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Bounds on vacuum-orthogonal Lorentz and CPT violation
from radiative corrections
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(Received 30 April 2019; published 14 June 2019)

Certain forms of Lorentz violation in the photon sector are difficult to bound directly, since they are
“vacuum orthogonal”—meaning they do not change the solutions of the equations of motion in vacuum.
However, these very same terms have a unique tendency to contribute large radiative corrections to effects
in other sectors. Making use of this, we set bounds on four previously unconstrained d ¼ 5 photon
operators at the 10−25–10−31 GeV−1 levels.

DOI: 10.1103/PhysRevD.99.111701

Since the 1990s, there has been a great deal of renewed
interest in the idea that some seemingly fundamental
symmetries in physics, such as Lorentz and CPT sym-
metries, might actually be very weakly violated in nature.
Thus far, there is no compelling experimental evidence for
such a conjecture. However, since these symmetries are
perceived as being so basic that they underpin our current
theories of elementary particle physics and of gravitation, it
is worth understanding exactly how precisely the sym-
metries have been measured. If such putatively fundamental
symmetries were found to be ever so slightly broken, that
could change our expectations about the nature of physical
laws at the most basic level. Here, we will introduce a new
method for placing strong bounds on forms of Lorentz
violation which have previously been considered quite
difficult to observe.
There are a number of reasons why interest in searches

for Lorentz and CPT violation have picked up quite a bit in
the last two decades. There has always been the motivation
alluded to above—the notion that any principle that seems
so fundamental ought to be studied and understood as
precisely as possible. However, interest in broken Lorentz
and CPT symmetries expanded a great deal as it came to be
realized that many of the conceptual frameworks that have
been proposed as ways of describing quantum gravity seem
to allow for Lorentz violation, at least in certain parameter
regimes [1–6]. Moreover, it was also realized that older
tests of Lorentz and CPT symmetry had not really done a
good job of constraining the full parameter space of

Lorentz and CPT violation. With the development
of a systematic effective field theory (EFT) to describe
the possible forms that Lorentz violation may take in the
interactions of standard model fields, it became possible to
make rigorous comparisons between the results of different
types of Lorentz tests and to design new experiments to
explore regions of the parameter space that have not
previously been well constrained.
This EFT is known as the standard model extension

(SME) [7,8]. Its action is built using standard model fields,
constructed subject to the same requirements as regular
standard model operators, except that they need not be
invariant under rotations or Lorentz boosts. Since it is not
possible to have a CPT-violating quantum field theory with
a well-defined S-matrix without there also being Lorentz
violation [9], the SME suffices as the most general EFT
for describing CPT violation as well as Lorentz violation.
The SME, in its most general form, has an infinite tower of
operators (of progressively increasing dimension) in its
action, but when the additional requirement of renormaliz-
ability is imposed on the theory, the result is the minimal
SME (mSME), which has a finite number of physically
observable parameters. In many cases, it makes the most
sense to parametrize the results of experimental Lorentz
tests as bounds on linear combinations of mSME coupling
parameters. However, there has also been growing interest
in the higher-dimensional Lorentz-violating operators that
are not part of the mSME—especially in the electromag-
netic sector [10], where precise measurements of the
polarization of light coming from cosmologically distant
sources can often been used to place extremely stringent
bounds. Depending on what assumptions are made, many
of the same experiments that have been used to bound
mSME parameters could also be interpreted as giving
bounds on the coefficients of the nonminimal theory.
A summary of the current bounds on many different
SME coefficients may be found in [11].
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However, there are some types of higher-dimensional
photon Lorentz violation that cannot be bounded using
birefringence measurements. In fact, some parameters are
quite difficult to constrain by any technique. We shall
provide new bounds on a class of nonminimal SME
operators for photons—operators which are otherwise quite
difficult to study. This will be accomplished through an
examination of the quantum corrections that such operators
can contribute to in other sectors of the SME that are easier
to study.
The general form of a SME operator can be constructed

as a product of standard model fields and their derivatives.
However, unlike in the standard model, this product may
have free Lorentz indices. These indices are then contracted
with a constant tensor, which represents a preferred back-
ground in spacetime. The coefficients that make up this
tensor are the quantities that experiments can be used to
place bounds on. If Lorentz symmetry is broken sponta-
neously (as might be the case in a number of proposed
quantum gravity frameworks), then the coefficient tensors
are related to the vacuum expectation values of dynamical
fields that possess tensor indices.
With increasing mass dimension, nonminimal SME

operators get more and more derivatives, and each added
derivative typically requires an additional index on the
coefficient tensor, to be contracted with the index on ∂μ.
The proliferation of indices means that the number of
possible Lorentz-violating operators increases with the
operator dimension. Moreover, in most cases, the presence
of each additional derivative means an additional power of
the energy in a term’s observable effects on relativistic
quanta. However, there are important exceptions; when two
derivatives are contracted to form ∂μ∂μ ¼ ∂2, the resulting
term scales as the invariant mass squared of the quanta, not
with the energy. This makes any term in the electromag-
netic sector that includes a ∂2 factor what is known as
“vacuum orthogonal.” The name comes from the fact that
such terms are unobservable in the vacuum; any vacuum
solution of the ordinary Maxwell’s equations (with momen-
tum p2 ¼ 0 in Fourier space), will also be a solution to the
theory with the vacuum-orthogonal operator appended to it.
This kind of behavior appears to make the vacuum-
orthogonal terms hard to constrain. For example, polari-
metric measurements on the radiation from cosmologically
distant sources has been tremendously useful in con-
straining the coefficients that lead to photon birefringence
[11]; the resulting bounds can be extremely tight, because
of the long propagation distances involved, but the tech-
nique cannot be used to constrain the vacuum-orthogonal
terms. A completely different approach is needed for the
vacuum-orthogonal sector.
Note that discrete symmetries (C,P, andT) cannot be used

to distinguish the vacuum-orthogonal operators containing
∂2 from rotation-invariant operators involving ∂2

0 or ∂j∂j.
Thus far, direct measurements of the vacuum-orthogonal

terms have typically utilized matter-filled resonant cavities.
The rest frame of the material breaks the boost invariance
and ensures that the photons in the cavity will have p2 ≠ 0.
Yet while the vacuum-orthogonal operators have few

directly observable tree-level effects, they (unlike many
other terms with d > 4) are “unsafe” with respect to
quantum corrections—in the sense that they can make
direct (and large) contributions to the renormalization of
lower-dimensional operators. Higher-dimensional operators
with many Lorentz indices typically cannot make radiative
contributions to d ¼ 3 and d ¼ 4 operators, because there
are no d ≤ 4 operators with the same Lorentz structures.
A well known example of this phenomenon is that when a
conventional gauge theory is regulated at short distances by
a lattice, the low-energy behavior is Lorentz invariant, in
spite of the use of a Lorentz-violating regulator. The Lorentz
violation due to the lattice is irrelevant (in the renormaliza-
tion group sense), because the dominant lattice effects are
characterized by a symmetric four-index tensor, and there
are no symmetric four-index tensor operators in the long-
distance theory to “inherit” the Lorentz violation from the
short-distance lattice.
However, when a Lorentz-violating operator of dimen-

sion d includes a Lorentz scalar ∂2 factor, the operator will
have precisely the same tensor structure as another operator
of dimension d − 2. This means that the two terms may be
intermixed by radiative corrections. We shall concentrate
here on how a d ¼ 5 generalization of the Lorentz-violating
Chern-Simons term in the photon sector contributes to a
d ¼ 3 b-type operator in the charged fermion sector.
However, the phenomenon is fairly general. The radiative
corrections involve virtual photons that are far off shell,
with virtual momenta p2 ∼ Λ2, for some ultraviolet cutoff
Λ. So for every factor of ∂2 in the structure of a higher-
dimensional operator, there will be quantum corrections to
lower-dimensional analogues that are enhanced by factors
of the large quantity Λ2.
The SME Lagrange density for a Lorentz-violating

generalization of quantum electrodynamics (QED) with a
nonminimal, vacuum-orthogonal, d ¼ 5 operator takes the
form

L5¼−
1

4
FμνFμνþ

1

2
k
¬ μ
5ϵμαβγF

αβ∂2Aγ þ ψ̄ði∂−m−e=AÞψ ;
ð1Þ

the ¬ atop the Lorentz violation coefficient tensor indicates
its vacuum-orthogonal nature. The experimental signifi-
cance of this operator is that it can make radiative
corrections to a readily observable form of Lorentz viola-
tion in the fermion sector. This occurs through the insertion

of a k
¬

5 vertex into the virtual photon propagator in the usual
one-loop fermion self-energy diagram.
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The contribution this makes to the fermion self-energy is

−iΣðpÞ ¼ −e2
Z

d4k
ð2πÞ4 γ

μSðkÞγνDðp − kÞ½−iðp − kÞ2k¬ α
5ðp − kÞβϵαβμν�Dðp − kÞ; ð2Þ

with SðkÞ and Dðp − kÞ being the usual fermion and boson propagators. Inserting a Feynman parameter x and shifting the
integration variable to l ¼ k − xp gives

−iΣðpÞ ¼ −2e2ϵαβμν
Z

1

0

dx x
Z

d4l
ð2πÞ4

γμðlþ xpþmÞγνk¬ α
5½l − ð1 − xÞp�2½l − ð1 − xÞp�β
ðl2 − ΔÞ3 ; ð3Þ

where Δ ¼ ð1 − xÞm2 − xð1 − xÞp2, as usual for the fer-
mion self-energy. For on-shell fermions, Δ ¼ ð1 − xÞ2m2.
The largest radiative contribution will come from the

Oðl4Þ term in the numerator. So the term from −iΣðpÞwith
the greatest naive degree of divergence is

−iΣðpÞ∼−2e2ϵαβμνk
¬
α
5

Z
1

0

dxx
Z

d4l
ð2πÞ4 γ

μγργ
νgστ

lρlσlτlβ

ðl2−ΔÞ3 :

ð4Þ

The l-integration is quadratically divergent. Cutting off the
integration with a regulator at a scale Λ gives

−iΣðpÞ ∼ −
3ie2

64π2
Λ2k

¬
α
5γαγ5: ð5Þ

This can be found, for example, using dimensional
regularization and replacing the divergent Γ-function
Γð1 − d=2Þ → Λ2=m2; the exact numerical coefficient will
depend on the precise meaning of Λ if a different regulator
is used, but the result (5) will be sufficient for placing

conservative, order-of-magnitude bounds on k
¬
5. This con-

tribution to ΣðpÞ is quite similar that made in a superficially
renormalizable theory with a d ¼ 3 Chern-Simons term
[12], differing only with the degree of the divergence.
The net result of this radiative correction is the addition

of a term of the form ψ̄=bγ5ψ to the effective Lagrange
density for the fermions, where

bμ ¼ −
3e2Λ2

64π2
k
¬ μ
5: ð6Þ

This would have immediate experimental consequences,
since the b coefficients give rise to a number of easily
observed spin-dependent phenomena. Bounds on mSME
coefficients such as b are normally quoted in sun-centered
celestial equatorial coordinates ðT; X; Y; ZÞ. For two of the
spatial components, bX and bY , the best bounds for a
charged fermion species are for protons, made using a
He/Xe atomic magnetometer. The bounds are at the
jbXj; jbY j≲ 10−32 GeV level [13,14]. The best bounds
on bZ (the component along the direction of the Earth’s

rotation) and the time component bT come from torsion
pendulum measurements using magnetized samples con-
taining macroscopic numbers of electron spins, with con-
straints at the jbZj≲ 10−29 GeV and jbT j ≲ 10−26 GeV
levels [15,16]. (These two components of b are harder to
measure because it is not possible to just use the rotation of
the Earth to search for their anisotropic effects.)
Unfortunately, none of these bounds are “clean.” All the
constraints are on weighted sums of multiple SME coef-
ficients, which are hard to disentangle in nonrelativistic
experiments. However, if k

¬

5 represents the ultimate source
of all Lorentz violation in the theory, then there will be no
induced b for a neutral particle like a neutron, and the
magnetometer and torsion pendulum bounds are just on the
induced b coefficient for the charged particles—which is
universal by (6).
The extremely tight bounds on linear combinations

containing the b coefficients for charged fermions should

translate into similarly stringent constraints on the k
¬

5

coefficients. However, to find useful numerical estimates,
the issue of the quadratic divergencemust be addressed. The
SME, particularly when nonminimal terms are included,
must be interpreted as an EFT; it is valid for calculations up
to some scale, but a different ultraviolet completion of the
theory is needed above that scale. Empirically, we know that
QED is valid up to approximately the electroweak scale of
∼100 GeV. Nor is there any strong Lorentz violation up to
this scale; this is known from collider searches for Lorentz
violation with heavy particles such as the top quark [17,18].
We shall therefore takeΛ ≈ 100 GeV as a lower estimate

of the cutoff scale for the virtual momenta in the fermion
self-energy. Based on the existing constraints on fermionic
b coefficients and setting bounds conservatively, at least an
order of magnitude looser than given by direct application
of (6), to allow for possible cancellations between the
radiatively generated b coefficients and those coefficients
that are intrinsic to the fermion, the resulting constraints are

jk¬ X
5 j; jk

¬
Y
5 j ≲ 10−31 GeV−1 ð7Þ

jk¬ Z
5 j≲ 10−28 GeV−1 ð8Þ
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jk¬ T
5 j ≲ 10−25 GeV−1: ð9Þ

Not only are these the first bounds placed on the coef-
ficients for vacuum-orthogonal operators with d ¼ 5, they
are not that dissimilar to many of the extremely tight
bounds on other directly observable d ¼ 5 operators,
placed using astrophysical birefringence measurements,
which cover a ∼10−23–10−34 GeV−1 range [19–23].
This method of placing bounds is specific to the vacuum-

orthogonal terms. The reason that the operator parametrized

by k
¬

5 is unsafe is that it has the same discrete symmetries and
the same Lorentz structure as the fermion b operators. Other
bilinear electromagnetic terms with operator dimension
d ¼ 5 will have the same number of derivatives, but
without two of the derivatives being contracted to form a
d’Alembertian; this requires the presence of additional
indices on the coefficient tensor, and there are no observable
d ¼ 3 operators with matching Lorentz structures.
Limits on forms of Lorentz violation that are not vacuum

orthogonal typically scale asE−ðd−2Þ orE−ðd−3ÞL−1, whereE
is the energy scale of the quanta involved in an experimental
measurement and L is the line of sight in an experiment
measuring photons’ polarizations or times of flight. For the
vacuum-orthogonal terms in the action, the strength of any
bounds based on radiative corrections to lower-dimensional
operators involve the replacement of one factor ofE−2 byΛ−2

for each factor of ∂2. Since Λ is, in principle, the scale up to
which the SME is valid as a low-energyEFT, this can indicate
significant improvement in the tightness of the bounds,
relative to what may be possible for operators that are not
vacuum orthogonal. This means that radiative corrections are
the most natural source for strong bounds on the vacuum-
orthogonal Lorentz- and CPT-violating operators.

The radiative mixing of k
¬

5 and b also works the other
direction [24,25]; starting from an action containing a
fermionb term, quantum corrections will generate an infinite
series of vacuum-orthogonal photon terms. Including all the
terms at OðbÞ, the effective Lagrange density due to b
insertions in the one-loop photon self-energy is

ΔLAF¼
e2

4π2
bλϵλμνρ

��
sin−1ð

ffiffiffiffiffiffiffiffi
−∂2

p
=2mÞ

ð
ffiffiffiffiffiffiffiffi
−∂2

p
=2mÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ∂2=4m2

p −1

�
Aμ

�

×ð∂νAρÞ: ð10Þ

The transcendental function appearing in (10) can be
expanded as a Maclaurin series, so long as jξj < 1, where
ξ ¼

ffiffiffiffiffiffiffiffi
−∂2

p
=2m ¼

ffiffiffiffiffi
p2

p
=2m. (At ξ ¼ 1, there is the obvious

branch cut, corresponding to the threshold for the creation of
real fermion-antifermion pairs.) The first few terms of the
series expansion are

sin−1 ξ

ξ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p − 1 ¼ 2ξ2

3
þ 8ξ4

15
þ 16ξ6

35
þ 128ξ8

315
þ � � � : ð11Þ

(The terms in this expansion suggest, but never quite achieve,
a simple pattern.)
The subtraction of the Oðξ0Þ term corresponds to having

the d ¼ 3 Chern-Simons term vanish. The radiative cor-
rections to this term were quite controversial at one point.
In a pure Abelian gauge theory, not embedded in a larger
theory that includes gravitation, and with explicit Lorentz
violation in the form of a tree-level b term, it turns out that
the d ¼ 3 term is finite, yet also of undetermined magni-
tude. The ambiguity is related to the fact that the d ¼ 3 term
with just one derivative is not, on its own, gauge invariant.
(The integrated action is, however, gauge invariant, which
is enough to ensure that the equations of motion are also
invariant.) The ambiguity does not extend to the non-
minimal terms, since they are fully gauge invariant,
depending only on derivatives of A rather than on A itself.
Moreover, if the Abelian gauge theory is part of a larger

theory that includes general relativity (or a more general
metric theory of Riemannian gravity), matters are subtly
different. Explicit breaking of Lorentz invariance by ab term
is not consistent with the metrical structure of spacetime
[26]. Unless b is actually derived from the vacuum expect-
ation value of a separate axial vector field (endowed with its
own nontrivial dynamics), the Bianchi identities that are
required for the geometric interpretation of gravity cannot be
satisfied. (There may be more general geometric theories of
gravitation, perhaps utilizing Finsler geometry, that avoid
this problem. However, these potential theories are, at
present, too poorly developed to provide a framework for
studying loop corrections involving quantum fields on these
kinds of backgrounds.) The modified photon self-energy
must be transverse to both of the external momenta, which
are potentially different, sinceb, being a dynamical quantity,
can carry momentum itself [27]. The presence of two
independent transversality conditions forces the self-energy
to be at least quadratic in momentum, which rules out the
d ¼ 3 operator, but not the d > 4 ones [28].

Unfortunately, the radiative corrections to k
¬

5 do not seem
to be useful for setting any additional bounds. The coef-

ficients k
¬
5 of the d ¼ 5, vacuum-orthogonal form of Lorentz

violation are extremely difficult to constrain directly. What

we have shown, however, is that k
¬

5 and similar terms are, on
the other hand, uniquely susceptible to being constrained
using radiative corrections. Existing bounds on the b
parameters for charged fermions can be interpreted as limits

on the components of k
¬

5 at the 10−25–10−31 GeV−1 levels,
not so different from the bounds on other d ¼ 5 operators
which are not vacuum orthogonal.
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