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Abstract

In a Lorentz- and CPT-violating modification of electrodynamics, the fields of a moving charge are 
known to have unusual singularities. This raises the question of whether the singular behavior may in-
clude δ-function contact terms, similar to those that appear in the fields of idealized dipoles. However, by 
calculating the magnetic field of an infinite straight wire in this theory, we demonstrate that there are no 
such contact terms in the magnetic field of a moving point charge.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Much of the history of modern physics has involved symmetries that initially appeared to 
be exact, yet which are actually violated in subtle fashions. Physics beyond the standard model 
might involve new forms of symmetry breaking. Among the most extreme symmetry violations 
that might occur in new physics are the breaking of Lorentz and CPT symmetries. These symme-
tries are related to isotropy, boost invariance, and hermiticity of the Hamiltonian. These features 
underlie both the standard model and general relativity, but quantum gravity theories could be 
different. In fact, many schematic theories of quantum gravity appear to have regimes in which 
Lorentz and CPT symmetries do not hold. Conversely, if evidence of these kinds of fundamental 
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symmetry violations were ever to be uncovered, that would provide powerful evidence about the 
shape of new physics beyond what we currently understand.

Exotic theories with unusual characteristics can also provide interesting theoretical laborato-
ries for understanding the general structure of quantum field theories. Even if Lorentz and CPT 
symmetries are exact in nature, such theories may provide fundamental insights about the kinds 
of behaviors that are permitted in general field theories. The natural formalism for approaching 
these kinds of problems is effective field theory. The effective field theory that describes Lorentz 
and CPT violation is known as the standard model extension (SME), and it has been the subject of 
extensive study. The SME action is constructed from all operators that may be built up from stan-
dard model fields [1,2]. Without the requirement of Lorentz invariance, the number of possible 
operators is exceedingly large. For practical calculations, a standard theory for discussing these 
broken symmetries is known as the minimal SME; this is the subset of the SME that contains 
only the finite number of operators that are local, are power counting renormalizable, and respect 
the gauge symmetries of the standard model. Most experimental bounds on Lorentz violations 
are formulated in terms of constraints on minimal SME operators.

Some forms of Lorentz and CPT violation have more peculiar properties than others. Possibly 
the most unusual terms in the minimal SME have what is known as a Chern–Simons form. The 
electromagnetic Chern–Simons term affects the propagation of left- and right-handed photons 
differently. At relatively short wavelengths, the differences between the two modes’ dispersion 
relations lead to a polarization rotation during propagation. At sufficiently long wavelengths, 
the frequency for one of the modes may become imaginary, signaling an instability. These and 
other unconventional features make the Chern–Simons theory particularly interesting as a tool 
for understanding how novel quantum field theories may potentially behave.

Because the electromagnetic Chern–Simons term breaks parity and CPT symmetries, the left–
right asymmetry in wave propagation speeds would lead to photon birefringence. The distinctive 
birefringence signature has been searched for and not found, even for waves coming from sources 
at cosmological distances [3–5]. The lack of birefringence has been used to place exceedingly 
tight bounds on the coefficient of the real-world Chern–Simons term. Nevertheless, the Chern–
Simons theory is still of theoretical interest, because the theory has some very unusual features. 
For example, the Chern–Simons Lagrange density is not gauge invariant; it changes, but only by 
a total derivative, under a gauge transformation. This fact makes the determination of the radia-
tive corrections to the Chern–Simons term a very subtle problem, and the topic led to a significant 
amount of controversy [6–11].

We have previously investigated another peculiar feature in this theory—the possibility of 
vacuum Cerenkov radiation. Cerenkov processes are normally forbidden in vacuum by Lorentz 
invariance, but with Lorentz violation, the phase speed of light need not be uniformly 1 for 
all directions and frequencies. Because the Chern–Simons term affects the dispersion relation 
for propagating waves, radiation by charges in uniform motion (no matter how slow) becomes 
kinematically allowed in the theory. However, our investigations have showed that in the case of 
a timelike Chern–Simons parameter, there is no net radiation loss from a moving charge [12]

In the course of our investigations, we developed an iterative algorithm for determining the 
electric and magnetic fields of a moving point charge. The geometry of the solution is incom-
patible with radiation emission, but the structure of the fields is quite unusual, with singularities 
rather unlike those seen in the conventional electrodynamics of point sources. Since in the stan-
dard Maxwell theory, the fields of point dipoles include δ-function contact terms, it is natural to 
wonder whether there are analogous contact terms in the Chern–Simons theory.
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This paper continues the analysis of the Lorentz-violating Chern–Simons theory. In section 2, 
we describe the theory in detail and point out some of the peculiar features of the solutions that 
we have previously uncovered. In section 3, we solve for the magnetostatic field of an infinite 
straight wire in the modified theory. This solution is somewhat interesting on its own, and it will 
also be possible to relate the new solution to the question of contact terms. Our conclusions about 
the contact term question are presented in section 4.

2. Lorentz-violating Chern–Simons electrodynamics

The Lagrange density for the photon sector of the minimal SME is

L = −1

4
FμνFμν − 1

4
k
μνρσ
F FμνFρσ + 1

2
k
μ
AF εμνρσ F νρAσ − jμAμ. (1)

In addition to the usual photon propagation term and the interaction with charged matter, there 
are two operators with tensor-valued coefficients. These are the sources of Lorentz violation. The 
Chern–Simons term is the kAF term, and it is odd under CPT. The kF term is CPT even and has 
also been the subject of extensive study. However, it is not our focus here, and we shall neglect 
it. We are also interested only in the case of the timelike Chern–Simons term, for which there is 
a frame in which kμ

AF = (k, �0 ). There are many important differences between the spacelike and 
timelike cases.

The dispersion relations for right- and left-circularly polarized waves are different in the 
Chern–Simons theory. They take the forms ω2± = p(p ∓ 2k). At very long wavelengths, one 
of the frequencies becomes imaginary. This signals an instability in the theory. The energy is not 
bounded below, and there are runaway solutions with exponentially growing field amplitudes. 
Moreover, it is not possible to simply excise these modes from the theory; they play a key role in 
the energy transport in the theory [12]. The runaway solutions can be avoided through the use of 
an acausal Green’s function [3], but this has the obviously problematic feature that charges begin 
radiating before they start moving.

The interest in Cerenkov radiation in this theory arose from the fact that, even apart from 
modes with ω2 < 0, there are propagating modes in the theory with arbitrarily small phase 
speeds. Any charge q moving with speed v will manage to outpace some of these modes. Ra-
diation into these modes is kinematically allowed, although it turns out that a charge in uniform 
motion does not actually radiate energy.

In our previous work [12], we avoided questions about causality and temporal boundary con-
ditions by using a steady-state source configuration, with a single charge moving at a constant 
velocity. The steady-state condition ensured that the only time dependence was that the fields 
were carried along at the same velocity v as the charge. In our calculations in section 3, we will 
avoid the possible problems with time dependence by using an even simpler configuration of 
sources, with a steady current flowing in an infinite wire.

Once the difficulties associated with any time dependences are dealt with, we may solve the 
modified Maxwell’s equations directly. The equations are

�∇ · �E = ρ (2)

�∇ × �E = −∂B

∂t
(3)

�∇ · �B = 0 (4)

�∇ × �B = ∂ �E
∂t

+ 2k �B + �J . (5)
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Note that only the Ampere–Maxwell law is modified (when kAF is purely timelike), and that in a 
steady-state system with ρ = 0, the electric field vanishes. In particular, in vacuum, we may take 
the curl of �∇ × �B = 2k �B , to get the Helmhotz equation[ �∇2 + (2k)2

] �B = 0. (6)

Using the modified Maxwell’s equations in [12,13], we found the first few terms in the �E
and �B of a moving charge, when the fields are expressed as a power series in the Chern–Simons 
parameter k. The lowest-order k-dependent term (at the instant when the charge q moving with 
velocity vẑ is located at the origin) is

�B(1,1) = kqv

4πr
(2 cos θ r̂ − sin θ θ̂). (7)

[The indices on �B(1,1) indicate that it is first order in k and first order in v.] This field has a 
singularity at r = 0, as do the conventional fields, but the structure is somewhat different.

The field terms involving higher powers of k are progressively less singular at the location of 
the charge. This is just an outgrowth of the fact that essentially the only dimensionless parameter 
in the problem of a uniformly moving charge (with no recoil) is kr . So increasing powers of k
must be accompanied by increasing powers of r . This makes terms with higher powers of k better 
behaved at r = 0; terms of O(k3) and higher are found to be regular at the origin. Conversely, 
the fields, taken term by term, grow increasingly quickly at large r . The symmetry properties 
of the fields dictate that there is no radiation emission at infinity, but it is unclear whether the 
separate fields really grow large for r � 1/k, or whether they can be resummed into a bounded 
function—although the latter possibility seems more likely.

The fields we will derive in section 3 differ from the fields of a single moving point charge 
in a couple significant ways. Firstly, the simple power counting arguments relating power of k to 
powers of the radius will break down. With an infinite wire source, there are fields that depend 
on ln(kρ), and the new singularity structure will complicate things. Secondly, it will be clear 
[from (6)] that when the source is static, the terms we find by expanding in powers of k must 
sum to a function that decays as r → ∞.

For comparison with �B(1,1), in conventional electrodynamics the magnetic field of a pointlike 
dipole �m = mẑ is

�Bdip = m

4πr3
(2 cos θ r̂ + sin θ θ̂) + 2

3
mẑδ3(�r ). (8)

The δ-function is critically important in some applications. For example, it is responsible for 
the bulk of the hyperfine splitting in the S states of atomic hydrogen. (Physically, the hyperfine 
interaction is dominated by the time that the electron spends inside the nucleus.) The angular 
structures of �Bdip and �B(1,1) are seemingly similar. That raises the natural question of whether 
(7) is really correct, or whether that field may also include a contact term at r = 0.

This is the central question that this paper will address: whether there are any analogous 
contact terms in the magnetic field of a moving charge in the Chern–Simons theory. Note that a 
δ-function term is not ruled out by simple dimensional analysis. The dimensions of the two terms 
in (8) match because 1/r3 and δ3(�r ) have the same units. On the other hand (7) is proportional 
to k/r , which has the same units as δ3(�r )/k. So if there are three-dimensional δ-function con-
tact terms in the field in the Chern–Simons theory, they may involve negative powers of k; and 
although our calculation method will begin with an expansion in powers of k, we shall see that 
the method is indeed capable of finding fields that are not analytic functions of k.
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A standard way of deriving the dipole term in conventional magnetostatics is to take the 
average of �B over a spherical region. The magnetic sources inside the sphere make a contribution 
to the average that is proportional to their total dipole moment. However, in the Chern–Simons 
theory, the sources of �B include 2k �B itself, and the standard technique is not so useful.

A different strategy is required. In order to simplify our search for evidence of contact terms, 
we shall relate the field of the moving charge to the field of another source configuration—an infi-
nite current-carrying filamentary wire. The field of such a wire is a problem of interest on its own, 
since this is one of the standard idealized configurations studied in magnetostatics. In addition 
to providing a solution to the contact term question, the calculation will also have some inter-
esting features that help provide a fuller understanding of how these Lorentz- and CPT-violating 
theories behave.

An ideal one-dimensional current-carrying wire is equivalent to two line charges λ = ±I/2v

moving in opposite direction with velocities ±vẑ. These lead to a net convective current I ẑ. The 
virtue of this configuration is that the electric fields manifestly cancel. Without the Chern–Simons 
term, the �E fields generated by the opposite line charges sum to zero. The only way �E can be 
modified by the Chern–Simons term is indirectly, through �B; however, �B is time independent by 
design, so there are no additional electric fields generated through Faraday’s law. The fact that 
�E = 0 can also be demonstrated using the symmetry properties of the field that were determined 
in [12].

Of course, �B is nonzero in this configuration. Obviously, there is an azimuthal component Bφ , 
and there may also be a nonzero Bz. However, a radial field Br is incompatible with the symmetry 
of the theory under time reversal. Since ẑ, the direction of the motion, is the only preferred 
direction in the problem of the moving charge, a contact term must appear as a contribution B̃z =
qAδ3(�r ). When integrated over the moving charges in the infinite wire, for which dq = (I/v)dz, 
this will give a contribution to the field of the wire

∞∫
−∞

(
I

v
dz

)
Aδ3(�r ) = IA

v
δ2( �ρ ), (9)

where �ρ = ρρ̂ is the projection of the position vector into the xy-place. So a two-dimensional 
δ-function would remain in the field of the wire. We shall now determine the field of the wire 
and demonstrate that no such term appears.

3. Magnetic field of the wire

As we shall see, the behavior of Bz for an infinitely thin wire is a bit complicated, even 
without a δ-function singularity. We shall therefore first consider the problem of a wire with finite 
radius a. Ultimately, we shall take a → 0; this is analogous to letting the radius of a uniformly 
magnetized sphere go to zero to derive (8). The wire is located along the z-axis, carrying a current 
�I = I ẑ, uniformly spread over its interior. We now proceed to solve the modified steady-state 
magnetic equations

�∇ · �B = 0 (10)

�∇ × �B = 2k �B + �J (11)

with this source.
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We write the magnetic field as a series, with each term �B(m) in the sum proportional to km,

�B =
∞∑

m=0

�B(m). (12)

When plugged into the field equations, this expansion gives

�∇ × �B(m) =
{ �J , m = 0

2k �B(m−1), m ≥ 1
(13)

�∇ · �B(m) = 0 (14)

From these, the fields may be found iteratively, starting with the conventional field �B(0),

�B(0) =
⎧⎨
⎩

Iρ

2πa2 φ̂ ρ ≤ a

I
2πρ

φ̂ ρ > a.
(15)

[The analogue of the magnetostatic Biot–Savart law in this theory is an integral equation for �B . 
Solving this equation iteratively for the �B(m) would be equivalent to the pseudo-Amperean ap-
proach we shall take.]

The symmetries of the problem simplify the calculation of the other �B(m) terms considerably. 
�B(0) is an azimuthal field; it points in the φ̂ direction and its magnitude is independent of both φ
and z. The curl of an azimuthal field is a longitudinal field, which points in the z-direction and is 
also independent of φ and z, and the curl of a longitudinal field is azimuthal. We have that �B(0)

is an azimuthal field, and the curl of �B(1) must then be azimuthal, so �B(1) is longitudinal. This 
argument can be continued by induction on m, and we obtain

�B(m) =
{

B
(m)
φ (ρ) φ̂ m even

B
(m)
z (ρ) ẑ modd.

(16)

Since there is now only a single term at each order, it will be possible to solve for the �B(m)

iteratively, using only pseudo-Amperean techniques.
However, it is actually possible to do much better, since we know that the field �B obeys (6)

in vacuum (that is, for ρ > a). In cylindrical coordinates, �B outside of the wire should then be 
a linear combination of Bessel functions. We write the general cylindrically symmetric solution 
as

Bz(ρ) = αJ0(2kρ) + βN0(2kρ), (17)

where J0 and N0 are Bessel functions of the first and second kind and. Bφ(ρ) must then be

Bφ(ρ) = − 1

2k

dBz

dρ
= αJ1(2kρ) + βN1(2kρ) (18)

Naturally, this is the general azimuthal solution of (6) that is symmetric under rotations around ẑ
and translations along the z-axis.

To determine α and β , we calculate �B(1) and �B(3) directly and compare the results to the 
exact solution (17). To find the fields iteratively, we use a pseudo-Amperean methodology. We 
consider a counterclockwise-oriented rectangular loop R of length l in the z-direction and with 
sides parallel to ẑ located at ρ′ = 0 and ρ′ = ρ. The modified Ampere–Maxwell law relates the 
integral of �B(1) around this loop to the flux of �B(0) through it:
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∫
R

d�l · �B(1)(ρ′) = 2k

l∫
0

dz′
ρ∫

0

dρ′ �B(0)(ρ′) · φ̂ (19)

l[B(1)
z (0) − B(1)

z (ρ)] = 2kl

⎧⎨
⎩

∫ ρ

0 dρ′ Iρ′
2πa2 , ρ ≤ a∫ a

0 dρ′ Iρ′
2πa2 + ∫ ρ

a
dρ′ I

2πρ′ ρ > a

(20)

B(1)
z (ρ) =

⎧⎨
⎩

− kIρ2

2πa2 + B
(1)
z (0), ρ ≤ a

− kI
π

ln ρ
a

− kI
2π

+ B
(1)
z (0), ρ > a.

(21)

Here, B(1)
z (0) is a constant, which must still be determined. The presence of this on-axis field 

could easily be overlooked, but it will prove crucial in our calculations. Obviously, this quantity 
is related to the singularity structure of the field on the axis, which we are ultimately trying to 
determine. There is no constraint on the on-axis field coming from any symmetry, nor can this 
field be determined using just pseudo-Amperean loop techniques. The fields B(m)

z (0) for odd 
m will all need to be determined by some other method. On the other hand, there will be no 
analogous term to worry about in the azimuthal field.

The k-dependent azimuthal field �B(2) may be found by a similar method, using a pseudo-
Amperean loop C with radius ρ, which lies parallel to the xy-plane and has its center at (0, 0, z),

∫
C

d�l · �B(2) = 2k

ρ∫
0

dρ′ (2πρ′)B(1)
z (ρ′). (22)

Evaluating this gives

B
(2)
φ (ρ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2k
ρ

∫ ρ

0 dρ′ ρ′
[
− kIρ′ 2

2πa2 + B
(1)
z (0)

]
, ρ ≤ a

2k
ρ

∫ a

0 dρ′ ρ′
[
− kIρ′ 2

2πa2 + B
(1)
z (0)

]
+ 2k

ρ

∫ ρ

a
dρ′ ρ′

[
− kI

π
ln ρ′

a
− kI

2π
+ B

(1)
z (0)

]
, ρ > a

(23)

B
(2)
φ (ρ) =

⎧⎨
⎩

− k2Iρ3

4πa2 + (kρ)B
(1)
z (0) ρ ≤ a

− k2Iρ
π

ln ρ
a

− k2Ia2

4πρ
+ (kρ)B

(1)
z (0) ρ > a.

(24)

Finally, we may perform another integration similar to (19), with �B(2) replacing �B(0) as the 
source term, to obtain �B(3). The result is

B(3)
z = 5k3Ia2

8π
− k3Iρ2

2π
+ k3I

π

(
ρ2 + 1

2
a2

)
ln

ρ

a
− (kρ)2B(1)

z (0) + B(3)
z (0) (25)

for ρ > a. It is only necessary to calculate B(3)
z outside the wire, since that is where (17) holds. 

The fields inside the wire are needed only to obtain higher order terms. Knowing B(1)
z and B(3)

z , 
it is now possible to determine the coefficients α and β in (17).

The leading behaviors of the Bessel functions J0 and N0 are

J0(2kρ) = 1 − (kρ)2 +O(k4) (26)

N0(2kρ) = 2

π

{
[ln(kρ) + γ ]

[
1 − (kρ)2

]
+ (kρ)2

}
+O(k4), (27)
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where γ in (27) is the Euler–Mascheroni constant. These Bessel functions, J0(2kρ) and N0(2kρ), 
contain only terms with even powers of k (as well as logarithms in the case of N0). According 
to (16), Bz can contain only terms with odd powers of k, so α and β may only have terms with 
odd powers of k. This means that only the terms up to order k2 are needed from the Bessel 
functions in order to determine α and β , since the highest order field that has been directly 
calculated is B

(3)
z . The right-hand side of equation (17) may be expanded,

αJ0 + βN0 = α
[
1 − (kρ)2

]
+ β

2

π

{
[ln(kρ) + γ ]

[
1 − (kρ)2

]
+ (kρ)2

}
+O(k5) (28)

=
(

α + β
2γ

π

)[
1 − (kρ)2

]
+ β

2

π
(kρ)2 (29)

+ β
2

π

[
1 − (kρ)2

]
ln(kρ) +O(k5).

We need to compare this to the sum of the two lowest-order longitudinal field terms,

B(1)
z (ρ) + B(3)

z (ρ) = −kI

π

[
1 − (kρ)2 − (ka)2

2

]
ln(kρ) − kI

2π

[
1 + (kρ)2 − (ka)2

]
(30)

+
[
1 − (kρ)2

][
B(1)

z (0) + kI

π
ln(ka)

]

+
[
B(3)

z (0) + k3Ia2

8π
− k3Ia2

2π
ln(ka)

]
.

The terms in (30) have been grouped to show similarities with (28). In order to have equality 
between the two expressions, the terms in square brackets containing B(1)

z (0) and B(3)
z (0) must 

vanish. This gives us a condition that determines the on-axis fields B(m)
z (0). Once these terms 

are eliminated, the expression (30) becomes

Bz(ρ) = −kI

π

[
1 − (ka)2

2

][
1 − (kρ)2

]
ln(kρ) − kI

2π

[
1 − (kρ)2

]

− kI

π

[
1 − (ka)2

2

]
(kρ)2 +O(k5). (31)

Equating (28) and (31) immediately yields equations for α and β ,

2

π
β = −kI

π

[
1 − (ka)2

2

]
+O(k5a4) (32)

α + 2γ

π
β = − kI

2π
+O(k5a4), (33)

with solutions

α = kI

π

{
γ

[
1 − (ka)2

2

]
− 1

2

}
+O(k5a4) (34)

β = −kI

2

[
1 − (ka)2

2

]
+O(k5a4). (35)

In addition to α and β , there is another quantity Bz(0), which characterizes the solution in the 
interior of the wire. We have also determined it up to O(k3),
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Bz(0) = −kI

π

{[
1 − (ka)2

2

]
ln(ka) + (ka)2

8

}
+O(k5a4). (36)

It is important to note that the higher order terms in α and β must contain only powers of 
ka. This is true for dimensional reasons, since the only dependence on ρ in (17) must be inside 
the Bessel functions. Conversely, the Bessel functions J0(2kρ) and N0(2kρ) do not have any 
dependence on a. Any dependence on a must be absorbed into α, β , and Bz(0).

Instead of using the longitudinal field Bz, we could have determined α and β using (18) and 
gotten the same results. To verify this, we note that the two Bessel functions J1 and N1 may be 
expanded

J1(2kρ) = kρ +O(k3) (37)

N1(2kρ) = − 1

πkρ
+ 2

π
(kρ) ln(kρ) + kρ

π
(2γ − 1) +O(k3). (38)

Using the now known values of α and β , (18) becomes

αJ1(2kρ) + βN1(2kρ) = I

2πρ
− k2Iρ

π
ln(kρ) − k2Ia2

4πρ
+O(k4); (39)

the first term on the right-hand side of (39) is just the usual �B of an infinite wire. Alternatively, 
since B(1)

z (0) has also been determined, (24) and (36) give

B
(2)
φ = −k2Iρ

π
ln(kρ) − k2Ia2

4πρ
, (40)

which clearly agrees with (39). Notice how the ln(ρ/a) term in (24) and ln(ka) from (36) com-
bine to produce a final B(2)

φ that does not depend on a logarithm of the wire radius a. In fact, the 
�Bz(0) terms supply the logarithms of k that are needed to match the behavior of the Nj(2kρ). 
The power series expansion in k was not capable of generating ln(kρ) terms directly; notice that 
this logarithm does not appear in (21), (24), or (25).

We also note that we could have determined the leading order behavior of α and β with-
out actually calculating B(3)

z . This could have been accomplished by using comparisons with 
both B(1)

z and B(2)
φ . However, by calculating B(3)

z explicitly, we were able to show something 
interesting—that there actually are correction terms in α and β that are suppressed by higher 
powers of ka.

Finally, we may take the limit as a → 0, with the wire becoming an infinitely narrow filament. 
Since any higher order terms in α and β are proportional to a, these terms disappear as a → 0. 
What is left is

�B =
[
kI

π

(
γ − 1

2

)
J1(2kρ) − kI

2
N1(2kρ)

]
φ̂

+
[
kI

π

(
γ − 1

2

)
J0(2kρ) − kI

2
N0(2kρ)

]
ẑ. (41)

The Euler–Mascheroni constant γ is present because of the way the Nj are defined; it does not 
actually enter the expressions for the field at any order in k.
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4. Conclusion

At this point, it may still not be entirely obvious whether we have found a solution with a 
contact term or not. The solution (41) for �B arose as the limit of expressions that had different 
behaviors inside and outside the wire. This is qualitatively similar to what one obtains by consid-
ering a uniformly magnetized sphere of radius R, with fixed �m as R → 0. This is another way to 
derive the contact term for a pointlike dipole. The δ-function in (8) arises from the behavior of 
�B in the r < R region, which is radically different from the exterior field.

However, there is no δ-function term in this case. To understand why this is so, it is worthwhile 
to remember why the contact term is necessary in the standard magnetic field of a point dipole. 
The δ-function in (8) ensures that the integral 

∮
d �S · �B = 0 over any closed surface—that �B is 

divergenceless, even where it is singular. (In contrast, the different δ-function in the electric field 
of a pointlike electric dipole ensures that �E is curl-free even at the source.)

The magnetic field in the vicinity of the moving charge in the Chern–Simons theory is rather 
complicated, and it may not be obvious from inspection whether it is divergence-free. On the 
other hand, the field of the wire—as the sum of a purely longitudinal field at odd orders in k
and a purely azimuthal field at even orders—unquestionably satisfies �∇ · �B = 0. Considered 
separately, the lines of the longitudinal field component all run parallel to the z-axis; the lines of 
the azimuthal field are all circles. In either case, the field lines do not terminate. So no correction 
term is needed to make the field divergenceless even on the axis.

Of course, this only shows that a δ-function is not needed to make the field (41) divergence-
less. It takes a bit more to demonstrate that the δ-function indeed does not exist. For comparison, 
we first consider the field of a line of dipoles. With a dipole moment m̃ per unit length, spread 
over a cylinder of radius a, the magnetization is �M = (m̃/πa2)ẑ. The field is well known: �B = �M
inside the cylinder, and �B = 0 outside. The δ-function in the dipole field can be identified by 
looking at the difference between the flux of �B through a circle of radius b > a and the flux 
of the external field extrapolated all the way down to ρ = 0. Since the external field vanishes, 
this flux difference is simply �� = m̃, independent of a. This is precisely the hallmark of two-
dimensional δ-function behavior.

For the field of the wire in the Chern–Simons theory, we may apply a similar procedure. First, 
we calculate the flux of the field �B(1) at finite a through the same circular surface of radius b. 
Only the lowest order term �B(1) from (21) is necessary for this calculation; terms with higher 
powers of k will also involve higher powers of a, and so will vanish more rapidly as a → 0. The 
integral using the field (21) is

b∫
0

2πb dbB(1)
z (ρ) = −kIb2 ln(kb) − kIa2

4
. (42)

If we take instead the exterior field (41),

b∫
0

2πb dbBz(ρ) = bI

(
γ − 1

2

)
J1(2kb) − πbI

2
N1(2kb) − I

2k
(43)

= −kIb2 ln(kb) +O(k3). (44)

The two fluxes differ only by terms that vanish as a → 0. If there were a δ-function term in the 
field, it would yield a �� that would persist for any finite value of a. However, we now know 
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that no such term exists, and (41) is the full expression for the field of an infinite filamentary 
wire. Returning then to our original argument, the absence of a δ2( �ρ ) in (41) implies that there 
cannot be a δ3(�r ) term in the field of a moving point charge.

This might not seem like a surprising result. In fact, it would be easy to overlook the fact that 
the δ-function might even be a possibility. However, this result does reveal something new about 
the structure of the Chern–Simons theory.

Moreover, we have, as part of our calculation, produced a field solution for another source con-
figuration. The calculation of �B has a number of interesting features—for example, the matching 
of the low-order terms, derived using pseudo-Amperean loop methods, with the exact static vac-
uum solution in terms of Bessel functions. The Bessel function solutions also show explicitly how 
the power series in kρ converges to a function that decays at large ρ. It is still unclear whether 
the full fields from [12] show similar decays at large r ; that situation is more complicated, with 
both �E and �B nonzero and each field having z, ρ, and φ components. However, the result for 
the infinite wire certainly suggests that something similar might happen with the field of a single 
moving charge.

Of course, the infinite wire obviously represents an unphysical situation, but under appropriate 
circumstances, it could be a good approximation. As in conventional electrodynamics, the infinite 
wire approximation would be useful in the Chern–Simons theory if the distance from a wire 
were small compared to the wire’s radius of curvature. For the k-dependent corrections to be of 
meaningful size, of course, 1/k must be small compared with the radius of curvature as well. 
Given the experimental bounds on k, this is never going to be a realizable configuration, but the 
Chern–Simons theory does teach us interesting things about the nature of Lorentz-violating field 
theories.
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