 0.55, we deemed it necessary to adjust the
lidar-derived DEM, and we reran hydro-MEM with the adjusted
DEM.

III. RESULTS AND DISCUSSION

Comparisons of the elevations in the DEMs and the RTK
measurements confirm the positive bias in lidar-derived DEMs
(see Fig. 1). The error range in the study sites was all in
agreement with the error ranges presented in Table I.

In Grand Bay [see Fig. 1(a) and (b)], the average error is
30 cm, which is 84% of the tide range (35.8 cm) and is approxi-
mately 1.4 times larger than the MHW value of 21 cm NAVD88
(Dauphin Island NOAA Station 8735180). In addition, the

selected transect demonstrates the variability in lidar accuracy.
From 141 to 281 m along the transect, the lidar-derived DEM
contains a false ridge approximately 50 cm tall, which could
impact the modeling of the flow patterns and biomass density at
the site.

In Apalachicola [see Fig. 1(c) and (d)], the error ranged from
−60 to 80 cm with a mean of 20 cm. The negative error indicates
higher RTK than lidar-derived elevation; these points tend to be
located in mudflat or creek regions, where geomorphological
processes can change the elevation. In the lower river marshes,
measured by Medeiros et al. [25], the lidar-derived DEM error
ranged from −60 to 160 cm with a mean of 61 cm, as listed
in Table I. Apalachicola Bay has an MHW elevation of 23 cm
NAVD88 and a tide range of 34 cm (Apalachicola NOAA Station
8728690).

In microtidal environments (tide ranges < 50 cm), such
as those found in NGOM, these errors represent a substan-
tial percentage of the tidal range. In addition to the problem
of producing an unrealistic marsh hydroperiod, lidar-derived
DEMs also distort the microtopography and creek structure of
the marsh. In most cases, the lidar-derived DEM smooths out
small creeks and impoundments that contain emergent marsh
grasses, influencing the inundation regime and the subsequent
projections of vegetation zonation and biomass productivity
[19], [73], [74].

The results from Plum Island show that the error is negligible
compared with the tide range. The maximum amount of lidar-
derived elevation error is 29 cm, and the average is 15 cm [see
Fig. 1(e) and (f)]. This average error is 5.2% of the tide range
(2.89 m) and 11% of the MHW value of 1.32 m NAVD88 (Boston
NOAA Station 8443970). Although the sample size for this site
is smaller, the error is more consistent with a standard deviation
of 5 cm.

The errors in the marsh model results can be explained in part
by incorrect hydroperiod. The hydroperiod for which a species
of salt marsh vegetation can flourish is typically narrow [75]
and relatively small differences in marsh surface elevation can
significantly affect inundation patterns and the spatial distribu-
tion of vegetation species [19], [74]. Fig. 2 compares inundation
depth range for tidally inundated regions in the microtidal system
of Grand Bay [see Fig. 2(a)] with the mesotidal system of
Plum Island [see Fig. 2(b)]. Equation (1), with the site-specific
coefficients, is plotted against the range of inundation where
marsh is productive (see Fig. 2, top). The brown and yellow areas
indicate low inundation depth, which results in a high marsh with
low productivity, and the blue regions show high inundation
depths in low elevation marsh that results in low productivity
marsh. The green areas contain the optimum inundation depth
that creates the most productive marsh. The elevation error
could occur anywhere on the marsh platform, and therefore,
any point on the x-axis of the parabola can be miscalculated. An
example of a plausible 25 cm error range is shown in the figure
(red arrow). In Grand Bay, this amount of error could cause a
major change in inundation depth calculation and consequently,
a high productivity point (maximum of the parabola) can be
misclassified as being outside of the tide range (change the
biomass density from 2000 to 0 gr/m2·yr). However, in Plum
Island, the marsh is productive within a 175 cm inundation depth
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Fig. 2. Tidal inundation depth in a microtidal (Grand Bay, (a) in top and bottom
graphic) and mesotidal (Plum Island, (b) in top and bottom graphic) estuary. The
green area demonstrates inundation depth that is conducive to productive marsh
regions. Yellow and brown indicate lower inundation depth that resulted in low-
productivity high elevation marshes and blue indicates where high inundation
depth combined with low elevation results in a low productivity marsh.

Fig. 3. Comparison of the hydro-MEM model results with NWI [2] data using
RTK-adjusted (top figures) and lidar-derived DEM (bottom figures) in (a), (b)
Grand Bay and (c), (d) Apalachicola. The maps are classified in green (model
and data both show marsh), yellow (data indicate as marsh but model did not
produce marsh), and red (the model calculation demonstrates marsh but the
data disagree). This qualitative assessment indicates the value of RTK-based
adjustments in these microtidal systems.

range, and 25 cm of error within this range has minimal effect
in calculating inundation depth and biomass density.

The hydro-MEM results at Apalachicola [67], Grand Bay
[61], and Plum Island were compared with the NWI data to
examine the effects of lidar-derived topographic error perturba-
tion in the model results. The results were categorized into three
groups: agreement, where the model results and NWI data both
show marsh (Fig. 3, colored in green); Type I (false positive)

disagreement, where the model calculated marsh but the NWI
data did not show marsh (Fig. 3, colored in red); and Type II
disagreement (false negative), where the NWI data show marsh,
but the model did not capture it (Fig. 3, colored in yellow).
A comparison of the adjusted marsh platform model in Grand
Bay with NWI data [see Fig. 3(a)] indicated that 70% of the
area is in agreement, and the Kappa value is 0.77. These values
increase to 82% and 0.83, respectively, if constrained to the
GBNERR region [61]. In contrast, the vast yellow region in
Fig. 3(b) indicates that the model underestimates the marsh
coverage due to the topographic error in the unadjusted DEM.
Using the original DEM in the model captured just 8% of the
marsh region [green area in Fig. 3(c)], and the Kappa value is 0.1,
which is categorized as “very poor agreement” [71]. This estuary
is a marine-dominated estuary and is not connected to any river
inflow. As a result, the main source of error in this site is the direct
effect of topographic error in the biomass density calculation.
However, in fluvial estuaries where a river and tidal flows meet in
complex creek networks within wetlands, the topographic error
impacts the water level in addition to the platform elevation
component of the hydroperiod calculation.

Apalachicola is a canonical example of a fluvial microtidal
system. Employing the lidar-derived DEM resulted in 24%
agreement in marsh coverage [green regions in Fig. 3(d)] with a
Kappa value of 0.1. The low Kappa value with better agreement
percentage compared with Grand Bay is due to the large area of
false marsh, as shown by red in Fig. 3(d). This increase in marsh
generation in the forested region can be explained by nonlinear
perturbation of the topographic error in the model. The topo-
graphic error effect in marsh calculations of the fluvial estuary
can be categorized into two groups. The first topographic error
effect is the direct influence of topography in marsh productivity
calculation in the MEM formula [see (1) and (2)]. The second
effect is a result of the nonlinear error perturbation through in-
correct topography input in ADCIRC, the hydrodynamic model
component. The incorrect input in ADCIRC can change the vari-
ations in MHW within the creeks and across the marsh system.
This nonlinear error in the MHW calculation affects the biomass
density variable in (2) and, consequently, the marsh productivity
results. To fix this problem, an elevation adjustment method [25]
was applied, the input DEM was updated, and consequently, the
model agreement increased to 57% [see Fig. 3(c)] with a Kappa
value of 0.6.

Although the error exists in the Plum Island elevation mea-
surements, it is less significant compared with the NGOM sites.
While the elevation error could influence species delineation, as
small variations in topography can lead to a different vegetative
community, it does not change marsh coverage results from the
hydro-MEM model. The comparison between NWI data and
the hydro-MEM marsh coverage from the original lidar-derived
DEM showed 67% agreement with a Kappa value of 0.73. This
value for Kappa, as explained in the methods section, suggests
“substantial agreement and there is no need for topographic
adjustment. Based on these results, lidar DEM error can be rea-
sonably neglected for marsh modeling in meso- and macrotidal
systems, but it is critical to account for it in microtidal systems
clearances.
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IV. CONCLUSION

RTK data from marsh platforms in two microtidal and one
mesotidal estuaries were compared with lidar-derived DEMs.
The measurements confirmed the topographic error in lidar-
derived DEMs, found in other studies. For the two microtidal
sites, the DEMs were adjusted using the collected RTK data,
and marsh coverage projections for all three sites were mod-
eled using hydro-MEM to investigate the effect of nonlinear
error perturbations. Marsh coverage misclassification is directly
caused by incorrect elevations relative to tidal data for the two
microtidal estuaries and indirectly by the generation of incorrect
tidal data in the fluvial system. The marsh coverage projections
at two microtidal sites using lidar-derived DEM showed “very
poor agreement” (Kappa value of 0.1) when compared with
NWI data. However, employing an RTK-adjusted topography
increased the result to “substantial agreement” with Kappa
values of 0.6 and 0.77, respectively. The marine-dominated
estuary and its simple creek network reduced the impact of
topography in modeling tidal data. In contrast, the water levels in
the complex creek network in the fluvial estuary were affected by
incorrect topography and produced a large area of false marsh.
Although a similar range of error in lidar-derived topography
in the mesotidal system exists, the Cohen’s Kappa value using
original lidar-derived DEM is 0.73. This result is due to the error
being low in comparison with the tide range, the generalized
approach to salt marsh biomass productivity, and to the robust
present-day nature of this mesotidal system. It is incumbent on
researchers throughout the world to recognize these potential el-
evation errors within marsh systems. It is particularly important
to have correct initial elevations since future SLR assessments
build upon the present-day analyses and when a marsh system
transitions in productivity the relatively low topographic errors
will become noteworthy, regardless of whether the system is
micro-, meso-, or macrotidal.
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