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STUDY PROTOCOL

Studying patterns and predictors of HIV 
viral suppression using A Big Data approach: 
a research protocol
Jiajia Zhang1,2,3, Bankole Olatosi2,3,4*  , Xueying Yang2,3,5, Sharon Weissman2,6, Zhenlong Li2,3,7, Jianjun Hu2,8 and 
Xiaoming Li2,3,5 

Abstract 

Background:  Given the importance of viral suppression in ending the HIV epidemic in the US and elsewhere, an 
optimal predictive model of viral status can help clinicians identify those at risk of poor viral control and inform clinical 
improvements in HIV treatment and care. With an increasing availability of electronic health record (EHR) data and 
social environmental information, there is a unique opportunity to improve our understanding of the dynamic pat-
tern of viral suppression. Using a statewide cohort of people living with HIV (PLWH) in South Carolina (SC), the overall 
goal of the proposed research is to examine the dynamic patterns of viral suppression, develop optimal predictive 
models of various viral suppression indicators, and translate the models to a beta version of service-ready tools for 
clinical decision support.

Methods:  The PLWH cohort will be identified through the SC Enhanced HIV/AIDS Reporting System (eHARS). The 
SC Office of Revenue and Fiscal Affairs (RFA) will extract longitudinal EHR clinical data of all PLWH in SC from multiple 
health systems, obtain data from other state agencies, and link the patient-level data with county-level data from mul-
tiple publicly available data sources. Using the deidentified data, the proposed study will consist of three operational 
phases: Phase 1: “Pattern Analysis” to identify the longitudinal dynamics of viral suppression using multiple viral load 
indicators; Phase 2: “Model Development” to determine the critical predictors of multiple viral load indicators through 
artificial intelligence (AI)-based modeling accounting for multilevel factors; and Phase 3: “Translational Research” to 
develop a multifactorial clinical decision system based on a risk prediction model to assist with the identification of 
the risk of viral failure or viral rebound when patients present at clinical visits.

Discussion:  With both extensive data integration and data analytics, the proposed research will: (1) improve the 
understanding of the complex inter-related effects of longitudinal trajectories of HIV viral suppressions and HIV treat-
ment history while taking into consideration multilevel factors; and (2) develop empirical public health approaches 
to achieve ending the HIV epidemic through translating the risk prediction model to a multifactorial decision system 
that enables the feasibility of AI-assisted clinical decisions.

Keywords:  HIV/AIDS, Viral suppression, Viral rebound, Pattern analysis, Data analytics
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Background
Viral suppression is the final stage of the HIV treatment 
cascade, which serves as the framework for UNAIDS’ 
90–90–90 goals [1]. Sustained (or durable) viral sup-
pression permits the restoration of immune function, 
reduces onward secondary transmission, and indicates 
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long-term treatment success and mortality reduction [2]. 
In the US, ~ 57% of all people living with HIV (PLWH) 
were virally suppressed according to the national sur-
veillance data from the Centers for Disease Control and 
Prevention (CDC) [3], and in South Carolina (SC), 62% of 
PLWH were virally suppressed [4]. “Ending the HIV Epi-
demic (EtHE): A Plan for America” [5] federal campaign, 
launched in February 2019 aims to reduce the number of 
new HIV infections in the US by 75% and 90% by 2025 
and 2030, respectively. The EtHE campaign focuses on 48 
US counties that contribute to > 50% of new HIV cases 
and 7 states with a high rural HIV burden, including SC. 
Sustained viral suppression is one of four strategic areas 
of the EtHE. With a prolonged life expectancy of PLWH, 
routine monitoring of viral load (VL) status becomes 
more important over their life course, with the longitudi-
nal VL information collected over time potentially adding 
to the predictability of subsequent virologic failure (VF) 
or mortality. Over the past few years, a small but increas-
ing number of longitudinal studies have explored the 
dynamics of VL patterns using sustained viral suppres-
sion, viral rebound, viral blips, or low-level viremia (LLV) 
[6–8]. These different VL measures are interrelated, affect 
each other, and also predict, to some extent, virologic 
failure [9]. Studies examining the association between 
persistent LLV and VF or viral rebound are conflicting 
[10–12]. Other studies report a correlation between LLV 
and the risk of viral rebound [13–15]. Furthermore, the 
threshold of LLV at which it would be predictive of VF 
varies. Some studies suggest a threshold of > 200 copies/
ml as being associated with VF; yet other studies suggest 
a higher threshold (i.e., VL > 400 copies/ml) [16, 17].

The virological outcomes of PLWH could be 
affected by multiple factors from individual-level (e.g., 
socio-demographics, clinical characteristics, HIV 
care-seeking behaviors) to county-level social and 
environmental factors (e.g., economic environment). 
Socio-demographics have been frequently reported to 
be associated with viral suppression. According to the 
US CDC’s HIV Prevention Progress Report 2019, viral 
suppression remains lowest among persons ≤ 34 years, 
Blacks/African Americans, persons who inject drugs, 
and heterosexuals [18, 19]. The clinical indicators of 
HIV diagnosis (e.g., pre-antiretroviral therapy [ART] 
CD4 counts, pre-ART VL level) are important in deter-
mining subsequent virologic success or failure after 
initiation of ART [16, 19–21]. Individuals who are 
more immunocompromised (e.g., low baseline CD4 
counts, or opportunistic illnesses) at HIV diagnosis 
are more likely to develop VF [16, 19–21]. Treatment 
history, including earlier ART initiation [19], no prior 
ART use before treatment [20], prior use of mono- or 

dual- antiretrovirals [22], longer duration of therapy 
[20], and boosted protease inhibitor (PI)-based regi-
men [20], also impacts success or failure of sustained 
viral suppression [16, 21]. Apart from individual-level 
factors, considerable interest remains in understand-
ing how social and structural determinants of health 
affect the HIV treatment continuum, including viral 
suppression. For instance, the structural determinants 
and socioeconomic conditions of the neighborhoods or 
communities (e.g., county) where individual lives will 
profoundly impact the outcomes of the HIV continuum 
of care [23–25]. A more comprehensive prediction 
model for virologic outcomes based on the dynamic 
patterns of VL, individual demographics, HIV care-
seeking behavior, and social and environmental factors, 
could inform us on “when” and “how” to help individu-
als with poor viral control to achieve and sustain viral 
suppression.

Some critical gaps exist in the current efforts to under-
stand the dynamics of viral suppression and the develop-
ment of an optimal predictive model of viral suppression. 
First, most studies have focused on limited indicators of 
viral suppression (e.g., a single time point measure) and 
have failed to provide a complete picture of the dynamic 
process of viral suppression. Second, most studies inves-
tigating the transformations among virologic outcomes 
have only explored the monotonous transformation 
between two virologic outcomes (e.g., from viral suppres-
sion/failure to viral failure/suppression) rather than the 
comprehensive virologic history and dynamic viral pat-
terns [26]. Third, most studies have examined viral sup-
pression within a limited time window ranging from 6 to 
48  months [26, 27] and were unable to provide a time-
sensitive assessment of the virial suppression process. 
Fourth, scopes of data in most existing studies are insuf-
ficient to fully describe the viral patterns due to limited 
data sources (e.g., use only medical records or epidemio-
logical surveys). The structural and socioenvironmental 
factors were not always taken into consideration because 
of either the unavailability of such data in medical 
records or the lack of advanced analytic tools that can 
model such complex data. Fifth, previous studies lacked 
advanced analytics to predict the VF (or other viral out-
comes) using the comprehensive and longitudinal data. 
Most extant literature counted the presence of virologic 
outcomes within a limited timeframe and explored their 
correlates using traditional analytic approaches such as 
generalized estimate equation [28] and cox regression [7, 
8, 29]. Most of these approaches are time insensitive and 
cannot make dynamic predictions based on the large rep-
resentative features. Finally, most of the existing research 
does not go beyond the modeling phase to translate 
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research findings into service-ready clinical tools for 
improved viral suppression or better viral control.

Methods/design
Objective
Using a data science approach, this study aims to exam-
ine the longitudinal dynamic pattern of viral suppression, 
develop optimal predictive models of various viral sup-
pression indicators, and translate the models to service-
ready tools for clinical support and decision-making. Our 
main research objectives are threefold. The first objec-
tive is to identify the longitudinal dynamics of viral sup-
pression among PLWH in SC using multiple indicators, 
including, but not limited to, time to initial suppression 
(from diagnosis or ART uptake), sustained suppression 
(e.g., virally suppressed for > 40  months), viral rebound 
(both time to rebound and level of viral rebound), viral 
blips, and other relevant VL measures (e.g., LLV). The 
second objective is to determine the critical predictors 
of multiple VL indicators through artificial intelligence 
(AI)-based modeling accounting for factors at the indi-
vidual level (e.g., patient demographics, treatment regi-
men, and health care service utilization), structural level 
(e.g., geographic region, availability of treatment facil-
ity, and specialty), and socioenvironmental level (e.g., 
socioeconomic level). Finally, the research will develop a 
multifactorial decision system based on a risk prediction 

model to assist with the identification of the risk of VF or 
viral rebound when patients present at clinical visits.

Conceptual framework
Since 2017, we have been utilizing a data science 
approach to examine treatment gaps among PLWH in 
SC [30, 32]. The ongoing research extracted longitudinal 
electronic health records data of all PLWH in SC from 
multiple state agencies and health systems. We linked 
the individual-level data with social environmental data 
(e.g., social economics, number of health care profession-
als, hospitals, and health care facilities) from multiple 
publicly available data sources. The integrated database 
enabled us to successfully “track” 11,470 patients who 
were diagnosed with HIV in 2005–2016 in SC and iden-
tify the gaps (e.g., missed opportunities) in HIV treat-
ment linkage and retention [33]. Guided by a conceptual 
framework (Fig. 1), the proposed study will (1) continue 
to “follow” our cohort for another five years (and also 
expand the cohort by adding PLWH diagnosed between 
2016 and 2020); (2) expand our database to include addi-
tional treatment and laboratory data from the newly 
established Prisma Health system that serves about 1/2 of 
the state’s population; (3) expand our database to include 
additional data on alcohol and other drug use, and (4) 
employ AI-based modeling to understand the dynamic 

Fig. 1  Conceptual model of the proposed research
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VL patterns (e.g. VF/suppression/rebound/blip and LLV) 
and their predictors.

Population and setting
The proposed study will be conducted in SC, which is 
one of the states bearing the highest burden of HIV in 
the nation. SC has consistently ranked among the top 
ten US states in the number of annual HIV/AIDS cases 
during the past several years [34, 35]. As of December 31, 
2019, there were 20,334 SC residents living with HIV, and 
this number has increased by 30% since 2008. With an 
incidence rate of 15.5 per 100,000, SC has the 8th high-
est incidence rate of HIV infection nationally [36]. The 
proposed study is responding to the aims of the EtHE 
campaign [5] by addressing the NIH HIV/AIDS prior-
ity topic areas for HIV treatment outcomes. The PLWH 
population in SC is diverse in terms of gender (72% 
male), and race/ethnicity (68% African American, 25% 
White, 5% Hispanic/Latino) [36]. This distribution rep-
resents the general characteristics of HIV populations 
in most Southern states. Thus, ensuring that the popu-
lation-based results will have strong generalizability and 
can provide timely evidence/guidance on HIV treatment 
strategies among PLWH in SC and other places where 
relevant data are available. The study population of the 
proposed research includes people who were diagnosed 
with HIV in SC between 2005 and 2020. Only people 
aged ≥ 18  years in the year of diagnosis are included in 
the analyses. We chose 2005 because this was the year 
after the state law for mandatory reporting of all CD4 
and VL tests to e-HARS began. At least fifteen years 
(2005–2020) of HIV utilization data will be available for 
this study. Additional utilization data will be collected 
and included during annual data updates up till 2025.

Data sources and data acquisition and management
The increasing availability of electronic data, including 
electronic medical records, administrative databases, and 
public county-level data, has created a unique opportu-
nity to expand our ability to measure HIV-related health 
and clinical outcomes. The proposed study will integrate 
data from both individual-level and county-level. Using 
the integrated data, we can examine patients’ risk fac-
tors at the individual and county levels longitudinally and 
generate new knowledge of HIV viral suppression. Data 
sources are described in greater detail below.

Individual‑level data sources
The individual level data are integrated from eight state 
agencies/systems, including: (1) SC Enhanced HIV/AIDS 
Reporting System (eHARS) [37, 38]; (2) Ryan White HIV/
AIDS Program Data Report (RDR); (3) SC Revenue and 
Fiscal Affairs Office (SC RFA) integrated data warehouse 

[38]; (4) Health Sciences South Carolina (HSSC); (5) SC 
Department of Mental Health (SCDMH); (6) SC Depart-
ment of Corrections; (7) SC Department of Alcohol and 
Other Drug Abuse Services (DAODAS); and (8) Prisma 
Health System. Detailed descriptions of the data sources 
#1-#4 can be found elsewhere [33]. Below, we list the 
description of the additional new data sources #5–#8 for 
the study.

SC Department of Mental Health (SCDMH)
SCDMH comprises of 17 community-based outpa-
tient mental health centers, with 60 satellite offices. The 
SCDMH’s community mental health system’s geographi-
cal areas include 17 centers where all mental health ser-
vices are provided. More than 20 SCDMH sites provide 
specialized clinical care, including forensic and sexu-
ally violent predator treatment programs. SCDMH staff 
regularly provide clinical services in > 140 non-SCDMH 
facilities, including jails and SC Department of Social 
Services sites. Twenty-two community hospital emer-
gency departments (EDs) utilize technology directly link-
ing ED patients to a SCDMH psychiatrist for face-to-face 
behavior health consultation via video.

SC Department of Corrections
The SC Department of Corrections was established in 
1960 and includes historical data on inmates’ criminal 
history which is also housed within the SC RFA inte-
grated data warehouse. This study will include all SC 
department of corrections data from 2000 to 2020 rel-
evant to PLWH.

SC Department of Alcohol and Other Drug Abuse Services 
(DAODAS)
DAODAS is the SC government agency responsible for 
providing services to prevent or reduce consequences of 
substance use and addictions. DAODAS contracts with 
32 local alcohol and drug abuse authorities to ensure that 
prevention and treatment services are available across all 
46 counties in SC. DAODAS data include client data on 
admissions/intake assessment, history of use, transfer, 
services provided, and discharge information related to 
alcohol and substance use among individual patients.

Prisma Health System
In 2018, two major SC health care systems (Palmetto 
Health, Greenville Health) merged to form Prisma 
Health, which is now the clinical partner of University 
of South Carolina’s (UofSC) two medical schools. As 
SC’s largest, not-for-profit organization, Prisma Health 
serves more than 1.2 million patients annually and treats 
about one-third of all Medicaid patients statewide. It 
is estimated that 1 of every 2 SC residents’ lives within 
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a 15-min drive of a Prisma/UofSC Medical Group facil-
ity, which includes 13 hospitals. The Prisma health sys-
tem employs an estimated 32,000 health care providers 
and workers, making it the largest private employer in 
SC. Because of this unparalleled reach, Prisma Heath is 
uniquely positioned to drive improvements in clinical 
care across SC.

County‑level data sources
American Community Survey (ACS)
The ACS is a nationwide survey from a sample of the 
population in the US and Puerto Rico [40]. The ACS col-
lects information such as age, race, income, education, 
and other socioeconomic/demographic data. All ACS 
data are survey estimates, and each estimate has a mar-
gin of error published by the US Census Bureau. ACS 
estimates are period estimates that describe the average 
of characteristics of the population and housing over a 
period of data collection.

Area health resources file (AHRF)
AHRF is a public county-level dataset from HRSA that 
contains files in eight domains namely: Health Care Pro-
fessions, Health Facilities, Population Characteristics, 
Economics, Health Professions Training, Hospital Utili-
zation, Hospital Expenditures, and Environment. AHRF 
was designed to be used by policymakers, researchers, 
and others interested in the nation’s health care delivery 
systems and factors that may impact health status and 
health care in the US.

Behavioral risk factor surveillance system (BRFSS)
BRFSS is a CDC-funded state-based system of surveys 
that collects information on health-risk behaviors, pre-
ventive health practices, and health care access. It is a key 
source of tobacco use, alcohol consumption, and cancer 
screening data at the county level.

County health rankings and roadmaps program
The County Health Rankings & Roadmaps program 
is a collaboration between the Robert Wood Johnson 
Foundation and the University of Wisconsin Popula-
tion Health Institute. It measures vital health factors, 
including high school graduation rates; obesity; smoking; 
unemployment; access to healthy foods, air and water 
quality; and income inequality at the county level.

Data acquisition and management
Following a similar protocol in our ongoing Big Data 
analytic research in SC, we will establish a legal contract 
(which is required for each new study or new analysis) 
with SC RFA that will serve as the honest broker for the 
linkage of all identifiable data. The SC RFA will remove all 

the identifiable information from the linked data before 
releasing it to the research team. The detailed data acqui-
sition and linkage process were described previously 
elsewhere [33]. In the proposed study, we will update the 
database in our ongoing project by including (1) addi-
tional adult PLWH who were diagnosed between 2016 
and 2020; (2) additional treatment and laboratory data 
from Prisma Health; and (3) additional alcohol and other 
substance use data from DAODAS for the entire study 
cohort. Specifically, all participating SC agencies will 
submit their EHR data of the PLWH cohort to SC RFA. 
The SC RFA will link patient records from all sources and 
generate a linked dataset, which will include longitudinal 
observations of hospital visits, medication, claims data, 
mental health visits, and other relevant data for the study 
cohort [41]. SC RFA will also link the aggregate county-
level indicators with the patient-level data by the county 
code. In compliance with HIPAA regulations, SC RFA 
will create unique, non-identifiable client-level identifiers 
for this data linkage. The SC RFA de-identified system-
generated number ensures confidentiality but allows the 
study to conduct data mining at both the individual and 
aggregated data levels. For data security, only the final, 
deidentified dataset will be released to the research team 
for analysis. With the deidentified data, the research team 
is responsible for carrying out further data management, 
data cleaning, and development of a data dictionary, fol-
lowing similar protocols we have established in our ongo-
ing NIH funded studies for data management, storage, 
and security [33].

Key study variables
Individual‑level variables
The individual-level variables include sociodemographic 
characteristics (e.g., age at HIV diagnosis, gender, race, 
ethnicity, rural/urban area of residence, and poverty indi-
cators such as patients’ eligibility status for Ryan White 
(RW) funding; HIV infection history (e.g., HIV diagnosis 
date; AIDS diagnosis date; source of report; transmission 
modes); longitudinal measures of CD4 counts (e.g., ini-
tial CD4 counts, nadir CD4 counts, recent CD4 counts, 
percentage of low CD4 counts); [42, 43]) HIV treatment 
cascade outcomes (e.g., linkage to care, retention in 
care) [44]; Longitudinal ART indicators (e.g., duration of 
ART, specific ART regimens, drug classes [NRTI-based, 
NNRTI-based, PI-based, or multi-class regimen with 3 
or more classes of ART], regimens switch); Medical Con-
ditions. A variety of clinical medical conditions will be 
measured using the ICD 9 or ICD10 diagnosis codes con-
tained in the EHR data from SC RFA, Prisma and HSSC, 
such as comorbidity [45, 46], mental health disorders, 
and substance use and abuse.
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County‑level social‑environmental variables
Neighborhood social environment scale  The following 
components of the scale will be used: (1) commercial 
stores, including pharmacies, beauty salons/barber shops, 
laundry/dry cleaner, supermarket; (2) population SES 
(per capita income, white-collar employees, crowding); 
(3) environment or housing (population of Census tract, 
area of Census tract, renters, single-family dwellings); 
and )4) average household size and % of female-headed 
households [47, 48]. Economic Environment Variables, 
including poverty rate, health coverage, median income, 
median home value, and social deprivation index (per-
cent with less than 12 years of education, percent single 
parent household, percent living in rented housing unit, 
percent living in overcrowded housing unit, percent of 
households without a car, percent of non-employed adults 
under 65 years of age). Health Care Facility Data. Health 
facility data for the whole of SC will be obtained from SC 
DHEC, which contains health-side and environment-side 
information of health care facilities licensed by SC DHEC. 
Physical Environment Variables, including park infor-
mation (county park, local park, national park or forest, 
regional park, and state park or forest), recreational area 
(amusement park, beach, golf course, and park and recre-
ation area), etc. In addition, County-level Residential Data 
at three time points (HIV diagnosis, AIDS diagnosis, and 
current address) are available to identify mobility change 
and environmental change.

Data analytics
Phase 1: pattern analysis
Definitions of various VL Indicators. Following the “US 
Guidelines for the Use of Antiretroviral Agents in Adults 
and Adolescents with HIV”, [49] the proposed meas-
ures of VL indicators (both time-point and longitudinal 

measures) and their operational or clinical definitions 
are displayed in Table 1, such as viral suppression, viro-
logic failure, viral rebound, viral blip, and LLV. For exam-
ple, sustained viral suppression is defined generally as a 
viral load persistently (e.g., ≥ 40 months) below the level 
of detection depending on the assay used (e.g., 200 cop-
ies/ml); viral rebound is defined as confirmed HIV RNA 
level ≥ 200 copies/ml after initial viral suppression.

To achieve the goals for phase 1, deep learning mod-
els (e.g., multilayer perceptron networks, convolutional 
neural network [CNN], and long short-term memory 
[LSTM] recurrent neural networks [RNN]), which have 
unique advantages in their modeling flexibility, will be 
employed to identify the common VL patterns based 
on our proposed predictors. Five virologic outcomes 
(viral suppression, viral rebound, viral blip, LLV, and 
VF), measured with dynamic temporal features will be 
used for unsupervised deep learning to identify the com-
mon patterns among PLWH in SC. The CNN, a deep 
learning model, is particularly suited to learning local 
patterns in raw input features, such as the sociodemo-
graphic characteristics and ART regimen. The model-
ling procedure includes data preprocessing and feature 
extraction, model training, model evaluation, and pattern 
interpretation. In the feature selection step, appropriately 
incorporating different longitudinal observations of VL 
measures into the pattern analysis is critical. We will use 
a prediction approach that will be jointly modelled with 
primary outcomes. The data will then be split into train-
ing and testing sets based on the ratio of 8:2. VL patterns 
will be abstracted from the convolution kernels of the 
CNN model and represented by the input patches that 
activate the feature maps most, which are the responses 
of the convolution kernels to the inputs. To see whether 
there is a significant difference in the performance, we 

Table 1  Multiple viral load (VL) indicators and their definitions

Time-point measure Longitudinal measure

Viral suppression: a confirmed HIV RNA level below 200 copies/ml
 •Initial VL at HIV diagnosis
 •The current/most recent VL
Viral rebound: confirmed HIV RNA level ≥ 200 copies/ml after viral suppres-
sion
 •Most recent viral rebound
Viral failure: the inability to achieve or maintain suppression of viral replica-
tion to an HIV RNA level < 200 copies/ml
Viral blip: After viral suppression, an isolated detectable HIV RNA level 
(≥200 copies/ml) that is followed by a return to viral suppression
Low-level viremia: Confirmed detectable HIV RNA level <1000 copies/ml (at 
least two consecutive VL measures above 1000 copies/ml)

Aggregate feature:
 •Nadir VL
 •Peak VL
 •Number of viral rebounds
 •Size of the viral rebound (none, 500–1000, 1000–10,000 and > 10,000 
copies/ml)
Longitudinal feature:
 •Time to initial viral suppression
 •Time since the most recent viral rebound
 •Sustained viral suppression: patients with VL< 200 copies/ml in every VL 
measurement throughout the study period
 •Proportion of time spent with viral suppression (< 200 copies/ml)
 •Level of viral rebound (low level: at least 2 VL values were 500–5000 
copies/ml; high-level: at least 2 VL values were >500 copies/ml)
 •Intermittent LLV: VL of 200–1000 copies/ml on < 25% of measurements
 •Persistent LLV: VL of 200–1000 copies/ml on ≥ 25% of measurements
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will perform a paired t-test with the level of significance 
α = 0.05.

Phase 2: prediction modeling
The process of model development for phase 2 includes: 
(1) preparing the benchmark data and the process of task 
generation along with evaluation metrics; (2) develop-
ing neural baseline models for the benchmark tasks, the 
experimental setup and model selection, and (3) multi-
task learning.

Benchmark tasks
Considering the multiple VL indicators, we anticipate 
several tasks for prediction. Task 1 involves prediction of 
VL status among PLWH in SC. Viral load status, includ-
ing viral suppression, LLV, rebound, blip and VF, is the 
primary outcome of interest. All viral load status will 
be defined as a binary outcome, and a supervised RNN 
will be employed to construct the classification model 
of viral load status. Task 2 involves the duration of sup-
pression. Tasks 3 and 4 involve the time to suppression 
(failure) or rebound within 3 to 9  months since PLWH 
in SC will have their regular check-ups every 6 months. 
We will summarize the duration in suppression or time 
to suppression (failure) or rebound based on 5 quan-
tiles, including minimum, 25th percentile, 50th percen-
tile, 75th percentile, and maximum. According to these 

timeframes, we will design the time windows for model-
ling. This converts time into an ordinal multiclass classi-
fication problem. The Cohen’s linear weighted kappa will 
be used to measure correlation between ordered items.

Long short‑term memory (LSTM) neural network
A LSTM neural network is a type of recurrent neural net-
works (RNNs) designed to capture long dependencies in 
sequential data. LSTM can account for longitudinal fea-
tures that can be concatenated with an auxiliary input of 
all features such as demographics to be fed into a multi-
layer perceptron neural network with two or more hid-
den layers. During the modeling process, the data will be 
split into the observation window (e.g., 2005 to 2018) and 
the prediction window (e.g., 2018 to 2020) (Fig. 2). Data 
in the observation window will be used for model train-
ing, while those in the prediction window will be used for 
model evaluation. In the observation window, the data-
set will be divided into training, validation, and testing 
sets with a ratio of 8:1:1, and the process will be iterated 
ten times. For each iteration, we will evaluate the model 
performance by means of the area under the receiver 
operator characteristic curve (AUC-ROC), and the 95% 
confidence interval will be used as an overall index of the 
diagnostic performance of our models.

For each model, we will then calculate mean precision 
(positive predictive value), sensitivity (recall, true positive 

Fig. 2  Risk prediction model
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rate), specificity (true negative rate), Youden’s index, 
AUC and Matthews Correlation Coefficient (MCC). 
The positive predictive value is defined as the propor-
tion of participants who are correctly classified as fall-
ers by the algorithm. Sensitivity is defined as the ratio 
of the number of fallers correctly classified to the total 
number of fallers and specificity is the ratio of the num-
ber of non-fallers correctly classified to the total num-
ber of non-fallers. Youden’s index and AUC can measure 
the effectiveness of a  dichotomous  diagnostic test and 
MCC score measures the quality of classification models. 
The optimal threshold of Youden’s index or AUC can be 
determined through sensitivity, specificity, and MCC.

Multitask learning architecture
Once we have the single prediction model, we will con-
duct the multitask learning architecture with LSTM 
modules (Fig.  3). A promising direction of multitask 
learning is to dynamically adapt these coefficients dur-
ing training, similar to the adaptation of learning rates in 
optimizers. Multitask learning allows us to extract cer-
tain useful information from the input sequences that 
single-task models could not leverage and illustrates the 
better performance in some settings compared to a single 
task model.

Phase 3: translational research
This phase targets the development of a prototype system 
to demonstrate the feasibility of implementing the devel-
oped risk prediction model in a clinical setting. Figure 4 

depicts the process for implementing our AI-algorithm 
for VL level prediction and providing data driven evi-
dence for clinical consultation. The testing system will 
be developed as a mobile application (app) that can be 
deployed on appropriate communication platforms for 
easy access in clinical environments by research assis-
tants. We will use the Reactive Native cross-platform 
mobile app development framework for the prototype 
app building. The process is as follows: (1) We will first 
establish a database (2005–2020) in REDCap; (2) the pre-
diction model will then be trained using the data; and (3) 
The system form will be established to link the data out-
put from REDCap to our prediction models and generate 
the risk probability of viral predictor.

Software development
In the software development stage, the trained medical 
chart reviewers will first extract the patient-level data 

Fig. 3  Multiple task learning architecture

Fig. 4  Process of translational phase
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from the EHR system (EPIC) and transfer the informa-
tion to a REDCap database installed on a secure server 
and protected by the Secure Sockets Layer certification. 
Second, we will extract the data from REDCap to pre-
diction platform. Generalizable middleware approaches 
will be employed for dynamic data pull of the integrated 
clinical and research data. The middleware approach 
can facilitate the adoption of REDCap dynamic data pull 
(DDP) module by institutions, and REDCap DDP has 
been widely used by investigators for integrating clinical 
and research data across the biomedical research enter-
prise. Third, we will develop the prototype system for 
VL prediction models. The clinicians and data specialists 
will collaborate with the interface developers to develop 
a user-friendly prototype system for the VL prediction 
model (see an example in Fig. 5). Lastly, we will develop 
a user manual with detailed instructions on installation 
and application of the developed software. The research 
team will work with clinicians to make the user manual 
easy to understand.

Software Testing. To test the feasibility of the software, 
we will first test the reliability of the platform in the 
simulation settings, where we will generate a simulated 
dataset to mimic the clinical setting to catch any error 

that might happen in practice. Second, we will test the 
accuracy of prediction using real clinical data. A research 
assistant will collect incoming patients’ data from the real 
clinic in EIPC software and then apply our system for 
prediction. The testing phase will last 3–4  months, and 
the research team will identify any issues during this test-
ing phase and will meet and discuss how to improve this 
beta version. Third, we will perform platform evaluation 
in a real clinical setting. The software and the VL level 
prediction system will be adopted by one of our collabo-
rator’s clinics. The onsite testing will be carried out from 
6 to 12 months to test: (1) the feasibility of implementing 
the prediction system in real clinical settings; and (2) the 
prediction accuracy of the prediction models. Iterative 
improvements will be conducted when necessary, during 
program development.

Discussion
The increasing availability of electronic data, including 
electronic medical records, administrative databases, and 
public county-level data, has created a unique opportu-
nity to expand our ability to measure HIV-related health 
and clinical outcomes. With the integrated data, we 
can examine patients’ risk factors at the individual and 

Fig. 5  User interfaces of the prototype for viral load (VL) level prediction
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county levels longitudinally and generate new knowledge 
of HIV viral suppression. However, these integrated data 
sources are characterized by high volume and variation, 
and there are several data analytic challenges in the inte-
grated data structure, including mismatched time scales 
and multilevel risk predictors. The recent developments 
in Big Data analytics, such as artificial neural network 
[50, 51], LSTM Neural Network, random forest [51, 52], 
support vector machine [51], and deep learning approach 
such as CNN [53], make it feasible to address these meth-
odological challenges and predict virologic outcomes 
using data from multiple domains.

The proposed project will integrate complex yet rep-
resentative population-level HIV data from multiple SC 
data sources at both individual and county levels and 
analyze the impact of historic HIV VL patterns on mul-
tiple viral outcomes considering multilevel factors. The 
integrated data from these multiple data sources include 
PLWH who were diagnosed with HIV (as early as 2005) 
over a period of > 15  years (to at least 2020) and thus 
provide us a so-called synthetic cohort which contains a 
complete population-based longitudinal picture of HIV 
VL measure, HIV treatment, HIV care-seeking behav-
iors, hospital diagnosis, and county-level factors. We will 
develop AI-based modeling accounting for multiple viral 
outcomes by integrating both individual- and socioeco-
logical-level factors to relate it to future viral suppression. 
With both extensive data integration and Big Data ana-
lytics, the proposed research is significant as it will: (1) 
improve the understanding of the complex inter-related 
effects of longitudinal trajectories of HIV viral sup-
pressions and HIV treatment history while taking into 
consideration multiple factors at the individual and soci-
oecological levels among PLWH; and (2) develop empiri-
cal public health approaches to achieve ending the HIV 
epidemic through translating the risk prediction model 
to a multifactorial decision system that enables the feasi-
bility of AI-assisted clinical decisions.

Potential challenges
Overfitting can be a problem in deep neural networks 
with a large number of parameters. To avoid this prob-
lem, we will employ the dropout method [54], which is 
a common regularization technique for reducing overfit-
ting in neural networks. The key idea is to randomly drop 
some neurons (along with their connections) from the 
neural network during training. This prevents the neural 
units from over co-adapting (note that dropout is disa-
bled in testing, i.e., the whole network is used for esti-
mation). For the integrated data we might have repeated 
observations at the single point or missing information 
at a particular measure. If there is more than one value 
available during a particular time point, the mean of the 

values during that time point will be calculated. If there 
is no value reported during a particular time, a missing 
value will be set. We will use mean and standard devia-
tion to transform real values into categorical values; 
missing values will be assigned to a special category. 
Depending on the modelling approach, we will input the 
missing values.

Ethics and dissemination
This study is approved by the University of South Caro-
lina (UofSC) Institutional Review Board (Pro00109797). 
The identity of all PLWH in the study is protected and 
only deidentified data will be released to the study 
researchers. The SC RFA will coordinate the efforts 
among relevant state agencies (e.g.SC DHEC, Health Sci-
ences South Carolina [HSSC]) to link the data and to pro-
vide the study with only the deidentified data for analysis. 
Extensive data agreements ensuring data security and 
patient confidentiality for the deidentified linked data 
have been established and are stringently adhered to. No 
investigators will have access to identifiable data from 
any of the state agencies.

Dissemination of results
To materialize the anticipated methodological and clini-
cal benefits of the proposed research, and to maximize 
their impact on HIV clinical care, we will use the follow-
ing strategies to disseminate the study findings: (1) Local 
Community and Stakeholder Forums. We will hold meet-
ings with state agencies, including SC DHEC and RW to 
present study findings and prepare a data-driven strategic 
dissemination plan for local health care systems; and (2) 
Scientific Communities. Study dissemination will occur 
through presentations at academic conferences and the 
publication of peer-reviewed articles. We will capital-
ize on social media and professional networks that can 
increase the reach and accessibility of findings such 
as open access publication, webinars, files, and videos 
available on websites and publicly available channels to 
increase the visibility and impact of the scientific publica-
tions and presentations.
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