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Abstract:  While methodologists have provided us ample notice of both the problem of 

non-proportional hazards and the means of correcting for them, less attention has been 

paid to the post-estimation interpretation.  The suggested inclusion of time interactions in 

our models is more than a statistical fix:  these corrections alter the substantive meaning 

and interpretation of results.  Framing the issue as a specific case of multiplicative-

interaction modeling, I provide detailed discussion of the problem of non-proportional 

hazards and present several appropriate means of interpreting both the substantive impact 

and the significance of variables whose effects may change over time.   

                                                 
1
 I owe any success this project may have to the gracious assistance of Andrew Enterline and Kyle Joyce, 

Scott Meinke, and Jonathan Golub and Bernard Steuenenberg for allowing me to replicate their studies.  
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1. Introduction: 

In the last decade, Box-Steffensmeier and colleagues produced several 

explications of non-proportional hazards (NPH) as a serious statistical issue in event 

history analysis (Box-Steffensmeier and Zorn 2001; Box-Steffensmeier, Reiter and Zorn 

2003; Box-Steffenesmeier and Jones 2004).  As a result, models fitted for NPH became 

more common in the literature of all major subfields (e.g. Chiozza and Goemans 2004; 

Meinke 2005; Golub 2007; Golub and Steunenberg 2007; Balch-Lindsay, Enterline and 

Joyce 2008; Zhelyazkova and Torenvlied 2009).  Correcting for NPH through the 

inclusion of time interactions for variables in violation of the proportional hazards 

assumption (PHA), however, is more than a quick statistical fix; it complicates the 

interpretation of statistical results and calls for more advanced post-estimation 

techniques.  With the notable exception of Golub and Steunenberg (2007), little attention 

has been devoted to this aspect of NPH.  Building on those authors’ effort, I outline 

below three interpretation strategies which fit the bill.  The simulation procedures I 

propose provide superior ability to report the substantive importance of continuous 

variables’ NPH effects and appropriate information regarding uncertainty around those 

effects.
1
    

Many analysts find interpreting the results of the NPH Cox model difficult.  What 

does it mean, for instance, when the constitutive term’s coefficient fits the hypothesis but 

the time interaction does not?  Is the hypothesis supported, refuted or neither?  What is 

the actual estimated effect of this variable, and how can we best convey it to the reader?  

Political scientists must answer these questions, because many of our hypotheses involve 

precisely the type of dynamic social processes likely to create NPH.  



 

2 

 

Acknowledging NPH corrections as a special case of multiplicative-interaction 

modeling, we can utilize existing knowledge to address these questions (see also Golub 

and Steunenberg 2007).  As with any interaction effect, appropriate interpretation 

methods include the calculation of marginal effects and first differences (Brambor, Clark 

and Golder 2006; Kam and Franzese 2007).  Extant software add-ons and guides, 

however, do not accommodate the complex, nonlinear Cox model.
2
   

Discussion proceeds below with a brief review of the PHA and the proper 

interpretation of interaction effects.  I then present the calculations for measures of 

substantive interest in the NPH Cox model and outline three methods for proper 

interpretation of non-proportional effects.  Finally, I demonstrate the merits of these 

strategies through replication of NPH Cox models from three published papers covering 

civil war duration (Balch-Lindsay et al. 2008), directive approval in the European Union 

(Golub and Steuenenberg 2007), and U.S. Congresspersons’ tendency to switch positions 

on recurrent issues (Meinke 2005).  The broad substantive range of these studies 

illustrates the widespread need for attention to nonproportionally time-dependent 

processes in our expectations and our empirical models. 

   

2. The Proportional Hazards Assumption and Political Science 

 The proportional hazards assumption (PHA) is embedded in the logic of the 

standard Cox duration model.  To see this property consider the formula for its hazard:   

  ( )     ( ) 
   ,     (Eq. 1) 

where i denotes each observation i= 1…n; t is a point in time; β is the vector of 

coefficient estimates and Xi is the vector of covariates.  No matter the value of the linear 
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index, Xiβ, the form of the function dictates that risk of failure at each point in time shifts 

“proportionally” by the baseline, h0.  This issue may be more clearly visible in the hazard 

ratio function, which expresses the risks of failure for a given case i relative to that of 

another case j.  

  ( )   ( )      (     )⁄ .     (Eq. 2)  

The effect of covariates X may shift from one unit of time to the next (e.g. from day one 

to day two, or from day ten to eleven), but always by this single, proportional quantity. 

 Box-Steffensmeier and Jones (2004, 132) warn:  “Theoretically, one would be 

suspicious of the [PHA] if there was reason to expect that the effect of a covariate 

changes over time”.
3
  As political scientists, our suspicions regarding the PHA should be 

aroused more often than not.  While the term “non-proportional hazards” sounds esoteric, 

situations giving rise to it abound.  If we argue that experience makes people better at 

their jobs, that the effectiveness, tenability and legitimacy of institutions increases with 

age, that actors in competition send signals and adjust their strategies in response to each 

other, that new ideas gather force from their transmission until reaching an important 

threshold, then we are arguing that key covariates’ effects will change over time.  If these 

dynamic trends do not modify the effects of all covariates equiproportionally over time, 

then the proportional hazards assumption will not hold.  Essentially, the nature of the 

political processes of learning, institutionalization, strategic developments and 

information transmission which interest us as a discipline are likely to produce frequent 

violations of the PHA.  

 Finnemore and Sikkink’s (1998) theory of international norm life-cycles, for 

example, hypothesizes a predictable, increasing trend in the power of norms to alter 
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actors’ behavior as they become internalized over time.  Models of norm-efficacy 

typically pit the importance of ideas against that of power and strategic interests.  While 

norms strengthen over time, geopolitics and physical power will exert either static or 

decreasing pressure on international actors.  Another widely known theory posits 

operation of a “generational effect” on the repugnance for war within a society; the 

grandchildren of soldiers tend to romanticize warfare, having suffered none of its costs 

directly (Wright 1942; Toynbee 1972).  This would produce a pattern of decreasing 

likelihood of conflict following a traumatic war, the magnitude of which would decay 

over time until the opposite effect would ultimately surface with the growing influence of 

hawkish grandchildren.  While the worldview of the citizens follows this dynamic path, 

the strongest determinants of international war – territory and rivalry – will likely retain 

effects of the same direction and magnitude over time.     

 Theories which imply effects likely to violate the PHA also exist in comparative 

and American politics.  Light’s (1999) analysis of the American presidency posits two 

competing, simultaneous dynamic processes.  The first is an increasing trend in 

presidential competence over time:  all presidents learn on the job and all presidents try to 

improve over time.  The second is a decreasing stock of political capital:  as time passes, 

presidential approval inevitably declines as opposition criticism increases.  Unless these 

dynamics shifted proportionally with the effects of all other covariates included, they 

would certainly violate any event-history analysis of a president’s efficiency and 

effectiveness assuming proportional hazards.
4
  The opposing direction of these dynamics 

likely increases the odds that any model attempting to account for both will violate the 

PHA.         
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 In comparative politics, the study of electoral institutions’ effects on voter 

behavior and electoral outcomes ranks among the oldest and most prolific research 

agendas (e.g. Cox 1997; Duverger 1954).  The equilibrium behaviors suggested by 

different electoral institutions, however, cannot be expected to materialize instantly.  

Voters require time and experience with a new system to determine how to vote 

“strategically”; the effect of institutions on behavior, then, will change over time as 

voters observe the results of their actions (e.g. Wittrock 2008).  Theories of political party 

emergence and competition also posit dynamic learning and institutionalization processes 

which would produce changing effects over time (e.g. Kitschelt 1989; Downs 1997).  

Inglehart’s modernization thesis predicts a changing effect of economic development and 

democratic government on a host of questions over the course of time (e.g. Inglehart and 

Welzel 2005).  In all three cases, these institutional changes take place in a context of 

perhaps stickier cultural and geographical effects.  Individual-level explanations of voter-

behavior, also, must contend with the generally more static effects of partisan 

identification, race and gender.  If these theories hold, then we should expect the effects 

of some variables in event-history models of voting behavior to change over time.  

Because of the mixture of social processes and structural effects, it seems unlikely that all 

these effects will shift proportionally over time.   

The examples above outline reasons to believe the PHA will be violated in many 

analyses within all major branches of political science research.  When the PHA is 

violated without correction, systematic bias in coefficient estimates results:  the effects of 

variables with NPH are overestimated while the hazard rate increases and underestimated 

while it decreases.  Moreover, if the effects of such variables change from positive to 



 

6 

 

negative over time (or vice versa) the violation of the PHA may result in a Type II error, 

declaring the effects insignificant when they in fact have a conditionally significant, but 

changing, effect (Box-Steffensmeier and Jones 2004, 132).  Statisticians have developed 

strategies for assessing the violation of the PHA in the Cox model, notably including the 

schoenfeld residuals test (Box-Steffensmeier and Zorn 2002, 977).  This test is easily 

implemented in statistical packages.   

Box-Steffensmeier and colleagues recommend a simple response to significant 

results of the Schoenfeld residuals test:  model the relationship between covariates and 

time by including interaction terms, relating the two by some standard function (Box-

Steffensmeier and Jones 2004, 136), most commonly the natural log of time (Box-

Steffensmeier and Zorn 2002, 978; Box-Steffensmeier and Jones 2004, 136; Box-

Steffensmeier et al. 2003).  Inclusion of these multiplicative-interaction terms alongside 

the constitutive term allows estimation of both the initial effect and the over-time changes 

in effect.
5
  The proliferation of interactions, however, substantially complicates 

interpretation of results.   

Of course, this is no reason to eschew appropriate model specification.  The 

analyst must take care to assess, anticipate, and evaluate deviations from the PHA and 

model these trends appropriately, recognizing that inclusion of multiplicative-interaction 

terms alters the meaning of the estimated coefficients and standard errors.  Since 

Friedrich’s (1982) essay on the subject, many other social scientists have written in 

defense of multiplicative modeling and detailed the issues it raises regarding 

interpretation and reporting uncertainty (see Jaccard and Turrisi 2003; Brambor et al. 
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2006; Kam and Franzese 2007).  The current wisdom on the interpretation of 

multiplicative-interactions will be briefly reviewed in the next section. 

 

  3.  The Interpretation of Multiplicative Models  

As Kam and Franzese (2007, 20) bluntly pronounce, “... coefficients [on 

constitutive and interaction terms] are not effects”; they are not as readily interpretable as 

in purely additive-separable linear regression.  The constitutive terms’ coefficients tell us 

the effect of that variable when the other interacting variable(s) is (are) equal to zero.  

Accordingly, “… rather than being constant (as they are in the additive model), the 

standard errors of the conditional coefficients vary according to the level of the other 

independent variable” (Friedrich 1982, 810).
6
  With the proliferation of non-linear 

modeling techniques, quantitative political scientists have become accustomed to 

performing minor transformations, such as retrieving the odds-ratio or calculating 

predicted probabilities, to retrieve substantively meaningful quantities from their 

regression coefficients.  Inclusion of interaction effects introduces a similar need for 

additional post-estimation calculations (Friedrich 1982; Ai and Norton 2003; Brambor et 

al. 2006; Kam and Franzese 2007).  Obviously, we would like to know about our 

independent variables’ impact on the dependent variable at more than just one (possibly 

rare, non-existent, or even illogical) value of the other factor.  Political methodologists 

forward two useful strategies for obtaining such information:  marginal effects and first 

differences (see Brambor et al. 2006; Kam and Franzese 2007).     

The marginal effect of a covariate, X1, which has been interacted with another 

covariate, X2, is the first derivative of the likelihood function, ∂Y/∂X1.  In the linear 
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regression case, the marginal impact of an increase in X at a specific point is simply the 

sum of the effect of X1 when X2 is zero (i.e. the constitutive term coefficient) and the the 

product of the interaction term coefficient and the value of X2 (see Friedrich 1982; 

Brambor et al. 2006; Kam and Franzese 2007).
7
  ∂Y/∂X1 is, by definition, the change in 

the dependent variable for a marginal change in the independent variable.  In other words, 

marginal effects tell us the change in Y for an arbitrarily small change in X1.     

 The information necessary for calculation of marginal effects and their standard 

errors for most models is easily attained using modern statistical software.  Brambor et al. 

(2006) provide template code for the necessary procedure for linear regression and binary 

dependent variable models, which should allow even inexperienced programmers to 

obtain appropriate results and present them graphically.
8
  The grinter utility, written 

for Stata by Boehmke, allows analysts to produce equivalent graphics with even less 

effort.
9
 

 When X1 is an ordinal or nominal variable, however, the marginal effect approach 

can be an unduly abstract means of communicating results.  Kam and Franzese (2007, 25) 

and King et al. (2000) thus recommend differences in predicted probability as an 

alternative.  A first differences approach calculates the change in the dependent variable 

as the independent variable moves from one discrete value to another, taking bigger steps 

than the marginal changes underlying differentiation. The first difference may be 

calculated for unit changes or for substantively interesting intervals (e.g. from the 

minimum to the mean). Standard errors and first differences from many models can be 

calculated using the guidelines available in Kam and Franzese (2007, 89) or with King et 

al.’s (2000) Clarify software for Stata.  
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4. Interpretation Strategies for the NPH Cox Model 

 Calculating appropriate marginal effects and standard errors for the NPH Cox 

model may be daunting for many political scientists, due to the complex, nonlinear 

functions involved.  Under conditions of nonproportional hazards, an estimate of the   

Cox hazard rate for case j at time t is, 

  ( )    (           (  )       )  ( ).   (Eq. 3) 

The exponential term gives the sensitivity of the hazard to covariates, X and Z; unlike in 

the standard PHA model, the non-proportionally time-dependent effects of X are modeled 

by the interaction of X with log time.  The baseline hazard rate, h0(t) is the probability 

that a case will fail at time t, a value which is assigned equally to all cases j which are 

still “at risk” (i.e. which have not yet failed).  To recover this quantity, we must calculate 

the likelihood of a case j remaining in the risk set, R, at time t=ti.  That likelihood is then 

subtracted from one to yield the baseline hazard for the time threshold t=ti:   

 ̂ (  )     ∑  (           (  )       )
   (  )

.  (Eq. 4)
 10

 

Even in this simplest possible scenario which includes only one PHA-violating effect and 

a single level interaction, taking the derivative with respect to X produces a complex 

function.
11

  As the number of PHA-violating effects proliferates, the difficulty of 

calculating this function and its standard error will increase.  Happily, those who wish to 

avoid the time and effort necessary to calculate the true marginal effect may do so by 

following Golub and Steunenberg’s (2007) example.         

Golub and Steunenberg (2007) utilize a helpful algebraic manipulation.  By 

constructing a ratio of the hazards of two hypothetical cases i and j that differ only with 

respect to the value of the covariate X, we can define, at time t=t,  
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    ( )   ( )     ( ) 
(          ( )      )

  ( ) 
(          ( )     )

⁄   (
 (         ( )      )

 
(          ( )      )

)  

   (          ( )      )  (          ( )     ) 

   (          ( )      ) (        ( )     ) 

   (         ) (    ( )       ( )  ) 

          (     )(       ( ))     (Eq. 5).
12

 

This hazard ratio transformation removes the ungainly mathematical issues raised by the 

baseline hazard, thus dramatically reducing the difficulty of the calculations needed to 

interpret the role of variables whose effects change over time.     

 Golub and Steunenberg (2007) utilize two further simplified measures.  First, they 

discuss a special case of the hazard ratio, constructed such that the covariate X in the 

hypothetical observation j equals zero.  Under this condition, the hazard ratio simplifies: 

  ( )   ( )⁄     (       ( ))   (Eq. 6). 

The authors refer to this quantity as the relative hazard.  When X is binary, it describes 

the change in hazard when the variable in question is “switched on”.  When X is 

continuous, it gives the change in the hazard resultant from a jump to X=xi≠0 from X=0.   

 Secondly, Golub and Steunenberg (2007) examine the combined coefficient, (β1 + 

β2ln(t)),
13

 which relates to the contribution of Xi to the hazard rate (via the model's 

exponential-function transformation) over the range of time Analysts can easily obtain 

accurate standard errors for this quantity, because the well-known formula for the 

variance of a sum of random variables used in the linear-interaction context applies (see 

Friedrich 1982, Brambor et al. 2006, Kam and Franzese 2007).   However, reporting 

uncertainty regarding the relative hazard in Equation 6 is nearly as simple.   
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[FIGURE 1 HERE] 

 Exponentation creates the relative hazard as a monotonically increasing function 

of the combined coefficient.  While the variance of the relative hazard will be greater 

than the variance of the combined coefficient, its distribution will correspond to that of its 

referent.  Figure 1 charts a relative hazard against its non-exponentiated form.
14

  The 

reference lines indicate key points in the distribution of both variables, the fifth, fiftieth 

and ninety-fifth percentiles.  The 90% confidence interval around the relative hazard can 

be recovered by exponentiating the corresponding confidence bounds around the 

combined coefficient.
15

        

 The combined coefficient and relative hazards approaches provide viable and 

easily implemented means of evaluating the effects of time-dependent variables.  They 

allow evaluation of statistical significance across the full range of time and 

straightforward reporting of estimation uncertainty.  In terms of relating the substantive 

importance of an effect, however, these methods, as employed by Golub and Steunenberg 

(2007), may fall short.  The combined coefficient describes the direction and magnitude 

of the variable’s effect on the hazard rate over time at a specific value (usually xi=1) held 

constant over time.  While interesting, this quantity is abstract.  It may not tell us whether 

the variable exerts a substantively notable impact and it cannot reflect movement in the 

variable over time.  

 The relative hazard (see Eq 6) offers a more substantive interpretation for binary 

NPH effects, describing the difference in hazard given an X-unit change in the variable of 

interest.  With a continuous X, however, this measure may have less substantive appeal.  

The relative hazard requires a shift to some value X=xi, from xj=0, a value which may be 
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meaningless or impossible.  The effect of a continuous, X which has been interacted with 

a function of time depends on the specific value xi which is being used as well as the 

value of time.  A single calculation of the relative hazard, or combined coefficient will 

not suffice to describe the full content.  Consistent with the general good practice of 

utilizing either first differences or marginal effects to interpret continuous-variable 

interaction effects, I propose two simple simulation techniques appropriate for evaluating 

continuous NPH effects.     

 The first method for dealing with non-binary, time-dependent effects returns to 

the hazard ratio expressed in Equation 5.  The hazard ratio can be utilized in this 

previously presented form, or, as recommended by Box-Steffensmeier and Jones (2004, 

60), transformed into a percentage change in hazard rate for added substantive appeal.  

Adopting the notation in use here, the percentage change in hazard rate at time t=t can be 

calculated as:     

    ( )   (  ( ) 
(          ( )      )

    ( ) (          ( )      )

  ( ) (          ( )      )
)            (Eq. 7). 

This formula simplifies: 

    ( )   (
 
(          ( )      )

 (          ( )      )
    

  (          ( )      )

 (          ( )      )
)      

  ( (          ( )      )  (          ( )      )    )      

  ( (     )(       ( ))   )            (Eq. 8). 

As this measure closely resembles a traditional first difference in interpretation, I will 

refer to it as the first differences method rather than as a change in hazard ratio.  For a 

given change in X, the effect is null when Eq. 8 is statistically indistinguishable from 

zero, rather than from one.  Xi and Xj can be selected to provide a good measure of 
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substantive significance.  When the effect of X is suspected to change substantially across 

its range of values, it may be wise to calculate a first difference at multiple values of Xi 

and Xj.  The replication of Meinke’s (2005) vote-switching study below provides an 

example of this situation.      

 A simple simulation process can ease the calculation of confidence intervals 

around either the hazard ratio or the first difference.  As in King et al.’s (2000) Clarify 

software, a large number of  ̂ can be drawn from a multivariate Normal distribution with 

mean and variance taken from the parameter and parameter-covariance estimates of the 

NPH Cox model.  This procedure approximates the sampling distribution of   ̂, allowing 

us to present the best estimates complete with confidence bounds at the desired level as 

follows: 

1. Create a dataset with T observations, and generate values of time T=[t1…tT];
16

 

2. Draw vector of  ̂ using the parameter and covariance estimates;  

3. Calculate the desired first difference (Equation 8) or hazard ratio (Equation 5); 

4. Repeat steps 1-3 N times; 

5. Preserve median and percentile values appropriate to desired confidence level for 

each T=ti and (Xi-Xj).
17

 

 A second strategy for interpreting a continuous, PHA-violating effect calculates 

the relative hazard (Equation 6) at many values of X and across the range of time.  This 

can be accomplished with the following steps: 

1. Create a dataset with T observations, and generate values of time T=[t1…tT]; 

2. Draw a vector of  ̂ using the parameter and covariance estimates;  

3. Calculate the relative hazard (Equation 6) at value xi of X; 
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4. Repeat steps 1-3 N times; 

5. Repeat steps 1-4 at some, many, or all interesting values of X, compiling results 

in one dataset; 

6. Preserve median and percentiles appropriate to desired confidence level for each 

T=ti and X=xi.  

These simulation procedures will generate the median and upper and lower 

percentiles of the “confidence interval” for the measure at each combination of time and 

covariate values.  The measure and confidence bounds can then be charted against time to 

present a graphical summary of the effects’ substantive and statistical significance.    

While a few studies have utilized these or similar means of interpretation (e.g. Box-

Steffensmeier and Zorn 2001; Golub and Steunenberg 2007; Zhelyazkova and Torenvlied 

2009), the appropriate processes have not been elaborated transparently, which may have 

abetted the continued confusion across most empirical, political science research.  In the 

next sections I hope to dispel this remaining confusion, first by discussing selection of a 

proper measure for interpreting NPH Cox models, and providing tips for hypothesis 

testing.  The following replication of three empirical studies will provide further details 

and examples.   

5. Substantive Interpretation of Non-Proportional Effects in the Cox Model 

Interpreting PHA-violating effects requires fulfillment of four tasks:  (1) 

calculation of the variable’s effect, (2) evaluation of that effect over time, (3) substantive 

assessment of that effect, and (4) incorporation of uncertainty.  Above, I recommended 

three measures of substantive significance which can fulfill these criteria:  the hazard 
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ratio (Equation 5), the first difference (Equation 8), and the relative hazard (Equation 

6).
18

   

Though each measure brings helpful attributes to interpretation, the differences 

between them are cosmetic.  Subtracting one and multiplying by 100 changes the relative 

hazard in Equation 6 into the %Δhi(t) in Equation 8 (if Xi-Xj=1).  Similarly, the hazard 

ratio in Equation 5 and the relative hazard differ simply by the value assigned to Xj:  

when Xj=0, the relative hazard and hazard ratio are equal.  If the change in X remains 

equal, identical conclusions will be drawn regarding statistical significance.  

This mathematical equivalence allows the analyst to choose the most appropriate 

tool for his/her own presentational purposes.  The two simulation procedures outlined 

above work well for continuous variables, but would be unnecessary for a PHA-violating 

effect which stems from a dichotomous variable.  Because a change of less than one unit 

makes little sense for a binary variable, the hazard ratio simplifies to the relative hazard.  

Using simulation procedures to calculate the confidence intervals would be unnecessarily 

time-consuming.
19

 

For continuous PHA-violating effects, choosing between the hazard ratio 

(Equation 5) and the first difference (Equation 8) will be driven more by stylistic 

preference and intuitive appeal than by efficiency.  For example, in studies of 

international and civil conflict, a hazard ratio could report a raw change in the hazard of 

war onset as a tiny number.  Given the low probability of interstate war, however, the 

relative change may be huge.  In such cases, the analyst may believe a percentage change 

more accurately reflects substantive importance.
20
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Before embarking on the full process of calculating substantive measures, one 

may begin interpreting NPH Cox results through the returned coefficients.  The 

constitutive coefficient relates to the effect of the variable when the log of time equals 

zero (i.e. when the time counter equals one).  As most hypotheses do not specifically 

refer to t=1, and since the scaling of the time counter is arbitrary,
21

 analysts must take 

care:  a correctly signed constitutive coefficient need not translate to hypothesis support.  

The fate of our hypotheses rests largely with the overtime trend.  When the interaction 

term holds the same sign as the constitutive coefficient, the initial effect magnifies over 

time.  Commonly, however, the trend opposes the constitutive effect.  Though often 

interpreted as “decay” in the original effect, this need not imply that the effect of a 

variable is “wearing off” over time (Golub and Steuenenberg 2007).  The overtime trend 

may swamp the initial effect, both statistically and substantively.   

 The relative size and sign of the interaction and constitutive terms’ coefficients 

indicate the rate at which X’s effect moves over time.  A small (large) interaction term 

coefficient relative to the constitutive term coefficient indicates slow (fast) change.  

When the coefficients have opposing signs, exponentiating the ratio of the coefficients 

provides the value of time when the estimated effect flips from positive to negative or 

vice versa (Box-Steffensmeier and Zorn 1998, 17).  More precisely, that value, Tf, is: 

     
|  |
|  |             (Eq. 9). 

Locating Tf on the distribution of failure times allows evaluation of the proportion of 

cases experiencing estimated effects in either direction.  Chiozza and Goemans (2004, 

610), for example, use this method to demonstrate that the institutional instability of 

mixed regimes heightens leaders’ risks of losing office for the first 17 years, at which 
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point the estimated effect changes sign.  Because 17 years is an extremely long time to 

hang onto office, the destabilizing effect applies to most mixed-regime leaders.  Here Tf 

reveals some interesting, hypothesis-relevant information.
22

  Evaluating coefficients, 

then, can be helpful, but these strategies tell us nothing about how the variables’ effects 

evolve over time.  The replications below illustrate the added benefit of utilizing the 

approaches discussed in Section 4.   

 

5.1  Replication: Golub and Steunenberg (2007) 

Golub and Steunenberg (2007) examine the duration of European Union (EU) 

deliberation on directives.  Findings related to two key independent variables will be 

reviewed here: qualified majority voting (QMV) and legislative backlog.
23

  Table 1 

displays the successful replication of Golub’s original (2007) analysis.     

[TABLE 1 HERE] 

 Figure 2 demonstrates the relationship between the relative hazard and first-

differences approaches for binary NPH effects.  The left-hand panel replicates Golub and 

Steunenberg’s figure (2007, 561), charting the relative hazard of QMV pre- and post-

Single European Act across deliberation time.  The right panel displays the first-

differences strategy.  Comparing across the Y-axis confirms the first difference curves 

differ from the relative hazard curves by exactly one unit.
24

  Substantively, proposals not 

requiring unanimity clear faster, with QMV-eligible legislation initially 300% more 

likely to be settled than with unanimity required.  The voting rule matters most in the 

early stages of deliberation; contentious proposals prolong the process, regardless of 

rules.   
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[FIGURE 2 HERE] 

 To interpret the effect of backlogged legislation, Golub and Steunenberg (2007, 

560) calculate its combined coefficient at several points in time, holding the backlog 

itself constant at one.
25

  Using this technique, the authors conclude that the very small 

effect of legislative backlogs achieves statistical but not substantive significance.     

[FIGURE 3 HERE] 

 Unfortunately, this strategy is somewhat misleading regarding the substance of 

the estimated effect.  The combined coefficient relates only the effect of one backlogged 

item, an unlikely situation for any regularly operating legislative body.  The EU backlog 

averaged 169 pieces during the observation time.  To test the backlog’s impact on 

deliberation speed at more realistic values, I used Equation 6 and the simulation process 

above to chart its relative hazard from the minimum to the maximum.  This strategy 

produced Figure 3, in which shaded bars demarcate the range between the 2.5
th

 and 97.5
th

 

percentiles of estimated relative hazards.  Lighter shading indicates larger backlogs.  The 

thin black line and hollow diamonds highlight the median estimated relative hazard of 

one backlogged item, which represents Golub and Steunenberg’s (2007, 560) strategy. I 

split the figure to ease evaluation of the two periods of significant effects.      

 Backlog impact increases as legislation accumulates.  Compared to the 

hypothetical effect which Golub and Steunenberg (2007) evaluated, even the smallest 

observed backlog of less than 40 pieces of legislation exerts a powerful initial 

acceleration in deliberation.  At this value, the likelihood of proposals being handled in 

the first days is 50% higher than if there were no backlog.  When the backlog approaches 

the mean, the relative hazard nears a 500% increase.  Over time, the escalatory effect of 
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the backlog declines, becoming statistically insignificant for a three year range (including 

the mean and modal durations).
26

  For more controversial pieces of legislation, however, 

average or larger backlogs may further prolong deliberations.  Combining an average 

backlog with a long deliberation produces a likelihood of settlement less than half that of 

a similar bill given no backlog.
27

  Such a significant negative impact suggests that a large 

queue of work not only fails to “… expedite passage of the most controversial pieces of 

legislation” (Golub and Steunenberg 2007, 564), but can actually retard those processes.            

 

5.2 Replication: Balch-Lindsay, Enterline and Joyce (2008)  

 Balch-Lindsay et al. (2008) study the effect of external intervention on the 

likelihood of civil war termination via government victory, opposition victory or 

negotiated settlement.  Table 2 presents the successfully replicated results of their NPH 

Cox model with competing risks.  Discussion below focuses on the key factor in the 

original analysis – intervention on behalf of the government.   

[TABLE 2 HERE] 

This replication provides an example of a common question in NPH Cox 

evaluation:  how to evaluate hypotheses when constituent coefficients and time 

interactions defy expectations.  Balch-Lindsay et al. (2008) predict a positive relationship 

between intervention and government victory, and a negative relationship between 

intervention and negotiated settlements.  The estimated constitutive term coefficients, 

however, are positive and significant in both columns:  intervention in favor of the 

government increases the likelihood of both outcomes at time ln(t)=0, which is, here, the 
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first day of a civil war.  The negative, significant interaction terms suggest a changing 

effect, leading us to the overtime trend.   

Figure 4 charts the combined coefficients for pro-government intervention over 

time.
 28

   The thick lines indicate the combined coefficient for pro-government 

intervention in each model, with thin lines marking the 90% confidence intervals.
 29

  The 

dashed curves depict the density of civil war duration times.  

[FIGURE 4 HERE] 

The left-hand panel displays intervention’s effect on the likelihood of government 

victory.  The rate of change in effect quickly drags the initially positive estimated effect 

into negative territory.  This negative effect becomes significant at the 90% level at day 

286 of civil war duration.   Only about 15% of in-sample civil wars terminate before this 

date, suggesting that intervention negatively impacts the likelihood of government 

victory in most civil wars.  Exponentiating the combined coefficient at day 286 reveals a 

relative hazard of e
-1.2

=.30; civil wars with intervention experience a 70% reduction in the 

likelihood of government victory.  The negative effect continues to grow over time, 

topping out at an estimated 95% reduction at the longest observed duration time.   

The right-hand panel of Figure 4 displays the effect of intervention on the 

likelihood of negotiated settlements.  Contrary to the authors’ prediction, the effect never 

achieves significance.  At the 90% threshold, its confidence bounds include zero for the 

entire duration of the longest observation time.  Charting the full effect of this time-

dependent variable in both equations, then, reveals findings contradictory to expectations.   

[FIGURE 5 HERE]                
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Figure 5 replicates the first reported figure from Balch-Lindsay et al. (2008, 358), 

allowing comparison of interpretation techniques.  Figure 5 plots the predicted survival 

probability of each competing outcome with pro-government intervention turned on.  The 

authors note that the figure illustrates “… a third-party intervention on the side of the 

government has a different effect on the expected probability of a civil war surviving past 

a given point in time for each civil war outcome” (Balch-Lindsay et al. 2008, 356).  The 

graph does suggest a much higher probability of government victory or negotiated 

settlement than of opposition victory.  This apparent effect, however, cannot be safely 

attributed to the pro-government intervention.  Plotting the coefficient, as in Figure 4, 

reveals that any increase in the chances of these outcomes could or should be attributed to 

some other shared characteristic:  the only significant effect which intervention exerts on 

these termination types is negative.             

 

5.3 Replication: Meinke (2005) 

 The dynamic nature of Congressional politics in Meinke’s (2005) analysis turns 

our attention to the NPH model’s benefits for political science.  Meinke (2005) specifies 

a NPH Cox model of vote-switches regarding the minimum wage.  Table 3 contains the 

successfully replicated results.
30

  We will re-evaluate two variables: an indicator for 

losing the executive and a continuous measure of electoral security (the incumbent’s 

mean-centered share of the vote).  

[TABLE 3 HERE] 

[FIGURE 6 HERE]   
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 For the binary PHA-violating effect of losing the White House, charting the 

relative hazard, as in Figure 6, displays both statistical and substantive significance. For 

freshman congresspersons, a change in presidential party coincides with an estimated 

100% increase in risk of switching.  After this year, the effect of a change in executive 

control diminishes by half.  Within three years, it loses statistical significance.
31

  This 

precipitous decline could result from establishment of visible voting records, or from 

strategy-shifts towards constituent relations rather than partylines.  

 The time-varying effect of electoral security illustrates the value of fully charting 

continuous NPH effects.  Though the coefficient on the interaction term falls short of 

traditional significance thresholds, we should remember this information relates a 

conditional effect:  the average shift in effect per unit of time.  The specific values of both 

continuous interacted variables – time and margin of victory – will affect significance of 

the combined effect.  Before abandoning the hypothesis, we should chart electoral 

security’s effect at multiple values of both variables.  The resulting patterns (see Figure 

7) demonstrate one circumstance under which coefficients alone may be misleading.  

Here, the divergent behavior of very secure and very insecure new members has canceled 

out the aggregate finding.    

[FIGURE 7 HERE]   

 The shaded bars in Figure 7 indicate the interval between the upper and lower 

95% bounds from the simulated sample of relative hazards.  I selected a range of 

interesting values of security, victory by 5%, 25%, 75%, and 99%.
32

  As mean-centering 

sets the average to zero the relative hazard will compare these values to the mean.  As 

Meinke (2005, 109-113) expected, congresspersons enjoying a wider than average 
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margin of victory are more likely to switch their positions.  However, the approximately 

50% increase in hazard, which he reported, does not hold over time.  The negative trend 

rapidly pulls the combined effect into statistically insignificant territory, from which it 

does not re-emerge.  The original argument, then, receives qualified support:  safer 

representatives are more likely to switch their votes only very early in their careers.  

Moreover, highly insecure congresspersons exhibit the opposite behavior, with initial 

relative hazards half the size of those at the mean level of security.   

 [FIGURE 8 HERE] 

 Figure 8 provides an alternative depiction, charting the first differences of two 

hypothetical changes in electoral security. The solid black line gives the median 

percentage difference in hazard of switching for an increase from a very comfortable win 

to an uncontested race.  The solid gray line marks the corresponding difference were the 

candidate’s margin to decrease from the comfortable win to a victory by plurality.
33

 The 

thin, dashed lines of corresponding color mark the 5
th

 and 95
th

 percentiles from a 

simulated distribution of 1,000.
34

  Running uncontested increases the probability of 

switching by 20% compared to a comfortable victory.  The displayed difference for a 

move from comfort to tough competition shows a symmetrical decrease of 20%.
35

   For 

both cases, the impact of vote margin “wears off” quickly, dropping out of significance 

within less than six months.    

 The establishment of reputations and voting records may produce this dynamic 

pattern.  Super comfortable new representatives may not fear electoral reprisal, but over 

time they become reticent to change position, viewing continued success as support for 

their policies (Meinke 2009, personal communication).  For an embattled new 
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representative, establishing a reputation for honesty and holding onto the existing base 

will dominate strategy, producing the lower initial likelihood of switching positions.                 

 

6. Conclusion 

The replications above address a wide selection of substantive interests.  The link 

between legislative deliberations, civil war duration and vote choice may seem obscure.  

It is, however, deep and fundamental:  all three describe a political process in which the 

causal role of explanatory factors is dynamically contingent.  As political scientists, we 

are inherently interested in how these and other complex interactions unfold over time.  

The NPH Cox model provides an opportunity to develop statistical tests better suited to 

such social processes, but it requires the commitment of additional post-estimation effort.  

In each replication study, such an effort added richness to key findings and more 

thorough evaluation of hypotheses.  Appropriate application of these hazard ratio, relative 

hazards and first differences strategies will provide the necessary follow-through for 

scholars of civil war, legislative bodies, political position-taking, and the myriad other 

time-dependent processes fundamental to political science research.     
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Table 1. Replication of NPH Cox Model of EU Decision-
Making Speed in Golub (2007) 

Qualified Majority Voting 
(QMV) 

3.1218*** 
(0.4784) 

QMV After Single European Act 
(SEA) 

2.1096*** 
(0.5127) 

QMV After Maastricht 
0.4134** 
(0.1657) 

Cooperation Procedure 
-6.0408*** 
(0.6135) 

Codecision Procedure 
-5.0008*** 
(0.8763) 

EU with 9 members 
0.4962** 
(0.1984) 

EU with 10 members 
0.4569* 
(0.2429) 

EU with 12 members 
0.6589** 
(0.2569) 

EU with 15 members 
0.5706** 
(0.2625) 

Thatcher (as Prime Minister) 
-1.7162*** 
(0.3794) 

Expanded Legislative Agenda 
0.1774 

(0.1914) 

Legislative Backlog 
0.0260*** 
(0.0066) 

QMV ln(t) 
-0.4281*** 
(0.0793) 

QMV after SEA ln(t) 
-0.2239*** 
(0.0846) 

Cooperation ln(t) 
0.8904*** 
(0.0992) 

Codecision ln(t) 
0.7251*** 
(0.1342) 

Thatcher ln(t) 
0.2819*** 
(0.0611) 

Legislative Backlog ln(t) 
-0.0040*** 
(0.0009) 

NOTE:  3,001 observations of 1,669 separate pieces of 
legislation.  Data are right-censored on 17 December 1999.  
For more information on variables see Golub (2007).  Standard 
errors in parentheses.   
* significant at 10%; ** significant at 5%; *** significant at 1% 



 

29 

 

   

Table 2. Replication of Competing Risks Cox Model of Civil War Termination in Balch-
Lindsay et al. (2008) 

 Government 
Victory 

Opposition Victory Negotiated 
Settlement 

Intervention Supporting 
Government 

2.49† 
(1.83) 

1.93 
(1.63) 

5.67† 
(3.79) 

Intervention for 
Government*ln(time) 

-0.63** 
(0.27) 

-0.43** 
(0.23) 

-0.75† 
(0.50) 

Intervention Supporting 
Opposition 

-1.64 
(1.12) 

1.74*** 
(0.48) 

1.39** 
(0.56) 

Balanced Intervention 1.748† 
(1.34) 

-32.60*** 
(1.06) 

-2.63** 
(1.21) 

Separatist 0.87 
(1.05) 

0.10 
(1.71) 

8.16*** 
(2.93) 

Separatist*ln(time) -0.22 
(0.18) 

-0.18 
(0.26) 

-1.23*** 
(0.41) 

War Costs 108.67 
(204.70) 

171.25*** 
(62.88) 

-211.75† 
(158.26) 

War Costs*ln(time) -34.67 
(38.05) 

-33.56*** 
(11.80) 

25.08 
(20.40) 

GovReputation -1.30*** 
(0.51) 

-0.66 
(0.58) 

0.16 
(0.62) 

Economic Development 0.96*** 
(0.15) 

0.93*** 
(0.22) 

0.51† 
(0.37) 

Economic 
Development*ln(time) 

-0.17*** 
(0.02) 

-0.18*** 
(0.04) 

-0.08† 
(0.05) 

Binary Measure of 
Democracy 

0.33 
(0.33) 

-0.34 
(0.53) 

-1.19 
(1.22) 

Civil Wars 213 213 213 
Civil War Failures 109 45 40 
Time at risk 249,462 249,462 249,462 
Spells 924 924 924 
Log-Likelihood -427.88 -174.45 -132.85 

Wald χ2 (12,12,12) 80.54***               3,393.58*** 36.16*** 

NOTE:  Data are from Balch-Lindsay, Enterline and Joyce (2008).  Figures reported are coefficients 
from the Cox model.  Positive coefficients indicate a decrease in duration (increase in risk); negative 
numbers an increase in duration (decrease in risk). Robust standard errors are reported in 
parentheses. 
 
Significance (two-tailed): ** significant at 5%; *** significant at 1% 
Significance (one-tailed): † significant at 10% 
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Table 3. Replication of NPH Cox Model of Vote Switching on Issue of Minimum Wage in the 
U.S. Congress in Meinke (2005) 

Party (1=Democrat) -1.4250*** 
(0.1283) 

Crosspressuring (1=Crosspressured) 0.6978*** 
(0.1691) 

White House Change to Member’s Party 0.0695 
(0.1632) 

What House Change from Member’s Party 0.7832*** 
(0.1747) 

Union Membership -0.0365*** 
(0.0064) 

Size of Wage Change 0.6192*** 
(0.1883) 

Member’s Share of 2-Party Vote 1.1965** 
(0.5165) 

WH Change from Member’s Party ln(t) -0.5088** 
(0.2171) 

Member’s Share of 2-Party Vote ln(t) -0.9926 
(0.6287) 

NOTE:  N =2,798 congressperson-years with 1,216 subjects and 312 observed failures. Beta values 
are coefficients for a Cox proportional hazards conditional risk set model with time measured as time 
from entry into the data set. Baseline hazard rates stratified by order of failures (failures beyond 
third combined with third strata).  Efron method used for tied observations. Robust standard errors 
in parentheses. 
Union membership and vote share are mean-centered variables. 
 
* significant at 10%; ** significant at 5%; *** significant at 1% 
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1
 The simulation procedures are easily programmed.  An adaptable Stata do-file is available in Appendix II 

of supplementary materials on the author’s website. 
2
 Several very helpful contributions from political methodologists exist to aid in the interpretation of 

interaction effects in linear regression, limited dependent variable models, some count models and some 

fully parameterized duration models.  These include King, Tomz and Wittenberg’s (2000) Clarify software, 

Boehmke’s (2006) Stata utility – grinter – for calculating marginal effect of interacted variables, and 

the Stata code written by Brambor, Clark and Golder (2006).  
3
 As will be clarified in the examples below, the vital aspect here is not that the effect of a variable is 

changing, but that the changing effect of a covariate over time is not proportional to the effects of other 

variables.   
4
 Similar patterns of changing loyalty and support for the executive have been located in Western Europe 

(e.g. Warwick 1992).   
5
 By initial effect, I mean that when t=1 and ln(t)=0. 

6
 Detailed expositions of the meaning and interpretation of coefficients and standard errors in 

multiplicative-interaction models can be found in Freiderich (1982), Brambor, Clark and Golder (2006), 

and Kam and Franzese (2007).   
7
 In nonlinear modeling, however, the marginal effect of X1 will be conditioned by the value of all included 

X, not just that with which it is explicitly interacted (Kam and Franzese 2007, 112; Ai and Norton 2003). 
8
 This computer code is freely available at <http://homepages.nyu.edu/~mrg217/interaction.html>.  Kam 

and Franzese’s (2007) equivalent code is available at the University of Michigan Press page for their book 

Modeling and Interpreting Interactive hypotheses in Regression Analysis, as well as at the authors’ 

personal web pages, including, <http://www-personal.umich.edu/~franzese/Publications.html>. 
9
 To install grinter, open Stata and type the following command:   
net from http://myweb.uiowa.edu/fboehmke/stata/grinter 
10

 For more detailed discussion of the recovered baseline hazard, see Box-Steffensmeier and Jones (2004, 

65-66). 
11

 As there are simpler ways to achieve a substantively interesting means of evaluating the effect of Xi, 

demonstrating the steps for differentiation is not necessary.  Using the product and chain rules, the first 

derivative of Equation 4.1 with respect to Xi can be shown to be:   

    ⁄  

 (       (  ))  
(           (  )       )  (  )  

 ∑[       (  )  
(           (  )       )]  (          (  )        )  

12
 In this calculation, and those to come, I denote t as a constant at value t=t.  This is vital for the benefits of 

the relative hazard to kick in:  if t is not held constant across the hypothetical cases of i and j, then the 

baseline hazard will not drop out of the ratio, and a simple quantity will not be located. 
13

 This measure is also sometimes called the conditional linear coefficient. 
14

 For this illustration, I simulated 1,000 draws of pairs of β1 and β2 from a normal distribution with 
mean values of .5 and -.2, variance of .04 and .02 for each β respectively and covariance -.001.    
15

 One could also obtain valid confidence intervals by drawing form the variance-covariance matrix and 

mean vector of coefficients to simulate a sampling distribution (such techniques will be outlined further 

below).  This method produces equivalent results to the exponentiation of the combined coefficient.  

Evidence supporting this claim can be found in Table A1 and Figure A1 in the appendix of supplementary 

materials.  The Delta method could also be employed to locate the standard error and confidence intervals 

around the relative hazard.  For the case at hand, however, this method’s asymptotically-valid linear 

approximation is less desirable.  Confidence intervals around the relative hazard derived using the Delta 

method may include nonsensical values.  This can be easily verified by using Stata’s  predictnl 

command to produce confidence intervals via the Delta method.   
16

 T will be the number of values of time included in the analysis.  If survival times in the original data 

range from 1-25 years, for example, T could be 25.  If the survival times exhibit a much larger or less 

discrete range, however, say from .1-35.8 years, it may be desirable to create T based on the percentiles of 

the original distribution.  Stata code for either strategy can be found in Appendix II.   
17

 For 95% “confidence intervals” this will include the 2.5
th

, 50
th

 and 97.5
th

 percentiles. 
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18

 Examination of combined coefficients may also prove useful, but these values must be transformed to 

lend any substantive appeal.       
19

 See Figure 1 and the attending discussion above. 
20

 Of course, there is a limit to this logic.  A 50% increase in a probability of .0000002, for example, does 

not significantly alter our expectations regarding the likelihood of the event, and is therefore substantively 

uninteresting even if it is significant. 
21

 For example, the counter may be scaled in years, days, months, minutes, seconds, etc. and the time t=1 

will be different depending on which is selected. 
22

 Though the estimated effect may flip from positive to negative (or vice versa) at a certain point in time, 

the effect will of course be statistically indistinguishable from zero for some time before and after this 

particular point. If desired, the analyst could design a simulation procedure to obtain confidence intervals 

around the point, or could use the Delta Method.  Of course, this information will also be obtained through 

the process of calculating the full NPH effect with the methods described above.         
23

 For more information on the coding and frequencies of these and other variables in the analysis, see 

Golub (2007).   
24

 To facilitate comparison, the differences here were not multiplied by 100. To see the algebraic similarity 

between these two measures, please review Equations 6 and 8. 
25

 The combined coefficient in this case is (βbacklog + ln(t)βln(t)backlog). 
26

 The effect is insignificant between the 289
th

 and 1,412
th

 days of deliberation. 
27

 The deliberation time used here is 2,412 days, which is one standard deviation above the mean 

deliberation time. 
28

 Because intervention is a binary variable, we could calculate the relative hazard and confidence intervals 

without simulation simply by exponentiation of this combined coefficient.  Unfortunately, the insignificant 

combined impact of pro-government intervention in the early stages of civil war duration produced 

confidence intervals with extreme values.  The chart of the combined coefficient in Figure 4 is more 

charitable and readable. These extreme values stem from the uncertainty of the finding, not the method of 

obtaining standard errors.  Alternate methods, including the Delta method and simulation procedures, 

produce analogous results. 
29

 I report all findings at the significance level utilized by the original authors.  In this case, that means a 

90% threshold. 
30

A typographical error in the published manuscript describes the second PHA-violating variable as 

political party rather than mean-centered vote share.  A corrected version of Meinke’s (2005) Table 1, as 

well as replication data, is available online at < http://www.facstaff.bucknell.edu/smeinke/research.htm>.  
31

 Two-thirds of observations cluster in the first two years.   
32

 These outcomes are not equally likely in the data:  5% and 25% occur twice, 75% occurs 160 times, 99% 

never.  There are, however, a considerable number of uncontested races with vote shares of 100.  
33

 The “comfortable win” or “safe” position is one standard deviation above the mean, or a vote share of 

85.3%. The “not safe” or “plurality” win is two standard deviations below the mean, or 37.3% of the vote 

share. 
34

 All values below the mean are negative numbers, due to mean-centering.  The lower value in this case, 

then, is added to rather than subtracted from the higher value. 
35

 Here, the absolute value of the shift between uncontested and comfortable is roughly have that of the 

difference between plurality and comfortable (14.7 versus 32.1).  The equality of the differences in hazard 

ratio suggest that behavior is more sensitive to increases in safety than to decreases in safety, as it takes a 

considerably more dramatic shift downward to produce a “symmetric” change in likelihood of vote-

switching. 
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