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a b s t r a c t 

Density-graded cellular materials have tremendous potential in structural applications where impact re- 

sistance is required. Cellular materials subjected to high impact loading result in a compaction type defor- 

mation, usually modeled using continuum-based shock theory. The resulting governing differential equa- 

tion of the shock model is nonlinear, and the density gradient further complicates the problem. Earlier 

studies have employed numerical methods to obtain the solution. In this study, an analytical closed-form 

solution is proposed to predict the response of density-graded cellular materials subjected to a rigid body 

impact. Solutions for the velocity of the impinging rigid body mass, energy absorption capacity of the cel- 

lular material, and the incident stress are obtained for a single shock propagation. The results obtained 

are in excellent agreement with the existing numerical solutions found in the literature. The proposed 

analytical solution can be potentially used for parametric studies and for effectively designing graded 

structures to mitigate impact. 

© 2021 The Authors. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and 

Applied Mechanics. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

Cellular materials (CMs) have peculiar properties pertinent to 

impact mitigation [1,2] . They provide exceptional energy absorp- 

tion (EA) capability and are used as protection material in dynamic 

impact applications. They are also extremely lightweight as their 

solid material is distributed sparsely. They are composed of inter- 

connected cells at the mesoscale level. When a CM is subjected 

to impact loading, a high-velocity is suddenly imposed at the im- 

pact end that causes layer-wise collapse of cells [3] . The progres- 

sive collapse of cells advances like a propagating shock and the 

continuum-based classical shock theory is usually used to model 

the deformation behavior. The authors in Ref. [3] first applied the 

shock theory to study the uniaxial dynamic crushing of various 

wood materials. They obtained an analytical solution for the di- 

rect impact scenario, where the CM (wood specimen) moving with 

a rigid backing mass strikes a stationary surface, assuming a rigid, 

perfectly plastic, locking (RPPL) material response. Later, the ana- 

lytical solution for a stationary impact scenario, where a rigid mass 

moving with an initial velocity strikes a stationary CM, was also 

developed [4–6] . All the aforementioned studies focused on the re- 

sponse of uniform density CM. 

Graded CMs with density variation potentially offer further im- 

provement in the EA performance and crashworthiness, and they 

∗ Corresponding author. 
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have gained attention in recent years [7–14] . Many studies have 

employed finite element methods to study the response of density- 

graded CMs subjected to impact loading. Some of the finite ele- 

ment studies have modeled the graded CM as a continuum [7,8] , 

while some other works have made use of cell-based models that 

concentrate on mesoscale response [15–18] . Although the finite el- 

ement models seek to capture the material behavior rigorously, 

they are computationally intensive. There also have been efforts 

to study the response of the graded CM through experiments, 

even though manufacturing of continuously graded CMs is chal- 

lenging. Nevertheless, rapid advancement in manufacturing tech- 

nology, such as additive manufacturing, has been overcoming this 

problem [19] . Currently, experimental investigations often approx- 

imate the graded structures with multiple uniform density layers 

of different densities [20–23] . To model continuous density gra- 

dation, there have been attempts to take an analytical approach. 

On this front, initially, a honeycomb structure with a uniform den- 

sity but a gradient in plateau stress was examined [10] . Although 

the simplified assumptions in Ref. [10] led to a closed-form solu- 

tion, the variation in the density was not captured. Thereafter, the 

density-graded structure was also studied using an analytical ap- 

proach for the direct impact scenario [24] . Assuming the density 

of the compacted CM is constant regardless of the initial density, 

analytical solutions for the shock velocity and the incident stress 

were obtained for various density profiles in Ref. [24] . There have 
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Fig. 1. Schematic diagram of rigid mass striking density-graded CM. 

been some works on design strategy to determine the density dis- 

tribution based on specific crashworthiness requirements [25,26] . 

Also, several other works [9,11,13] have investigated the stationary 

impact scenario with a density gradient, but they have used nu- 

merical methods for the solution. For better accuracy, numerical 

methods demand a small step size that results in large number 

of iterations. A precursory analytical study for density-graded CM 

under quasi-static loading conditions was performed recently [27] . 

However, apart from a few attempts discussed above, a general an- 

alytical formulation of graded CM under stationary impact scenario 

does not exist. 

In this paper, an explicit and closed-form solution for the sta- 

tionary impact scenario of density-graded CM is proposed based 

on the RPPL material model. The solution is facilitated by using the 

shock front position as an independent variable in the governing 

shock equations. The effect of density gradation on the total energy 

absorbed and incident stress is presented. The scope of the study is 

limited to a linear density variation and a single compaction shock 

front. A single shock front exists when the density gradient is pos- 

itive (density increasing in the direction of impact), but two shocks 

can coexist when the density gradient is negative (density decreas- 

ing in the direction of impact) [9,11] . It should also be noted that 

the solution assumes that the response is governed by the shock 

deformation mechanism as is the case for impact velocities above 

a certain critical velocity [4,28] when the inertial effects associated 

with localized cell collapse dominate. The proposed closed-form 

expressions provide significant savings in computational time and 

effort. In general, they present a better description of the physical 

nature of the problem. Moreover, parametric studies can be per- 

formed efficiently with the help of explicit analytical solutions. 

The differential equations governing the dynamic behavior are 

formulated using shock theory by considering CM as a continuum. 

A density-graded CM of mass m and length L is shown in Fig. 1 . 

A rigid body of mass M strikes the CM at the incident end with 

an initial velocity V 0 and the other (transmitted) end of the CM is 

held stationary. The relative density varies linearly from ρ i at the 

incident end to ρt at the transmitted end. The relative density ρ is 

expressed as the ratio of CM density ( ρ) and solid material density 

( ρs ). 

A dimensionless density gradient parameter λ quantifying the 

gradation is defined as follows: 

λ = 

�ρ

2 ρ0 

, (1) 

where �ρ = ρt − ρ i is the difference between the relative densi- 

ties at the two ends and ρ0 = ( ρ i + ρt ) / 2 is the average relative 

density. The linear variation in relative density along the length of 

the CM can be expressed as: 

ρ = ρ0 

[ 
1 + λ

(
2 X 

L 
− 1 

)] 
, (2) 

Fig. 2. Relative density variation. 

where X is the undeformed position coordinate along the length 

of the CM. The density gradient parameter can have values rang- 

ing from -1 to 1, with the zero value corresponding to the uniform 

density. This study deals with only non-negative values of the den- 

sity gradient parameter. Negative values of density gradient param- 

eter result in double shock mode, which is out of the scope of the 

present study. The relative density variation for different density 

gradient parameters is shown in Fig. 2 . Since the relative density 

cannot take negative values, density gradient parameter can be at 

most equal to one. 

An RPPL material behavior, same as the idealization employed 

in previous studies [3,5,9,11] , is used in the present study. The vari- 

ation in the plateau stress σp and densification strain εd (some- 

times also called as locking strain) with respect to the relative den- 

sity ρ is given by the following equations [1] : 

σp = σs C 1 ρ
C 2 , (3) 

εd = C 3 − C 4 ρ, (4) 

where σs is the yield stress of the solid material and C 1 , C 2 , C 3 and 

C 4 are solid material parameters. Both the plateau stress and den- 

sification strain also vary along the length as they are dependent 

on the relative density. The parent material parameters C 1 , C 2 , C 3 
and C 4 are often obtained from either experiments or numerical 

simulations. In previous studies, the value of C 2 has been taken to 

be 1.5 or 2 [1,9,10,29] . The parameter C 3 is taken equal to C 4 in 

some works [9] while both C 3 and C 4 are taken specifically equal 

to unity in some other works [11,13,30] . To maintain generality, the 

solution in the present study is determined without placing such 

restrictions on parent material parameters. Specific values are sub- 

stituted after the solution expression is obtained. 

The deformation of the CM after the rigid mass has moved by 

distance u is illustrated in Fig. 3 . Both the undeformed and de- 

formed configurations are shown in the figure. At this instant, the 

shock front has propagated towards the transmitted end by dis- 

tance X f , and its instantaneous velocity is V s f . The region behind 

the shock front is compacted to length x f , and it moves along with 

the rigid mass at the instantaneous velocity, V f . The material ahead 

of the shock front of length X u remains undeformed, and hence its 

velocity is zero. The total length of the CM in deformed configu- 

ration is l. The jump equations across the shock front are derived 

based on the conservation of mass and linear momentum in the 

Lagrangian form Ref. [31] . They are given by: 

−ρ f V s f � 1 /ρ� = � V � , (5) 

ρ f V s f � V � = � σ � , (6) 

2 
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Fig. 3. Deformation in density-graded CM a undeformed configuration and b de- 

formed configuration. 

where ρ f is the density just ahead of the shock front. The symbol 

� ξ � = ξ+ − ξ− denotes the change in physical quantity ξ across the 

shock front as it jumps from ξ− to ξ+ . The superscripts - and + in- 

dicate the quantities just ahead of and behind the shock front, re- 

spectively. The compressive stress is taken to be positive in Eq. (6) . 

The states of the material ahead of and behind the shock front are 

given by Eqs. (7) and (8) , respectively. {
ρ−, σ−, ε−, V 

−}
= 

{
ρ f , σp f , 0 , 0 

}
, (7) 

{
ρ+ , σ+ , ε+ , V 

+ } = 

{
ρdf , σdf , εdf , V f 

}
. (8) 

Eliminating V s f from Eqs. (5) and (6) , and using Eqs. (7) and 

(8) yields, (
σdf − σp f 

)(
1 − ρ f 

ρdf 

)
= ρ f V 

2 
f . (9) 

The instantaneous strain εdf behind the shock front is given by: 

εdf = 

d X f − d x f 

d X f 

, (10) 

where d X f is an infinitesimal length of undeformed material com- 

pacting to length d x f after the passage of shock. Note that the 

compressive strains are considered to be positive. Using conserva- 

tion of mass, Eq. (10) can be written as: 

εdf = 1 − ρ f 

ρdf 

. (11) 

Combining Eqs. (9) and (11) , the stress behind the shock is ob- 

tained. 

σdf = σp f + 

ρ f V 

2 
f 

εdf 

. (12) 

The conservation of linear momentum for the rigid mass and com- 

pacted region gives: 

σdf = −
(

M 

A 

+ 

∫ X f 

0 

ρ( X ) d X 

)
d V f 

d t 
, (13) 

where A is the cross-sectional area of CM. Using Eqs. (5) and (11) , 

it can be shown that the shock front velocity is given by: 

V s f = 

d X f 

d t 
= 

V f 

εdf 

. (14) 

The final differential equation was constructed with time as 

the independent variable in Refs. [9,11] and its solution was ob- 

tained numerically. However, in this work, to facilitate the an- 

alytical solution process, the differential equation is formulated 

with shock front position X f as the independent variable. There- 

fore, using Eqs. (12) —(14) the following differential equation is 

derived: 

σp f εdf 

V f 

+ ρ f V f = −
(

M 

A 

+ 

∫ X f 

0 

ρ( X ) d X 

)
d V f 

d X f 

. (15) 

The following relations are used for non-dimensionalization: 

X f = 

X f 

L 
, M = 

M 

m 

, σ p f = 

σp f 

σp0 

, V f = 

V f √ 

σp0 /ρ0 

, (16) 

where σp0 is the plateau stress corresponding to the average den- 

sity ρ0 , m = ρ0 AL is the mass of the CM, and M is the ratio of 

rigid mass and CM mass. The following is the dimensionless form 

of Eq. (15) : 

σ p f εdf 

V f 

+ 

ρ f 

ρ0 

V f = −
(

M + 

1 

ρ0 

∫ X f 

0 

ρ
(
X 

)
d X 

)
d V f 

d X f 

. (17) 

Using Y = V 
2 

f , Eq. (17) can be transformed to the following lin- 

ear ordinary differential equation: 

d Y 

d X f 

+ 

2 H 

G 

Y = 

−2 F 

G 

, (18) 

where the functions F 
(
X f 

)
, G 

(
X f 

)
and H 

(
X f 

)
defined to aid the 

solution are given as follows. 

F 
(
X f 

)
= σ p f εdf , (19) 

G 

(
X f 

)
= M + 

1 

ρ0 

∫ X f 

0 

ρ
(
X 

)
d X , (20) 

H 

(
X f 

)
= 

ρ f 

ρ0 

. (21) 

The solution to Eq. (18) is given by: 

Y 
(
X f 

)
= V 

2 

f = ( −Q + c ) /P, (22) 

where c is a constant to be obtained from the initial conditions 

and the functions P and Q are given by the following equations: 

P 
(
X f 

)
= exp 

(∫ 
2 H 

G 

d X f 

)
, (23) 

Q 

(
X f 

)
= 

∫ (
2 F 

G 

P 

)
d X f . (24) 

The function G given by Eq. (20) can be evaluated by using 

Eq. (2) , and its form in terms of λ is given by: 

G 

(
X f 

)
= M + X f 

[
1 − λ

(
1 − X f 

)]
. (25) 

Therefore, using Eq. (25) , the integral in Eq. (23) can be simplified 

resulting in: 

P = exp 

(
2 

∫ 
d G 

G 

)
= G 

2 . (26) 

3 
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Thus, Eq. (24) also reduces to: 

Q = 2 

∫ 
F G d X f . (27) 

The integral in Eq. (27) can be evaluated depending on the value 

of λ. For λ = 0 , the expression for Q takes a simpler form and is 

expressed as: 

Q 

(
X f 

)
= εd0 X f 

(
2 M + X f 

)
, if λ = 0 , (28) 

where εd0 is the densification strain corresponding to average den- 

sity ρ0 . For λ � = 0 , using Eqs. (1) —(4) , the integral in Eq. (27) can 

be written in terms of ρ f leading to: 

Q = 

∫ C 1 σs ρ
C 2 
f 

(
C 3 − C 4 ρ f 

)
σp0 

[ 

M + 

ρ2 
f − ρ2 

0 ( 1 − λ) 
2 

4 λρ2 
0 

] 

d ρ f 

λρ0 

. 

(29) 

Further, the integral in Eq. (29) can be evaluated to the following 

form: 

Q 

(
X f 

)
= 

σ pf 

4 λ2 

{
ρ f 

ρ0 

(
C 3 

C 2 + 1 

− C 4 ρ f 

C 2 + 2 

)
·
[
4 λM − ( 1 − λ) 

2 
]

+ 

ρ3 
f 

ρ3 
0 

(
C 3 

C 2 + 3 

− C 4 ρ f 

C 2 + 4 

)}
, if 0 < λ ≤ 1 . (30) 

It is important to note that Eq. (30) is not defined for λ = 0 and is 

only valid when λ � = 0 . 

The constant c is determined from initial conditions. For X f = 0 , 

G = M and Y = V 
2 

0 . Thus, c is given by: 

c = M 

2 
V 

2 

0 + Q(0) . (31) 

Therefore, the final solution for V f is obtained in terms of dimen- 

sionless functions G 

(
X f 

)
and Q 

(
X f 

)
as: 

V f = 

1 

G 

(
X f 

)√ 

M 

2 
V 

2 

0 −
[
Q 

(
X f 

)
− Q ( 0 ) 

]
, (32) 

where Q ( 0 ) is the initial value of function Q , when the shock front 

is at the incident end. Thus, Q ( 0 ) can be obtained by using X f = 0 

and ρ f = ρ i . For λ = 0 , the Eq. (32) after simplification is identical 

to that shown in the previous work for a uniform density CM [6] . 

However, Eq. (32) is more general and is applicable to CM with 

any linear non-negative density gradient including the specific case 

of uniform density. The function Q is determined by Eq. (28) or 

Eq. (30) depending on the value of the density gradient parameter. 

The numerical solution is obtained with time as an independent 

variable similar to previous studies [9,11] . Thus, using Eq. (14) , the 

differential equation given by Eq. (17) is transformed to: 

d V f 

d t 
= −

( 

σ p f + 

ρ f V 

2 

f 

ρ0 εdf 

) [
M + 

1 

ρ0 

∫ X f 

0 

ρ
(
X 

)
d X 

]−1 

, (33) 

where t = 

(
t 
√ 

σp0 /ρ0 

)
/L . Equations (14) and (33) are used in dis- 

cretized form to numerically calculate the instantaneous velocity of 

the rigid mass as a function of shock front location. Forward finite 

difference method is used to obtain the solution. 

The comparison of the velocity of the rigid mass obtained from 

Eq. (32) with the numerical solutions is shown in Fig. 4 . The 

plots are shown for V 0 = 1 and V 0 = 2 . Unless otherwise stated, 

the following representative values are used for the calculations: 

ρ0 = 0 . 15 , M = 1 , C 2 = 2 , C 3 = 1 , C 4 = 1 and λ = 0 . 5 . With V 0 = 1 , 

the input kinetic energy supplied is not sufficient to propagate the 

shock front to the transmitted end. The rigid mass comes to rest 

and the CM remains partially compacted (see Fig. 4 a). The error 

in the numerical solution is shown in Fig. 4 b. One of the draw- 

backs of the numerical solution is that the accuracy of the solu- 

tion is dependent on the time step δt . Often multiple iterations 

are required for determining the time step that will yield suffi- 

ciently accurate results. It is observed in the figure that the nu- 

merical solution slowly converges to the analytical solution as the 

time step is reduced. The reduction in time step size only increases 

the computational time. The error due to the finite time step is 

small in the beginning, but it accumulates with shock front propa- 

gation and is maximum in the end. The error is only shown up to 

X f = 0 . 6 in Fig. 4 b because it increases dramatically as the veloc- 

ity approaches zero. Figure 4 c shows the case when V 0 = 2 . In this 

case, the input energy is more than the minimum energy required 

for the full compaction of CM. Therefore, the shock front propa- 

gates to the other end as seen in the figure, and the velocity of the 

rigid mass, in the end, remains non-zero even after full compaction 

of CM. The error in the numerical solution decreases with smaller 

step sizes (see Fig. 4 d) same as the case observed for V 0 = 1 . 

There exists an initial velocity of the impinging mass whose as- 

sociated kinetic energy is just sufficient to compact the CM com- 

pletely and at the same time, the impinging mass comes to rest. 

This initial velocity is denoted as densification velocity and is ob- 

tained by substituting V f = 0 at X f = 1 in Eq. (32) . The dimension- 

less densification velocity is given by: 

V d = 

√ 

Q ( 1 ) − Q ( 0 ) 

M 

. (34) 

The input kinetic energy is dissipated by the compaction of CM. 

The kinetic energy associated with the densification velocity is 

called the densification energy, and it is equal to the EA capacity of 

CM according to the principle of conservation of energy. The spe- 

cific EA capacity is the EA capacity per unit mass of the CM. Thus, 

the analytical expression for the dimensionless specific EA capacity 

E d is given by: 

E d = 

1 

2 

M V 

2 

d = 

Q ( 1 ) − Q ( 0 ) 

2 M 

. (35) 

The specific EA capacity is shown in Fig. 5 a and the error in the 

numerical solutions in Fig. 5 b. It is clearly seen that the numeri- 

cal solutions can be misleading if an appropriate time step is not 

used. A coarser time step ( δt = 1 ×10 −2 ) shows an initial decreas- 

ing trend as opposed to the monotonically increasing trend shown 

by the analytical solution in Fig. 5 a. It is also observed that the 

density gradation improves the EA capacity. The energy absorption 

occurs through plastic dissipation, and it is greatly enhanced by 

the shock deformation mechanism when the compaction velocity 

is high. Note that the compaction velocity is high during the early 

stage of deformation, and it gradually decreases due to energy ab- 

sorption. The overall mass of the graded CMs is the same as that 

of the uniform density CM. However, in graded CMs, the mass is 

distributed by placing the low-density material towards the inci- 

dent end and the high-density material towards the transmitted 

end. The low-density material compacts at high velocity, absorb- 

ing more energy due to the shock deformation mechanism. As the 

CM gets compacted further, the high-density material towards the 

transmitted end experiences lower velocities resulting in lower en- 

ergy absorption by the shock deformation mechanism. However, 

the high density of the material ensures a significant amount of 

plastic dissipation owing to its high plateau stress. Thus, the vari- 

ation in density along the length helps in effectively absorbing en- 

ergy throughout the compaction process. Therefore the overall en- 

ergy absorption capacity is enhanced in a density-graded CM over 

the uniform density CM, and the enhancement is maximum for the 

steepest density gradient. 

The incident stress is the stress exerted on the rigid mass by 

the CM. It is obtained by applying conservation of linear momen- 

4 
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Fig. 4. Instantaneous velocity V f of the rigid mass as a function of X f , a V f when V 0 = 1 , b error in V f when V 0 = 1 , c V f when V 0 = 2 , d error in V f when V 0 = 2 . 

Fig. 5. a Specific EA capacity E d as a function of λ; b error in specific EA capacity E d. 

5 
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Fig. 6. a Dimensionless incident stress σ i as a function of X f ; b error in dimensionless incident stress σ i. 

Fig. 7. Dimensionless incident stress σ i for different density gradient parameters. 

tum to the rigid mass and is expressed as: 

σi = −M 

A 

d V f 

d t 
. (36) 

Using Eqs. (12) , (13), (20) and (36) , the dimensionless incident 

stress is obtained as: 

σ i = 

M 

G 

( 

σ p f + 

ρ f V 

2 

f 

ρ0 εdf 

) 

. (37) 

The dimensionless incident stress is shown in Fig. 6 a for V 0 = V d 
and λ = 0 . 5 along with the error in Fig. 6 b. The analytical solution 

shows a good agreement, as before, with the numerical solution. 

Figure 7 shows the incident stress obtained analytically for differ- 

ent density gradient parameters. The peak incident stress occurs at 

X f = 0 for λ = 0 and λ = 0 . 25 . However, for higher values of λ, it 

does not occur at X f = 0 . This is because the density near the in- 

cident end is low enough, resulting in smaller plateau stress and 

larger densification strain. All these factors (see Eq. (37) ) lead to 

lower incident stress at X f = 0 despite compaction at high veloc- 

ity. In the later stage, as the density of the compacting material 

increases, the velocity also remains sufficiently high. Therefore, the 

incident stress increases and reaches a peak value at some loca- 

tion. In the end, since the velocity ( V f ) becomes zero, the incident 

stress drops to a lower value. Both the location and the magnitude 

of the peak incident stress are dependent upon the density gra- 

dient parameter. This also indicates that the incident stress pro- 

file can be designed by choosing a suitable density gradient pa- 

rameter. This is an extremely useful characteristic that can be ex- 

ploited when designing impact-resistant structures. Figure 8 shows 

the dimensionless peak incident stress σ peak 
i 

as a function of λ. 

It is observed that the peak incident stress is minimum around 

λ = 0 . 55 . Very high values of λ lead to higher peak incident stress. 

This is because, for CM with very high λ, the velocity does not 

drop much after the low-density material near the incident end 

has compacted. Afterward, the compaction of high-density mate- 

rial at high velocities causes higher peak incident stress. 

The theoretical analysis for the stationary graded CM impacted 

by a rigid mass is presented in this study. RPPL material behavior 

is assumed, and linear density gradients are considered. An analyt- 

ical approach that leads to closed-form solutions is demonstrated. 

Expressions for the velocity of the rigid mass, densification veloc- 

ity, energy absorption capacity, and incident stress are determined. 

The proposed solution captures the dynamic behavior of the mate- 

rial with great accuracy. The comparison of analytical results with 

the numerical solutions validates the accuracy and efficiency of the 

derived expressions. The analytical solution shows that the den- 

sity gradation improves the energy absorption capacity, and the 

enhancement is maximum when the density gradient parameter 

is maximum. Also, the peak incident stress is observed to be mini- 

mum at intermediate values of the density gradient parameter. The 

effect of each variable on the behavior of CM under impact load- 

ing can be determined using the proposed analytical expressions. 

The solution can also be used to predict the dynamic response of 

the naturally occurring density-graded CM such as a human skull 

[32,33] . Furthermore, it could be adapted for modeling a multi- 

layer structure with discrete values of densities by using a piece- 

wise function for density variation. More importantly, the proposed 

analytical formulation can be a fast and efficient tool, in general, to 

design graded CMs for impact mitigation. 
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Fig. 8. a Dimensionless peak incident stress σ peak 
i 

as a function of λ; b error in dimensionless peak incident stress σ peak 
i 
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