
University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Faculty Publications Physics and Astronomy, Department of 

3-21-2018 

Mode Analysis for Energetics of a Moving Charge In Lorentz- and Mode Analysis for Energetics of a Moving Charge In Lorentz- and 

CPT-Violating Electrodynamics CPT-Violating Electrodynamics 

Richard DeCosta 

Brett David Altschul 
altschul@mailbox.sc.edu 

Follow this and additional works at: https://scholarcommons.sc.edu/phys_facpub 

 Part of the Physics Commons 

Publication Info Publication Info 
Published in Physical Review D, Volume 97, Issue 5, 2018. 
&169Published by the American Physical Society under the terms of the Creative Commons Attribution 
4.0 International license. Further distribution of this work must maintain attribution to the author(s) and 
the published article’s title, journal citation, and DOI. Funded by SCOAP3. 

This Article is brought to you by the Physics and Astronomy, Department of at Scholar Commons. It has been 
accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more 
information, please contact digres@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/phys_facpub
https://scholarcommons.sc.edu/phys
https://scholarcommons.sc.edu/phys_facpub?utm_source=scholarcommons.sc.edu%2Fphys_facpub%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=scholarcommons.sc.edu%2Fphys_facpub%2F137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:digres@mailbox.sc.edu


 

Mode analysis for energetics of a moving charge
in Lorentz- and CPT-violating electrodynamics

Richard DeCosta and Brett Altschul*

Department of Physics and Astronomy University of South Carolina Columbia,
South Carolina 29208, USA

(Received 18 February 2018; published 21 March 2018)

In isotropic but Lorentz- and CPT-violating electrodynamics, it is known that a charge in uniform
motion does not lose any energy to Cerenkov radiation. This presents a puzzle, since the radiation appears
to be kinematically allowed for many modes. Studying the Fourier transforms of the most important terms
in the modified magnetic field and Poynting vector, we confirm the vanishing of the radiation rate.
Moreover, we show that the Fourier transform of the field changes sign between small and large wave
numbers. This enables modes with very long wavelengths to carry negative energies, which cancel out the
positive energies carried away by modes with shorter wavelengths. This cancelation had previously been
inferred but never explicitly demonstrated.

DOI: 10.1103/PhysRevD.97.055029

I. INTRODUCTION

Symmetry has proven to be a key topic in our under-
standing of modern physics. For instance, many trans-
formations that initially appeared to be symmetries of the
standard model of particle physics, but which ultimately
proved not to be exact symmetry operations, have provided
important insights into the structure of the theory. Whatever
new physics exists beyond the standard model might
involve additional interesting forms of symmetry breaking.
Among the most extreme symmetry violations that might
be possible are violations of Lorentz and CPT invariances.
These symmetries are related to very basic properties of
the theory, describing isotropy, boost invariance, and
Hermiticity of the Hamiltonian. Both types of symmetry
are also building blocks of both the standard model and the
general theory of relativity, yet in the ultimate quantum
gravity theory, these symmetries might not hold precisely.
Indeed, many theories that have been proposed in attempts
to described the schematic properties of quantum gravity
seem to have regimes in which Lorentz and CPT invar-
iances may not hold.
Experimental searches for violations of fundamental

symmetries can provide important information about the
character of new physics. However, even if there is no
Lorentz or CPT violation in nature, studying exotic field

theories can help us to understand the general character of
quantum theory. Such theories may provide fundamental
new insights about the kinds of behaviors that are permitted
in the general field theory framework.
A natural formalism for addressing these kinds of

questions is effective field theory. The general effective
field theory that delineates Lorentz- and CPT-violating
additions to the standard model is known as the standard
model extension (SME), and it has been the focus of
extensive phenomenalistic study for the past two decades.
The action for the SME can be constructed from all
operators built up out of the usual standard model fields
[1,2]. In the standard model, these operators are subject to
the requirement that they be Lorentz scalars, but in the SME
that requirement is absent. As result, the number of possible
operators is much larger than in the Lorentz-invariant
theory. For most practical calculations, the minimal SME
is used; it contains only those operators that are local,
power counting renormalizable, and gauge invariant. Most
experimental test of Lorentz and CPT symmetries are now
used to place constraints on minimal SME parameters.
Not all forms of Lorentz violation are equally exotic.

While all reasonable CPT-violating theories are also
Lorentz-violating [3], the reverse is not true. There are
Lorentz-violating operators that are even under CPT.
Moreover, there can be even more subtle connections
between Lorentz symmetry and properties like gauge
invariance. The electromagnetic Cherm-Simons term in
the minimal SME Lagrange density is not gauge invariant;
it depends explicitly on the potentials, not just on field
strengths. However, the integrated action is nonetheless
gauge invariant, and the equations of motions only involve
E⃗ and B⃗, not A⃗ and A0. The subtleties associated with the
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implementation of this kind of term in a quantum theory
had provoked quite a bit of controversy in the past; there
was significant debate about the right way of calculating
radiative corrections to a bare Chern-Simons term [4–9].
Moreover, the Chern-Simons theory also suffers from long-
wavelength instabilities.
The Chern-Simons term is one of the most interesting

terms in the SME, from a theoretical point of view.
However, it is also one of the easiest terms to bound in
practice. The term affects the propagation of the left and
right circular polarization modes of the electromagnetic
field differently. The differences between the modes’
dispersion relations lead to vacuum birefringence. The
distinctive birefringence signature has not been seen, even
for waves originating at cosmological distances [10–12].
The lack of birefringence has been used to place exceed-
ingly tight bounds on the size of the real-world Chern-
Simons term.
Several previous analyses have looked at another pecu-

liar feature of the Chern-Simons theory—the possibility of
vacuum Cerenkov emission. The Cerenkov process is
normally forbidden in vacuum by energy-momentum con-
servation and Lorentz invariance. However, if particles can
possess Lorentz-violating energy-momentum relations, it
may be possible for charged particles to move faster than
the phase speed of light. Since the Chern-Simons term
changes the dispersion relations for electromagnetic waves,
including slowing one polarization down, vacuum
Cerenkov radiation is a natural possibility in this theory.
However, there is an iterative algorithm for determining the
electric and magnetic fields of a moving point charge in the
modified theory, and studies of the symmetry properties of
this algorithm have showed that in the case of a timelike
Chern-Simons coefficient, there is zero radiation power
loss from a uniformly moving charge [13].
This vanishing of the total Cerenkov radiation rate leaves

a number of puzzles associated with it. This paper will
clarify the structure of the relevant field components in
Fourier space, making explicit a cancelation that has
previously only been indirectly inferred. The paper is
organized as follows: Section II introduces the action of
the Chern-Simons theory and the structure of the modified
energy-momentum tensor. In Sec. III, we calculate the
Fourier transforms of the magnetic field and the Poynting
vector at the lowest relevant orders. Section IV shows how
there can be a cancelation between short-wavelength
modes carrying positive energies and long-wavelength
modes that actually carry negative total energies. Finally,
Sec. V summarizes our conclusions about the interpretation
of the paper’s results.

II. LORENTZ-VIOLATING
CHERN-SIMONS THEORY

The theory we will consider is rotation invariant
(in a preferred frame), but the CPT and Lorentz boost

symmetries are broken. There are also CPT-even and
anisotropic forms of Lorentz violation in the photon sector
of the SME. In fact, the minimal SME electromagnetic
Lagrange density, including all terms that can be con-
structed solely out of photon operators, is

L¼−
1

4
FμνFμν−

1

4
kμνρσF FμνFρσþ

1

2
kμAFϵμνρσF

νρAσ−jμAμ:

ð1Þ

The CPT-even terms are those parameterized by the
nineteen independent kF coefficients. They have many
interesting possible effects, but we shall neglect them here.
The four kAF coefficients multiply the possible CPT-odd
operators, with the time component of kAF multiplying the
only one that is also isotropic. The structure of the kAF term
is a four-dimensional, Lorentz-violating generalization of a
Chern-Simons term.
So we shall consider a strictly timelike vector

kμAF ¼ ðk; 0⃗Þ. This makes the kAF term proportional to just

A⃗ · B⃗. While this Lorentz-violating term is fairly simple in
form, it appears to have many problematic properties. One
of the most obvious difficulties is that the dispersion
relation for circularly polarized photons of momentum Q⃗
becomes ω2

� ¼ QðQ ∓ 2kÞ; the sign of the unusual term is
the negative of the helicity of the mode. It is clear that for
waves with very long wavelengths Q < j2kj, one set of the
helicity modes will have imaginary frequencies. This
naturally can give rise to runaway solutions, which grow
exponentially in time. It is possible to avoid these runaway
modes by selecting the Green’s functions for the theory in a
very special way; [10] exhibits a Green’s function that has
only real frequency components, but at the cost of using
acausal boundary conditions. As a result, a charged particle
will start to emit radiation before it actually starts to move.
While the acausality is characteristically weak if k is small,
so that these boundary conditions are not especially
problematic for radio emissions with long wave trains, it
is unclear whether they really give a usefully defined theory
that allows for arbitrary electromagnetic excitations.
Runaway excitations in a theory are most typically

associated with energies that are not bounded below, and
this is also the case for the Lorentz-violating Chern-Simons
theory. With an arbitrary Chern-Simons term present, the
purely electromagnetic part of the energy-momentum
tensor becomes [10]

Θμν ¼ −FμαFν
α þ

1

4
gμνFαβFαβ −

1

2
kνAFϵ

μαβγFβγAα: ð2Þ

The fact that this tensor is not symmetric is a consequence
of the Lorentz violation. The restriction that kAF be purely
timelike simplifies the components of Θμν somewhat; the
energy density (Θ00), momentum density (Θ0j), and energy
flux (Θj0) are
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E ¼ 1

2
E⃗2 þ 1

2
B⃗2 − kA⃗ · B⃗ ð3Þ

P⃗ ¼ E⃗ × B⃗ ð4Þ

S⃗ ¼ E⃗ × B⃗ − kA0B⃗þ kA⃗ × E⃗; ð5Þ

respectively. Except for the momentum density, these
quantities are obviously not gauge invariant. However,
the total energy, found by integrating E over all space, is
gauge invariant. This may still not be obvious from the
form of E, but because E (and, similarly, the kAF Lagrange
density) changes by a total derivative under a gauge
transformation, the total energy does not depend on
the gauge.
The instability of the theory is tied to another unusual

property of the very same −kA⃗ · B⃗ term in the energy
density. This term is not bounded below. This term may be
made arbitrarily negative by increasing the amplitude of the
field A⃗ (and thus also B⃗). For modes with small momenta
Q < j2kj, the new term can be larger in magnitude than the
usual magnetic energy 1

2
B⃗2. However, for shorter wave-

length modes, the additional derivative in the usual mag-
netic energy makes the 1

2
B⃗2 term dominant. Thus, the form

of E not only reveals the existence of the instability but also
clarifies why it is restricted to the longest-wavelength
modes of the theory.
With a purely timelike kAF, the only change to

Maxwell’s equations is to the Ampere-Maxwell Law,

∇⃗ × B⃗ −
∂E⃗
∂t ¼ 2kB⃗þ J⃗; ð6Þ

(although the changes are a bit more complicated—
involving E⃗ as well—if kAF possesses a spacelike part).
Themagnetic field becomes a source for itself, behaving like
an effective current source J⃗eff ¼ 2kB⃗. For comparatively
simple source configurations, the Maxwell’s equations may
be solved—sometimes exactly [14], but more typically as a
power series in the small Lorentz violation parameter k.
For the purpose of studying Cerenkov radiation, the

natural source configuration to consider is a pointlike
charge moving with a uniform velocity v⃗. In the Chern-
Simons theory, since there are modes of the radiation field
with arbitrarily small phase velocities ω�=Q, it would be
natural to expect Cerenkov radiation. If a real moving
charge lost energy and momentum through such radiation,
it would naturally slow down, which would further modify
the radiation. However, any change to the radiation that
depends on the acceleration of the charge is not truly
Cerenkov radiation and will not be a part of our analysis.
Previously, the E⃗ and B⃗ fields of the lone moving charge

have been explored as dual power series in k and v [13].
The key simplification is that the fields depend on position

r⃗ and time t only through the combination r⃗ − v⃗t. The fields
are carried along uniformly with the moving charge, and
this allows the time derivatives in Maxwell’s equations to
be replaced with spatial derivatives. Due to the symmetry
properties of the field solutions, it has been possible to
demonstrate the surprising result that the Cerenkov power
emitted by the moving charge exactly vanishes, at all order
in k. There is a superficially reasonable explanation for why
the power can vanish: Modes of the field carrying negative
energies can cancel the energy carried by positive-energy,
real-frequency modes. However, the cancelation is fragile,
and it does not need to occur if there are other modifications
to the electromagnetic sector, beyond the Chern-Simons
term [15]. Moreover, while the inferred explanation for the
cancelation makes sense, it was arrived at without any
study of the behavior of the theory in Fourier space, on a
mode-by-mode level.
The present work is aimed at providing that missing

analysis. We will study the behavior of the magnetic field
and the outward energy flow using Fourier methods.
Assigning physical interpretations to various terms in this
theory is always a bit tricky, because, as previously noted,
many quantities in the theory are not gauge invariant. For
this analysis, we shall choose to work in a single gauge—

the Coulomb gauge ∇⃗ · A⃗ ¼ 0—because it has been found
to simplify the forms taken by the potentials A⃗ and A0 a
great deal. (In particular, A0 is completely independent of k
in this gauge.)

III. FOURIER TRANSFORMS OF FIELD
AND POYNTING VECTOR

The starting point for the present calculations will be the
leading-order k-dependent magnetic field,

B⃗ð1;1Þ ¼ kqv
4πr

½v̂þ ðv̂ · r̂Þr̂�; ð7Þ

which was calculated in [16]; the superscripts indicate that
this is the magnetic field at first order in k and in the speed
v. We shall calculate the Fourier transform of this magnetic
field and also transforms of other important functions in the
theory (including some higher-order terms in the magnetic
field expansion).
Another function of particular importance is the term

−kA0B⃗ that is part of the modified Poynting vector. In fact,
at the lowest orders in v, only this term can contribute to an
outwardly directed energy flux S⃗ · r̂. The other two terms in
S⃗ involve cross products with the electric field E⃗; and since
E⃗ points in the radial direction for terms up to OðvÞ, these
terms cannot contribute to S⃗ · r̂ below Oðv2Þ.
Thanks to the simplicity of the Coulomb gauge, the

scalar potential A0 remains
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A0 ¼
q

4πr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2½1 − ðv̂ · r̂Þ2�

p : ð8Þ

To the order at which we are presently performing

calculations, all that is needed is Að0;0Þ
0 ¼ q=4πr. From

this, it is clear that key to our analysis will be the
Fourier transforms of functions of the general form
r−n½v̂þ ðv̂ · r̂Þr̂�. In performing the necessary transforma-
tions, the integrals involved may require regularization at
either large or small values of r.
For the Fourier transform, we shall select the usual

coordinates, so that the z axis points along direction of the
wave number variable Q⃗. Then the position r⃗ and the
velocity v⃗ will be expressed in spherical coordinates with
respect to this polar axis—r⃗ ¼ ðr; θ;ϕÞ and v⃗ ¼ ðv; θ0;ϕ0Þ,
respectively. Expressed in these coordinates, the necessary
Fourier transforms are

In ¼
Z

d3r
e−μreiQ⃗·r⃗

ðr2 þ λ2Þn=2 ½v̂þ ðv̂ · r̂Þr̂�: ð9Þ

The quantities λ and μ regularize the integral at small and
large r, respectively. Both will be taken to zero at the end of
the calculation; however, depending on the specific integral
being considered, it may be possible to set one or the other
of them to zero earlier in the evaluation process.
Writing In as an iterated integral, we find

In ¼
Z

∞

0

r2dr
e−μr

ðr2 þ λ2Þn=2
Z

π

0

sin θ dθ eiQr cos θ

×
Z

2π

0

dϕfv̂þ ½sin θ sin θ0ðcosϕ cosϕ0

þ sinϕ sinϕ0Þ þ cos θ cos θ0�ðsin θ cosϕx̂
þ sin θ sinϕŷþ cos θẑÞg: ð10Þ

Only terms with even powers of cosϕ and sinϕ are nonzero
under ϕ integration, so

In ¼
Z

∞

0

dr
r2e−μr

ðr2 þ λ2Þn=2
Z

π

0

sin θ dθ eiQr cos θðπÞ½2v̂

þsin2θ sin θ0ðcosϕ0x̂þ sinϕ0ŷÞ þ 2cos2θ cos θ0ẑ�:
ð11Þ

Making the standard substitution u ¼ cos θ,

In ¼ π

Z
∞

0

dr
r2e−μr

ðr2 þ λ2Þn=2
Z

1

−1
du eiQru

× ½2v̂þ ð1 − u2Þ sin θ0ðcosϕ0x̂þ sinϕ0ŷÞ
þ 2u2 cos θ0ẑ�: ð12Þ

Using the elementary integrals,

Z
1

−1
du eiQru ¼ 2 sinQr

Qr
ð13Þ

Z
1

−1
du u2eiQru ¼ 2 sinQr

Qr
þ 4 cosQr

ðQrÞ2 −
4 sinQr
ðQrÞ3 ; ð14Þ

the formula for In is reduced to a single radial integral:

In ¼ 4π

Z
∞

0

dr
r2e−μr

ðr2 þ λ2Þn=2
�
ðv̂þ cos θ0ẑÞ

�
sinQr
Qr

�

þ ½2 cos θ0ẑ − sin θ0ðcosϕ0x̂

þ sinϕ0ŷÞ�
�
Qr cosQr − sinQr

ðQrÞ3
��

: ð15Þ

With the general structure of In established, it remains to
evaluate it for the cases of particular interest, which
correspond principally to n ¼ 1 or 2. For n ¼ 1, which
provides the Fourier transform of B⃗ð1;1Þ, the regulation at
small r is unnecessary, and λ may be set to zero. Then first
term in French brackets in (15) just reproduces the usual
integral that appears in the Fourier transform of a r−1

potential. The second term is only slightly more compli-
cated, becoming

4π

Q3
ð3 cos θ0ẑ − v̂Þ

Z
∞

0

dr
e−μrðQr cosQr − sinQrÞ

r2

¼ 4π

Q3
ð3 cos θ0ẑ − v̂Þ

�
−Qþ μtan−1

�
Q
μ

��
: ð16Þ

This makes the sum of the terms, as μ → 0,

I1 ¼
8π

Q2
ðv̂ − cos θ0ẑÞ: ð17Þ

Recalling that ẑ is the direction of Q⃗, we can express the
Fourier transform of B⃗ð1;1Þ in a coordinate-independent
fashion as

gB⃗ð1;1Þ ¼ 2kqv
Q2

½v̂ − ðv̂ · Q̂ÞQ̂�: ð18Þ

For the n ¼ 2 case, the first term in (15)—the one with
ðsinQrÞ=Qr—requires only μ to keep it finite. Taking
λ → 0, we are left with

4π

Q
ðv̂þcosθ0ẑÞ

Z
∞

0

dr
e−μr sinQr

r

¼4π

Q
ðv̂þcosθ0ẑÞ tan−1

�
Q
μ

�
→

2π2

jQj ðv̂þcosθ0ẑÞ; ð19Þ

where the last limit applies as μ → 0.
The second term is finite without the μ regularization, but

λ is required to keep the integration well defined. In this
case, with μ ¼ 0 the term is

RICHARD DECOSTA and BRETT ALTSCHUL PHYS. REV. D 97, 055029 (2018)

055029-4



4π

Q2
ð3 cos θ0ẑ − v̂Þ

Z
∞

0

dr
cosQr − sinQr

Qr

r2 þ λ2

¼ 2π2

λ2Q3
ð3 cos θ0ẑ − v̂Þ

�
jλjQe−jλQj þ jQj

Q
ðe−jλQj − 1Þ

�
:

ð20Þ

Now taking λ → 0, this becomes

4π

Q2
ð3 cos θ0ẑ − v̂Þ

Z
∞

0

dr
cosQr − sinQr

Qr

r2 þ λ2

→ −
π2

jQj ð3 cos θ
0ẑ − v̂Þ: ð21Þ

Taking the two terms together,

I2 ¼
π2

jQ⃗j ½3v̂ − ðv̂ · Q̂ÞQ̂�; ð22Þ

so that

−k gA0B⃗
ð1;1Þ ¼ −

k2q2v
16Q

½3v̂ − ðv̂ · Q̂ÞQ̂�: ð23Þ

This result can also be obtained by convolving the
Fourier transforms of A0 and B⃗ð1;1Þ; see the appendix for
details.
In this gauge (and to this order), the Fourier transform of

the energy transport term −kA0B⃗ indicates that a mode with
wave vector Q⃗ does appear to carry energy. The term
proportional to v⃗=Q is derived from the first term in (7),
proportional to v⃗=r. This represents an apparent flow of
energy from the direction the charge has come from, toward
the direction the charge is going. This corresponds to a
similar energy flow that has been identified in coordinate
space, which does not deposit a net energy anywhere. It is
analogous to the constant Poynting vector S⃗ ¼ E⃗ × B⃗ that
exists in the presence of uniform, crossed electric and
magnetic fields; although in this case it is also relevant that
the Poynting vector itself is not a gauge invariant quantity.
The second, Q̂-dependent term is a bit more subtle.

However, it is still possible to see that this term does not
lead to any outflow of energy from the vicinity of the
charge to spatial infinity. This fact is actually implied by
the symmetry properties of (22); a Fourier space version of
the general symmetry argument from [13] could be applied
to demonstrate this. However, we shall instead show the
vanishing explicitly at this order.
The total radiating power from the moving charge is the

integral of S⃗ · r̂; this is equivalent to a three-dimensional

integral of ∇⃗ · S⃗ over all space. In Fourier space, this means
the outflow of energy is proportional to an integral over all

Q⃗ of the dot product of the wave vector Q⃗ with the Fourier
transform of S⃗. Since only the −kA0B⃗ term in S⃗ is capable
of describing energy outflow in our chosen gauge, the
power radiated at this order must be proportional to

P∝
Z

d3Q

�
3v̂−ðv̂ ·Q̂ÞQ̂

Q

�
·Q⃗¼

Z
d3Qð2v̂ ·Q̂Þ¼0: ð24Þ

So, although it is less obvious for the ðv̂ · Q̂ÞQ̂ than for the
v̂ term, each of these terms describes a distribution of
energy among the Fourier modes that does not actually
represent radiation from the moving charge out to infinity.

In general, when −k g
A0B⃗

ðm;lÞ takes the form
XðQ; θ0Þv̂þ YðQ; θ0ÞQ̂, where θ0 is still the angle between
Q⃗ and v⃗, the net energy outflow vanishes if X is an even
function of cos θ0 ¼ v̂ · Q̂ and Y is an odd function of
cos θ0. That way, the dot product of Q⃗ with either term is an
odd function of cos θ0; when integrated over all Q⃗, the result

therefore vanishes. For the higher-order
g
B⃗ðm;lÞ terms [which

are OðkmvlÞ], this same symmetry argument always

applies, and this can be seen explicitly for the
g
B⃗ðm;1Þ terms

derived below in Sec. IV. In Fourier space, the vanishing of
the total power is established based on whether individual
terms are even or odd functions of v̂ · Q̂; and this is very
similar to how the cancelation argument proceeds in real
space, where it is based on the parity of the field
components with respect to v̂ · r̂.

IV. CANCELATIONS BETWEEN
LOW- AND HIGH-Q MODES

The Fourier transforms calculated above (and their
relationships to the energy flow) are interesting on their
own, although they are, in some sense, just translations of
results that were previously known in position space into
Fourier space. However, with what we now understand of
the Fourier decomposition of the energy flow, it is possible
to derive some further results that are not so readily
expressible in coordinate space.
In [13], inferences were drawn about the mechanism by

which the excited radiation field somehow manages to
carry away zero net energy. These inferences were correct,
but they were basically qualitative. The gist was as follows:
A phase space estimate of the energy carried away by the
Q > j2kj modes of the field yields a positive result. This is
not exactly wrong, but the omission of the Q < j2kj is a
critical problem. Since (for the troublesome helicity) those
modes do not possess a dispersion relations with a real
frequency, they are not amenable to study using phase
space methods. Yet they can still make key contributions to
the energy flow. Since the total power emitted by the charge
is zero, the Q < j2kj modes must be carrying negative
energy—in an amount which exactly cancels the energy
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carried by the shorter Q > j2kj modes. This may initially
appear puzzling, since normally, the involvement of these
modes would be expected to lead to instabilities; their
imaginary frequencies would give the field an exponen-
tially increasing time dependence. However, our frame-
work adroitly manages to avoid that difficulty; by studying
field configurations in which the field profiles are in
constant uniform motion, we have forced the modes to
behave as propagating modes. Instead of growing expo-
nentially, the unstable modes are associated with propa-
gating solutions carrying negative energies.
With our current understanding of the behavior of the

fields and the Poynting vector in Fourier space, we are now
better equipped to understand this cancelation. Yet there are
still subtleties to the analysis. In particular, the Fourier
transforms we have found so far are not sufficient to display
the cancelation behavior. The transforms we have calcu-
lated all depend on k as simple powers. With this kind of k
dependence, it is clearly not possible to have any cancel-
ations between effects at small and large Q; whether jkj is
greater than or less than Q=2 cannot affect the sign of a
term with this form. In order to find the cancelation
between different Q ranges, we must look at interference
between terms at different orders in k.
We will look specifically at all the magnetic field terms

that are of the lowest (linear) order in the speed v. The
equations for such terms are

∇⃗ × B⃗ðm;1Þ ¼ 2kB⃗ðm−1;1Þ ð25Þ

∇⃗ · B⃗ðm;1Þ ¼ 0: ð26Þ

There are no contributions from ∂E⃗=∂t, because a k-
dependent E⃗ term can itself only be generated by the time
dependence of a k-dependent B⃗ term, which makes the E⃗
term involved necessarily of higher order in v. Iterating the
curl equation (25) and applying, as usual, the solenoidal
field condition (26) gives

−∇⃗2B⃗ðmþ2;1Þ ¼ ð2kÞ2B⃗ðm;1Þ: ð27Þ

In Fourier space, this becomes simply Q2 g
B⃗ðmþ2;1Þ ¼

ð2kÞ2 gB⃗ðm;1Þ, or, resumming all the terms with odd powers
of k,

gB⃗ðodd;1Þ ¼ Q2

Q2 − ð2kÞ2
gB⃗ð1;1Þ ¼ 2kqv

Q2 − ð2kÞ2 ½v̂ − ðv̂ · Q̂ÞQ̂�:

ð28Þ

Now the difference of the signs for the Fourier modes with
Q above and below j2kj is clearly manifest. For each

individual term
g
B⃗ðm;1Þ with odd m > 0, its contribution to

the −kA0B⃗ energy outflow vanishes for symmetry reasons,
whether in coordinate space or Fourier space. Viewed from
this viewpoint, the nature of the cancelation between short-
and long-wavelength mode is obscure. However, when we
combine terms of different orders in k, we reveal a
singularity and sign change at Q ¼ j2kj, confirming the
earlier inferences about low- and high-Q cancelations. The
infinity in the Fourier transform is not a problem in this
context, since a principal value integration through the pole
at Q ¼ j2kj will always yield a finite result; and this is just
another facet of the cancelation between the short- and
long-wavelength modes.
Note that the expression (28) is necessarily an even

function of Q, because without knowing the sign of k, it is
impossible to determine whether the pole in Q occurs at 2k
or −2k. The denominator involving Q2 automatically
captures both possible pole locations in a single expression.

V. CONCLUSIONS

The presence of the pole in (28) is not, in retrospect,
particularly surprising. In the Chern-Simons theory, a static
magnetic field in vacuum obeys the Helmholtz equation

½∇⃗2 þ ð2kÞ2�B⃗ ¼ 0. This leads to a screening of magneto-
static fields, which provides another way of constraining k
experimentally—although the resulting bounds are much
weaker than those derived from cosmological birefringence
measurements. With a moving point charge, the magnetic
fields are not truly static; however, by only considering
effects at OðvÞ, we have effectively neglected the time
dependence of B⃗. The remaining field at lowest order in v
then satisfies equation (27), just as does a time-independent
vacuum field.
Nonetheless, (28) is a significant result. As already

noted, each individual magnetic field B⃗ðm;1Þ, for odd m,
makes a contribution to S⃗ that does not represent any real
energy outflow. This follows from symmetry arguments,
but it is not very illuminating. By summing up an infinite
number of terms—each of which, on its own, gives a
vanishing integrated power—we have shown an explicit
change in the sign of the outward Poynting vector at
Q ¼ j2kj. This validates all the inferences that had pre-
viously been drawn about how and why the total Cerenkov
emission rate vanishes in the theory.
The pole and sign change at Q ¼ j2kj occur in the

Fourier transform of a gauge-invariant quantity, the mag-
netic field. However, the generalization of results such as
(23) depends on the gauge. The gauge invariance of the

total energy
R
d3rE is tied to the fact that ∇⃗ · S⃗ changes by

−k∇⃗ · ½∂ðΛB⃗Þ=∂t� under a gauge transformation with
gauge function Λ. The fact that S⃗ is not gauge invariant
on its own makes assigning contributions to the Poynting
vector precise interpretations impossible. However, for a
well-behaved gauge function Λðr⃗ − v⃗tÞ that, like the fields,
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moves along with the charge, the time derivative in

−k∇⃗ · ½∂ðΛB⃗Þ=∂t� ensures that any changes to the structure
of −k g

A0B⃗
ð1;1Þ are of Oðv2Þ or higher.

We have only explored explicitly the Fourier transforms
of the magnetic B⃗ðm;lÞ terms with odd m and l ¼ 1.
However, the neglect of the even-m terms B⃗ðm;1Þ cannot
affect the character of the energy outflow. AtOðvÞ, only the
−kA0B⃗ term in S⃗ can represent a radial outflow, but this
requires B⃗ itself to have a radial component. All the B⃗ðm;1Þ

terms with even m are actually azimuthal, pointing in the ϕ̂
direction; for example,

B⃗ð2;1Þ ¼ k2qv
2π

sin θϕ̂ ¼ k2qv
2π

ðv̂ × r̂Þ; ð29Þ

with Fourier transform (as calculated in the appendix)

g
B⃗ð2;1Þ ¼ 4ik2qv

Q3
ðv̂ × Q̂Þ: ð30Þ

[In fact, all the B⃗ðm;lÞ with even m are azimuthal, regardless
of l.] These azimuthal terms cannot contribute to S⃗ · r̂ at
OðvÞ. Moreover, they still obey (27), so the full expression

for
g

B⃗ðeven;1Þ can be determined just from the Fourier
transform of the usual leading-order field B⃗ð0;1Þ of a moving
charge.
Analyses of the Fourier modes of the fields atOðv2Þ and

higher might still be somewhat interesting. However, at
higher order in v, the calculations become much more
complicated, because of the additional involvement of the
electric fields. There are Lorentz-violating contributions to
E⃗, which can in turn generate further B⃗ contributions
through the displacement current. Moreover, E⃗ field terms
pointing in nonradial directions may make direct contri-
butions to the modified Poynting vector S⃗.
Performing any of these calculations at Oðv2Þ and

beyond could be an interesting exercise, but the Fourier
transforms of higher-order terms appear extremely unlikely
to provide any particular new insights, because there does
not seem to be any reason to expect any qualitatively new
features to their behavior. There are additional novel
contributions to B⃗ coming from both the new k-dependent
source term in the modified Ampere-Maxwell law and from
the usual displacement current mechanism. Any magnetic
field term generated by ∂E⃗=∂t will then itself generate an
infinite series of terms involving higher powers of k. In
Fourier space, each of these separately generated sub-series
can be summed as in (28). This indicates that the presence
of the pole and sign change at Q ¼ j2kj are not limited to
Fourier transforms at OðvÞ.

Studies of Cerenkov radiation, whether they concern real
radiation emitted by fast-moving particles in matter or the
theoretical possibility of Cerenkov emission in a Lorentz-
violating vacuum, are typically most easily undertaken in
Fourier space. Whether emission occurs is mostly deter-
mined by whether it is kinematically allowed for modes
with certain wave numbers. Mode-by-mode studies of the
emission properties can be used in many Lorentz-violating
theories [17], including the Chern-Simons theory with a
spacelike kAF [18]. However, the peculiar energetics of the
timelike kAF theory considered here make it impossible to
apply the usual kind of mode analysis directly. Instead, it
has been necessary to study the shapes of the field profiles
in coordinate space. In this paper, we have taken the
resulting field solutions and transformed them explicitly
into Fourier space.
As a result, we have addressed what may have been the

last major puzzle associated with the Cerenkov properties
of the timelike Chern-Simons theory. While vanishing of
the radiated power is a consequence of the symmetries of
the fields, in Fourier space the vanishing can be recast as a
cancelation. The Fourier transform of the magnetic field
changes sign at Q ¼ j2kj, which confirms that the low-
energy modes with imaginary frequencies are carrying
negative energies.
The knowledge of these Fourier transforms may have

further interesting consequences for how we understand
Lorentz-violating and other unusual field theories. For
example, comparison with the Fourier decomposition of
the excited modes in the spacelike Chern-Simons theory
may provide additional insights as to how the two theories
are similar as well as how they differ. Overall, this work
provides further insight into how the most exotic quantum
field theories may behave.

APPENDIX: ADDITIONAL FOURIER
INTEGRALS

In this appendix, we present the calculation of the
Fourier transform (30) of B⃗ð2;1Þ and the alternative deriva-
tion of (23) using a convolution. For the first, we have
(according to the same conventions describing the vectors r⃗
and v⃗ in spherical coordinates that we used previously)

gB⃗ð2;1Þ ¼ k2qv
2π

Z
∞

0

r2dr e−μr
Z

π

0

sin θ dθ eiQr cos θ

×
Z

2π

0

dϕ ðv̂ × r̂Þ: ðA1Þ

We have included the regularization factor e−μr, to elimi-
nate divergences at large r. However, regularization at
small r is clearly unnecessary. There is no power law
divergence in (29) in the vicinity of r ¼ 0, but there is still a
singularity there, because of the presence of the sin θ factor
in B⃗ð2;1Þ—θ being undefined at r ¼ 0.
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Any term from (A1) that is linear in sinϕ or cosϕ will
give zero after the ϕ integration. In the cross product, this
means contributions proportional to the x and y compo-
nents of r̂ must vanish. The remaining ϕ integral is

Z
2π

0

dϕ ðv̂ × cos θẑÞ

¼ 2π cos θðsin θ0 sinϕ0x̂ − sin θ0 cosϕ0ŷÞ: ðA2Þ

This leaves the full Fourier transform (with the substitution
u ¼ cos θ) as

g
B⃗ð2;1Þ ¼ k2qv

Z
∞

0

dr r2e−μr
Z

1

−1
du ueiQruðv̂ × Q̂Þ: ðA3Þ

Now the u integration is elementary, as in (13) and (14), and
we are left with

g
B⃗ð2;1Þ ¼ 2ik2qv

Q2
ðv̂ × Q̂Þ

Z
∞

0

dr ðsinQr −Qr cosQrÞe−μr

ðA4Þ

¼ 4ik2qvQ
ðQ2 þ μ2Þ2 ðv̂ × Q̂Þ ðA5Þ

→
4ik2qv
Q3

ðv̂ × Q̂Þ; ðA6Þ

where the last limit in (A6) obviously applies as μ → 0.
With this result in hand, we can express the Fourier

transform of the magnetic field at OðvÞ, to all orders in the
Chern-Simons coefficient k,

g
B⃗ðall;1Þ ¼ qv

Q2 − ð2kÞ2 ½2kv̂ − 2kðv̂ · Q̂ÞQ̂þ iQðv̂ × Q̂Þ�:

ðA7Þ

When transformed back to position space, the pole at
Q ¼ j2kj will lead to sign-changing oscillations in field
strength at large distances r. The keys to (A7) having the
required form were that the Fourier transforms (18) and
(30) do not have zeroes at Q ¼ j2kj.
The convolution leading to (23) is trickier. The required

integral is

g
A0B⃗

ð1;1Þ

¼ Ã0ðQ⃗Þ � g
B⃗ð1;1ÞðQ⃗Þ ¼ 1

2π

Z
d3lÃ0ðQ⃗ − l⃗Þ gB⃗ð1;1Þðl⃗Þ:

ðA8Þ

Since
g
B⃗ð1;1Þ contains terms proportional to Q−2 and

Q−2ðv̂ · Q̂ÞQ̂, the full convolution may be split into two

separate terms. Using the well-known Fourier transform of
the nonrelativistic A0, which is also proportional toQ−2, the
first, slightly simpler term is determined by

1

Q2
� 1

Q2
¼ 1

2π

Z
∞

0

l2dl
Z

π

0

sinϑ dϑ

×
Z

2π

0

dφ
1

Q2 þ l2 − 2Ql cosϑ
1

l2
: ðA9Þ

The spherical coordinates of the integration variable l⃗ are
ðl; ϑ;φÞ. The φ integration is manifestly trivial. With the
substitution υ ¼ cos ϑ, the remaining two integrals are

1

Q2
� 1

Q2
¼

Z
∞

0

dl
Z

1

−1
dυ

1

Q2 þ l2 − 2Qlυ
: ðA10Þ

The key observation is that, since the integration over υ
ranges over a region that is symmetric about zero, the
integrand of the outermost l integration is an even function
of l. Changing the sign of l changes the value of the
integrand. However, simultaneously changing the sign of υ
returns the integrand to its original value, and all values of υ
between −1 and 1 are included in the integration. This
means that the l integration may be extended to run from
−∞ to ∞ (and then halved). Doing this and then reversing
the order of integrations gives

1

Q2
� 1

Q2
¼ 1

2

Z
1

−1
dυ

Z
∞

−∞
dl

1

ðl −QυÞ2 þ ðQ2 −Q2υ2Þ
ðA11Þ

¼ 1

2

Z
1

−1
dυ

�
1

Q
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − υ2

p tan−1
�

l −Qυ

Q
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − υ2

p
��		

	
	
∞

−∞

ðA12Þ

¼ π

2Q

Z
1

−1
dυ

1
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − υ2

p ðA13Þ

¼ π2

2Q
: ðA14Þ

This accounts for part of the final term proportional to v̂.
For the convolution with Q−2ðv̂ · Q̂ÞQ̂, what is required

is merely assembling the result from other calculational
elements that have already been completed. The φ inte-
gration is more complicated than in (A9), but it has already
been done in (12),

Z
π

0

dφ ðv̂ · l̂Þl̂ ¼ π½ð1 − υ2Þðsin θ0 cosϕ0x̂þ sin θ0 sinϕ0ŷÞ

þ 2υ2 cos θ0ẑ�: ðA15Þ

The remaining integrations proceed as in (A11). Thus, we
have, again reversing the order of the iterated integrals,
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1

Q2
� ðv̂ · Q̂ÞQ̂

Q2

¼ 1

4

Z
1

−1
dυ ½ð1 − υ2Þðsin θ0 cosϕ0x̂

þ sin θ0 sinϕ0ŷ − 2 cos θ0ẑÞ þ 2 cos θ0ẑ�

×
Z

∞

−∞
dl

1

ðl −QυÞ2 þ ðQ2 −Q2υ2Þ ðA16Þ

¼ π

4Q

Z
1

−1
dυ

� ffiffiffiffiffiffiffiffiffiffiffiffi
1 − υ2

p
½v̂ − 3ðv̂ · Q̂ÞQ̂� þ 2ðv̂ · Q̂ÞQ̂

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − υ2

p
�

ðA17Þ

¼ π2

8Q
½v̂þ ðv̂ · Q̂ÞQ̂�: ðA18Þ

Inserting the proper multiplicative factors and taking a
difference of (A14) and (A18), we recover the result (23).
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