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Autonomy is a critical construct related to human-robot interaction (HRI) and varies widely across 
robot platforms. Levels of robot autonomy (LORA), ranging from teleoperation to fully 
autonomous systems, influence the way in which humans and robots interact with one another. 
Thus, there is a need to understand HRI by identifying variables that influence—and are 
influenced by—robot autonomy. Our overarching goal is to develop a framework for LORA in 
HRI. To reach this goal, our framework draws links between HRI and human-automation 
interaction, a field with a long history of studying and understanding human-related variables. The 
construct of autonomy is reviewed and redefined within the context of HRI. Additionally, this 
framework proposes a process for determining a robot’s autonomy level by categorizing autonomy 
along a 10-point taxonomy. The framework is intended to be treated as a guideline for determining 
autonomy, categorizing the LORA along a qualitative taxonomy and considering HRI variables 
(e.g., acceptance, situation awareness, reliability) that may be influenced by the LORA. 
 
Keywords: human-robot interaction, automation, autonomy, levels of robot autonomy, framework 

 

1. Introduction 
Autonomy: from Greek autos ("self,") and nomos ("law") 
“I am putting myself to the fullest possible use…” –HAL 9000 (2001: Space Odyssey) 
 
A focus on robot autonomy has scientific importance beyond the pop culture goal of creating a 
machine that demonstrates some level of artificial free will. Robot autonomy broadly refers to the 
system’s capability to carry out its own processes and operations. This is of particular importance 
within the field of human-robot interaction (HRI) because a robot’s autonomy will impact the 
tasks it is able to perform, the level and frequency of interaction with human operators, and the 
reliability with which that robot can perform in an environment. 

Determining appropriate autonomy in a machine (robotic or otherwise) is not an exact 
science. An important question is not, “What can a robot do?” but rather, “What should a robot do, 
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and to what extent?” A scientific base of empirical research can guide designers in identifying 
appropriate tradeoffs to determine which functions and tasks to allocate to either a human or a 
robot. Autonomy is a central factor determining the effectiveness of the human-machine system. 
Therefore, understanding robot autonomy is essential to understand HRI. 

Autonomy has been conceptualized in different fields in different ways. In human-automation 
interaction, for example, autonomy has been largely explained as an allocation of function 
between a human and a robot. In HRI, there are two schools of thought in conceptualizing 
autonomy: (1) higher robot autonomy requires less frequent interaction; and (2) higher robot 
autonomy requires higher levels or more sophisticated forms of interaction. The disparate way 
autonomy has been conceptualized in HRI is due, in part, to the multidisciplinary nature of the 
field but also to the lack of an integrated autonomy framework. To parse the complexity of 
autonomy, a framework of robot autonomy is needed. Development of a framework on levels of 
autonomy for human-robot interaction not only holds promise to conceptualize and better 
understand the construct of autonomy, but also to account for human cognitive and behavioral 
responses (e.g., situation awareness, workload, acceptance) within the context of HRI. 

This proposed framework focuses on service robots. Although this category is broad, certain 
shared characteristics are relevant to autonomy and HRI. First, service robots of varying degrees 
of autonomy have been applied to a range of applications, such as domestic assistance, healthcare 
nursing tasks, search and rescue, and education. Second, due to the range of service applications, 
human-robot interaction will often be necessary, and service robots of varying autonomy levels 
may be expected to interact with humans having limited or no formal training (Thrun, 2004). 
 

2. Goals and Contributions 
Although previous models and frameworks have addressed autonomy in HRI (Feil-Seifer, 
Skinner, & Mataric, 2007; Goodrich & Olsen, 2003; Goodrich & Schultz, 2007; Huang, Pavek, 
Albus, & Messina, 2005; Thrun, 2004; Yanco & Drury, 2004) and automation (Endsley & Kaber, 
1999; Parasuraman, Sheridan, & Wickens, 2000; Sheridan & Verplank, 1978), they have not 
provided a cohesive definition and conceptualization of robot autonomy that allows designers and 
researchers to identify a robot’s autonomy level and consider how it might impact the interaction 
between the robot and the human. The overarching goal of developing a comprehensive 
framework of autonomy was to expand upon the current models and consider, in depth, the role of 
autonomy in HRI. To this end, an in-depth literature review revealed several necessary elements 
for this framework: 

First, a new definition of autonomy was needed to clarify how this concept should be 
considered for HRI. The first element of this framework is a definition that is specific to robotics 
and HRI through the integration of various definitions that have been used in HRI and related 
fields 

Second, autonomy literature was reviewed to develop a coherent understanding of autonomy 
in HRI. Here, elements from research on automation, as well as considerations from research on 
HRI, were synthesized into a set of guidelines meant to provide guidance for designers in 
identifying the appropriate autonomy level of a robot. Designers and researchers can use these 
guidelines to consider what level of autonomy is appropriate for their robot and the impact of 
autonomy on how the human and robot interact. 

Finally, within these guidelines, a taxonomy of robot autonomy levels was proposed. We 
defined this taxonomy as a representation of a classification technique onto a set of ordered 
categories, which can be seen as lying along a continuum. 

All of these elements: (1) definition, (2) guidelines, and (3) taxonomy make up the 
framework. The framework we have proposed is broad by nature. Our aim was to consider 
autonomy for service robots, which may encompass a wide range of robot types, capabilities, and 
operational environments. The purpose of this framework is to take a conceptual and theoretical 
viewpoint on autonomy and how it impacts HRI. 
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3. Conceptualizing Autonomy 
Autonomy has been of philosophical interest for over 300 years. In the 18th century, autonomy was 
most famously considered by philosopher Immanual Kant as a moral action determined by a 
person’s free will (Kant, 1967). Early psychology behaviorists (e.g., Skinner, 1978) claimed that 
humans do not act out of free will, rather their behavior is in response to stimuli in the 
environment. In psychology, autonomy has been primarily discussed in relation to child 
development, and the term autonomy has been considered as a subjective construct involving self-
control, self-governance, and free will. For instance, Piaget (1932) proposed that autonomy is the 
ability to self-govern as a critical component in a child’s moral development. Erikson (1950) 
similarly defined autonomy as a child’s development of a sense of self-control (e.g., early 
childhood toilet training). In more recent years, attention on autonomy has included the concept of 
Theory of Mind. Initially centering on child development (Wellman, 1992), this theory now 
commonly refers to a person’s ability to attribute mental states to self and others. 

Table 1. Definitions of Autonomy Found in Robotics Literature 
Definitions of Agent and Robot Autonomy  
“The robot should be able to carry out its actions and to refine or modify the task and 
its own behavior according to the current goal and execution context of its task.” 
 

Alami et al., 1998, 
p. 316 

“Autonomy refers to systems capable of operating in the real-world environment 
without any form of external control for extended periods of time.” 
 

Bekey, 2005, p. 1 

“An autonomous agent is a system situated within and a part of an environment that 
sense that environment and acts on it, over time, in pursuit of its own agenda and so as 
to effect what it senses in the future;” “Exercises control over its own actions.”  
 

Franklin & 
Graesser, 1996, p. 
25 

“An Unmanned System’s own ability of sensing, perceiving, analyzing, 
communicating, planning, decision-making, and acting, to achieve goals as assigned 
by its human operator(s) through designed HRI … The condition or quality of being 
self-governing.”  
 

Huang, 2004, p. 9 

“‘Function autonomously’ indicates that the robot can operate, self-contained, under 
all reasonable conditions without requiring recourse to a human operator. Autonomy 
means that a robot can adapt to change in its environment (the lights get turned off) or 
itself (a part breaks) and continue to reach a goal.”  
 

Murphy, 2000, p. 4 

“A rational agent should be autonomous—it should learn what it can to compensate 
for partial or incorrect prior knowledge.”  
 

Russell & Norvig, 
2003, p. 37 

“Autonomy refers to a robot’s ability to accommodate variations in its environment. 
Different robots exhibit different degrees of autonomy; the degree of autonomy is 
often measured by relating the degree at which the environment can be varied to the 
mean time between failures, and other factors indicative of robot performance.”  
 

Thrun, 2004, p. 14 

“Autonomy: agents operate without the direct intervention of humans or others, and 
have some kind of control over their actions and internal states.” 

Wooldridge & 
Jennings, 1995, p. 
116 

 
Autonomy, as a construct representing free will, only encompasses one way in which the term 

is used. The phenomenon of psychological autonomy (and the underlying variables) is different 
than the phenomenon of artificial autonomy that engineers would like to construct in machines 
and technology (Ziemke, 2008). For instance, when the term autonomy is applied to automation, it 
is discussed in terms of autonomous function (e.g., performing aspects of a task without human 
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intervention). How is autonomy defined for agents and robots? Robot autonomy has been 
discussed in the literature as a psychological construct and as an engineering construct. In fact, the 
term is used to describe many different aspects of robotics, from the robot’s ability to self-govern 
to the level of necessary human intervention. Some definitions of robot autonomy are presented in 
Table 1. 

To clarify the term, we propose the following: A generally accepted definition of autonomy is 
as follows: the extent to which a system can carry out its own processes and operations without 
external control. This general definition of autonomy can be used to denote autonomous 
capabilities of humans or machines. However, a stronger and more specific definition can be given 
to robots by integrating the definitions provided in Table 1. In this paper, we define autonomy as 
follows: 

 
The extent to which a robot can sense its environment, plan based on that environment, and 

act upon that environment with the intent of reaching some task-specific goal (either given to or 
created by the robot) without external control. 

 
The proposed stronger definition of autonomy integrates current definitions of autonomy and 

highlights prevalent characteristics of autonomy (i.e., sense, plan, act [see Rosen & Nilsson, 1966 
for Hierarchical Paradigm, and Murphy, 2000 for an overview and the Hybrid-Reactive 
Paradigm], and task-specific goals and control). This definition implies that all of these 
characteristics of autonomy are important to consider; however, the weighting of each might vary 
between applications. Note that both the generally accepted and stronger definition begin with the 
phrase, “the extent to which…” This word choice exemplifies that autonomy is not all or nothing. 
Autonomy exists on a continuum ranging from no autonomy to full autonomy. Finally, notice the 
addition of the terminology “task-specific.” As discussed later in this framework, defining the 
robot’s autonomy level cannot be considered outside of task-specific context. 

3.1 Autonomy in Automation 

We first reviewed the human-automation literature to guide our framework of autonomy in HRI. 
Human-automation researchers have a history of studying and understanding human-related 
variables, which can be informative for the HRI community. Automation is most often defined as 
“device or systems that accomplishes (partially or fully) a function that was previously, or 
conceivably could be, carried out (partially or fully) by a human operator” (Parasuraman, 
Sheridan, & Wickens, 2000, p. 287). Various taxonomies, classification systems, and models 
related to levels of automation (LOA) have been proposed. The earliest categorization scheme, 
which organized automation along both degree and scale, was proposed by Sheridan and Verplank 
(1978). This 10-point scale categorized higher LOA as representing increased autonomy and lower 
levels as decreased autonomy (see Table 2). This taxonomy specified what information is 
communicated to the human (feedback) as well as allocation of function split between the human 
and automation. However, the scale used in this early taxonomy was limited to a specified a set of 
discernible points along the continuum of automation applied primarily to the output functions of 
decision-making and action selection. It lacked detailed specification of input functions related to 
information acquisition (i.e., sensing). 

Endsley and Kaber (1999) proposed a revised taxonomy with greater specificity on input 
functions, such as how the automation acquires information and formulates options (see Table 3). 
The Ensley and Kaber model was used to describe each of the automation levels. The taxonomy 
was organized according to four generic functions, which include: (1) monitoring—scanning 
displays; (2) generating—formulating options or strategies to meet goals; (3) selecting—deciding 
upon an option or strategy; and (4) implementing—acting out a chosen option. 
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Table 2. Levels of Decision Making Automation (Sheridan & Verplank, 1978) 
Level of 
Automation Description  

1. The computer offers no assistance; the human must make all decisions and actions 
2. The computer offers no assistance; the human must make all decisions and actions 
3. The computer offers a complete set of decision/action alternatives, or 
4. Narrows the selection down to a few, or 
5. Suggests one alternative 
6. Executes that suggestion if the human operator approves, or 
7. Allows the human a restricted time to veto before automatic execution, or 
8. Executes automatically, then necessarily informs the human, and 
9. Informs the human only if asked, or 
10. Informs the human only if it, the computer, decides to 

 
 

Table 3. Levels of Automation (Endsley & Kaber, 1999) 
Level of Automation Description 

1. Manual Control: The human monitors, generates options, selects options (makes 
decisions), and physically carries out options. 
 

2. Action Support: The automation assists the human with execution of selected action. 
The human does perform some control actions. 
 

3. Batch Processing: The human generates and selects options; then they are turned over to 
automation to be carried out (e.g., cruise control in automobiles). 
 

4. Shared Control: Both the human and the automation generate possible decision 
options. The human has control of selecting which options to 
implement; however, carrying out the options is a shared task. 
 

5. Decision Support: The automation generates decision options that the human can select. 
Once an option is selected, the automation implements it. 
 

6. Blended Decision 
Making: 

The automation generates an option, selects it, and executes it if the 
human consents. The human may approve of the option selected by 
the automation, select another, or generate another option. 
 

7. Rigid System: The automation provides a set of options and the human has to select 
one of them. Once selected, the automation carries out the function. 
 

8. Automated Decision 
Making: 

The automation selects and carries out an option. The human can 
have input in the alternatives generated by the automation. 
 

9. Supervisory Control: The automation generates options, selects, and carries out a desired 
option. The human monitors the system and intervenes if needed (in 
which case the level of automation becomes Decision Support).  
 

10. Full Automation: The system carries out all actions.  
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Around the same time Endsley and Kaber proposed their taxonomy, Parasuraman, Sheridan, 
and Wickens (2000) proposed their conceptual model for types and LOA. Similar to Endsley and 
Kaber (1999), Parasuraman et al. suggested that functions can be automated to differing degrees 
along a continuum of low to high (i.e., fully manual to fully automated), and stages of automation 
represent input and output functions. The stages included: (1) information acquisition; (2) 
information analysis; (3) decision and action selection; and (4) action implementation (Figure 1). 

 
 
Figure 1. Flow chart showing application of the model of types and levels of automation (adapted 
with permission from Parasurman, Sheridan, & Wickens, 2000). 
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Automation categorized under the information acquisition stage supports processes related to 
sensing and registering input data. This stage of automation supports human sensory and 
perceptual processes, such as assisting humans with monitoring environmental factors. 
Automation in this stage may include systems that scan and observe the environment (e.g., radar, 
infrared goggles). At higher levels of information acquisition, automation may organize sensory 
information (e.g., an automated air traffic control system that prioritizes aircraft for handling). The 
information analysis stage refers to automation that performs tasks similar to human cognitive 
function, such as working memory. Automation in this stage may provide predictions, integration 
of multiple input values, or summarization of data to the user. Automation in the information 
analysis stage is different from automation in the information acquisition phase, in that the 
information is manipulated and assessed in some way. 

Automation included in the decision selection stage selects from decision alternatives. For 
example, automation in this stage may provide navigational routes for aircraft to avoid inclement 
weather or recommend diagnoses for medical doctors. Finally, action implementation automation 
refers to automation that executes the chosen action. In this stage, automation may complete all, or 
subparts, of a task. For example, action automation may include an automatic stapler in a 
photocopy machine or an autopilot function in an aircraft. 

Unlike Endsley and Kaber (1999), Parasuraman, Sheridan, and Wickens (2000) identified 
primary and secondary evaluative criteria, as depicted at the bottom of the model (Fig. 1). In other 
words, the purpose of Parasuraman and colleagues’ model was to provide an objective basis for 
making the choice on to what extent a task should be automated. The authors proposed an 
evaluation of the consequences of both the human operator and the automation. For example, 
consider decision aid automation at a low level of automation. This automation would be 
evaluated via the primary evaluative criteria (e.g., human performance, such as workload, situation 
awareness), and then the level of automation is adjusted (e.g., higher LOA of the decision aid 
automation would reduce the workload). Next, secondary criteria are evaluated (e.g., automation 
reliability, cost of decision/action outcomes), and again, the level of automation is adjusted (e.g., if 
the LOA is above a certain level, then reliability decreases). This iterative method provides a 
process for determining appropriate levels or ranges of automation to identify potential design 
issues. 

3.2 Benefits and Limitations of Applying Automation Autonomy Models to Human-Robot 
Interaction 

Next we consider how autonomy has been conceptualized in HRI and why a new model is needed. 
Why not directly apply the automation models and taxonomies (Endsley & Kaber, 1999; 
Parasuraman, Sheridan, & Wickens, 2000; Sheridan & Verplank, 1978) to robotics? The answer is 
that these models can inform HRI but only to a certain point. Each model provides an 
organizational framework in which to categorize not only the purpose or function of the 
automation (e.g., stages), but also considers automation along a continuum of autonomy. These 
models are important to consider within the context of both robotics and HRI, because they can 
serve as a springboard for development of similar taxonomies and models specific to robot 
autonomy. In particular, Sheridan and Verplank’s taxonomy (Table 2) has been suggested as 
appropriate to potentially describe a robot’s level of autonomy (Goodrich & Schultz, 2007). 

However, considering differences between automation and robotics is important. Capabilities 
such as mobility, environmental manipulation, and social interaction separate robots from 
automation in both function and physical form. The goal here is not to redefine robot or 
automation, rather simply to depict that robots are a technology class of their own, separate but 
related to automation. Robots may serve different functions relative to traditional automation; for 
example, some (but certainly not all) robots may play a social role. Social ability is not a construct 
considered in the LOA models and taxonomies. A complementary way to think about how these 
taxonomies could relate to HRI is to consider the degree to which the human and robot interact 
and to what extent each can act autonomously. The next sections address how autonomy has been 
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applied to HRI and how autonomy’s conceptualization in HRI is similar or different from human-
automation interaction. 

3.3 Autonomy in Human-Robot Interaction 

Autonomy within an HRI context is a widely considered construct; however, ideas surrounding 
how autonomy influences human-robot interaction are varied. There are two schools of thought 
with which autonomy and HRI have been conceptualized: (1) higher robot autonomy requires less 
frequent HRI; and (2) higher robot autonomy requires higher levels of HRI. 

The first viewpoint, that higher autonomy requires less HRI, has been supported by Huang 
and colleagues (Huang et al., 2004; Huang, Pavek, Albus, & Messina, 2005; Huang, Pavek, 
Novak, Albus & Messina, 2005; Huang et al., 2007). Their goal was to develop a framework for 
autonomy and metrics used to measure robot autonomy. Although this framework is used 
primarily within military applications, the general framework has been cited more generally as a 
basis for HRI autonomy (Yanco & Drury, 2004). 

In the Huang framework, the relationship between the level of HRI and the autonomy level of 
the robot “…is fairly linear for simple systems” (Huang et al., 2004, p. 5). They proposed a 
negative linear correlation between autonomy and frequency of HRI, so that as the level of robot 
autonomy (LORA) increases, the HRI frequency decreases (see Fig. 2). Their model included 
constructs such as human intervention (number of unplanned interactions), operator workload (as 
measured by NASA TLX), operator skill level, and the operator-to-robot ratio. 

 

 
Figure 2. Autonomy Levels for Unmanned Systems (ALFUS) model of autonomy, depicting level 
of HRI along the autonomy continuum (adapted with permission from Huang, Pavek, Albus, & 
Messina, 2005). Note: Unmanned System (UMS). 

 
Other researchers have also proposed that higher robot autonomy requires less interaction 

(Yanco & Drury, 2004). Autonomy has been described as the amount of time that a person can 
neglect the robot, and neglect time refers to the measure of how the robot’s task effectiveness 
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(performance) declines over time when the robot is neglected by the user (Goodrich & Olsen, 
2003). Robots with higher autonomy levels can be neglected for a longer time periods. 
“There is a continuum of robot control ranging from teleoperation to full autonomy: the level of 
human-robot interaction measured by the amount of intervention required varies along this 
continuum. Constant interaction is required at the teleoperation level, where a person is remotely 
controlling the robot. Less interaction is required as the robot has greater autonomy” [emphasis 
added] (Yanco & Drury, 2004, p. 2845). 

The idea that higher autonomy reduces the frequency of interaction is a stark contrast to the 
other school of thought in which HRI researchers have proposed that more robot autonomy 
enables more sophisticated interaction (e.g., Thrun, 2004; Feil-Seifer, Skinner, & Mataric, 2007; 
Goodrich & Schultz, 2007). Thrun’s (2004) framework of HRI defined categories of robots, and 
each category required a different level of autonomy as dictated by the robot’s operational 
environment. Professional service robots (e.g., museum tour guides, search and rescue robots) and 
personal service robots (e.g., robotic walkers) mandate higher degrees of autonomy because they 
operate in a variable environment and interact in close proximity to people. Thrun declared, 
"human-robot interaction cannot be studied without consideration of a robot's degree of autonomy, 
because it is a determining factor with regards to the tasks a robot can perform and the level at 
which the interaction takes place" [emphasis added] (2004, p. 14). 

Furthermore, autonomy has been proposed as a benchmark for developing social interaction 
in socially assistive robotics (Feil-Seifer, Skinner, & Mataric, 2007). Here, autonomy serves two 
functions: (1) to perform well in a desired task and (2) to be proactively social. However, Feil-
Seifer et al. warned that the robot’s autonomy should allow for social interaction only when 
appropriate (i.e., only when social interaction enhances performance). Developing autonomous 
robots that engage in peer-to-peer collaboration with humans may be harder to achieve than high 
levels of autonomy with no social interaction (e.g., iRobot Roomba; Goodrich & Schultz, 2007). 

Indeed, an important distinction between the two conceptualizations of autonomy is the role 
of the robot and the human in the interaction (Johnson, et al., 2010; Murphy & Schreckenghost, 
2013; Scholtz, 2002a; Scholtz, 2002b). Consider the use of two terms that define the human’s role 
in relation to robot autonomy: intervention and interaction. Conceivably, intervention could be 
interpreted as a specific type of interaction (as suggested in Huang et al., 2004), referring to the 
frequency of human control. However, having a robot act autonomously with no intervention 
mirrors the human out of the loop phenomenon in automation, which is known to cause 
performance problems (e.g., Endsley, 2006; Endsley & Kiris, 1995). One might also consider the 
frequency of intervention more applicable when the human’s role is to operate the robot (e.g., 
teleoperation or monitoring). On the other hand, the sophistication of the interaction might be 
more applicable when the human’s role is that of a bystander or peer (e.g., social partner, 
coworker, or supervisor). In sum, it is important to simultaneously consider both intervention and 
interaction when determining a robot’s level of autonomy by asking how much and what level of 
interaction is required. 

In summary, a framework of autonomy in HRI is needed. As this literature review revealed, 
autonomy is an important construct related to automation and HRI, albeit the term has been 
conceptualized differently between and within these two fields. We moved toward developing the 
building blocks for a framework of robot autonomy—a framework that is influenced by the 
automation models (Endsley & Kaber, 1999; Parasuraman, Sheridan, & Wickens, 2000; Sheridan 
& Verplank, 1978) while also taking into consideration the unique aspects of robot autonomy 
(Feil-Seifer, Skinner, & Mataric, 2007; Goodrich & Olsen, 2003; Goodrich & Schultz, 2007; 
Huang, Pavek, Albus, & Messina, 2005; Thrun, 2004; Yanco & Drury, 2004) that may be different 
from automation. 

The integration of previous work will move the field toward a more cohesive definition and 
conceptualization of autonomy. In the next sections, the framework guidelines are proposed to 
inform designers and researchers to consider what level of autonomy is appropriate for their robot 
and the impact of autonomy on HRI. HRI-specific guidelines were lacking in previous work, and 
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we will move toward framing autonomy in a way that is more easily understood, more easily 
applied to defining autonomy of robots, and HRI-specific. 

 

4. Toward a Framework of Levels of Robot Autonomy (LORA) in Human-
Robot Interaction 

We provide a framework for examining LORA in relation to HRI. This framework is highly 
influenced by the taxonomies and models of LOA (Endsley & Kaber, 1999; Parasuraman, 
Sheridan, & Wickens, 2000). However, we have proposed several key changes and additions to 
the way in which autonomy should be conceptualized for HRI. First, we highlight the importance 
of autonomy to be determined within the context of task and environment. This is highlighted 
because robots are situated in, and typically physically manipulate, their environment. Second, we 
propose a taxonomy for categorizing robot autonomy, which can be seen as lying along a 
continuum. This taxonomy is, in part, adapted from Endsley and Kaber (1999) with differences in 
terminology and some definitions. These differences are important because this taxonomy is 
meant to be HRI-specific (e.g., “teleoperation” instead of “action support”). Third, different from 
the Parasuraman et al. (2000) model, we highlight specific HRI variables that are likely to be 
influenced by robot autonomy. Some variables differ from automation frameworks, such as the 
addition of social constructs. Fourth, we rethink the notion of function allocation (as rigidly 
depicted in Sheridan and Verplank, 1978), recognizing that sliding, fluid, or changing autonomy is 
likely to occur with semi-autonomous robots. We stress that a robot’s autonomy may fluctuate; 
thus the autonomy level, as categorized in the taxonomy, may change depending on the 
environment, task, and interaction over time. This point is highlighted in the thought experiments 
presented at the end of the framework. 

This framework includes guidelines that a designer or researcher may use when considering 
autonomy in HRI (Figure 3). Guidelines 1-3 serve to determine robot autonomy. Guideline 4 
categorizes robot autonomy via a taxonomy. Finally, Guideline 5 broadly suggests the 
implications of the robot autonomy on HRI (i.e., human variables, robot variables, and interaction 
variables). The next sections describe each of these guidelines in more detail. 
 

 
Figure 3. Organizational flow chart to determine robot autonomy and effects on HRI. 

 

4.1 Determining Robot Autonomy (Guidelines 1–3) 

Guidelines 1–3 are meant to provide suggested steps for determining and measuring robot 
autonomy. Specifically, the proposed guidelines in this section focus on HRI, with an emphasis on 
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function allocation between a robot and a human. Consideration of the task and environment is 
particularly important for robotics, because robots are embodied, that is, they are situated within 
an environment and usually expected to perform tasks by physically manipulating that 
environment. A robot’s capability to sense, plan, and act within its environment is what 
determines its autonomy. Therefore, in this framework, the first determining question to ask is, 
“What task is the robot to perform?” 

The robot designer should not ask, “Is this robot autonomous?”; rather, the important 
consideration is, “Can this robot complete the given task at some level of autonomy?” For 
instance, the iRobot Roomba is capable of navigating and vacuuming floors autonomously. 
However, if the task of vacuuming is broadened to consider other subtasks (i.e., picking up objects 
from the floor, cleaning filters, emptying dirt bins or bags), then the Roomba may be considered 
semi-autonomous because it only completes a portion of those subtasks. Likewise, if the 
environment is changed (e.g., vacuuming stairs opposed to flat surfaces), then the Roomba’s 
autonomy could be categorized differently, since it is currently incapable of vacuuming stairs. 
Therefore, specifying the context of the task and environment is critical for determining the task-
specific LORA. 

Secondly, specifying demands, such as task criticality, accountability, organizational 
structure, and environmental complexity, should guide a designer in demining autonomy. Task 
characteristics and consequences of error have been shown to be influenced by automation level 
(Carlson, Murphy, & Nelson, 2004). In many cases, failures or errors at early stages of automation 
are not as critical as errors at later stages of automation. One rationale is that it may be risky to 
program a machine to have high autonomy in a task that requires decision support, particularly if 
the decision outcome involves lethality or other human safety concerns (Parasuraman, Sheridan, & 
Wickens, 2000; Parasuraman & Wickens, 2008). For example, unreliability in a robot that 
autonomously navigates in an office environment may result in either false alarms or misses of 
obstacles. In this example, the criticality of errors is substantially less than errors conducted by a 
robot that autonomously navigates in a search and rescue task (Casper & Murphy, 2003; Lewis et 
al., 2010). Here, navigational errors could be detrimental due to risk of causing secondary 
collapses in unstable structures. Another example is a robot that determines what medication a 
patient should take. In these two examples, robot failure may result in critical, if not lethal, 
consequences. 

Accountability for successful task completion is of consideration, particularly as robots and 
humans work as teams. As robots become more autonomous and are perceived as peers or 
teammates, it is possible that the distribution of responsibility may be perceived to be split 
between the robot and the human. Robot autonomy has been shown to play a role in participants’ 
accountability of tasks errors. When a robot is perceived as more autonomous, participants 
reported less self-blame (accountability) for task errors (Kim & Hinds, 2006); thus, responsibility 
of consequences may be misplaced and the human operator may feel less accountable for errors. In 
fact, healthcare professionals have reported concern for who (the professional or a medical robot) 
may be accountable for medical errors (Tiwari, Warren, Day, & MacDonald, 2009). Therefore, 
care should be taken in determining which tasks a robot will perform, as well as in designing the 
system so that human supervisors are held accountable and can easily diagnose and alleviate 
consequences of error. 

Furthermore, the nature of the environment should be considered. In an ethnographic study, 
an autonomous robot was placed in a workplace environment; how the robot was used impacted 
the social workflow and other organizational factors tied to the environment (Mutlu & Forlizzi, 
2008). Service robots designed for assistive functions (e.g., home, workplace, or healthcare 
applications), surveillance, or first responders (e.g., search and rescue) will be required to operate 
in unknown, unstructured, and dynamic environments, which will certainly influence the 
functional requirements of the robot. The robot’s capability to operate in a dynamic environment 
is highly dependent on environmental factors (e.g., lighting, reflectivity of surfaces, glare) that 
influence the robot’s sensors to perceive the world around it. Higher LORA may be required for a 
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service robot to function in dynamic, ever-changing environments (Thrun, 2004). However, not all 
aspects of the environment can be anticipated; thus, for many complex tasks, the presence of a 
human supervisor may be required (Desai, Stubbs, Steinfeld, & Yanco, 2009). 

Once the task and environmental demands are determined, the next question is, “What aspects 
of the task should the robot perform?” Each task, no matter how simple or complex, can be 
divided into primitives: sense, plan, and act (Murphy, 2000; Rosen & Nilsson, 1966). Consider 
robots equipped with assisted teleoperation features (e.g., Takayama et al., 2011): A teleoperated 
robot demonstrates low levels of autonomy by assisting the human operator in obstacle avoidance. 
Usually, this feature is programmed into the robot architecture using behavior-based sense-act 
couplings (e.g., behavior-based robotics; Arkin, 1998), where the robot is assisting with the 
aspects of the task by detecting obstacles (sense), then adjusting its behavior to avoid collision 
(act). The human remains, in large part, in charge of path planning and navigational goals (plan). 
However, a robot that navigates semi-autonomously (e.g., Few et al., 2008) may require a human 
to specify the high-level goal of navigating to a specified location. Once the high-level goal is 
given, the robot can then autonomously navigate to that location. Here, the robot demonstrates a 
high level of autonomy in sensing the environment (sense), a relatively high level of autonomy in 
the plan primitive (except for the human provided the high-level goal), and a high level of 
autonomy in physically implementing objectives toward the goal (act). 

As these examples suggest, autonomy can vary along any of the sense, plan, and act 
primitives (Murphy, 2000; Rosen & Nilsson, 1966), which relates to the next determining 
question, “To what extent can the robot perform these aspects of the task?” Each of the sense, 
plan, and act primitives could be allocated to either the human or the robot (or both). Similar to the 
Parasuraman, Sheridan, and Wickens’ (2000) stages of automation, a robot can vary in autonomy 
level (from low to high) along the three primitives (see Figure 4). 
 

 
Figure 4. Levels of autonomy across the robot primitives sense, plan, and act. Two examples are 
given: assisted teleoperation (dotted line) and semi-autonomous navigation (solid line). Model 
modified from Parasuraman, Sheridan, and Wickens, 2000. 
 

As depicted in Figure 4, the level of autonomy may vary from low to high for each of the 
robot primitives. Allocation along the three primitives does not imply that autonomy should be 
thought of as an additive model that would collapse these different amounts of autonomy into one 
scale. Instead, this depiction (Fig. 4) represents the fact that a robot might vary in capability along 
different aspects of the task. Determining the robot’s autonomy prompts the need for a descriptive 
clarification of how to measure the extent or degree to which a robot can perform each task aspect 
(sense, plan, or act). Levels of autonomy are most often identified by function allocation in the 
automation literature. For example, in the Endsley and Kaber (1999) model, the level of 
automation is specified through a taxonomy that is based on the allocation of function to either the 
human or the automation. 

In HRI, function allocation has been commonly measured by amount of human intervention 
(Yanco & Drury, 2004). Specifically, human intervention is measured by the percentage of time a 
task is completed on its own, and intervention is measured by the percentage of time the human 
must control the robot. The two measures, autonomy and intervention, must sum to 100 percent. 
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For example, a teleoperated robot has 0 percent autonomy and 100 percent intervention. A fully 
autonomous robot has 100 percent autonomy and 0 percent intervention. Between these two 
anchor points lies a continuum of shared control. For example, a medication management robot 
may select a medication and handoff the medication to a human, but the human might be 
responsible for high-level directional (navigation) commands. Here, the robot has 75 percent 
autonomy and 25 percent intervention. Similarly, autonomy has been measured as human neglect 
time (Olsen & Goodrich, 2003). In this metric, autonomy is measured by the amount of time that 
the robot makes progress toward a goal before dropping below an effective reliability threshold or 
requiring user instruction. 

Although this idea of measuring the time of intervention and neglect is useful, it has 
limitations. Amount of time between human interventions may vary as a result of other factors, 
such as inappropriate levels of trust (i.e., misuse and disuse), social interaction, task complexity, 
robot capability (e.g., robot speed of movement), usability of the interface or other control method, 
and response time of the user. Therefore, if interaction time is used as a quantitative measure, care 
should be taken when generalizing findings to other robot systems or tasks. Furthermore, the 
notion of function allocation may be difficult to conceptualize for semi-autonomous robots. Semi-
autonomous states may include a fusion of human and robot control, where control might be fluid 
or “sliding” from one autonomy level to another. Thus, in categorizing a robot along a continuum, 
one should be mindful that the level of autonomy could change—in which case, the robot’s 
autonomy would be better described as a range of levels, rather than as a discrete level. 

We propose a supplemental metric be used, such as a qualitative measure of intervention level 
(i.e., subjective rating of the human intervention) or a general quantitative measure focused on 
subtask completion, in addition to time (i.e., number of subtasks completed by robot divided by 
the number of total subtasks required to meet a goal). Each metric has tradeoffs but could provide 
some general comparative indication of the robot’s degree of autonomy. 

As we discussed earlier, intervention and interaction are not necessarily interchangeable 
terms. Intervention is a type of interaction specific to task-sharing where the human performs 
some aspect of the task. Interaction may include other factors not necessarily specific to the 
intervention of task completion, such as verbal communication, gestures, or emotional expression. 
Some autonomous service robots could work in isolation, requiring little interaction of any kind 
(e.g., an autonomous pool cleaning robot); whereas other robots working autonomously in a social 
setting may require a high level of interaction (e.g., an autonomous robot serving drinks at a social 
event). Finally, the measure of autonomy is specifically applicable to service robots that perform 
tasks. Neglect time may not be an appropriate measure of autonomy for robots designed for 
entertainment, for example. Other types or classes of robots may require different evaluative 
criteria for determining autonomy, which will require extensions of the present framework. 

4.2 Categorizing Autonomy: A Taxonomy of Levels of Robot Autonomy for HRI (Guideline 4) 

The purpose of the next guideline is to categorize the robot’s autonomy using the proposed 
taxonomy (Table 4). Under-specification of intermediate autonomy levels is a limitation in 
previous HRI frameworks (e.g., Huang, Pavek, Albus, & Messina, 2005; Yanco & Drury, 2004). 
For example, if autonomy is measured as a precise level between 0 and 100 percent, what is the 
difference between 52 percent and 54 percent? Autonomy may be considered along a continuum 
(e.g., 0–100), but actually conceptualizing specific degrees of autonomy is difficult. In this 
context, we believe it is valuable to apply conceptual descriptions of categories for different levels 
of autonomy. In Table 4, we propose a taxonomy influenced, in part, by Ensley and Kaber (1999), 
in which the robot autonomy can be categorized into conceptual descriptions of “levels of robot 
autonomy” (LORA). 
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Table 4. Proposed Taxonomy of Levels of Robot Autonomy for HRI 
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The taxonomy has a basis in HRI by specifying each LORA from the perspective of the 
interaction between the human and robot and the roles that they each play. That is, for each 
proposed LORA, we (1) suggest function allocation between robot and human for each of the 
sense, plan, and act primitives (see Fig. 4; Murphy, 2000; Rosen & Nilsson, 1966); (2) provide a 
proposed description of each LORA; and (3) illustrate with examples of service robots from the 
HRI literature that provide an approximate representation of the categorical description. Table 4 
includes a mix of empirical studies involving robots and simulations, as well as published robot 
autonomy architectures. 

It is important to note that autonomy is a continuum, thus there are blurred borders between 
the proposed categories. Moreover, the taxonomy represents a range of feasible categories of robot 
autonomy. There may be other combinations of sense, plan, and act that are not included in this 
taxonomy. These alternate combinations are certainly not ruled out but rather excluded here, 
because they are technically or practically uncommon or unlikely. Furthermore, there are some 
robots that perform a subset of these primitives (e.g., sense and act only). Thus, levels should not 
be treated as exact descriptors of a robot’s autonomy but rather as an approximation of a robot’s 
autonomy level along the continuum. The taxonomy is not meant to be a complete or exhaustive 
set of categories, rather we are proposing an example set of categories which could be seen as 
lying along the autonomy continuum. They are qualitative, not quantitative, because they are 
descriptive; therefore, the taxonomy levels are not necessarily representative of a scale but rather 
suggestive of a possible ordering of categories. 

Lastly, we recognize that due to the complex nature of HRI, it is likely a robot’s autonomy 
level may fluctuate or change throughout an interaction within any given environment, task, or 
interaction. Thus, to consider sliding autonomy, there is a constant need to reconsider autonomy 
level categorization throughout duration of use. 
4.3 The Influence of Autonomy on HRI (Guideline 5) 

The last guideline of the framework was to evaluate the influence of the robot’s autonomy on HRI. 
Research on automation and HRI provides insights for identifying variables influenced by robot 
autonomy. The framework includes variables related to the human and to the robot (Beer, Fisk, 
and Rogers, 2012). This listing is not exhaustive. Many other variables (e.g., safety, control 
methods, robot appearance, perceived usefulness) might also influence, and be influenced by, 
robot autonomy and in need of further investigation. Our proposed framework provides evaluation 
criteria to examine the interaction between autonomy and HRI-related variables and determine if 
the robot’s autonomy level is appropriate for supporting optimal human-robot interaction. 

4.3.1 Robot-related variables  

The robot’s intelligence and learning capabilities are important to consider along the autonomy 
continuum because both of these variables influence what and how the robot performs. Not all 
robots are intelligent, but robots that demonstrate higher levels of autonomy for complex tasks 
may require higher intelligence. According to Bekey (2005), robot intelligence may manifest as 
sensor processing, reflex behavior, special purpose programming, or cognitive functioning. 
Generally speaking, the more autonomous a robot is, the more sophisticated these components 
may be. In the future, it is expected that most autonomous robots will be equipped with some 
ability to learn. This will be especially true as robots are moved from the laboratory to an 
operational environment, where the robot will have to react and adjust to unpredictable and 
dynamic environmental factors (Bekey, 2005; Russell & Norvig, 2003; Thrun, 2003). 

As robots move from the laboratory to more dynamic environments (e.g., the home, hospital 
setting, workplace), reliability is generally expected to be less than perfect because of constraints 
in designing algorithms to account for every possible scenario (Parasuraman & Riley, 1997). 
Reliability should be measured against a threshold of acceptable error but how best to determine 
the appropriate threshold? Addressing this question proves to be a balancing act between 
designing with the assumption that the machine will sometimes fail and consideration for how 
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such failures will affect human performance. In automation, degraded reliability at higher levels of 
autonomy resulted in an “out of the loop” operator (Endsley, 2006; Olsen & Goodrich, 2003), 
where the operator may be unable to diagnose the problem and intervene in a timely manner (i.e., 
extended time to recovery; Endsley & Kaber, 1999; Endsley & Kiris, 1995). To reduce “out of the 
loop” issues and contribute to the user’s recognition of the robot’s autonomy level, developers 
should design the robot to allow the user to understand what the robot is doing. Automated tasks 
where an operator can form a mental model are referred to as transparent. Increased autonomy was 
reported as a problem due to lack of transparency in a remote rover field study (Stubbs, Hinds, & 
Wettergreen, 2007). A robot that provides adequate feedback about its operation may achieve 
transparency. However, much consideration is needed in determining how much, when, and what 
type of feedback is most beneficial for a given task and robot autonomy level. 

4.3.2 Human-related variables 

Situation awareness (SA) and mental workload have a long history in the automation literature. 
These concepts are inherently intertwined (see, Tsang & Vidulich, 2006) and empirical evidence 
suggests that both influence human performance changes as a function of LOA. SA is “the 
perception of the elements in the environment within a volume of time and space, the 
comprehension of their meaning, and the projection of their status in the near future” (Endsley, 
1995, p. 36). Mental workload is “the relation between the function relating the mental resources 
demanded by a task and those resources available to be supplied by the human operator” 
(Parasuraman, Sheridan, & Wickens, 2008, pp. 145-146). An imbalance between SA and 
workload can lead to performance errors. The relationship between workload, SA, and LOA is 
complex but generally negative: as LOA increases workload decreases and vice versa. However, 
low workload during high LOA may lead to boredom (Endsley & Kiris, 1995), particularly in 
monitoring tasks (e.g., air traffic control). On the other end of the spectrum, high workload during 
low LOA generally leads to low operator SA and decreased performance (Endsley & Kaber, 1999; 
Endsley & Kiris, 1995). 

The rich empirical background of SA and workload in the automation literature can inform 
robotics. Although the automated systems evaluated have been primarily studied in the context of 
air traffic control and aviation, similar human-machine interactions may be expected in HRI. In 
fact, much of the work involving SA and robotics has been conducted in similarly dynamic service 
environments and tasks (e.g., Kaber, Onal, & Endsley, 2000; Kaber, Wright, & Sheik-Nainar, 
2006; Riley & Endsley, 2004; Scholtz, Antonishek, & Young, 2004; Sellner, Heger, Hiatt, 
Simmons, & Singh, 2006). SA at low levels of autonomy may primarily focus on where the robot 
is located, what obstacles lay ahead, or deciphering the sensor data the robot produces. As a robot 
approaches higher autonomy levels, it may be perceived as a teammate or peer (Goodrich & 
Schultz, 2007; Milgram, Rastogi, & Grodski, 1995). SA associated with a robot peer may more 
closely resemble that of shared SA, where the human must know the robot’s status, and likewise, 
the robot must know the human’s status to the degree that they impact each other’s tasks and 
goals. Design principles for supporting SA in team operations (Endsley, Bolte, & Jones, 2003; 
Gorman, Cook, & Winner, 2006) may be applied to human-robot teams and need to be empirically 
tested. 

Other human-related variables, such as trust and acceptance, have been increasingly studied 
within the context of HRI (Desai, Kaniarasu, Medvedev, Steinfeld, & Yanco, 2013; Desai et al., 
2012). A number of models and theories related to trust in automation (Cohen, Parasuraman, & 
Freeman, 1998; Dzindolet et al., 2003; Lee & See, 2004; Madhavan & Wiegmann, 2007) and 
preliminary frameworks of trust in HRI have been proposed (Desai, Stubbs, Steinfeld, & Yanco, 
2009; Hancock, Billings, & Schaefer, 2011). These models suggest that trust, in conjunction with 
many other factors, can predict robot use. It is important to consider how the nature of trust may 
vary along the autonomy continuum. For example, trust in a teleoperated system (e.g., the sensors 
are reliable, the feedback is accurate, the robot will respond to controls) might be very different 
from trust in a more autonomous system (e.g., when the robot is fulfills a teammate role). 
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Although the frameworks of trust in HRI have borrowed from the automation literature, there 
are some important differences to consider that are in need of empirical evaluation. First, 
automation generally lacks physical embodiment (i.e., many automated systems are primarily 
software-based). Many robots are physically mobile, look or behave like humans or animals, and 
physically interact with the world. Physical robot characteristics (e.g., size, weight, speed of 
motion) and their effects on trust need to be empirically evaluated. Second, unlike most automated 
systems, some service robots are designed to be perceived as teammates or peers with social 
capabilities, rather than as tools (e.g., Breazeal, 2005; Groom & Nass, 2007). Understanding how 
to develop trust in robots is an avenue of research critical for designing robots meant to be 
perceived as social partners. 

As robots become increasingly advanced and perform complex tasks, the robot’s autonomy 
will be required to adjust or adapt between levels. In general, robotic and automated systems that 
operate under changing levels of autonomy (e.g., switching between intermediate levels) are not 
addressed in the trust literature. Many avenues of research need to be pursued to better understand 
the role of trust in HRI, how trust in robots is developed, and how misuse and disuse of robots can 
be mitigated. 

Acceptance is also an important human-related variable to consider with regard to predicting 
technology use (Davis, 1989), as well as HRI outcomes (Broadbent, Stafford, & MacDonald, 
2009; Young, Hawkins, Sharlin, & Igarashi, 2009). Designers should be mindful that radical 
technologies such as personal robots are not as readily accepted as incremental innovations 
(Dewar & Dutton, 1996; Green, Gavin, & Aiman-Smith, 1995). Despite the research community’s 
acknowledgement that acceptance is an important construct, further investigation is needed to 
understand and model variables that influence robot acceptance, how such variables interact, and 
finally, how predictive value varies over the autonomy continuum. 

4.3.3 Social-related variables 

Not all service robots are social. However, for those robots that are, designers should consider 
how social interaction relate to autonomy. Robots are one of the few technologies in which design 
has been modeled in part by science-fiction portrayals of autonomous systems (Brooks, 2002). 
Even though most individuals of the general population have never interacted with a robot 
directly, most people have ideas or definitions of what a robot should be like (Ezer, Fisk, & 
Rogers, 2009; Khan, 1998). If users have preconceived notions of how robots should socially 
behave, then it becomes all the more important to understand how to match user expectations with 
the robot’s actual autonomy. According to Breazeal (2003), when designing robots, the emphasis 
should not be on whether people will develop a social model to understand robots. Instead, it is 
more important that the robot adhere to the social models that humans expect. What social models 
do people hold for robots? And do those social models change as a function of robot autonomy? 

The research community generally accepts that people treat technologies as social actors 
(Nass, Fogg, & Moon, 1996; Nass & Moon, 2000; Nass, Moon, Fogg, Reeves, 1995; Nass, Steuer, 
Henriksen, & Dryer, 1994), particularly occurring with humanoid robots (Breazeal, 2005). Social 
capability has been categorized into classes of social robots (Breazeal, 2003; Fong, Nourbakhsh, 
& Dautenhahn, 2003): socially evocative, social interface, socially receptive, sociable, socially 
situated, socially embedded, and socially intelligent. These classes can be considered as a 
continuum (from socially evocative, where the robot relies on human tendency to 
anthropomorphize, to socially intelligent, where the robot shows aspects of human-style social 
intelligence, based on models of human cognition and social competence). Social classes higher 
on this continuum require greater amounts of autonomy to support the complexity and 
effectiveness of the HRI. 

It is difficult to determine the most appropriate metric for measuring social effectiveness. A 
variety of metrics have been proposed (Steinfeld et al., 2006) and applied via interaction 
characteristics (e.g., interaction style or social context), persuasiveness (i.e., robot is used to 
change the behavior, feelings, or attitudes of humans), trust, engagement (sometimes measured as 
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duration), and compliance. Appropriate measures of social effectiveness may vary along the 
autonomy continuum. For instance, when a robot is teleoperated, definitive social interaction may 
not exist between the robot and human. In fact, the robot may be designed to facilitate social 
communication between people (i.e., the operator and a remotely located individual; Lee & 
Takayama, 2011; Tsui, Desai, Yanco, & Uhlik, 2011). In this case, “successful social interaction” 
may be assessed by the quality of remote presence (the feeling of the operator actually being 
present in the robot’s remote location). Proper measures of “social effectiveness” may be dictated 
by the quality of the system’s video and audio input/output, as well as communication capabilities, 
such as lag time or delay, jitter, or bandwidth (Steinfeld et al., 2006). Social interaction with 
intermediate or fully autonomous robots may be more appropriately assessed by the social 
characteristics of the robot itself (e.g., appearance, emotion, personality; Breazeal, 2003; Steinfeld 
et al., 2006). 
 

5. A Framework of Robot Autonomy 
A graphical representation of the framework, specifically the taxonomy and guidelines, is depicted 
in Figure 5. From top to bottom, the figure depicts the five guidelines. This framework is not 
meant to present a method. Rather, the framework should be treated as a suggested guide to 
determine autonomy, categorize the LORA using a taxonomy, and consider which HRI variables 
may be influenced by the LORA. These guidelines might be considered in the order presented; 
however, there are likely instances where the guidelines should be considered in a different order, 
or certain guidelines need to be reconsidered at different stages of the design cycle. 

To illustrate how this framework could be applied, we present two thought experiments. First, 
consider the design of service robots to assist with medication management for older adult users. 
The first consideration may be the task and environmental variables. In this example, task 
criticality (e.g., high—the correct medication must be chosen), environment complexity (e.g., 
medium—homes vary), and task accountability (e.g., uncertainty whether mistakes would be 
attributed to the robot or to the user) are all relevant variables. Next, subcomponents of the task 
may be considered. For example, a particular robot may reliably deliver medication but less 
reliably select a particular medication bottle (i.e., determine differences between bottles or make 
the decision of which medication is needed). Thus, the ideal robot autonomy might fall 
somewhere in the middle of the taxonomy. To further consider which mid-autonomy category 
might be ideal, the designer can compare the possible effects of autonomy on robot-, human-, and 
social-related variables. Older adults were accepting of a robot delivering medication but less 
accepting of a robot determining which medication should be taken (Prakash et al. 2013). Thus, 
based on the human-related variable of acceptance, only some aspects of the task might be 
autonomously performed by the robot, whereas others should not. A robot autonomy level such as 
“batch processing” or “decision support” (where the user makes the final decision) may be 
suggested because it is important, in this example, to leave the decision-making to the human. 
Interestingly, as older adult opinions may differ for future generations (e.g., from cohort to 
cohort), or as reliable robot decision-making improves, then the autonomy level could be 
reconsidered and adjusted. 

Now consider applying this framework to robot autonomy for a search and rescue operation. 
The first considerations are task and environment variables. Here, task criticality (high), and 
environmental complexity (high) pose challenges for a robot to reliably perform many aspects of 
the designated tasks. Thus, the initial recommendation may be to design the robot with low 
autonomy; a possible level would be “teleoperation.” However, evaluation of human-robot 
performance (Riley & Endsley, 2004) during robot teleoperation in search and rescue 
environments suggests that SA is a challenge (e.g., determining which direction is up or down and 
what might happen next). Thus, a reconsideration of the autonomy level could affect an 
adjustment to “assisted teleoperation,” whereby the robot could possibly provide some navigation 
cues, feedback, or override. A final consideration might be to design the robot so it has sliding 
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autonomy, whereby it might shift autonomy modes (e.g., between teleoperation and assisted 
teleoperation), depending on the task complexity and operator’s SA. 

 
 

 

 
Figure 5. This framework can serve as (1) a set of guidelines suggesting task and environmental 
influences on robot autonomy, (2) guidelines for determining or measuring autonomy, (3) a 
taxonomy for categorizing autonomy, and finally, (4) a set of HRI variables that may be 
influenced by robot autonomy. 
 

 
These thought experiments illustrate how the framework can serve as a guide to consider 

robot autonomy within the context of HRI. The advantage of categorizing a robot according to the 
taxonomy is to provide a meaningful and informative description of robot autonomy. Furthermore, 
consideration of how the robot’s autonomy may influence HRI variables can assist designers and 
researchers in choosing an autonomy level that is appropriate for the task and user group. As these 
thought experiments demonstrate, the various guidelines may be considered and reconsidered 
throughout the design or evaluation process, making this framework a fluid guide rather than 
absolute method. 
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6. Conclusions 
Levels of autonomy, ranging from teleoperation to fully autonomous systems, influence the nature 
of HRI. Our goal was to investigate robot autonomy within the context of HRI. We accomplished 
this by redefining the term autonomy, considering how the construct has been conceptualized 
within automation and HRI research. Our analysis led to the development of a framework for 
categorizing LORA and evaluating the effects of robot autonomy on HRI. 

The framework provides a guide for appropriate selection of robot autonomy. The 
implementation of a service robot supplements a task but also changes human activity by 
imposing new demands on the human. Thus, the framework has scientific importance, beyond its 
use as a tool for guiding function allocation. As such, the framework conceptualizes autonomy 
along a continuum and identifies HRI variables that need to be evaluated as a function of robot 
autonomy. These variables include acceptance, SA, trust, robot intelligence, reliability, 
transparency, methods of control, and social interaction.   

Many of the variables included in the framework require further research to better understand 
autonomy’s complex role within HRI. HRI is a young field with substantial, albeit exciting, gaps 
in our understanding. Therefore, the proposed framework does not index causal relationships 
between variables and concepts. As the field of HRI develops, empirical research can be causally 
mapped to theoretical concepts and theories. 

In summary, we have proposed a framework for LORA in HRI. Autonomy was defined 
within the context of HRI, and a taxonomy was proposed, not to provide exact descriptors of a 
robot’s autonomy but rather to provide approximations of a robot’s autonomy along a continuum. 
Additionally, guidelines were proposed to assist designers and researchers in identifying the 
appropriate LORA for any given task and potential influences on HRI. This framework is not 
meant to be used as a method, but as guidance for determining robot autonomy. A theme present 
in much of this investigation is that the role of autonomy in HRI is complex. Assigning a robot 
with an appropriate level of autonomy is important because a service robot changes human 
behavior. Implementing service robots has the potential to improve the quality of life for many 
people. At the same time, robot design will only be successful with consideration of how the 
robot’s autonomy impacts HRI. 
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