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Decays of Spinless Particles
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Abstract

If Lorentz and CPT violation exist, they could affect the decays of scalar and pseu-
doscalar particles. For a decay into a fermion and an antifermion (not necessarily of
the same mass), both the total decay rate and the outgoing particle distribution may be
modified, through interference between the conventional decay mechanism and a sepa-
rate Lorentz-violating mechanism. The modifications are sensitive to forms of Lorentz
violation that are otherwise rather difficult to study, since at tree level they do not affect
particle propagation, but only interaction vertices. Using existing experimental data on
charged pion decay, it is possible to constrain three parameters in the modified pion-
muon-neutrino coupling at better than the 10−9 level; these are the first bounds on these
quantities.
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1 Introduction

There is currently quite a bit of interest in the possibility that Lorentz and CPT symme-
tries might not be exact in nature. At this point, this is strictly a theoretical possibility.
No compelling evidence has been found that these symmetries do not hold exactly. How-
ever, if such a discovery were made, it would obviously be of the highest importance and
would provide concrete evidence for new physics with completely novel behavior.

Both the standard model and general relativity are invariant under Lorentz symmetry
and CPT, but deviations from these symmetries involving standard model quanta can be
described using the same kind of machinery of effective field theory that is used in the
description of the standard model itself. The general effective field theory that can be
used to describe such effects is called the standard model extension (SME). The SME
contains all possible translation-invariant but Lorentz-violating operators that could be
constructed out of known standard model fields. These operators break Lorentz symmetry
when they have residual tensor indices. In the Lagrangian, these indices are contracted
with tensor-valued coefficients, which describe preferred vectors and tensors [1, 2]. If
Lorentz symmetry is spontaneously broken, the preferred background tensors are related
to the vacuum expectation values of vector- and tensor-valued dynamical fields.

A particular restricted version of the SME has become the standard framework for
parameterizing experimental Lorentz and CPT tests. This is the minimal SME, which
contains only local, gauge-invariant, renormalizable operators. With these restrictions,
the minimal SME has only a finite number of undetermined parameters, and radiative
corrections are calculable; the theory is thus suitable for making orderly comparisons of
the results of different experiments. Important tests of spatial isotropy, boost invari-
ance, and CPT symmetries have included studies with matter-antimatter asymmetries
for trapped charged particles [3, 4, 5] and bound state systems [6, 7], measurements of
muon properties [8, 9], analyses of the behavior of spin-polarized matter [10], frequency
standard comparisons [11, 12, 13, 14], Michelson-Morley experiments with cryogenic res-
onators [15, 16, 17], measurements of neutral meson oscillations [18, 19, 20, 21, 22], po-
larization measurements on the light from cosmological sources [23, 24], high-energy as-
trophysical tests [25, 26, 27, 28], precision tests of gravity [29, 30], and others. The best
current constraints based on these experiments are collected in [31].

The quantum electrodynamics sectors of the SME has received the most attention,
both theoretically and experimentally. In contrast, the least studied sector is is the scalar
sector. Fundamental scalars have only recently been observed experimentally, but there
are also many composite pseudoscalar particles in the standard model. In addition to the
fundamental Higgs, spin-0 mesons may have Lorentz-violating interactions that could be
described using the minimal SME formalism. Lorentz-violating Yukawa-like interactions
are a particularly rich area; there are many possible interactions, some of which may
be quite challenging to constrain. This paper will look at the behavior of a particularly
natural process involving scalars—the production of a fermion-antifermion pair in scalar
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decay. This can have particular relevance in upcoming studies of Lorentz invariance in
the Higgs sector, since the Higgs should have an intense top quark decay mode. We shall
also look specifically at the decays of pseudoscalar mesons, and it will be possible to place
strong constraints on three pion SME coefficients which have never been studied before.

This paper is organized as follows. Section 2 introduces the minimal SME Lagrange
density that describes the scalar and spinor fields, as well as their Lorentz-violating inter-
actions. In section 3, we look at several observables—the Lorentz-violating modifications
to the decay rate for a scalar particle decaying into a fermion-antifermion pair and the spin
structure of the decay when the daughter particles are ultrarelativistic. In section 4, we
shall turn to the problem of charged pion decay, looking at the possibility of interference
between the usual weak mechanism for the decay and a novel Lorentz-violating mecha-
nism. It turns out that existing experimental data can provide very strong constraints on
some of the types of Lorentz violation that might be involved. Our conclusions and final
discussion are given in section 5.

2 Lorentz Violation in Scalar-Spinor Interactions

The coupling of bosonic and fermionic fields is more complicated in a scalar theory than
in a gauge theory. In either case, there can be various Lorentz-violating modifications
to the boson-fermion vertex. However, in a gauge theory, the renormalizable couplings
are completely determined by the Lorentz violation in the pure fermion sector. This is a
consequence of gauge invariance, in the form of minimal coupling; the gauge field must
couple to the current, which is determined by the way the fermions propagate. There
is no such straightforward invariance requirement in a Yukawa theory, and there exist
separate Lorentz-violation coefficients that can only be observed in processes involving
fermion-boson interaction vertices. Gauge invariance may, however, still restrict which
fields may be coupled together, including limiting the chiralities of the spinor fields.

The most prototypical particle interaction process at high energies is pair creation. In
a theory with massive bosons, this can take the form of a decay process. The fermion
and antifermion produced in the decay may be antiparticles—thus with equal masses—or
they may be associated with different fields, so the decay involves a net flavor change.

In our analysis of this pair production process, we shall consider a Lorentz-violating
Yukawa theory, with a minimal SME form. With a single fermion field, the most general
Lorentz-violating Lagrange density is

Lf = ψ̄(iΓµ∂µ −M)ψ, (1)

where the purely fermionic Lorentz violation enters through the quantities

Γµ = γµ + Γµ
1
= γµ + cνµγν + dνµγ5γν + eµ + ifµγ5 +

1

2
gλνµσλν (2)

M = m+ im5γ5 +M1 = m+ im5γ5 + aµγµ + bµγ5γµ +
1

2
Hµνσµν . (3)
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These terms exhaust all the possible Lorentz structures that can be constructed in the
minimal SME. The Γ coefficients are dimensionless, while the M coefficients have di-
mension (mass)1. A number of the coefficients, such as m5, a, and f , can actually be
eliminated from the theory, through a redefinition of the fermion field [32, 33]. On the
other hand, if more than a single fermion species is present in the theory, there may be
extra terms with these same structures that mix the fermion fields.

However, Lorentz violation for fermions is a relatively well explored and studied topic.
Many efforts, experimental and theoretical, have been made to constrain and understand
the M and Γ coefficients. We shall only work to first order in the Lorentz violation, so
the contributions from various SME coefficients may be determined separately and simply
added together. We shall therefore neglect the purely fermionic coefficients and focus on
the Lorentz violation that is intrinsic to the scalar sector.

So we shall now introduce a scalar field φ. With this φ, the most general boson-sector
Lagrange density with an unbroken φ → −φ symmetry is

L =
1

2
(∂µφ)(∂µφ) +

1

2
Kµν(∂νφ)(∂µφ)−

1

2
µ2φ2 −

λ

4!
φ4 − ψ̄aGabψbφ. (4)

The tensor Kµν = Kνµ plays the same role as cνµ in the fermion sector, and it is the only
kind of renormalizable Lorentz violation that can be constructed with a single real scalar
field. Like c, K can affect the kinematics for a fermion-antifermion decay process, but K
does not affect the matrix element (at tree level). Moreover, coefficients of this general
type can be interchanged through coordinate transformations (although some care must
be taken to ensure that the final observables are considered in the correct coordinates).
So the effects of K, like those of c will be neglected here, and we shall concentrate instead
on the forms of Lorentz violation described by G.

In a gauge theory, any renormalizable Lorentz violation in the boson-fermion coupling
is controlled by the same Γ coefficients as appear in the pure fermion sector. However, in
a scalar field theory, the G that appears in the coupling is independent of the parameters
appearing elsewhere in the theory. The form of Gab is

G = g + ig′γ5 +G1 = g + ig′γ5 + Iµγµ + Jµγ5γµ +
1

2
Lµνσµν . (5)

Each of these terms carries the fermion species indices a and b. The a 6= b terms generate
flavor-changing interactions. (A real Gab must be symmetric in these indices in order to
maintain a hermitian Lagrangian; the imaginary part of Gab must likewise be antisym-
metric in the flavor indices.) The structures of the various terms contributing to G mirror
those seen in M . The g and g′ terms are the Lorentz-invariant scalar and pseudoscalar
Yukawa couplings, while the remaining terms are Lorentz violating. All these coefficients
are dimensionless, and the tensor term Lµν is naturally antisymmetric. The vector and
pseudovector terms I and J break CPT as well as Lorentz invariance, but L does not.

The existence of these terms was noted in the early descriptions of the SME, but
very little attention was paid to their rich structure until recently [34, 35, 36]. However,
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with the recent observation of the standard model Higgs boson at the Large Hadron
Collider, the importance of fundamental scalars and their interactions with other species
has become a central topic in particle physics.

3 Scalar Boson Decay Behavior

We shall now look at how the Lorentz-violating contributions to G can affect the decay of
a spinless scalar into a fermion and an antifermion—not necessarily with the same mass.
The simplest observable in this case is the particle’s lifetime; however, we shall see that
this turns out to be insensitive to the majority of the coefficients. The rest frame lifetime
of the scalar particle depends on |M|2 (where M is the invariant matrix element for the
decay), summed over the outgoing particle spins and integrated over their directions. Of
all the Lorentz-violating terms that may appear in the scalar-spinor coupling, only the
two terms I0 and J0 actually influence the final rate. Purely anisotropic terms will not
affect the total decay rate, because of a cancellation between different decay channels.
In the absence of Lorentz violation, the decay of a scalar particle at rest is necessarily
isotropic. A pure anisotropy term in the decay rate, such as one proportional to Ik, will
increase the likelihood of certain decay channels—through a dependence on, for example,
Ikpk (where ~p is one of the daughter particle momenta). However, decay channels with
different momenta will have their importances correspondingly curtailed, leaving the net
decay rate unchanged.

The decay rate depends on the quantity

M = ū1(p1)G12v2(p2). (6)

This represents the amplitude for the scalar to decay into a fermion with momentum p1
and an antifermion with momentum p2. Squaring this gives

|M|2 = ū1(p1)G12v2(p2)v̄2(p2)Ḡ12u1(p1), (7)

where Ḡab = γ0G
†
abγ0 is the usual Dirac conjugation of Gab. The Dirac conjugate simply

replaces the g, g′, I, J , and L coefficients with their complex conjugates; this only affects
the coefficients that are off diagonal in flavor space (a 6= b).

Since changes to the fermion sector have been neglected, the sums over the outgoing
spins can be evaluated using standard fermion closure relations. This gives (dropping the
flavor indices)

∑

s1,s2

|M|2 = tr

{

(6p1 +m1)

(

g + ig′γ5 + Iµγµ + Jµγ5γµ +
1

2
Lµνσµν

)

(6p2 −m2)

(

g∗ + ig′∗γ5 + Iµ∗γµ + Jµ∗γ5γµ +
1

2
Lµν∗σµν

)}

. (8)
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Expanded to leading order in the G1 coefficients, this is

∑

s1,s2

|M|2 = tr {(6p1 +m1)(g + ig′γ5)(6p2 −m2)(g
∗ + ig′∗γ5)}

+tr

{

(6p1 +m1)

(

Iµγµ + Jµγ5γµ +
1

2
Lµνσµν

)

(6p2 −m2)(g
∗ + ig′∗γ5)

+ (G↔ G∗, p1 ↔ p2, m1 ↔ −m2)

}

. (9)

The designation G↔ G∗ indicates that the last term in the sum differs from the previous
one by the replacement of the g, g′, I, J , and L coefficients by their complex conjugates
(as well as the interchanges of momenta and masses also indicated). Evaluating the traces
yields

∑

s1,s2

|M|2 = 4(|g|2 + |g′|2)p1 · p2 − 4(|g|2 − |g′|2)m1m2

−4(g∗Iµ + gIµ∗)(m2p1µ −m1p2µ) + 4i(g′∗Jµ − g′Jµ∗)(m2p1µ −m1p2µ)

+4i(g∗Lµν − gLµν∗ + g′∗L̃µν − g′L̃µν∗)p1µp2ν , (10)

where L̃µν = 1

2
ǫµναβLαβ is the dual of L.

This expression has a number of noteworthy features. In the rest frame of the decaying
scalar, ~p1 = −~p2, and when |M|2 is integrated over all decay channels, all the I and J
contributions except those related to I0 and J0 cancel out. Moreover, even these isotropic
contributions are nonzero only for flavor-changing decay modes, for which the daughter
masses and the time components of p1 and p2 are unequal.

The energy component of p1 is E1 =
µ
2
+

m2

1

2µ
−

m2

2

2µ
, and the corresponding momentum

is |~p1| =
1

2µ

√

(µ2 −m2
1
−m2

2
)2 − 4m2

1
m2

2
. Consequently, the time component of m2p1µ −

m1p2µ

m2E1 −m1E2 =

[

µ

2
−

(m1 +m2)
2

2µ

]

(m2 −m1). (11)

The modified decay rate is affected by (11), times the real part of g∗I0 plus the imaginary
part of g′∗J0. These contributions are not invariant under Lorentz boosts, so they could be
measured by observing the decay rates of particles with different velocities. This strategy
will be discussed in more detail in section 4.

Since L has no isotropic part, we should expect it to make no contribution at all to
the decay rate. This is indeed the case, but the structure of the L terms merits some
additional comment. From the structure of the L term in (10), it is evident that only the
L0j and L̃0j terms contribute in the scalar rest frame, since Ljk is antisymmetric and the
spatial momenta ~p1 and ~p2 are collinear. However, since these six components of L and
L̃ actually contain all six L coefficients, the differential decay rate (as a function of the

5



direction) can still depend on all the L parameters. The key momentum quantity is

E1p2j −E2p1j = −µp1j , (12)

which gives a dipolar assymmetry in the decay but clearly does not contribute to the total
rate when ~p1 is integrated over all angles.

The overall anisotropy of the differential decay rate dΓ/dΩ as a function of the fermion
direction p̂1 is

dΓ/dΩ

(dΓ/dΩ)0
= 1 +

√

(µ2 −m2
1
−m2

2
)2 − 4m2

1
m2

2

|g|2[µ2 − (m1 +m2)2] + |g′|2[µ2 − (m1 −m2)2]
Wj p̂1j , (13)

where

Wj = 2
m1 +m2

µ
(ℜ{g∗Ij}+ ℑ{g′∗Jj})− ℑ{gL0j + g′L̃0j}. (14)

The vector ~W governs the anisotropy in a particular rest frame. While it is not possible,
using only this decay process, to disentangle the contributions from I from those of J
(provided both of the conventional couplings g and g′ are nonzero), it is possible to
separate the L terms, because the L0j and L̃0j behave differently under Lorentz boosts
than do the Ij and Jj .

Finally, we note that for a decay into a fermion and its equal-mass antiparticle, G1

makes zero total contribution to the decay rate. Because the coefficients must be real,
the J and L terms vanish identically. Because of the equality of the fermion and an-
tifermion masses, the I0 term vanishes as well. The only term in (10) that can be nonzero
is 16gmIjp1j . Therefore the only effect on this kind of decay is that the fermion is prefer-

entially emitted along a direction parallel to ~I, so the antifermion is preferentially emitted
in the antiparallel direction.

So far, we have worked only with the spin-summed decay rate, ignoring the polariza-
tions of the decay products. It is also possible to perform a full analysis, including the
spin dependence of the decay amplitudes, at ultrarelativistic energies (large enough that
m1 and m2 may be neglected). This is accomplished by inserting the ultrarelativistic spin
projector 1

2
(1±γ5) into the expression for the matrix element. In this case, the amplitude

squared is

|M|2 = tr

{

1

2
(1 + s1γ5) 6p1

(

g + ig′γ5 + Iµγµ + Jµγ5γµ +
1

2
Lµνσµν

)

×
1

2
(1− s2γ5) 6p2

(

g∗ + ig′∗γ5 + Iµ∗γµ + Jµ∗γ5γµ +
1

2
Lµν∗σµν

)}

. (15)

In this expression, s1 and s2 represent the fermion and antifermion helicities, respectively.
It is quickly evident that the only Lorentz-violating vertex terms that can contribute are
those involving the L coefficients. When the masses are neglected, any term involving a
single factor of I or J must necessarily have an odd number of γ-matrices inside the trace.

6



Taking advantage of this fact, and the fact that g + ig′γ5 +
1

2
Lµνσµν commutes with

γ5, the s1 and s2 projectors may be combined into single expressions of the form 1

4
(1 +

s1s2)(1± s1γ5). Then the expression for |M|2 is

|M|2 =
1

4
tr {6p1(g + ig′γ5) 6p2(g

∗ + ig′∗γ5)(1 + s1s2)(1 + s1γ5)} (16)

+
1

8
tr{6p1L

µνσµν 6p2(g
∗ + ig′∗γ5)(1 + s1s2)(1 + s1γ5)

+ 6p2L
µν∗σµν 6p1(g + ig′γ5)(1 + s1s2)(1− s1γ5)}. (17)

The Lorentz-invariant term in (16) is straightforward. There is an overall factor of (1 +
s1s2), which ensures that the outgoing particles have the same helicity, as they should
for a state with vanishing total angular momentum. (Although isotropy is broken by the
SME interactions, transitions that actually violate angular momentum conservation must
have rates that are quadratic in the SME coefficients.)

The rate for the Lorentz-invariant process is just set by the magnitude of the coupling
|g+ is1g

′| for the outgoing spin state being considered. The L-dependent term has exactly
the same structure as the L term in (9), with the replacements g → (g − is1g

′) and
g′ → (is1g + g′). The trace manipulations can be carried over directly, so the final result
for the matrix element squared is

|M|2 = (1 + s1s2) |g + is1g
′|
2
p1 · p2

+i(1 + s1s2)[(g
∗ + is1g

′∗)Lµν − (g − is1g
′)Lµν∗

+(g′∗ − is1g
∗)L̃µν − (g′ + is1g)L̃

µν∗]p1µp2ν . (18)

This expression does not depend on I or J , only on L. The lack of dependence on
these parameters is not surprising. The expression for |M|2 is O(p1p2) because of the
neglect of the mass terms. There is clearly no structure that is linear in both outgoing
momenta but which has only a single Lorentz index to be contracted with Iµ or Jµ. This
is the ultimate reason why the I and J terms in the trace all involved odd number of
Dirac matrices.

4 Modifications to Pion Decay

Thus far, we have considered interference between conventional and Lorentz-violating de-
cay mechanisms for a fundamental scalar field. In these scenarios, the Lorentz-symmetric
interactions always had a Yukawa-like structure. This kind of analysis is appropriate for
studies of Higgs interactions, although Higgs decays are complicated by the additional
electroweak couplings of the Higgs sector and by the fact that scalar Higgs decays fre-
quently involve quarks, which are affected by the strong interactions.

In this section, we shall look at how the Lorentz-violating G1 couplings can modify
a different kind of standard model decay process—the leptonic decay of a meson. For
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definiteness, we shall take the decaying particle to be a pion, although the theoretical
analysis could obviously be applied to the weak decays of heavier mesons as well. However,
there is actually fairly good data on the boost dependence of the relevant pion decay rate,
and this data may be used to constrain the G1 coefficients for the pion-muon-neutrino
vertex.

The pion is obviously not a fundamental field, and its standard model interaction with
the leptons is ultimately mediated by aW boson. However, there is a well-known effective
vertex that describes this process, since the virtual W involved is very far off shell. A
mechanism with a pion-muon-neutrino G1 vertex could produce the same outgoing states,
and the two amplitudes for the conventional and Lorentz-violating reaction paths would
interfere. In this case, the G1 involved should also be seen as representing an effective
vertex. The I, J , and L involved would be linear combinations of other tensor coefficients
associated with the fundamental standard model fields.

The effective interaction Lagrange density for the weak decay of a pion is

Lint = −iGF cos θCfπ
∂φ

∂xµ
ψ̄1γµ(1− γ5)ψν (19)

(plus an obvious hermitian conjugate). The coupling involves the Fermi constant GF , the
Cabibbo angle θC , and the pion decay constant fπ. The charged pion (φ), muon (ψ1), and
massless neutrino (ψ2) fields all have the Lorentz-invariant free propagation Lagrangians
used previously, and we shall consider the same kind of Lorentz-violating G1 interaction
shown in (4). Because the weak interaction only couples to the left chiral current, Lorentz
invariance requires that the standard model coupling between pion, muon, and neutrino
have an extra momentum factor to be contracted with the current; this gives the effective
interaction dimension (mass)5. However, a Lorentz-violating effective vertex is not so
constrained and may be of a lower-dimensional, renormalizable type.

The matrix element squared for the charged pion decay, using both the effective vertex
for the W exchange and the novel Lorentz-violating vertex, is (using κ = GF cos θCfπ)

|M|2 =

∣

∣

∣

∣

ū(p1)

[

κ(6p1+ 6p2)(1− γ5) + Iµγµ + Jµγ5γµ +
1

2
Lµνσµν

]

v(p2)

∣

∣

∣

∣

2

(20)

∑

s1,s2

|M|2 = κ2 tr {(6p1 +m1)(6p1+ 6p2)(1− γ5) 6p2(6p1+ 6p2)(1− γ5)}

+κ tr

{

(6p1 +m1)(6p1+ 6p2)(1− γ5) 6p2

(

Iµ∗γµ + Jµ∗γ5γµ +
1

2
Lµν∗σµν

)

+(6p1 +m1)

(

Iµγµ + Jµγ5γµ +
1

2
Lµνσµν

)

6p2(6p1+ 6p2)(1− γ5)

}

. (21)

The required trace manipulations are very similar to those in the previous calculations.
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The result is (using the on-shell conditions p2
1
= m2

1
= m2

µ and p2
2
= 0)

∑

s1,s2

|M|2 = 4κ2m2

1
(p1 · p2) + 4κm2

1
p2 · (I + I∗ + J + J∗)

+4iκm1(L
µν − Lµν∗)p1µp2ν + 4κm1(L̃

µν + L̃µν∗)p1µp2ν . (22)

Note that, of the I and J parameters, only the left-chiral combination IµL = Iµ+Jµ enters,
since the weak process only involves the left-chiral fermion fields.

The decay rate depends only on the average of |M|2 over all outgoing particle di-
rections. Only those terms which are isotropic in the pion rest frame contribute to this
average, so

|M|2ave = 4κ2m2

1
(p1 · p2) + 4κm2

1
E2(I

0

L + I0∗L ). (23)

The kinematics of the decay have E1 = [(1 + m2

µ/m
2

π)/2]mπ and |~p1| = |~p2| = E2 =
[(1−m2

µ/m
2

π)/2]mπ, so that p1 · p2 = E2mπ. This simplifies the average |M|2—to which
the decay rate Γ is directly proportional—so that

Γ = Γ0

(

1 +
I0L + I0∗L
κmπ

)

= Γ0

(

1 +
I0L + I0∗L

GF cos θCfπmπ

)

. (24)

Numerically, this is Γ = Γ0[1+(7.3×106)(I0L+ I
0∗
L )], indicating that the Lorentz-violating

effect is subject to a large enhancement factor.
The enhancement arises from the interference between decay amplitudes produced by

two different dynamical mechanisms. In previously studied scenarios involving Lorentz-
violating changes to this decay [37, 38, 39, 40] (as well as most other studies of Lorentz
violation in elementary particle processes), the interaction responsible for the process was
the conventional, minimally coupled standard model gauge interaction. The Lorentz-
violating modifications in previous analyses were essentially changes to the propagation
structure for the various fields involved in the decay. These could include Lorentz violation
for the parent meson, the daughter leptons, and even theW boson that mediates the weak
decay. Such modifications are not just kinematic in nature; they can affect the invariant
matrix element M for the weak decay process, through changes to the propagators for
the internal particles and also through the changes to the vector boson vertices that are
demanded by gauge invariance.

However, the G1 interaction is something else, entirely new, with a strength that is
not tied in any way to the strength of the conventional interaction The normal pion decay
is rather slow, because the weak interaction is not particularly strong at low energies. So
a small G1 might still produce a sizable fractional change in Γ, because Γ0 is simply quite
small to begin with. Even a modestly accurate measurement of the fractional change in
Γ can thus produce a very strong constraint on the IL parameters; the weakness of the
standard model process enhances the sensitivity to a new, Lorentz-violating mechanism.

Although the decay rate depends solely on the component of IL that is isotropic in the
pion rest frame, this component I0L does depend strongly on the speed and direction of
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the pion’s motion. Experimental bounds on SME parameters are conventionally given in
a particular system of Sun-centered celestial equatorial coordinates (X, Y, Z, T ) [41]. The
origin of the coordinate system is positioned at the center of the Sun. The coordinate
Z-axis points parallel to the Earth’s rotation axis; the X-axis points in the direction of
the vernal equinox point on the sky; and naturally the Y -axis is determined by the right
hand rule. The conventional time coordinate is denoted by T ; however, it is frequently
advantageous to use a translated local time coordinate T⊕, selected so that at T⊕ = 0, the
y-direction in the laboratory coincides with the Y -direction in the reference coordinates.

The coefficient I0L in the pion rest frame is related to the coefficients in the Sun-centered
frame by a boost,

I0L = γπ [(IL)T + (v̂π)J (IL)J ] , (25)

where γπ ≫ 1 and v̂π are the Lorentz factor and direction for the pion’s motion, re-
spectively. A large value of γπ provides further enhancement of the sensitivity of the
experiment. The reason for this enhancement is that a test of Lorentz symmetry must ul-
timately involve a comparison of equivalent observables in differently oriented or boosted
frames. A large pion speed means that, as the beam direction changes, a collection of
very different rest frames is being sampled.

Notably, there are already experimental constraints on how the pion lifetime might
depend on the boost of the decaying particle’s rest frame. The underlying experimental
data was collected by the MINOS experiment and analyzed as part of a search for possible
Lorentz-violating neutrino oscillations [42]. There was found to be no evidence of any
sidereal oscillations in the number of charged current events in the MINOS near detector.
Such oscillations would be a signature of Lorentz violation in the neutrino oscillation
probability, but it has been noted [39] that they would also be the signature of Lorentz
violation in the pion decay rate. If its lifetime depended on the direction in which a pion
is moving, then the overall intensity of the NuMI beam would depend on the orientation
of the beam apparatus and thus the time of day.

Note that only the net decay rate is observable via this method. Lorentz violation
would generally produce a decay with an anisotropic distribution of decay products in the
pion rest frame. However, this anisotropy is effectively washed out by the fact that essen-
tially all the daughter particles are beamed into a narrow pencil of angles along the NuMI
beam direction. Moreover, the dependence of the overall NuMI neutrino beam strength
on the pion lifetime is a bit more complicated than one might initially anticipate [39].
The length of the pion decay pipe is an important parameter. If the pipe were very long,
essentially all the pions in the initial pion beam have time to decay; this would make the
neutrino beam intensity almost independent of the pion lifetime. On the other hand, if
the pipe were very short, any change in the pion decay rate would be precisely mirrored
with the same fractional change in the neutrino beam strength, but the beam so produced
would be very weak and the experimental statistics correspondingly poor. For MINOS,
where the pipe length was comparable to the mean decay length for the pions involved, a
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change in the observed beam intensity I is related to a change in the pion decay rate Γ as

∆I

I0
=

Γ0D/γπ
eΓ0D/γπ − 1

(

∆Γ

Γ0

)

= 0.31

(

∆Γ

Γ0

)

, (26)

where D is the pipe length, and the numerical value was calculated for a typical 6.0 GeV
pion.

The geometry of the NuMI beam also determines how the pion boost varies with time.
The whole apparatus rotates with the planet, which will produce sidereal oscillations
in the key parameter I0L. The pion decays occur at colatitude χ = 42.18◦, and the
spherical coordinates (θ, φ) describe the angle between the beam orientation and the local
zenith direction (θ = 93.27◦) and the azimuthal angle in the plane of the Earth’s surface,
measured starting eastward from south (φ = 203.91◦). Consequently, the beam direction
at a local time T⊕ = 0 is [43]

v̂π = N1X̂ +N2Ŷ +N3Ẑ (27)

= (cosχ sin θ cosφ+ sinχ cos θ)X̂ + (sin θ sin φ)Ŷ

+(− sinχ sin θ cosφ+ cosχ cos θ)Ẑ (28)

= −0.715X̂ − 0.405Ŷ + 0.571Ẑ. (29)

As the Earth rotates with sidereal frequency ω⊕, the crucial parameter I0L varies according
to

I0L = γπ {[(IL)T +N3(IL)Z ] + [N1(IL)X +N2(IL)Y ] cos(ω⊕T⊕)

+ [−N2(IL)X +N1(IL)Y ] sin(ω⊕T⊕)} . (30)

Because the rotation of the Earth does not change the Z-component of v̂π, (IL)Z does not
affect the sidereal oscillation amplitude.

Ultimately, the amplitudes of any oscillations in the beam strength are given by the
real parts of the sine and cosine coefficients inside the square brackets in (30), times a
sensitivity factor

S = 2γπ

(

1

GF cos θCfπmπ

)(

Γ0D/γπ
eΓ0D/γπ − 1

)

= 1.9× 108. (31)

The MINOS near detector charge current event rate showed no evidence of oscillations
reaching the 3σ level of significance (a level that could be seen as indicative of an actual
effect). In fact, the levels of signal present in the data were well below the 3σ threshold.
However, even with no positive evidence for a signal, it was still possible to calculate
the the Fast Fourier Transform (FFT) power present in the sin(ω⊕T⊕) and cos(ω⊕T⊕)
modes (as well as in higher harmonics that are not relevant for the present analysis) [42].
The statistical noise that was present in these quadrature modes was characteristic of a
fractional 1σ dispersion of 1.8× 10−2 in the FFT power.

11



Since the MINOS group’s analysis looked only at one source of Lorentz violation at
a time, we shall take the same approach here. In order that an actual Lorentz-violating
ℜ{(IL)J} (for J = X or Y ) should go undetected amidst the noise in the data, the
quantity |SN1ℜ{(IL)J}| would need to be less than the 3σ noise level of 5.4× 10−2. This
gives us our final bounds on the coefficients involved,

|ℜ{(IπµνL )J}| < 4× 10−10 (32)

for J = X, Y . The superscripts on IL denote that these are coefficients for the pion-
muon-neutrino vertex. The results (32) represent two strong constraints on coefficients
that have never previously been bounded.

The pion decay rate is also sensitive to violations purely of boost invariance, through
(IL)T . However, this requires comparisons of pion lifetimes for particles with different
boost factors, and most precise measurements of the lifetime use stopped pions. Assuming
that only ℜ{(IL)T} is nonzero and using the same two data points [44, 45] (at γπ = 1 and
γπ = 2.44) discussed in [37], the differences in rest frame lifetimes between stopped pions
and pions in motion provide the result

|ℜ{(IπµνL )T}| = (7± 4)× 10−10. (33)

So the isotropic boost invariance violation term in IL and two of the three anisotropic
terms are constrained at similar levels.

5 Conclusion

The constraints (32–33) are the first bounds published on any of the G1 coefficients of this
type. These Yukawa-like Lorentz-violating parameters are quite numerous in the SME,
but they have not been extensively studied. It has been established that the I, J , and L
play roles in the scalar potentials between fermionic particles and in the renormalization
group flow of other SME coefficients. However, neither of these observations has been
developed in sufficient detail to make it possible to place practical experimental bounds
on the G1 parameters. Moreover, such bounds would generally be expected to be rather
poor, because of their inherently indirect nature. On the other hand, the constraints given
here are quite strong. While the MINOS detector data was not particularly sensitive to
sidereal oscillations in the neutrino beam strength, the sensitivity to the relevant IL co-
efficients was enhanced by two important factors. The relativistic motion of the decaying
pions added a factor of γπ, and the weakness of the standard model process meant that a
small SME contribution could still make a sizable correction to the net decay rate. Mea-
surements of lepton universality, comparing the branching ratios for meson decays into
first- versus second-generation leptons, could also provide sensitivity to differences among
the IL parameters.
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The pion, of course, is not a fundamental particle, but a composite made from quarks
and gluons. In this paper, we have looked at the two-particle decays both of fundamental
scalars, with only renormalizable interactions, and composites, with weak interactions of
the type (19). While the standard model certainly contains fundamental scalars—which
are only beginning to be studied directly—there also exists a profusion of spin-0 species
at the hadronic scale. The fields representing these composite particles have Lorentz-
violating operators associated with them in effective field theory. The operators that were
constrained in section 4 were of this type. However, while constraints on these and other
effective parameters for the pion sector [46] are certainly interesting, it would desirable to
understand how the coefficients for particles like pions, protons, and neutrons are related
to the coefficients for the underlying quark and gluon fields. In fact, understanding the
effective coefficients for hadrons is one of the most important outstanding theoretical
problems in the SME.

Understanding Yukawa-like Lorentz violating interactions for the fundamental spin-0
fields will also be important in the coming years, as the detailed behavior of the Higgs
particle is mapped out. As it becomes possible to test the Lorentz and CPT invariances
of the standard model’s scalar sector, the G1 coefficients should be an important part of
that analysis. For the standard model Higgs, the only G1 coefficients that can appear are
the L coefficients, because the Higgs field is part of a doublet representation of the SU(2)L
gauge field and so can only be coupled to another doublet. While searching for Lorentz
violation in the Higgs sector may seem like a difficult undertaking, experimental studies
of Lorentz invariance for the similarly heavy and short-lived top quark have already been
conducted [47].

This paper has laid groundwork for future studies of Lorentz violation involving scalars,
by looking at two-body decays mediated by the Lorentz-violating interactions. The decay
rates typically depend on the directions in which both the parent and daughter parti-
cles are moving, and both CPT-even and CPT-violating signatures have been identified,
associated with different coefficients.
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[31] V. A. Kostelecký, N. Russell, Rev. Mod. Phys. 83, 11 (2011); updated as
arXiv:0801.0287v7.

[32] D. Colladay, P. McDonald, J. Math. Phys. 43, 3554 (2002).

[33] B. Altschul, J. Phys. A 39, 13757 (2006).

[34] A. Ferrero, B. Altschul, Phys. Rev. D 84, 065030 (2011).

[35] B. Altschul, Phys. Rev. D 86, 045008 (2012).

[36] B. Altschul, Phys. Rev. D 87, 045012 (2013).

[37] H. B. Nielsen, I. Picek, Phys. Lett. B 114, 141 (1982).

[38] B. Altschul, Phys. Rev. D 84, 091902(R) (2011).

[39] B. Altschul, Phys. Rev. D 87, 096004 (2013).

[40] B. Altschul, Phys. Rev. D 88, 076015 (2013).
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