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Problems with Lorentz violation originating from a cosmologically
varying pseudoscalar field

Sapan Karki and Brett Altschul *

Department of Physics and Astronomy, University of South Carolina,
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(Received 30 June 2020; accepted 27 July 2020; published 7 August 2020)

Lorentz- and CPT-violating models of electrodynamics with Chern-Simons terms are typically plagued
by various sorts of instabilities. However, when the Chern-Simons term arises from a slow time variation in
a pseudoscalar field with an axionlike electromagnetic coupling, the total energy of the theory is bounded
below. We examine the behavior of such a theory, finding that in a systematic power series expansion of the
magnetic and pseudoscalar fields, singularities appear in the field profiles. Some of the questionable
behavior can be cured by taking a fully nonperturbative approach, but other problematic terms remain. This
may be an indication that Cerenkov-like radiation will automatically carry away energy from a moving
charge, preventing a charge from moving with uniform velocity over extended distances.

DOI: 10.1103/PhysRevD.102.035009

I. INTRODUCTION

One of the key themes of modern fundamental physics is
symmetry. The importance of this topic extends to sit-
uations with both exact and also, interestingly, broken
symmetries. In fact, many operations that may have initially
appeared to be exact symmetries of elementary particle
physics have since proved to represent merely approximate
symmetries. These approximate symmetries (such as iso-
spin or parity) and how they were actually violated
provided crucial insights into the structure of the standard
model at successively deeper levels.
In order to bring the standard model describing particle

physics and the general theory of relativity together, some
new physics beyond what we currently understand must
exist. Whatever new physics exists at more fundamental
scales that we have not yet probed might also involve
further new forms of symmetry breaking. It is interesting to
question whether new fundamental physics might yet break
some of the seemingly strongest symmetries that we have
thus far encountered—such as Lorentz and CPT sym-
metries. Lorentz and CPT invariance are related to some
quite basic properties of field theories: spatial isotropy,
Lorentz boost invariance, and unitary time evolution. Both
Lorentz and CPT symmetries are basic building blocks of
the standard model and of general relativity, and they are

tied together by theCPT theorem, which in its most general
form requires CPT invariance in a Lorentz-invariant,
stable, unitary quantum field theory [1]. However, there
is no guarantee that they should continue to hold exactly in
a more fundamental theory; and, in fact, a number of the
schematic frameworks that have been proposed to deal with
quantum gravity suggest that they may support Lorentz or
CPT symmetry breaking.
Experimentally, there has thus far been no convincing

evidence for Lorentz or CPT violation. If violations of one
or both of these symmetries are ever uncovered, that would
be a discovery of extraordinary significance. However,
even in the absence of physical violations of these
symmetries, theories with Lorentz violation, CPT viola-
tion, or other similarly exotic features can be extremely
informative for our understanding of how the kinds of field
theories that we use to explain the Universe’s fundamental
interactions may behave in general. Such unusual theories
may provide unexpected insights about the general behav-
ior of the field theoretic framework.
For dealing with questions about possible Lorentz and

CPT violation in the interactions of standard model
particles, the most natural formalism is effective quantum
field theory. A general effective field theory that entails all
possible Lorentz- and CPT-violating additions that may
be made to the standard model without introducing any
additional conjectural quanta has been described. This
theory, known as the standard model extension (SME),
contains operators formed out of the usual standard model
fields, but without the usual requirement that the action be a
Lorentz scalar [2,3]. The minimal SME, containing the
finite number of Hermitian, local, gauge-invariant, and
renormalizable [4–11] operators that can be formed in this
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way, offers an extremely useful test theory for parametriz-
ing the results of experimental Lorentz and CPT tests.
The SME, as an effective low-energy theory, can be used

to describe the experimentally accessible limits of a more
fundamental theory. The SME itself can accommodate
Lorentz and CPT violation in low-energy observables,
regardless of how the symmetries are broken in the more
fundamental underlying theory. One way in which SME
operators could naturally be generated is by cosmological
evolution. The Universe has a naturally preferred reference
frame, in which the cosmic microwave background is at
rest. If the fundamental dimensionless constants of the
standard model (such as the fine structure constant α, or the
ratio of the electron mass to the quantum chromodynamics
scale, me=ΛQCD) are varying with time, due to some slow-
acting dynamics, there must also be attendant Lorentz
violation; if ∂μα ≠ 0, then ∂μα gives a preferred spacetime
direction. In fact, varying α can quite naturally give rise, via
radiative corrections, to SME operators describing photon-
sector Lorentz violation [12].
Another type of SME Lorentz violation that could be

generated in a spacetime with slowly varying cosmological
solutions is an electromagnetic Chern-Simons term [13].
The behavior of the kind of Chern-Simons term that might
be generated by a varying coupling in this way will be the
principal subject of this paper. In the usual SME Lagrange
density, the Chern-Simons term is rather peculiar, since it
depends on the vector potential Aμ, rather than just on the
electromagnetic field strength Fμν—and in such a way that
the term is not quite gauge invariant. The structural
subtleties associated with this kind of term made it a
source of significant controversy, in particular in regard to
whether there could be a radiatively generated Chern-
Simons term in a Lorentz- and CPT-violating quantum
field theory. It was found that different regulators applied to
superficially divergent loop integrals could lead to different
finite radiative corrections to the Chern-Simons term
[14–29]. Various schemes were suggested for identifying
a single correct result, including some potential symmetry
arguments or attempts to characterize the theory non-
perturbatively; however, all proposed nonperturbative
methodologies that could have led to nonzero values of
the coefficients of the induced Chern-Simons at odd orders
in a power series expansion utterly failed at even orders.
Another feature of the Chern-Simons term is its apparent

instability, and quite a bit of research has gone into
understanding how this instability might or might not be
tamable, depending on how precisely the Chern-Simons
modification to the theory is implemented. This makes the
term one of the most fascinating in the SME. The Chern-
Simons term changes the propagation of electromagnetic
radiation to make it birefringent even in vacuum. Between
the right- and left-circularly polarized modes, one of
them has its phase speed increased, and the other mode’s
phase speed is decreased. Experimentally, the distinctive

Chern-Simons birefringence signature does not appear,
even for waves that have traversed cosmological distances
[30–32], and the lack of such birefringence has enabled
some exceedingly tight bounds on the magnitude of the
physical Chern-Simons term. Moreover, the birefringence
is closely tied to the instability, since for sufficiently long
wavelength modes, the dispersion relation may be so
strongly modified that ω2 < 0; and an imaginary frequency
is normally associated with runaway, exponentially grow-
ing solutions of the field equations.
This paper is organized as follows. In Sec. II, we

introduce the Lorentz-violating Chern-Simons term and
discuss some of its unusual properties. The potential
instability of this theory is one of its most notable features,
and we discuss what is understood about how the instability
might be remedied in several different contexts, including
the important case in which the Chern-Simons term exists
because the electromagnetic field is coupled to a slowly
varying spin-0 field. In Sec. III, we present an iterative,
order-by-order solution of the equations of motion for the
gauge and cosmological pseudoscalar fields, in the pres-
ence of a uniformly moving charge e. However, the
iterative solution encounters some difficulties, including
singularities in the fields’ calculated strengths beyond
certain orders. Section IV then shows how a partial
resummation of the power series solutions can cure
some—but not all—of these singularities. Finally, Sec. V
summarizes our conclusions about the interpretation of the
paper’s results.

II. LORENTZ VIOLATION AND SLOWLY
VARYING BACKGROUNDS

The form taken by the SME Lagrange density for the
photon sector, with a CPT-violating Chern-Simons term as
the only Lorentz-violating addition, is

L ¼ −
1

4
FμνFμν þ

1

2
kμAFϵμνρσF

νρAσ − jμAμ; ð1Þ

so that kAF represents a preferred axial vector background.
If spatial isotropy is unbroken in the preferred rest frame of
the cosmological evolution, we may write kμAF ¼ ðk; 0⃗Þ, so
that the kAF term is proportional simply to A⃗ · B⃗ In this
form, the potential gauge invariance issues of this theory
are fairly evident. The Lagrange density (1) containing A⃗ ·
B⃗ changes under a gauge transformation; however, the
change is a total derivative, so that the integrated action for
the theory does actually remain gauge invariant. This is
enough to ensure that the equations of the motion—a
modified version of Maxwell’s equations—involve only the
electric and magnetic fields, not the unphysical potentials.
The photon dispersion relation with a purely timelike

kAF looks deceptively simple, ω2
� ¼ pðp ∓ 2kÞ. As

already noted, the splitting of the modes’ energies can
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actually make the frequency imaginary for modes that are
spatially varying only on very large scales (for which
p < j2kj). Another way to see evidence of the incipient
instability is via the energy functional for the theory. The
energy-momentum tensor for the theory (for a general kAF)
is [30]

Θμν ¼ −FμαFν
α þ

1

4
gμνFαβFαβ −

1

2
kνAFϵ

μαβγFβγAα: ð2Þ

That this tensor is asymmetric is an indication of the
Lorentz violation. However, the key property of interest for
characterizing the instability is the energy density,

Θ00 ¼ 1

2
E⃗2 þ 1

2
B⃗2 − kA⃗ · B⃗ ð3Þ

(reverting again to a purely timelike kAF). As with the
Lagrange density (1), the energy density is not a gauge-
invariant quantity; thus it is not physically observable on its
own. However, once again, an integrated quantity (in this
case the total energy, the integral of Θ00 over all space) is
actually gauge symmetric. The term that causes the
difficulty is again an A⃗ · B⃗ term, and this is also the term
responsible for the instability. For certain helicity modes in
the Fourier expansion of A⃗, making the mode amplitudes
large can make the A⃗ · B⃗ term arbitrarily negative, and if the
mode wavelength is sufficiently long (again, p < j2kj) the
negative energy of the Lorentz-violating term will win out
over the usual B⃗2 contribution to the energy.
One potential manifestation of the apparent instability

could be vacuum Cerenkov radiation, which would nor-
mally be expected in any theory in which charged particles
can move faster than the phase speed of light. Just as a
tachyonic scalar field theory with Lagrange density

Ltachyon ¼
1

2
∂μϕ∂μϕþ μ2

2
ϕ2 ð4Þ

appears to have a dispersion relation ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − μ2

p
, which

is not necessarily real, and which we know actually signals
that the free-field point ϕ ¼ 0 is not a physical vacuum
state, because the energy may be made arbitrarily negative
by increasing the amplitude of field modes with p < jμj—
so likewise the energy of the Chern-Simons theory may be
made more and more negative by increasing the amplitude
of long-wavelength modes of Aμ. These modes, which can
be outpaced by a moving charge, are somewhere we might
expect to see vacuum Cerenkov radiation.
From the first introduction of the Lorentz-violating

Chern-Simons term in Ref. [30], there has been interest
in finding a way to evade the possible instability. The first
proposed solution involved calculating the radiation field
of a current source using a Green’s function that supports
acausal propagation. The solutions thus obtained obey the

correct equations of motion. However, a charged particle
will always start to radiate before it actually begins to
move. This is not especially problematic for long wave
trains oscillating at radio frequencies, but it does not
provide a sensible description for the excitation of modes
with very long wavelengths, for which radiation can begin
arbitrarily far in advance of actual acceleration.
Since the first explication of the Chern-Simons theory,

there have been a number of other approaches to the basic
problem of taming the instability in the theory. Often,
vacuum Cerenkov radiation provides a natural context for
understanding these issues. When the Lorentz-violating
kAF coefficient is spacelike, the issue is not so fundamental,
but the solution is still quite illuminating [33–35]. In this
case, there exists a frame in which kAF is purely spacelike,

kμAF ¼ ð0; k⃗AFÞ, and in this frame, the energy density
(which is not a frame-invariant quantity) shows no insta-
bility, since the A⃗ · B⃗ term that may be made arbitrarily
negative is absent. On this basis alone, it may be expected
that the theory should be free of runaway Cerenkov
radiation, and in fact, detailed calculations show that this
is the case. A charge (even one that is initially stationary in
the laboratory frame) will radiate and accelerate until its
rest frame is precisely the frame in which kAF is purely
spacelike—that is, the frame in which the theory is
manifestly stable.
Of course, it is also possible to modify the theory with a

timelike kAF to eliminate the instability. Adding a Proca
mass term mγ ≥ k0AF makes the dispersion relation positive

definite and ensures that the potentially problematic A⃗ · B⃗
cannot win out over the positive semidefinite mass term in
the total energy [36,37]. This theory does support slow-
moving electromagnetic modes, so vacuum Cerenkov
radiation is typically present when charges are moving,
but there is no runaway radiation, since the radiation has a
definite threshold. If the velocity of a charge is below the
threshold, there is no vacuum Cerenkov radiation at all. As
a result, an energetic charge will initially radiate, until its
speed and energy fall below the threshold, after which
radiation ceases. This is the same kind of behavior seen in
theories with Lorentz-violating but CPT-preserving min-
imal SME terms in the photon sector [38–40].
Perhaps the strangest case of “stabilization” of the

Chern-Simons theory actually occurs without any extra
modifications to the Lagrange density with the purely
timelike Chern-Simons term. Direct calculations of the
fields of a uniformly moving charge show that there is no
net energy radiated, regardless of the charge’s speed [41].
The condition of uniform motion transforms the potentially
unstable, exponentially growing modes of the field into
modes with finite wavelengths but carrying negative
energies. The negative energies carried in the modes with
p < j2kj precisely cancel the positive energies carried by
the shorter-wavelength modes [42,43].
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This method of solving directly for the fields, assuming
that they are in a steady-state configuration and are thus
following the charge as it moves, has fairly broad appli-
cability. It could be used to explore the modifications
generated by a Chern-Simons term when there is Cerenkov
radiation present due to other effects (such as the presence
of a material medium, or CPT-even Lorentz violation in the
vacuum). The same method will also be used in this paper,
to find the fields generated by a moving charge in a
somewhat more general theory.
That more general theory of interest here offers another

way of apparently stabilizing the Chern-Simons form of
Lorentz violation. As already noted, the presence of a time-
varying field associated with the slow expansion of the
Universe naturally creates a preferred timelike direction. In
Ref. [13], a string-motivated cosmological model with two
slowly varying scalar and pseudoscalar fieldsM and N was
introduced, with an axionlike coupling of N to the Abelian
gauge field,

LN ¼ Lgrav þ
ffiffiffi
g

p �
−

1

4Λ
MFμνFμν −

1

4Λ
NFμνF̃μν

þ Λ2
∂μA∂μAþ ∂μB∂μB

4B2

�
; ð5Þ

where F̃μν ¼ 1
2
ϵμνρσFρσ, Λ is nominally the Planck mass,

and in the weak field limit, M ≈ B and N ≈ −A. Slow
cosmological variation in the field M corresponds to a
varying gauge coupling α ¼ Λ=4πM. More interesting
here is the variation of the pseudoscalar N. Assuming that
N varies slowly enough that anything beyond its first
derivative may be neglected, the pure photon sector of this
theory is equivalent to that of a theory with an effec-
tive kμAF ¼ e2

2Λ ∂μN.
However, what makes this effective Chern-Simons

theory particularly remarkable is that the energetic stability
problem, associated with the −kA⃗ · B⃗ term in the energy
density, does not exist for this theory. The reason for this is
that the presence of N introduces another dynamical field,
which will carry energy-momentum and contribute to Θ00.
The contributions to Θ00 arising from the dynamics of M
and N are mostly well behaved, but they also include a
þ e2

2Λ ð∂0NÞA⃗ · B⃗ term, which precisely cancels the prob-
lematic term in (3). This means that including the dynamics
of this additional axionlike field may cure the stability
problems of the Chern-Simons theory, and so it is natural to
try to understand in detail how this stabilization might
occur, at the level of the field solutions.

III. ITERATIVE SOLUTIONS
OF THE FIELD EQUATIONS

If particles can possess Lorentz-violating energy-
momentum relations, it may be possible for charged

particles to move faster than the phase speed of light.
Since the Chern-Simons term changes the dispersion
relations for electromagnetic waves—in particular, slowing
one polarization mode down—vacuum Cerenkov radiation
is a natural possibility in this theory. However, there is an
iterative algorithm for determining the electric and mag-
netic fields of a moving point charge in the modified theory,
and studies of the symmetry properties of this algorithm
have shown that in the case of a timelike Chern-Simons
coefficient, there is zero radiation power loss from a
uniformly moving charge. The reason there is no energy
loss is the cancellation between long- and short-wavelength
modes mentioned above.
We shall now generalize the iterative analysis, so that it

will provide solutions to systems in which a moving charge
may generate not just electric and magnetic fields, but also
excitations of the spin-0 field N. The fields are those of a
charge e moving in the z direction with velocity v⃗, passing
through the origin at time t ¼ 0. If the fields are in a steady
state, following along the movement of the charge (as they
do for realistic Cerenkov radiation in materials), then the
field excitations can only depend on time through the
combination x⃗ − v⃗t; their only time dependences come
from the movement of the whole field profile at velocity v⃗.
This simplifies the field equations quite a bit, since any time
derivative ∂W=∂t of a field W may be replaced with a
spatial derivative −vð∂W=∂zÞ.
Of course, the cosmological background N will have a

different time dependence, Nð1;0;−1Þ ¼ 2Λ
e2 kðt − t0Þ, which

is approximately linearly varying on the timescale of
interest. The notation Nð1;0;−1Þ indicates that this is the
Oðk1v0Λ1Þ term in an expansion of N in powers of k, v,
and Λ−1. In general, each field will be expanded according
to the scheme

W ¼
X∞
i¼0

X∞
j¼0

X∞
n¼−1

Wði;j;nÞ; ð6Þ

where each term Wði;j;nÞ is proportional to kivjΛ−n.
The field equations can then be solving iteratively, with
increasing iþ jþ n.
Except for Nð1;0;−1Þ (which describes the background

cosmological solution), each of the field terms E⃗ði;j;nÞ,
B⃗ði;j;nÞ, and Nði;j;n≥0Þ represents a field profile of the type
described above, moving along with the charge. Each term
has its time dependence entirely through x⃗ − v⃗t, so we need
not write this time dependence explicitly; all the fields will
be evaluated at the specific time t ¼ 0 when the moving
charge is located at the origin.
The equations of motion for the electromagnetic fields

are Maxwell’s equations, which may be modified due to the
presence of the pseudoscalar N. The homogeneous equa-
tions of motion are not modified, since they merely indicate
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that the electric and magnetic fields may be derived from
scalar and vector potentials. Thus

∇⃗ × E⃗ ¼ −
∂B⃗
∂t ; ð7Þ

∇⃗ · B⃗ ¼ 0: ð8Þ

However, the sourced equations are modified,

∇⃗ · E⃗ ¼ ρ −
e2

Λ
ð∇⃗NÞ · B⃗; ð9Þ

∇⃗ × B⃗ ¼ J⃗ þ ∂E⃗
∂t þ

e2

Λ

�∂N
∂t B⃗þ ∇⃗N × E⃗

�
; ð10Þ

so that they look like they possess an effective Chern-Simons
term kμAF ¼ ðk; 0⃗Þ, as well as additional terms related to the

dynamical part ofN. [While ∇⃗Nð1;0;−1Þ ¼0, the higher-order
components Nði;j;nÞ will generally have nontrivial spatial
dependences.] In the purely Chern-Simons-modified
Ampere-Maxwell law,

∇⃗ × B⃗ −
∂E⃗
∂t ¼ 2kB⃗þ J⃗; ð11Þ

the magnetic field becomes a source for itself, behaving like
an effective current source J⃗eff ¼ 2kB⃗. For comparatively
simple source configurations, Maxwell’s equations may be
solved—sometimes exactly [44], but more typically as a
power series.
Equations (7)–(10) have to be supplemented with

the equation of motion for N. This would be derived from
LN . When A and B are small, N ¼ −AþOðΛ−2Þ and
M ¼ Λ=e2 ¼ BþOðΛ−2Þ. Dropping all the terms that do
not involve N, any terms with suppression by higher
powers of Λ−1, and the metric factors of

ffiffiffi
g

p
, we are left

with

L ⊃
e4

4
ð∂μNÞð∂μNÞ − 1

4Λ
NFμνF̃μν: ð12Þ

This gives an equation of motion for N,

−
e4

2
∂μ∂μN −

1

4Λ
FμνF̃μν ¼ −

e4

2
∂μ∂μN þ 1

Λ
E⃗ · B⃗ ¼ 0:

ð13Þ

Using the supposition that the time dependence of all the
excitation fields comes purely from translation along
the z direction, we can eliminate the temporal derivatives
from ∂μ∂μ,

∂μ∂μ ¼ v2
∂2

∂z2 − ∇⃗2 ¼ −
� ∂2

∂x2 þ
∂2

∂y2 þ ð1 − v2Þ ∂2

∂z2
�
;

ð14Þ

and if we can neglect terms of Oðv3Þ and higher, we can

approximate ∂μ∂μ ≈ −∇⃗2.
As just suggested, we shall henceforth only consider

terms up to linear order in v; that means field contributions
Wði;j;nÞ with j ¼ 0 or 1. If the existence of independent
dynamics for the N field is responsible for stabilizing the
theory, then that stabilization mechanism should be evident
for any v > 0 (since vacuum Cerenkov radiation in this
theory is not a threshold phenomenon); and thus the
stabilization ought to be present even at the lowest non-
trivial order in v. Note that this means that the only electric
field we shall need is the nonrelativistic Coulomb field,
since any k dependence in E⃗ must arise via Faraday’s law
and a time-dependent B⃗—which makes the k-dependent E⃗
terms automatically Oðv2Þ or higher as well.
In Lorentz-invariant electrodynamics, the E⃗ and B⃗ of a

moving charge are perpendicular. So the lowest-order
excitation for N comes from

∇⃗2Nð1;1;1Þ ¼ −
2

e4Λ
E⃗ð0;0;0Þ · B⃗ð1;1;0Þ; ð15Þ

with the unmodified E⃗ð0;0;0Þ and the previously calculated
[45]

B⃗ð1;1;0Þ ¼ kev
4πr

ð2 cos θr̂ − sin θθ̂Þ: ð16Þ

Solving the Poisson equation (15) gives

Nð1;1;1Þ ¼ 1

2πe4Λ

Z
d3x0

E⃗ð0;0;0Þðx⃗0Þ · B⃗ð1;1;0Þðx⃗0Þ
jx⃗ − x⃗0j ð17Þ

¼ 1

2πe4Λ

Z
d3x0

ke2v
8π2ðr0Þ3 cos θ

0

jx⃗ − x⃗0j : ð18Þ

We may use the expansion of the Green’s function in
spherical harmonics

1

jx⃗ − x⃗0j ¼
X∞
l¼0

Xl

m¼−l

4π

2lþ 1

rl<
rlþ1
>

Y�
lmðθ0;ϕ0ÞYlmðθ;ϕÞ; ð19Þ

so Nð1;1;1Þ becomes
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Nð1;1;1Þ ¼ kv
16π3e2Λ

Z
∞

0

ðr0Þ2dr0 1

ðr0Þ3
X∞
l¼0

rl<
rlþ1
>

×
Z

π

0

sin θ0dθ0 cos θ0

×
Z

2π

0

dϕ0 Xl

m¼−l

4π

2lþ 1
Y�
lmðθ0;ϕ0ÞYlmðθ;ϕÞ:

ð20Þ

Since cos θ0 ∝ Y�
10ðθ0;ϕ0Þ, only the l ¼ 1, m ¼ 0 term in

the sum is nonzero, and (substituting u ¼ cos θ0)

Nð1;1;1Þ ¼ kv
8π2e2Λ

Z
∞

0

dr0
r<
r0r2>

Z
1

−1
du u2 cos θ ð21Þ

¼ kv
12π2e2Λ

cos θ

�Z
r

0

dr0
1

r2
þ
Z

∞

r
dr0

r
ðr0Þ3

�
ð22Þ

¼ kv
8π2e2Λr

cos θ: ð23Þ

The derivatives following from this are straightforward
to calculate:

∇⃗Nð1;1;1Þ ¼ kv
8π2e2Λ

� ∂
∂r

�
1

r
cos θ

�
r̂þ 1

r
∂
∂θ

�
1

r
cos θ

�
θ̂

�

ð24Þ

¼ kv
8π2e2Λ

�
−

1

r2
cos θr̂ −

1

r2
sin θθ̂

�
; ð25Þ

and

∂Nð1;1;1Þ

∂t ¼ −v
∂Nð1;1;1Þ

∂z ¼ −
kv2

8π2e2Λ
∂
∂z

�
z
r2

�
ð26Þ

¼ −
kv2

8π2e2Λr2
ð1 − 2 cos2 θÞ: ð27Þ

So that makes the source for the lowest term representing
the backreaction of N onto B⃗

e2
�∂N
∂t B⃗þ ∇⃗N × E⃗

�

≈ e2
�
−

kv
8π2e2Λr2

ðcos θr̂þ sin θθ̂Þ
�
×

�
e

4πr2
r̂

�
: ð28Þ

This consists solely of the ∇⃗N × E⃗ term. The ∂N
∂t B⃗ term is

higher order by two powers of v, and we have already
neglected terms of that order coming from (14).

To see whether this might stabilize the state of the
electromagnetic field, we need to get the next iterated field
B⃗ð1;1;2Þ, which is determined by

∇⃗ × B⃗ð1;1;2Þ ¼ kev
32π3Λ2r4

sin θϕ̂: ð29Þ

This may be solved by the general method from Ref. [41].
The radial dependence of B⃗ð1;1;2Þ is constrained by dimen-
sional analysis, so we set

B⃗ð1;1;2Þ ¼ 1

r3
½XðθÞr̂þ YðθÞθ̂�; ð30Þ

so that

∇⃗ × B⃗ð1;1;2Þ ¼ 1

r4
½−X0ðθÞ − 2YðθÞ�ϕ̂ ¼ kev

32π3Λ2r4
sin θϕ̂;

ð31Þ

∇⃗ · B⃗ð1;1;2Þ ¼ 1

r4
½−XðθÞ þ cot θYðθÞ þ Y 0ðθÞ� ¼ 0: ð32Þ

Solving for YðθÞ in the curl equation and inserting it into
the divergence gives

X00ðθÞ þ cot θX0ðθÞ þ 2XðθÞ ¼ −
kev

32π3Λ2
cos θ: ð33Þ

The more general homogeneous differential equation

X00ðθÞ þ cot θX0ðθÞ þ lðl − 1ÞXðθÞ ¼ 0 ð34Þ

[where l ¼ i − n ¼ −1 is determined by the r−2þl radial
dependence of the toroidal function in (30)] is a form of the
Legendre equation, so it has solutions

XðθÞ ¼ CP−lðcos θÞ þDQ−lðcos θÞ; ð35Þ

where the P−lðξÞ are the usual Legendre functions of the
first kind (or Legendre polynomials when l is an integer)
and the Q−lðξÞ are the Legendre functions of the second
kind. The Q−l are usually not part of physical solutions,
because they all have logarithmic divergences at ξ ¼ �1—
meaning on the z axis for ξ ¼ cos θ. In this case, the
required functions are

P1ðcos θÞ ¼ cos θ; ð36Þ

Q1ðcos θÞ ¼
1

2
log

�
1þ cos θ
1 − cos θ

�
cos θ − 1: ð37Þ

For the inhomogeneous Eq. (33), there is also a particular
solution
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XðθÞ ¼ kev
96π3Λ2

logðsin θÞ cos θ; ð38Þ

which is also singular for θ ¼ 0 and π. By adding a
Q1ðcos θÞ term with the right coefficient, it is possible to
eliminate the divergence on either the positive or negative z
axis, but not both. This leaves an apparently unphysical
solution.
The features of (29) that make it unable to support a

well-behaved solution can be identified more clearly by
solving the equation in a different way [45]. This method is

applicable whenever ∇⃗ × B⃗ is a function of the form
fðrÞ sin θϕ̂, because such a source can be split into a
collection of concentric spherical shells of thickness dR,
each carrying a surface current K⃗eff ¼ dR½fðrÞ sin θ�ϕ̂. The
magnetic field of such a current shell is well known
(constant inside and purely dipolar outside), so the con-
tributions for the successive shells may be integrated to give
the whole field, provided that the solution exists and
vanishes at spatial infinity. (If it does not, the integral will
diverge.) Applying this method to (29) gives us

B⃗ð1;1;2Þ ¼
Z

r

0

dR

�
kev

32π3Λ2R4

��
R3

3r3
ð3 cos θr̂ − ẑÞ

�

þ
Z

∞

r
dR

�
kev

32π3Λ2R4

��
2

3
ẑ

�
; ð39Þ

which diverges, because of the behavior of the integrand
around R ¼ 0. For a more general power law vortex source
with fðrÞ ∝ r−β, it is clear from (39) that a well-behaved B⃗
will only exist for 1 < β < 4. Since β ¼ 4 for the case of
interest here, the desired field profile does not quite exist;
just as we already saw, there is a weak but unavoidable
singularity on the z axis.
In the case of a pure timelike Chern-Simons term, which

is not associated with a separate time-dependent field N,
the remarkable cancellation that stabilizes the dynamics
against Cerenkov losses occurs between terms of different
orders in k. We shall therefore also look at whether the
problems we have uncovered can be solved by including
contributions from terms that are higher order in k. The next
term that could have an effect is Oðk3vÞ. That there will be
no effect from including B⃗ð2;1;0Þ can be seen in a couple
different ways. Any magnetic field term with odd j will be
purely azimuthal—thus perpendicular to E⃗ð0;0;0Þ—so it
cannot serve directly as a source for N. We also observe
that the fundamental energetics of the theory can only
depend on jkj, since changing the sign of k only switches
the roles of the right- and left-circularly polarized modes;
the switch will lead to certain sign changes in the fields but
should not affect total energy losses. Since the problematic
term in the energy includes one explicit factor of k, any
nonzero contribution to the Cerenkov effect

at OðvÞ must come from a combination of fields propor-
tional to an odd power of k.
We shall therefore look at how including B⃗ð3;1;0Þ affects

the structure of the fields as they interact with N. The
relationship between B⃗ð1;1;0Þ and B⃗ð3;1;0Þ is given by

∇⃗2B⃗ðiþ2;1;0Þ ¼ −4k2B⃗ði;1;0Þ: ð40Þ

To use the explicit integral solution of the Poisson equation,

B⃗ð3;1;0Þ ¼ k3ev
4π2

Z
dr0r0

Z
dΩ0½cosθ0 sinθ0ðcosϕ0x̂þ sinϕ0ŷÞ

þð1þ cos2 θ0Þẑ�

×
X∞
l¼0

4π

2lþ1

rl<
rlþ1
>

Xl

m¼−l
Y�
l;mðθ0;ϕ0ÞYl;mðθ;ϕÞ; ð41Þ

requires regularization of the integral. So it is still easier to
first calculate B⃗ð2;1;0Þ (which may be done by a straightfor-
ward pseudo-Amperean procedure [41]),

B⃗ð2;1;0Þ ¼ k2ev
2π

sin θϕ̂: ð42Þ

From there, the same method that we used in (30)–(33)
to calculate B⃗ð1;1;2Þ can be followed again. The resulting
solution is

B⃗ð3;1;0Þ ¼ −
k3evr
4π

ð2 cos θr̂ − 3 sin θθ̂Þ; ð43Þ

and this can then be used to calculate Nð3;1;1Þ, via

∇⃗2Nð3;1;1Þ ¼ k3v
4π2e2Λr

cos θ; ð44Þ

in which we have once again taken the dot product of the
B⃗ði;j;nÞ with E⃗ð0;0;0Þ to find the right-hand side.
Just as the magnetic field may sometimes be calculated

as a superposition of the fields of spherical shells, each
carrying a perfectly dipolar surface current distribution,
the Poisson equation (44) may be solved by a method of
superposing spherical shells carrying dipolar surface charge
distributions. If ΦRdR is the electrostatic potential of a
sphere carrying a surface charge σeff ¼ −dR cos θ=R,

ΦRðrÞ ¼
�
− R2

3r2 cos θ r > R

− r
3R cos θ r < R

; ð45Þ

then the solution of (44) may be written

PROBLEMS WITH LORENTZ VIOLATION ORIGINATING FROM … PHYS. REV. D 102, 035009 (2020)

035009-7



Nð3;1;1Þ ¼ k3v
4π2e2Λ

Z
dRΦR ð46Þ

¼−
k3v

4π2e2Λ

�Z
r

0

dR
R2

3r2
cosθþ

Z
∞

r
dR

r
3R

cosθ

�
;

ð47Þ

and the second integral on the right-hand side of (47) is
logarithmically divergent. Once again, we have arrived at
an infinite expression when iþ jþ n has grown too large.
Of course, dimensional analysis suggests that Nð3;1;1Þ

ought to grow approximately linearly with r at large
distances, so the divergence here is not necessarily a
surprise. In fact, by choosing an ansatz with additional
logarithmic dependence on r, we find that

Nð3;1;1Þ ¼ k3v
12π2e2Λ

r log

�
r
r0

�
cos θ ð48Þ

is a solution of (44). However, this is still somewhat
unsatisfactory, since any positive value of r0 gives a
solution. The reason is that changing r0 just adds a term
proportional to r cos θ, which is a solution of the Laplace
equation. All this shows that an alternative approach is
likely needed for dealing with terms involving higher
powers of k, and we shall introduce such an approach
in Sec. IV.
However, interestingly, the symmetry arguments previ-

ously laid out in [41] still ensure that the electromagnetic
energy that can escape to infinity still vanishes in this
theory, even when the N-dependent sources for E⃗ and B⃗ are
included. The inclusion of the additional field does not
change the key property that is responsible for the vanish-
ing energy outflow—which is that the radial component
S⃗ · r̂ of the modified Poynting vector, Sj ¼ Θj0, is always
an odd function of the z coordinate. (Note that, because of
the Lorentz violating kAF, S⃗ is not generally equal to the
momentum density. In fact, the asymmetry Θμν ≠ Θνμ is a
hallmark characteristic of Lorentz violation.) S⃗ is not itself
gauge invariant; to get a gauge-invariant expression
describing the energy outflow, it is necessary to take the
integral of S⃗ · r̂ over the sphere at r → ∞. Because the
integrand is an odd function of z (or equivalently, an odd
function of cos θ), the integrated quantity always vanishes.
Provided that the field profile for N is azimuthally

symmetric and an odd function of cos θ, the source terms
on the right-hand sides of (9) and (10) will have the same
symmetry structures as they had in the absence of N.
Conversely, when E⃗ and B⃗ have their expected symmetry
properties, E⃗ · B⃗ is independent of ϕ and odd in cos θ. Since
N is determined by solving ∂μ∂μN ¼ ð2=e4ΛÞE⃗ · B⃗, the

field N has precisely the same symmetries as E⃗ · B⃗ itself
(even at higher order in v, when ∂μ∂μ cannot be

approximated by −∇⃗2). The self-consistency of the recip-
rocal relations between N and Fμν thus ensure the sym-
metries of the electric and magnetic fields—and thus of
S⃗—do not change even when kAF is generated by the
cosmological field N.

IV. NONPERTURBATIVE SOLUTION
FOR THE MAGNETIC FIELD

The forms of the usual nonrelativistic magnetic field
Bð0;1;0Þ and the higher-order expressions (16) and (42)–(43)
suggest a common general form for the magnetic field, in
which each component of the field in spherical coordinates
is a function of r times a single factor of cos θ or sin θ. In
fact, we can demonstrate that this is indeed the form taken
by that part of the field which is independent ofΛ and linear
in v, but which encompasses all orders in k.
With an Ansatz of that form, the field is

B⃗ðall;1;0Þ ¼ B⃗ðe;1;0Þ þ B⃗ðo;1;0Þ; ð49Þ

where B⃗ðe;1;0Þ and B⃗ðo;1;0Þ contain only even and odd powers
of r, respectively. They therefore take the Ansatz forms

B⃗ðe;1;0Þ ¼
X∞

i¼0;i even

aikiri−2 sin θϕ̂; ð50Þ

B⃗ðo;1;0Þ ¼
X∞

i¼1;i odd

kiri−2ðbi cos θr̂þ ci sin θθ̂Þ: ð51Þ

These must obey the modified Maxwell’s equations for the
magnetic field, order by order.
The divergences are simple. B⃗ðe;1;0Þ, as a purely azimuthal

function with a magnitude independent ofϕ, is automatically

divergenceless. In order to have ∇⃗ · B⃗ðo;1;0Þ ¼ 0, the coef-
ficients must obey the relation ci ¼ − i

2
bi.

The curl conditions are more intricate, however.
Imposing ci ¼ − i

2
bi and taking the curl of B⃗ðo;1;0Þ gives

∇⃗ × B⃗ðo;1;0Þ ¼
X
i

�
−
ðiþ 1Þði − 2Þ

2
bi

�
kiri−3 sin θϕ̂: ð52Þ

This is equal to 2kB⃗ðe;1;0Þ if

bi ¼ −
4

ðiþ 1Þði − 2Þ ai−1: ð53Þ

The curl of B⃗ðe;1;0Þ,

∇⃗ × B⃗ðe;1;0Þ ¼
X
i

kiri−3½2ai cos θr̂ − ði − 1Þai sin θθ̂�;

ð54Þ
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is also needed. However, it is not quite the case that

∇⃗ × B⃗ðe;1;0Þ ¼ 2kB⃗ðo;1;0Þ, because the modified Ampere’s
law also involves the underlying current source itself. This
means that the initial coefficient a0 is determined from the
usual form of the magnetic field of a moving charge,
a0 ¼ ev

4π. Then equating the coefficients of higher powers of
k shows that ai ¼ bi−1.
The recurrence relation for ai ¼ a2p is then

a2p ¼ −4
2pð2p − 3Þ a2p−2 ¼

ð−1Þp
p!ð− 1

2
Þp

a0; ð55Þ

where ðξÞp ¼ ξðξþ 1Þðξþ 2Þ � � � ðξþ p − 1Þ is the

Pochhammer symbol. This gives B⃗ðe;1;0Þ the form of a
generalized hypergeometric function

B⃗ðe;1;0Þ ¼ ev
4πr2 0F1

�
;−

1

2
;−k2r2

�
sin θϕ̂: ð56Þ

By virtue of the hypergeometric function identities,

0F1

�
;� 1

2
;−ξ2

�
¼ cos 2ξþ ξ sin 2ξ ∓ ξ sin 2ξ; ð57Þ

we get the simple final form

B⃗ðe;1;0Þ ¼ ev
4πr2

½cosð2krÞ þ 2kr sinð2krÞ� sin θϕ̂: ð58Þ

The sum giving B⃗ðo;1;0Þ can be evaluated similarly, although
the result is slightly more elaborate,

B⃗ðo;1;0Þ ¼ kev
2πr

��
cosð2krÞ − 1þ 2kr sinð2krÞ

2k2r2

�

×

�
cos θr̂þ 1

2
sin θθ̂

�
− cosð2krÞ sin θθ̂

�
: ð59Þ

The next natural question is about the behavior of
Nðall;1;1Þ, sourced by

∇⃗2Nðall;1;1Þ

¼ −
2

e4Λ
E⃗ð0;0;0Þ · B⃗ðall;1;0Þ

¼ −
kv

8π2e2Λr3

�
cosð2krÞ − 1þ 2kr sinð2krÞ

k2r2

�
cos θ:

ð60Þ

This may be solved by following the shell method
introduced in the calculation of Nð3;1;1Þ. Proceeding as in
(47), we have

Nðall;1;1Þ ¼ kv
8π2e2Λ

Z
∞

0

dR

� R3

3r2 cos θ R < r
r
3
cos θ R > r

�

×
�
cosð2kRÞ − 1þ 2kR sinð2kRÞ

k2R5

�
: ð61Þ

Splitting the integral into its two regions, both constituent
integrals can be performed, although the results involve the
sine and cosine integral functions,

SiðξÞ ¼
Z

ξ

0

dη
sin η
η

; ð62Þ

CiðξÞ ¼ −
Z

∞

ξ
dη

cos η
η

: ð63Þ

In terms of these functions, the expression for Nðall;1;1Þ is

Nðall;1;1Þ ¼ kv
8π2e2Λ

�
cosð2krÞ − 1

4k2r3
−
5 cosð2krÞ

18r

þ 5ðk2r2 − 2Þ sinð2krÞ
9kr2

−
2Sið2krÞ
3kr2

−
10kr2 Cið2krÞ

9

�
cos θ: ð64Þ

This is an improvement over the previous case, in which the
unsatisfactory behavior of N itself began with Nð3;1;1Þ. The
logarithmic behavior seen in (48) is naturally included,
through the Cið2krÞ, but as in Ref. [44], matching the
solution found at leading order in k to a nonperturbative
general solution transmutes the unknown scale factor r0
from (48) into a specific quantity proportional to k−1.
However, the nonperturbative solution still has leading-
order r−1 behavior, which means that the singularity in a
subsequent solution for B⃗ðall;1;2Þ will remain.
The nonperturbative resummation has thus eliminated

one of the two divergences that bedeviled our earlier
iterative calculations. It is possible to obtain sensible
expressions for the fields to all order is k. This suggests
that a similar resummation might work to address the
divergence found at OðΛ−2Þ. However, this turns out not to
be the case.
Although k and Λ−1 are both assumed to be small

parameters, they have different units. If we try to express
the magnetic field as a sum to all orders in Λ−1,

B⃗ð1;1;allÞ ¼
X∞
n¼0

dnΛ−nr−n−1
�
cos θr̂þ n − 1

2
sin θθ̂

�
ð65Þ

(where the coefficient of the θ̂ term has been selected to
make each term divergenceless), problems will arise,
because of the increasingly negative powers of r that
appear. In particular, the n ¼ 2 term is the exterior field
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of a dipole, and so its curl is zero, except at r ¼ 0 where it
has a strong singularity (the derivative of a δ function). This
means that the power series cannot extend past n ¼ 2, and
so the divergence in (47) appears to be unavoidable.

V. CONCLUSIONS

Although the theory in which the Lorentz-violating
Chern-Simons term arises as the derivative of a cosmo-
logically varying pseudoscalar field appears (based on
inspection of its energy-momentum tensor) to be better
behaved than the pure Chern-Simons theory, we have
encountered some puzzling results. Working to succes-
sively higher powers of k andΛ−1 (those being the two very
small parameters in the theory), we encountered divergent
expressions for terms in the magnetic field B⃗ and the spin-0
field N that would follow along with a charge in uniform
motion. One of these divergences was evidently curable,
since it was possible to find resummed analytic formulas
for B⃗ðall;1;0Þ and Nðall;1;1Þ. However, the analogous diver-
gence encountered in the magnetic field atOðΛ−2Þ does not
seem to have so simple a resolution.
The failure of the power series expansion at too high

powers of Λ−1 may actually not be too surprising. The form
(12) for the Lagrangian governing the pseudoscalar field N
was only valid with sufficiently high negative powers of Λ
neglected. At OðΛ−3Þ, the equations governing the behav-
ior of N are no longer universal and depend of the specifics
of the underlying model. For the particular supergravity
model considered in Ref. [13], the higher-order equations
are highly nonlinear and involve bothN and the scalarM. It
does not appear that the energetic stability of the theory
should depend on these higher-order effects, however; so
the divergences we have uncovered may still be important
to understanding the character of this theory.
If we take the solution for B⃗ð1;1;2Þ from Sec. III that is

regular on the positive z axis,

B⃗ð1;1;2Þ ¼ kev
192π3Λ2r3

�
2½logð1þ cos θÞ cos θ − 1�r̂

−
�
3þ 2 cos θ
1þ cos θ

− logð1þ cos θÞ
�
sin θθ̂

�
; ð66Þ

we can envision a sort of interpretation for it. As the particle
propagates along the z axis, it behaves almost like a
zipper—metaphorically “unzipping” the fields as it passes
it and leaving behind a defect. The alternative solution that is
regular on the negative axis would correspond to “advanced”
or time-reversed behavior, with the particle zipping up an
existing singularity in the fields as it moves along.

It is sometimes possible to have a field that diverges in a
certain (measure zero) region without the situation neces-
sarily being pathological—for example, the weak diver-
gence of the solution of the Dirac equation in the attractive
Coulomb potential at the origin. However, this defect field
(66) clearly possesses a divergent energy, even with just
the usual 1

2
B⃗2 taken into account. Yet this may actually be

the key to understanding how the theory is stabilized. The
assumption underlying all our calculations is that there is a
well-defined solution to the field equations in the presence
of a charged source that has been moving uniformly along
the z axis since t ¼ −∞. It may be that such a steady
solution simply does not exist. Regardless of its speed, a
moving charge would be required to radiate its energy away
at a finite rate. The backreaction due to the charge’s
deceleration could then be responsible for smoothing out
the singular behavior of the field. This would be a new
stabilization mechanism for this version of the Chern-
Simons theory, again unlike those that have been encoun-
tered in the other versions previously studied.
Alternatively, in an even further modified electrody-

namic theory, with some kind of short-distance regulari-
zation of the field profiles, the difficulties with the singular
field strengths might be surmounted. This could mean, for
example, using the nonlinear Born-Infeld theory [46] or the
higher-derivative Bopp-Podolsky theory [47,48]. However,
any further modifications to the theory to prevent the
formation of overly strong fields would seemingly render
the modified theory incapable of answering our original
questions about how the version of the Chern-Simons
theory with its Lorentz violation derived from a slowly
varying pseudoscalar was to be physically stabilized.
Moreover, while the specific example of the higher-deriva-
tive regularization in the Bopp-Podolsky theory (which
incorporates a Pauli-Villars regulator directly into the
photon field) might resolve the divergent behavior up to
some fixed order in Λ−1, other singularities would probably
still occur at even higher orders.
We are thus left with a couple of plausible interpretations

of our results. The peculiar singularities may be an
indication that the theory is inviable at a fairly fundamental
level, in spite of its evident energetic stability. Alternatively,
they may be an indication only that uniform motion of
charged particles over long stretches is not possible in this
theory. To evaluate whether this is a sensible interpretation
will require looking at situations involving actually accel-
erating charges, which will probably entail significantly
more elaborate calculations than have been performed up to
now in any version of the Lorentz-violating Chern-Simons
theory.
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