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[1] Trace elements were measured in the aerosol plume produced

by lava-seawater interactions along the shoreline of Kilauea

volcano, Hawaii. Plume concentrations were normalized relative

to Hawaiian basalt composition and showed a linear log-log co-

variation with their emanation coefficient (an indicator of element

volatility). Normalized aerosol concentrations also consistently

covaried with corresponding normalized concentrations in dilute

fumarolic gas from Kilauea volcano and fumarolic gas condensates

from Kudryavy and Merapi volcanoes, despite different

mechanisms of element volatilization. Conservatively estimated

regional ocean deposition rates of Cu, Cd, Ni, Pb, Mn, Zn, Fe and

P were >50 times background rates. Thus, upper ocean volcanism

may be an important source of both toxic and nutrient elements to

the surrounding ocean. It appears unlikely, however, that shallow

ocean volcanism can exert a significant impact on the global

ecosystem, even during massive lava emplacements. INDEX

TERMS: 8409 Volcanology: Atmospheric effects (0370); 4825

Oceanography: Biological and Chemical: Geochemistry; 4875

Oceanography: Biological and Chemical: Trace elements; 1630

Global Change: Impact phenomena

1. Introduction

[2] Significant inputs to the atmosphere are known to occur from
terrestrial volcanism [e.g., Lantzy and Mackenzie, 1979] and may
play a role in modulating climate by injecting large quantities of
particles and magmatic gases into the atmosphere, potentially
affecting the earth’s albedo and influencing the global biogeochem-
ical cycling of many elements [e.g., Caldeira and Rampino, 1991].
Sub-aqueous volcanism at the ocean surface also has the potential to
introduce a variety of environmentally important chemical species to
the atmosphere through lava-water interactions; this process was
likely important in the geological past when near-surface ocean
volcanism was more common. For example, volcanism near the
ocean surface was a predominant process during the emplacement of
large igneous provinces (LIPs) [e.g., Coffin and Eldholm, 1994] and
during the opening of the current oceanic basins [e.g., White and
McKenzie, 1989]. LIPs have volumes of up to tens of million km3 of
mafic rock, with mean emplacement rates of up to tens of km3 y�1

[e.g., Coffin and Eldholm, 1994]. In addition, LIP generation
occurred during periods of rapid species extinction, such as the
67 MA Cretaceous-Tertiary boundary and the 248 MA Permian

extinction, heightening the importance of understanding the mech-
anisms and geochemical effects of these large events.
[3] There are few data available on the direct lava-seawater

interactions that occur during upper ocean LIP emplacement.
However, lava from Kilauea volcano (19� 200N, 155� 000W) on
the island of Hawaii has been flowing into the ocean almost
continuously since 1986 [Mattox and Mangan, 1997], providing
a convenient means for studying such processes. Although the
physical and geochemical effects of this lava entry on the adjacent
ocean have been previously reported [Sansone and Resing, 1995;
Resing and Sansone, 1999, in press], the composition of the
aerosol (‘‘steam’’) plume associated with the lava entry has not
previously been determined.

2. Methods

[4] On the day of sample collection (16 July 2000) lava tubes
released lava into the surface ocean either at the steep edge of the
shoreline lava bench or underwater with little contact with the
atmosphere before water contact. The resulting boiling of seawater
produced a visible atmospheric aerosol plume that was transported
parallel to the coastline by the winds on that day. Subaerial volcanic
inputs to the aerosol plume were minimized by both the wind
direction and the small amount of subaerial lava extrusion along
the shoreline.
[5] Plume aerosols were sampled using an active mesh collector

(impactor) consisting of an air pump that pulled 151 L min�1 of air
through 0.18 m2 of tightly folded plastic screen (0.5 mm opening)
located in the top of a 4-L wide mouth polyethylene bottle. The
collector was suspended below a Hughes 500D helicopter using
60 m of synthetic fiber rope; aerosol entered through four 1-cm
diameter holes in the bottle wall, coalesced on the mesh, and was
collected in the bottom of the bottle. The buoyant portion of the
aerosol plume was sampled for 22 min, �15 m downwind of the
lava entry and at an altitude of �10 m above sea level. Visual
observation showed that turbulence from the helicopter’s rotor did
not disturb the aerosol plume in the vicinity of the sampler. The
collection efficiency of the sampler was close to 100%, as
evidenced by the absence of visible liquid or solid inside the
tubing connecting the outlet of the mesh with the air pump after
sampling. Prior to use, all apparatus were washed, soaked in 10%
HCl, triply rinsed with 18-M� deionized water and stored in
cleaned polyethylene bags. After collection, samples were trans-
ferred to 30-mL polypropylene bottles.
[6] Cl�, SO4

2�, Mg2+ and K+ were determined (±5%) by ion
chromatography (IC); Na (±7%) by ICP-AES; Ca by both IC and
ICP-AES; Fe (±2%) and Al (±8%) by direct-injection flow
injection analysis (FIA) [Resing, 1997]; Hg (±5%) by cold vapor
atomic absorption spectroscopy; NO3

� + NO2
�, NH4

+ and Si (±0.03
mM) by AutoAnalyzer; arsenate (±5%) and soluble reactive P
(SRP) (±2%) by spectrophotometry [Hansen and Koroleff, 1999];
and total dissolved P (TDP) (±150 nM) by acid persulfate oxida-
tion [Hansen and Koroleff, 1999]. Other trace elements were
determined (±0.2–6%) by FIA-ICP-MS [Resing, 1997]. pH was
measured (±0.5) in the field with pHydrion indicating pH paper.
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The aerosol plume temperature was measured (±0.6�C) with an
Onset Optic StowAway temperature logger mounted next to the
sample impactor.

3. Results and Discussion

[7] The aerosol plume temperature at the point of sampling was
�36�C, and the collected aerosol had a pH value of 1.0. The
aerosol:seawater concentration ratios for Na, Mg, K, SO4

2�, (calcu-
lated per-mass, data not shown) were 0.62 (±0.01):1, suggesting
that the aerosol was 62% seawater. In contrast, however, Cl� had a
significantly larger ratio of 0.69, presumably due to the production
of HCl [Resing and Sansone, 1999]. Ca2+ had a ratio of 0.83, which
remains enigmatic, but this does not appear to be an analytical
artifact, as Ca was determined by two separate analytical methods.
Among the minor and trace elements, Fe, which is thought to be a
limiting nutrient in many oligotrophic marine environments [e.g.,
Martin et al., 1991], was particularly elevated in the plume (13 mg
kg�1, Table 1), as was TDP (2.3 mg kg�1), indicating the potential
for the plume to be a source of nutrients for terrestrial and marine
environments downstream. In contrast, no evidence was found for
enriched fixed N levels in the aerosol plume.

[8] Using the major element data, we can assume that the
aerosol is 62% seawater. We can then use the concentrations of
minor and trace elements in seawater [Libes, 1992] to correct their
aerosol concentrations by subtracting the seawater contributions
from the aerosol concentrations. When this is done, we find that Rb
and Sr are mostly derived from seawater; however the remainder of
the elements are significantly enriched over their seawater values
and must have the lava as their source.
[9] The ‘‘corrected’’ concentrations were then normalized to the

respective concentrations of the elements in Hawaiian basalt
(BHVO; Govindaraju [1994]). The results of this calculation show
that Hg, Cd, Pb, Mo, and Zn display a much greater relative
enrichment than do the other trace elements. These same elements
have also been shown to be greatly enriched in fumarolic gases and
gas condensates from a variety of volcanoes; thus, when our data
are compared with corresponding normalized concentrations in
dilute fumarolic gas from Kilauea volcano and gas condensates
from Kudryavy volcano (Figure 1), there is a strong linear
covariation between these systems, even though these volcanoes
are geologically dissimilar and there are different mechanisms of
element volatilization (lava-seawater interactions vs. magma
degassing). A similar relationship can be seen with Merapi gas
condensate data [Symonds et al., 1987] (data not shown). Note that

Table 1. Concenterations of Trace Elements in the Aerosol Plume, Estimated Aerosol-plume Atmospheric Input Rates, Estimated

Aerosol-plume and Tropical North Pacific Background Ocean Deposition Rates, and the Aerosol-plume/Background Deposition Rate

Ratios. Dashes Indicate Data Not Available

Aerosol
plume
conc

(mg/kg)

Seawater
conc

(mmol/kg)a

Aerosol-plume
atmospheric
input rate

Even
distribution

model
deposition

rate
(g/m2/y)

Dispersion
model

deposition
rate

(mg/m2/y)

Background
ocean

deposition
rated

(mg/m2/y)

Even distribution
model aerosol-

plume/
background

deposition rate

Dispersion
model

aerosol-plume
/background
deposition rate(kg/y)b (mg/m3

lava)
c

Si 17200 1.0 � 102 1700 99 113 440 – – –
Fe 13000 1 � 10�3 1300 75 87 340 5.6 16000 61
Al 7320 3 � 10�2 740 42 49 190 12 4100 16
SRP 1480 – 150 8.6 10 37 0.7 14000 53
NPPe 820 – 84 4.8 5.6 18 1.8 3100 10
TDP 2300 2.3 � 100 234 13.4 16 55 2.5 6400 22
Sr 4010 8.7 � 101 410 23 27 100 – – –
Zn 1840 6 � 10�3 190 11 13 48 0.67 19000 72
Cu 1170 4 � 10�3 120 6.7 8.0 30 0.089 90000 340
Mn 275 5 � 10�3 28 1.6 1.9 7.1 0.09 21000 79
Pb 241 1 � 10�5 24 1.4 1.6 6.2 0.07 23000 89
Ni 142 8 � 10�3 14 0.82 0.93 3.7 0.023 40000 160
V 99 2.3 � 10�2 10 0.57 0.67 2.6 0.078 8600 33
Rb 98 1.4 � 100 10 0.56 0.67 2.5 – – –
Ba 58 1.0 � 10�1 5.9 0.34 0.39 1.5 – – –
Cr 46 4 � 10�3 4.7 0.27 0.31 1.2 – – –
Cd 34 7 � 10�4 3.5 0.20 0.23 0.88 0.0035 66000 250
Mo 28 1.1 � 10�1 2.8 0.16 0.19 0.72 – – –
Co 18 3 � 10�5 1.8 0.10 0.12 0.45 – – –
Ce 5.5 2 � 10�5 0.56 0.032 0.037 0.14 – – –
As 5.2 2.3 � 10�2 0.53 0.030 0.035 0.14 0.0056 6200 25
La 2.9 3 � 10�5 0.29 0.017 0.019 0.074 – – –
Ag 2.4 2.5 � 10�5 0.24 0.014 0.016 0.062 – – –
Hg 2.2 5 � 10�6 0.22 0.013 0.015 0.057 0.006 2500 10
Nd 1.8 2 � 10�5 0.18 0.010 0.012 0.047 – – –
Y 1.5 1.5 � 10�4 0.15 0.0085 0.010 0.038 – – –
U 0.90 1.3 � 10�2 0.091 0.0052 0.006 0.023 – – –

NO3+NO2-N <110 3 � 101 <11 <.63 – – – – –
NH4-N <110 – <11 <0.63 – – – – –
aLibes [1992]
bCalculated assuming a plume production rate of 40,000 m3 min�1 at the ocean lava entry we sampled.
cCalculated assuming a Kilauea lava production rate of 320,000 m3 d�1, with 15% entering the ocean at the lava entry we sampled.
dGraham and Duce [1979, 1981], Arimoto et al. [1985], and Duce et al. [1991]. Ni and As data estimated from Pb deposition rates divided by Pb/Ni and

Pb/As crustal abundance ratios [Li, 2000], respectively.
eNPP = TDP � SRP
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offsets in the regressions are likely due to differences in sample
dilution.
[10] A compilation of fumarolic data from eight different

volcanoes was used to calculate emanation coefficients [Lambert
et al., 1985/1986] for 44 different elements [Rubin, 1997]. Cor-
rected, normalized aerosol concentrations also correlate linearly on
a log-log basis with the emanation coefficients of the elements
(Figure 2). Thus, more volatile elements are preferentially enriched
in the aerosol plume relative to Hawaiian basalt. A similar enrich-
ment of volatile elements was observed in seawater in contact with
lava at the shoreline entry and in precipitation (rain) from the
aerosol plume [Resing and Sansone, in press]. However, these
samples had higher relative concentrations of the least volatile
elements (e.g., Al, La, Mn, Fe) than we observed in the aerosol,
apparently due to congruent dissolution from the basalt into sea-
water and the aerosol plume rain. The dashed line in Figure 2 is the
linear regression for elements with emanation coefficients >10�4;
elements with lower emanation coefficients fall noticeably above
the line.
[11] Although the extent and distribution of deposition from the

Kilauea aerosol plume remains uncertain, sulfate aerosols from
Kilauea’s terrestrial vents have been detected over 1000 km away
[Porter and Clarke, 1997]. As a result, we attempted to model the
atmospheric plume deposition rates to the adjacent ocean, which is
potentially affected by inputs of nutrients such as Fe and P, and
toxic trace elements such a Pb and Cu.
[12] Using visual analysis of video images of the aerosol

plume during our sampling, we estimate the plume height to be
�300 m and the plume production rate to be �730 m3 s�1. The
Kilauea lava production rate was 320,000 m3 d�1, with �10–
20% entering the ocean at the Waha’ula lava entry where we
sampled (J. Kauahikaua, pers. comm., 2001). These values allow
atmospheric input rates to be calculated for each trace element on
both an absolute and a lava-normalized basis (Table 1); these are
likely to be minimum estimates, as it was not possible to keep the
sampler located in the core of the aerosol plume at all times
during sampling.

[13] Although our meteorological information is limited, we
have attempted to make two estimates of the rate of plume aerosol
deposition. The first, an ‘‘Even distribution model’’ (Table 1), is
intended to put an upper bound on deposition and assumes that
concentrations measured within the aerosol plume apply to a 30 km
� 0.5 km area of ocean, the region over which the plume is visible.
All of the material is deposited within this region. The second
estimate is based on a simple plume dispersion model using several
assumptions: 1) an average deposition velocity of 0.5 cm s�1

[Williams, 1982], 2) that the concentration of the 9 m3 plume parcel
produced each second was distributed evenly from 300 m to the
ocean surface in order to apply a mixed boundary layer deposition
velocity, 3) a plume expansion rate of 3.6% per hour (or 0.01% s�1),
and 4) and a plume speed of 7 m s�1 (typical of tradewind
conditions). Deposition rates were determined once every second
over a distance of 40 km, subtracting the previous amount deposited
from the plume concentration with each iteration. Modeled aerosol
plume deposition rates rapidly reached background levels at 30 km
from the ocean entry point, with the extent of the plume coverage
increasing from 81 m2 to 1100 m2. The total deposition over the first
30 km is given in Table 1 as the ‘‘Dispersion model deposition
rate’’.
[14] The trace element deposition rates from the conservative

dispersion model are 10–340 times greater than background
tropical North Pacific deposition rates (Table 1). However, depo-
sition from Kilauea’s volcanic plume is primarily via rainout
because of the small diameter of the plume aerosols (�0.3 mm,
Porter and Clarke [1997]), and thus deposition is likely to be
episodic; this would lead to a greater intensity of deposition during
rainfall events than is indicated by the above calculation. These

Figure 2. Concentrations of trace elements in the lava-entry
aerosol (corrected for seawater contributions and normalized to
their concentrations in Kilauea basalt) vs. their emanation
coefficients. The dashed line (log y = 0.423 + 0.934 log x,
r2 = 0.91) is the linear regression for elements with emanation
coefficients >1 � 10�4. The overlapped symbols plotted below Mn
are Fe and Ce.

Figure 1. Seawater-corrected concentrations of trace elements in
the lava-entry aerosol (normalized to the their concentrations in
Kilauea basalt) vs. their concentrations in dilute fumarolic gas from
Kilauea volcano [Li, 2000 using data of Olmez et al., 1986] and
fumarolic condensates from Kudryavy volcano [Taran et al.,
1995], each normalized to their concentration in the host rock.
Lines are linear regressions: Kilauea (not including As), log y =
0.720 log x � 3.91, r2 = 0.89; Kudryavy, log y = 0.643 log x �
1.019, r2 = 0.79.
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arguments suggest that, at least on a regional scale, volcanic
aerosol deposition can have a significant effect on upper ocean
biogeochemistry. However, it is not clear at this point what the net
effect of these different inputs is on upper ocean biota, as the
aerosol plume deposition includes both nutrients (e.g., Si, Fe, P)
and potentially toxic elements (e.g., Cu, Cd, Pb). Note that sea-
surface lava-seawater interactions also produce large amounts of
macroscopic airborne particulate matter that is deposited very close
to the lava entry [Resing, 1997]. This hyaloclastic glass is highly
soluble [Sicks, 1975], and its dissolution may also contribute
significantly to such oceanic processes as ‘‘Fe fertilization’’
[Martin et al., 1991].
[15] Our results can be used to examine whether large scale

upper ocean lava extrusions, such as those known to occur during
the formation of LIPs, are capable of injecting significant amounts
of environmentally sensitive elements into the atmosphere. By
assuming geochemical dynamics similar to the Kilauea lava entry
(Table 1), a LIP lava extrusion of 500 km3 (approximately the size
of the 26.5 ka Oruanui eruption, the largest known ‘‘wet’’ eruption,
Wilson [2000]) would be expected to inject 40 Gg of Fe, 20 Gg of
P, and 0.7 Gg of Pb into the atmosphere. These values represent
only 0.1%, 0.5%, and 10%, respectively, of the current annual
global nonanthropogenic inputs of these elements to the atmos-
phere [Lantzy and Mackenzie, 1979; Mackenzie et al., 1993].
Hence, the data suggest that atmospheric inputs to the global
ecosystem from shallow ocean volcanism are small, although
local/regional effects may be quite pronounced. It remains to be
determined whether regional plume deposition is a net positive or
negative factor on oceanic primary production.
[16] The Kilauea lava flowing into the ocean is degassed of

most of its CO2, H2, H2O, and sulfur-gases. These gases may act as
carrier phases for the volatile trace elements [Gerlach, 1989], and
their absence from the lava entering the ocean at Kilauea most
likely results in a lower flux of volatile elements from the lava to
the atmosphere. However, this is not the case for eruptions that
occur where volcanoes breach the sea surface. Our estimates,
therefore, are very conservative.
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