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Class Groups of Quadratic Fields. II

By Duncan A. Buell*

Dedicated to Daniel Shanks on the occasion of his 10 th birthday

Abstract. A computation has been made of the noncyclic class groups of imaginary quadratic

fields Q(\J - D ) for even and odd discriminants - D from 0 to - 25000000. Among the results

are that 95% of the class groups are cyclic, and that -11203620 and -18397407 are the first

discriminants of imaginary quadratic fields for which the class group has rank three in the

5-Sylow subgroup. The latter was known to be of rank three; this computation demonstrates

that it is the first odd discriminant of 5-rank three or more.

1. Introduction. In [2] is described a computation of class numbers and class

groups of imaginary quadratic fields Q(f — D) for even and odd discriminants -D

from 0 to - 4000000. This computation has been used in various contexts [1], [3], [4],

[7]. Due to interest in a new factoring technique which utilizes the nature and

structure of imaginary quadratic class numbers and class groups [8], a further

computation and statistical analysis was made of these numbers and groups [5]. To

further define the nature of class groups, we have rewritten the programs of [2] and

computed all noncyclic class groups of imaginary quadratic fields Q(f-D) for even

and odd discriminants - D from 0 to - 25000000. This computation and its results

are summarized in this paper.

We have followed the convention of [2] with regard to the 2-Sylow subgroup.

Since the rank of that subgroup is determined by the number of prime factors in the

discriminant —D (theorem of Gauss) for the purposes of our computation, the

2-Sylow subgroup of a class group is called " noncyclic" if the 2-Sylow subgroup of

the subgroup of squares in the class group is noncyclic.

All programming was done in C on a VAX 11/780** owned by the Computer

Science Department, Louisiana State University, running 4.2BSD UNIX**. Some of

the statistical summaries were obtained using S.

2. The Computation.

2.1. General Description. The basic computation is similar to that of [2]. Even and

odd discriminants were dealt with separately. Separate computations were done for

discriminants in ranges of integers in blocks of 200000, using one long array. (Thus,

one such computation would be for odd discriminants between -600000 and

- 800000.) A first pass through the array removed integers which were not discrimi-

nants of quadratic fields by flagging integers with odd prime squares as factors or of
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the wrong congruence class modulo 4. Then, for each remaining discriminant, a

triple loop counted the binary quadratic forms of that discriminant, obtaining the

class number, the class number of the group of forms and of the field being identical

for imaginary fields.

The class numbers having thus been computed, a list was made of discriminants

with "possibly noncyclic" groups by removing from the existing list those discrimi-

nants whose class numbers were not divisible by the square of at least one odd prime

(or, for the 2-Sylow subgroup, the discriminants with fewer than 4 genera or without

a factor of 4 in the number of norms per genus). Each of the possibly noncyclic

/»-Sylow subgroups of the remaining groups was then tested. The maximal order of

any element in a class group being FPG/p, where FPG is the number of forms per

genus for the discriminant, forms were generated "at random" and their FPG/pth

powers computed. If any of these was not the identity, the group was known to be

cyclic. If, in testing 15 "randomly generated" forms, only the identity was found for

the FPG/pth powers, the group was determined to be "probably noncyclic" and the

/7-Sylow subgroup explicitly computed. Data for groups determined to be noncyclic

were written to a disk file, and statistics and summaries produced after the

computation was completed.

The "random generation" of binary quadratic forms was this: A form (a, b, c) of

discriminant —D exists if the congruence x2 = -D (mod4a) is solvable. For odd

primes a, this is equivalent to having the Jacobi symbol [-D/a] equal to +1. Our

program simply ran through the primes in sequence as possible first coefficients a

and found and reduced the possible forms for the discriminant in question.

We mention that in this computation all "probably noncyclic" groups were

completely determined. This was not the case in the previous computation [2]. In

that computation, a " probably noncyclic" group with a />Sylow subgroup of order

pk was declared to be noncyclic of the form C(p) X C(pk~1) if a form of order

pk~l was found. Similarly, "probably noncyclic" /?-Sylow subgroups of order p2

and p3 were simply declared to be C(p) X C(p) and C(p) X C(p2), respectively.

No differences were found between the results of the previous computation and the

results of this one, however.

2.2. The Group Computation. The algorithm for computing class groups is derived

from that of Shanks [10], is essentially the same as that of [2], and is given as

Algorithm A below. The decomposition of an Abelian /7-Sylow subgroup (written

multiplicatively) begins as follows.

a. Obtain a form, /,, of order a power of p.

b. Compute the /»-exponent ord,^ such that pordl is the order of element fx.

c. Save the penultimate /»-powers {f{{p"' '   >: 1 </<(/>- 1)} of fx.

d. Obtain a form f2 and compute ord2 similarly.

e. If ord2 > ordj, exchange fx and f2 and store the penultimate /»-powers of the

new/,.

f. If

ord2-l   _ ^ord.-l)

for some /', then a dependence exists between fx  and f2. This is removed by
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replacing f2 with

and recomputing ord2, repeating the test for dependence in this step until we find

we have independent elements.

g. Having found two independent elements, if the /»-orders sum to the /»-power in

the order of the group, we are, of course, done. If not, we find a third element,

remove the dependence of this element on elements fx and f2, and continue until we

have exhausted the /7-Sylow subgroup. We note that removing dependence requires

comparing the third elements's penultimate /»-power against the penultimate powers

of the first and second elements of the cross products of those powers.

For quadratic class groups, several facts were taken into account in implementing

the algorithm. First, our previous computation showed that 95.74% of the class

groups for discriminants from 0 to - 4000000 were cyclic. Further, those noncyclic

groups were in general "almost" cyclic, in the sense that the noncyclic /»-Sylow

subgroups were usually C(p) X C(pk). Very few groups had rank three. Thus, we

assumed that it would be normal for the groups to be easily computed and to be of

rank two. Once the program established the fact that a group had rank three,

therefore, it simply wrote this fact to the disk file, and went on to the next

discriminant. In a very few cases, the entire decomposition had not at this point

been found, and we performed a separate computation to finish the decomposition

and " patch" the disk file of data on noncyclic groups. This happened for about 40

discriminants. No groups were found of rank larger than three for an odd prime

Sylow subgroup. Although a detailed analysis was not undertaken, it is our general

impression that this decomposition algorithm works well on quadratic class groups

of this size.

3. Results. We present in Tables 1-4 a summary of the frequencies of occurrence

of noncyclic /»-Sylow subgroups and the first occurrences of those groups. In Table 1

we include counts of both noncyclic class groups and noncyclic subgroups, although

Table 1

Summary of noncyclic groups

A                 B C D E F

Even        2533009 1084644 142224 143833 13.1 5.61

Odd         5066042 1758766 239409 241845 13.6 4.73

Total       7599051 2843410 381633 385678 13.4 5.02

A—number of discriminants

B—number of possibly noncyclic discriminants

C—number of noncyclic class groups

D—number of noncyclic subgroups

E—100*C/B

F—100*C/A
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Table 2

Summary for individual p-Sylow subgroups

A B                   C D                 E F

2-Even 670838 26.48 103036 4.07 15.36

2-Odd 859385 16.96 157523 3.11 18.33

2-Total 1530223 20.14 260559 3.43 17.03

3-Even 372238 14.70 34992 1.38 9.40

3-Odd 749306 14.79 72211 1.43 9.64

3-Total 1121544 14.76 107203 1.41 9.56

5-Even 118144 4.66 4462 0.18 3.78

5-Odd 242187 4.78 9365 0.18 3.87

5-Total 360331 4.74 13827 0.18 3.84

7-Even 54338 2.15 1096 0.04 2.02

7-Odd 113926 2.25 2162 0.04 1.90

7-Total 168264 2.21 3258 0.04 1.94

11-Even 16883 0.67 142 0.01 0.84

11-Odd 40007 0.79 339 0.01 0.85

11-Total 56890 0.75 481 0.01 0.85

13-Even 10531 0.42 71 0.00 0.67

13-Odd 26737 0.53 160 0.00 0.60

13-Total 37268 0.49 231 0.00 0.62

17-Even 4302 0.17 17 0.00 0.40

17-Odd 13252 0.26 44 0.00 0.33

17-Total 17554 0.23 61 0.00 0.35

19-Even 2783 0.11 12 0.00 0.43

19-Odd 9756 0.19 28 0.00 0.29

19-Total 12539 0.17 40 0.00 0.32

23-Even 1206 0.05 3 0.00 0.25

23-Odd 5475 0.11 10 0.00 0.18

23-Total 6681 0.09 13 0.00 0.19

29-Even 320 0.01 2 0.00 0.63

29-Odd 2634 0.05 1 0.00 0.04

29-Total 2954 0.04 3 0.00 0.10

31-Even 239 0.01 0 0.00 0.00

31-Odd 2063 0.04 1 0.00 0.05

31-Total 2302 0.03 1 0.00 0.04

41-Even 22 0.00 0 0.00 0.00

41-Odd 638 0.01 1 0.00 0.16

41-Total 660 0.01 1 0.00 0.15

A—prime p

B—number of possibly noncyclic discriminants

C—possibly noncyclic discriminants as a % of the total

D—number of noncyclic /»-Sylow subgroups

E—actually noncyclic /»-Sylow subgroups as a % of total

F—actually noncyclic /»-Sylow subgroups as a % of possible
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A

3

5

7

11

13

17

19

23

29

31

41

Table 3

CoM«r of possibly noncyclic p-Sylow subgroups

( for primes p with no noncyclic groups found )

p Even D Odd D Total

37

43
47

53

59

61

67

71

73

79

83

89

97

69

19

5

0

0

0

0

0

0

0

0

0

0

1050

556
367

213

102

97

59

36

23

25

9

4

1

1119

575

372

213

102

97

59

36

23

25

9

4

1

Table 4

First occurrences of noncyclic p-Sylow subgroups

B

3896

17944

159592

580424

703636

4034356

3419828

11137012

16706324

C
3 X 12

5 X 10

7 X 14

22 X 22

13 X 26

17 X 34

19 X 38

23 X 46

58 X 58

D

3299

11199

63499
65591

228679

1997799

373391

7472983

20113607

11597903

6112511

E

3X9

5 X 20

7X7

11 x 22

13 X 26

34 X 34

19 X 38

23 X 46

29 x 116

31 X 62

41 X 82

A—prime p

B—first even discriminant with noncyclic /»-Sylow subgroup

C—decomposition of class group

D—first odd discriminant with noncyclic /»-Sylow subgroup

E—decomposition of class group

only a very small fraction of class groups turned out to be noncyclic in more than

one /»-Sylow subgroup. In Table 5 we list all the class groups found with a noncyclic

/»-Sylow subgroup for p > 19. In Tables 6-8 we detail information about noncyclic

groups with p3\h for p > 5.

The most unique groups found were those for discriminants -11203620, with

class group C(10) X C(10) X C(10), and -18397407, with class group C(5) X C(10)

X C(40). The latter was given in a list of rank-three groups by Schoof [9], but the

former is apparently new.
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Table 5

Groups noncyclic in a p-Sylow subgroup for p > 19

Disc Group Disc Group

6112511

7472983

7814559

11137012

11597903

11836723

12919471

13034696

14115151

41 X 82

23 X46

46 X46

23 X46

31 X 62

23 X 23

23 X92

23 X 92

46 X 46

14969711

16706324

18359043

20113607

20859463

21360324

22287687

23855464

24482399

2 X 46 X 46

58 X 58

23 X 46

29 X 116

23 X 69

46 X 446

46 X46

29 X 58

23 X 207

Table 6

Noncyclic groups for which 125 \ h

Group      First odd D        First even D

5 X 25     258563

5 X 125    1287491 —

5 X 625     258563 —

Total number

11

33

7

5 X 50

5 X 250

25 X 50

50783

1287491

258563

178004

2189204

78

74

2

10 X50

10 X 250

50 X 50

5 X 10 X 40

309263

2177951

18397407

702456

9059636

9623444

243

68

1

1

2 X 10 X 50

2 X 10 X 250

10 X 10 X 10

2 X 2 X 10 X 50

1337479

15945095

4798335

2340680

11203620

10865256

236

3
1

55

Group

7 X49

7 X 343

7 X 98

14 X 98

2 X 14 X 98

Table 7

Noncyclic groups for which 3431 h

First odd D First even D

480059

4603007

1984715

2249295

9599159

890984

3617480

13944644

Total number

13

4

55

73

12
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D

7948999

9055019

9670583

12139691

19380719

Table 8

Groups with p3\h with p > 11

Group

11 X 121

11 X 121

11 X 121

11 X 121

11 X 363

D

19461503

24557096

14127343

17803439

Group

11 X 242

11 X 121

13 X 169

19 X 361

Table 9

Groups with high powers of 2 in two cyclic factors

Disc

6342959

12993671

13263095

14060036

16834223

17317119

18961895

Group

16 X 256

32 X 128

32 X 192

32 X64

16 X 256

16 X 256

16 X 256

Disc

21025623

22128095

22209799

22947695

23144495

23429156

24475919

Group

32 X 64

64 X 64

16 X 256

16 X 256

32 X 192

32 X 64

32 X 256

One question which occasionally arises is that of which groups appear as class

groups of quadratic fields. Although an exhaustive search did not seem worthwhile,

we did consider the groups of odd order (which correspond to prime discriminants)

of order less than 1000. Of these, the only groups of rank two which did not appear

were C(/») X C(p) for /» = 11, 19, 29, and 31, and C(25) X C(25). The only groups

of rank three which did occur were C(3) X C(3) X C(33), C(3) X C(3) X C(69),

C(3) X C(3) X C(99), and C(3) X C(3) X C(105).

We present in Table 9 the groups for which the 2-Sylow subgroup (of the

subgroup of squares) had order at least 512 and the first cyclic factor was of order at

least 8. And finally, in Table 10, we present all class groups which were noncyclic in

two different /»-Sylow subgroups for odd primes /».

It is to be noted that the frequency of noncyclic 3-Sylow and 5-Sylow subgroups

(1.14% and 0.18%, respectively, from Table 2) are not substantially different from

the heuristically conjectured frequencies of Cohen and Lenstra [6], which are 1.167%

and 0.158%, respectively, for subgroups C(3) x C(3) and C(5) x C(5), to which

must be added percentages of lower order for more complex subgroups.

Remark. In our computation, we called a class group " noncyclic" in the 2-Sylow

subgroup if the 2-Sylow subgroup of the subgroup of squares was noncyclic. In all

our tables, however, when groups are explicitly presented, the group that is pre-

sented is the full class group, not just the subgroup of squares.
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Group

15 x 15

15 X 30

15 X45

15 X 60

15 X 75

15 X 90

15 X 105

15 X 120

15 X 135

15 X 150

15 X 165

15 X 180

15 X 210

15 X 225

15 X 240

15 X 270

15 X 285

15 X 300

15 X 360

15 X 450

15 X 480

15 X 525

21 X 21

21 X 42

21 X63

Table 10

Groups noncyclic in two odd-Sylow subgroups

1st even D    1st odd D        Group   1st even D

7773124

11044456

4587656

11358104

16574248

119191

3358427

2403659

3072743

10064191

7153015

3150391

7932539

12057919

21307739

10181471

5046527

18016831

8396639

8196191

14348903

9609071

13017119

19260095

23224151

17896199

23906711

8847427

6481447

3561799

21 X 84

21 X 126

21 X 147

21 X 168

21 X 189

21 X 231

21 X 378

30 X 30

30 X 60

30 X 90

30 X 120

30 X 150

30 X 180

30 X 210

33 X 33

33 X 66

33 X 99

35 X 35

42 X42

70 X 70

126 X 126

2 X 30 X 30

2 X 30 X 60

2 X 30 X 90

2 X 42 X 42

24924488

24594884

2766392

6006356

11912984

24481784

22297448

16053944

11905176

21140216

1st odd D

4620215

24565367

20532511

24294143

21657191

2075343

4425351

6567311

17414135

9763511

16911191

23996759

22479739

14898623

19399067

7192015

21428391

8209319

5486327

7814015

17535791

19701647

4. Note. The data which form the output of the group computation currently exist

online on the ' omputer Science Department's VAX computer. The author is willing

to respond to limited requests from interested parties, or to provide copies of the

data if supplied with a magnetic tape.
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