1-1-1988

Involution on Banach Spaces and Reflexivity

S J. Dilworth
University of South Carolina - Columbia, dilworth@math.sc.edu

Follow this and additional works at: http://scholarcommons.sc.edu/math_facpub

Part of the Mathematics Commons

Publication Info
©Houston Journal of Mathematics 1988
1. Notation and results. Let E and F be (real or complex) Banach spaces. E is said to be finitely representable in F if, given $\epsilon > 0$ and a finite dimensional subspace E_0 of E, there exists a subspace F_0 of F such that $d(E_0, F_0) \leq 1 + \epsilon$, where
\[
d(E_0, F_0) = \inf\{\|T\| \|T^{-1}\| : T \text{ is an isomorphism from } E_0 \text{ onto } F_0\}\]
denotes the Banach-Mazur distance coefficient. E is said to be super-reflexive if every Banach space which is finitely representable in E is reflexive. Super-reflexivity has been characterized in terms of the notion of J-convexity: suppose that $n \geq 1$ and that $\epsilon > 0$; E is said to be $J(n, \epsilon)$-convex if, for all x_1, \ldots, x_n in the unit ball of E, we have
\[
\inf_{1 \leq k \leq n-1} \|x_1 + \cdots + x_k - x_{k+1} - \cdots - x_n\| \leq n - \epsilon.
\]
The “if” part of the following theorem was proved in [12] and [5], and the “only if” part was proved in [10].

Theorem A. E is super-reflexive if and only if E is $J(n, \epsilon)$-convex for some $n \geq 1$ and $\epsilon > 0$.

The main purpose of this article is to extend Theorem A to a certain class of operators. To this end we introduce some new definitions: an operator T on E will be said to be $J(r, \epsilon)$-convexifying ($r \geq 1$ and $\epsilon > 0$) if, for all x_1, \ldots, x_n in the unit ball of E, we have
\[
\inf_{0 \leq k \leq n} \|x_1 + \cdots + x_k + T(x_{k+1} + \cdots + x_n)\| \leq n - \epsilon.
\]
When no importance is placed on ϵ or n we shall say that T is $J(n)$-convexifying or simply J-convexifying. T will be said to be an involution (of order $n \geq 1$) if $T^n = I$, where I denotes the identity operator on E. The following main result is proved in Section 4 below.
Theorem 1.1. Suppose that E admits a J-convexifying involution. Then either c_0 is finitely representable in E or E is super-reflexive.

Combining Theorem 1.1 with the “only if” part of Theorem A gives rise to the following characterization of super-reflexive Banach spaces.

Theorem 1.2. E is super-reflexive if and only if c_0 is not finitely representable in E and E admits a J-convexifying involution.

Theorem 1.1 gives the following geometrical characterization of super-reflexive complex Banach spaces.

Theorem 1.3. Suppose that E is a complex Banach space, that $|\lambda| = 1$ and that $\lambda \neq 1$. Then E is super-reflexive if and only if there exist $n \geq 2$ and $\epsilon > 0$ such that for all x_1, \ldots, x_n in the unit ball of E, we have

$$\inf_{1 \leq k \leq n} \|x_1 + \cdots + x_k + \lambda x_{k+1} + \lambda x_n\| \leq n - \epsilon.$$

Proof: Necessity is proved in Corollary 2.3 below. Sufficiency follows from Theorem 1.1 when λ is a root of unity (and so multiplication by λ is an involution) by observing that $c_0(C)$ does not satisfy the hypothesis. The case for general $\lambda \neq 1$ is simply a consequence of the density of the roots of unity in the unit circle.

It is not known to me whether the possibility of c_0 being finitely representable in E in the conclusion of Theorem 1.1 may be eliminated, but when E is a complex Banach space this can be done.

Theorem 1.4. Suppose that E is a complex Banach space. Then E is super-reflexive if and only if E admits a J-convexifying involution.

Proof: We need only prove sufficiency. It follows from the theory of algebraic operators (e.g., [11]) that if T is an involution on E, then E may be written as a direct sum of closed subspaces E_i on which T acts as multiplication by a root of unity. If $c_0(C)$ is finitely representable in E, then $c_0(C)$ is finitely representable in some E_i, but this means that T is not J-convexifying.

We conclude by stating a special case of Theorem 1.3 which may be regarded as a complex version of a theorem of R. C. James on uniformly non-square Banach spaces ([8]).
Theorem 1.5. Suppose that E is a complex Banach space, that $\epsilon > 0$, and that for all x, y in the unit ball of E, we have

$$\min\{\|x + y\|, \|x + iy\|\} \leq 2 - \epsilon.$$

Then E is reflexive.

2. J-convexifying operators. In this section we shall make use of the notion of the numerical range of an operator, which we now define. Suppose that E is a Banach space (either real or complex); the collection Φ is defined by

$$\Phi = \{(x, f) : \|f\| = \|x\| = f(x) = 1\} \subset E \times E^*.$$

The numerical range of an operator T on E, denoted $W(T)$, is defined by

$$W(T) = \{f(Tx) : (x, f) \in \Phi\}.$$

Proposition 2.1. Suppose that T is a J-convexifying operator on E.

(a) $W(T) \subseteq \{z : \Re(z) < 1\}$.

(b) If $\|T\| = 1$ then $\|I + T\| < 2$.

Proof: (a) Let $\epsilon > 0$ and $n \geq 1$ be given. If $\overline{W(T)} \not\subseteq \{z : \Re(z) < 1\}$ then there exists $(x, f) \in \Phi$ such that $\Re(f(Tx)) \geq 1 - \epsilon/2n$. It follows that for each $0 \leq k \leq n$, we have

$$\|kx + (n - k)Tx\| \geq |f(kx + (n - k)Tx)| \geq n - \frac{\epsilon}{2}.$$

Hence T is not J-convexifying, and the result follows.

(b) By a theorem of Lumer (e.g., [2, page 82]), we have

$$\sup\{\Re(z) : z \in W(T)\} = \lim_{\alpha \to 0} \frac{1}{\alpha} (\|I + \alpha T\| - 1);$$

but by (a) there exists $t < 1$ such that $\sup\{\Re(z) : z \in W(T)\} < t$, and so there exists $0 < \alpha < 1$ such that $\|I + \alpha T\| < 1 + \alpha t$. Since $\|T\| = 1$ it follows that $\|I + T\| < 2$.

The next result concerns J-convexifying operators on super-reflexive spaces. It generalizes one of the implications in Theorem A and serves as a partial converse to Proposition 2.1(b).
PROPOSITION 2.2. Suppose that E is super-reflexive and that T is a norm one operator on E with $\|I + T\| < 2$. Then T is J-convexifying.

PROOF: Select $\epsilon > 0$ and $\delta > 0$ such that $\|I + T\| + \epsilon + \delta < 2$. If T is not J-convexifying, then for each $n \geq 1$ there exist x_1, \ldots, x_n in the unit ball of E such that

$$\inf_{0 \leq k \leq n} \|x_1 + \cdots + x_k + T(x_{k+1} + \cdots + x_n)\| > n - \epsilon.$$

Now suppose that $1 \leq k \leq n$, that $\alpha_i \geq 0$ and that $\sum_{i=1}^{k} \alpha_i = \sum_{i=k+1}^{n} \alpha_i = 1$. Then

$$\|\alpha_1 x_1 + \cdots + \alpha_k x_k + T(\alpha_{k+1} x_{k+1} + \cdots + \alpha_n x_n)\|$$

$$\geq \|x_1 + \cdots + x_k + T(x_{k+1} + \cdots + x_n)\| - \|(1 - \alpha_1) x_1 + \cdots + (1 - \alpha_k) x_k + T((1 - \alpha_{k+1}) x_{k+1} + \cdots + (1 - \alpha_n) x_n)\|$$

$$\geq n - \epsilon - \sum_{i=1}^{k} (1 - \alpha_i) - \sum_{i=k+1}^{n} (1 - \alpha_i)\|T\|$$

$$\geq n - \epsilon - (k - 1) - (n - k - 1)$$

$$= 2 - \epsilon.$$

Using the fact that $\|I + T\| + \epsilon + \delta < 2$, we obtain

$$\|\alpha_1 x_1 + \cdots + \alpha_k x_k - (\alpha_{k+1} x_{k+1} + \cdots + \alpha_n x_n)\| \geq 2 - \epsilon - \|I + T\| \geq \delta.$$

So for each $1 \leq k \leq n$, we have

$$d(\text{conv}(x_1, \ldots, x_k), \text{conv}(x_{k+1}, \ldots, x_n)) \geq \delta.$$

It follows from a characterization of super-reflexivity in [9] that E is not super-reflexive. This contradiction proves that T is J-convexifying.

The following immediate consequence of Proposition 2.2 completes the proof of Theorem 1.3.

COROLLARY 2.3. Suppose that E is a super-reflexive complex Banach space, that $|\lambda| = 1$, and that $\lambda \neq 1$. Then there exist $n \geq 2$ and $\epsilon > 0$ such that for all x_1, \ldots, x_n in the unit ball of E, we have

$$\inf_{1 \leq k \leq n} \|x_1 + \cdots + x_k + \lambda x_{k+1} + \cdots + \lambda x_n\| \leq n - \epsilon.$$

When E is uniformly convex the converse of Proposition 2.1(a) is also true.
Theorem 2.4. Suppose that T is an operator on a uniformly convex space E. Then T is J-convexifying if and only if $\overline{W(T)} \subseteq \{ z : \text{Re}(z) < 1 \}$.

Proof: Necessity is proved in Proposition 2.1. To prove the converse we shall suppose that $\overline{W(T)} \subseteq \{ z : \text{Re}(z) < k \}$, where $k < 1$. Select $\eta > 0$ so that $k + 2\eta\|T\| = m < 1$ and let $\epsilon = \eta^2/8$. Since E is uniformly convex there exists $\delta \in (0, \frac{1}{2}(1 - m))$ such that if $\|x\| \leq 1$, $\|y\| \leq 1$ and $\|x + y\| \geq 2 - \delta$, then $\|x - y\| \leq \epsilon$. Now select $n \geq 1$ such that $(\|T\| + \delta - 1)/(n - 1) < \epsilon$. Suppose that x_1, \ldots, x_n lie in the unit ball of E and that $\|x_1 + \cdots + x_n\| \geq n - \delta$. Then $\|x_i + x_j\| \geq 2 - \delta$ ($1 \leq i < j \leq n$), and so $\|x_i - x_j\| \leq \epsilon$. To obtain a contradiction we shall suppose that $x_1 + \cdots + x_{n-1} + T(x_n) = n - 5$. Select $f \in E^*$ such that $\|f\| = 1$ and $f(x_1 + \cdots + x_{n-1} + T(x_n)) = \|x_1 + \cdots + x_{n-1} + T(x_n)\|$. It follows that

$$\max_{1 \leq j \leq n} \text{Re}(f(x_j)) \geq \frac{n - \delta - \|T\|}{n - 1} \geq 1 - \epsilon,$$

and so $\text{Re}(f(x_n)) \geq 1 - 2\epsilon \geq 1 - \eta^2/4$. By the Bishop-Phelps-Bollobas Theorem (e.g., [2]) there exists $(x, g) \in \Pi$ such that $\|x - x_n\| < \eta$ and $\|g - f\| < \eta$. So

$$\text{Re}(f(Tx_n)) \leq \text{Re}(g(Tx_n)) + \eta\|T\| \leq \text{Re}(g(Tx)) + 2\eta\|T\| \leq k + 2\eta\|T\| < 1 - 2\delta.$$

Hence $\|x_1 + \cdots + x_{n-1} + T(x_n)\| = f(x_1 + \cdots + x_{n-1} + T(x_n)) \leq n - 2\delta$, which is the desired contradiction. It follows that T is $J(n, \delta)$-convexifying.

Corollary 2.5. The following are equivalent:

(i) E is super-reflexive;

(ii) if T is an operator on E such that $\overline{W(T)} \subseteq \{ z : \text{Re}(z) < 1 \}$ then E can be renormed so that T is a J-convexifying operator with respect to the new norm.

Proof: (ii) implies (i) follows at once from Theorem A by considering $T = -I$. To prove that (i) implies (ii) we recall that a super-reflexive Banach space admits an equivalent uniformly convex norm ([7]). Moreover,
it is well known (see e.g., [1, page 211]) that if \((E, \| \cdot \|)\) admits an equivalent uniformly convex norm then, given \(\varepsilon > 0\), there exists a uniformly convex norm \(\| \cdot \|\) on \(E\) such that \((1 - \varepsilon)\|x\| \leq \|x\| \leq (1 + \varepsilon)\|x\|\) for all \(x \in E\). A straightforward perturbation argument involving the Bishop-Phelps-Bollobas theorem proves that provided \(\varepsilon\) is sufficiently small the numerical range of \(T\) with respect to \(\| \cdot \|\) still satisfies \(\overline{W}(T) \subset \{z : \Re(z) < 1\}\). It now follows from Theorem 2.4 that \(T\) is \(J\)-convexifying with respect to \(\| \cdot \|\).

We conclude this section by recalling the notion of an ultrapower of a Banach space, which will be needed in Section 4. Let \(F\) denote the collection of all bounded sequences \(x = (x_n)_{n=1}^\infty\) in \(E\), and let \(\mathcal{U}\) be a non-trivial ultrafilter on \(N\). A semi-norm on \(F\) is defined by \(\|x\| = \lim_{\mathcal{U}} \|x_n\|\). Quotienting \(F\) by the kernel of this semi-norm and taking the completion gives rise to the ultrapower \(E^N/\mathcal{U}\). An operator \(T\) on \(E\) induces an operator \(\tilde{T}\) on \(E^N/\mathcal{U}\) in the obvious way. The following proposition, whose straightforward proof is omitted, will be needed in Section 4.

Lemma. If \(T\) is a \(J\)-convexifying operator on \(E\), then \(\tilde{T}\) is \(J\)-convexifying on \(E^N/\mathcal{U}\).

We shall also need to use the fact that \(E\) is super-reflexive if and only if every ultrapower \(E^N/\mathcal{U}\) is reflexive.

3. Generalization of the Brunel-Sucheston technique

To prove Theorem 1.1 we need to develop the machinery of the Brunel-Sucheston procedure ([4], [5]) in the more general setting of an algebra of operators acting on a normed space. Once the definitions have been decided upon much of the theory carries across from [4], [5] with only minor modifications; when this is so we shall merely state the corresponding result without proof.

Suppose that \(A\) is a real or complex algebra with identity and that \(E\) is a normed space. We shall say that \(E\) is an \(A\)-module if \(A\) acts as an algebra of bounded operators on \(E\). Let \(N = \{\alpha \in A : \alpha x = 0 \text{ for all } x \in E\}\); then \(A/N\) may and shall be regarded as a subalgebra of the algebra of all operators on \(E\). Let \(S\) denote the space of all sequences \(a = (a_i)_{i=1}^\infty\) of elements of \(A\) with only finitely many non-zero terms.

Theorem 3.1. Let \((y_n)_{n=1}^\infty\) be a bounded sequence in \(E\) and suppose that \(A/N\) is separable in the operator norm topology. There exists a semi-norm \(\| \cdot \|\) on \(S\) and a subsequence \((x_n)_{n=1}^\infty\) such that, for all \(a \in S\) and \(\varepsilon > 0\),
there exists a positive integer ν such that
\[
\sum_{i=1}^{\infty} a_i(x_{n_i}) - \|a\| \leq \epsilon
\]
for all integers $\nu \leq n_1 < n_2 < \cdots$.

We shall assume throughout the remainder of this section that $(x_n)_1^\infty$, $(y_n)_1^\infty$ and the seminorm $\|\cdot\|$ are fixed. If \tilde{K} is the kernel of this semi-norm then S/\tilde{K} is itself a normed A-module with the action defined coordinate-wise.

Proposition 3.2. S/\tilde{K} is finitely representable in E.

We now introduce a type of finite representability which appropriately reflects the A-module structure. Suppose that E and F are normed A-modules. Then E will be said to be A-finitely representable in F if, for all positive integers n and N, for all z_1, \ldots, z_n in E, and for all n-tuples $(\alpha_1^k, \ldots, \alpha_n^k) (1 \leq k \leq N)$ of elements of A, there exist w_1, \ldots, w_n in F such that

\[
\left\| \sum_{i=1}^{n} \alpha_i^k z_i \right\| - \left\| \sum_{i=1}^{n} \alpha_i^k w_i \right\| < \epsilon \quad (1 \leq k \leq N).
\]

A standard compactness argument shows that the above definition coincides with the usual notion of finite representability when E and F are just normed spaces.

Proposition 3.3. S/\tilde{K} is A-finitely representable in E.

Proof: Suppose that $\hat{z}_1, \ldots, \hat{z}_n$ are any vectors in S/\tilde{K} and that $(\alpha_1^k, \ldots, \alpha_n^k) (1 \leq k \leq N)$ are n-tuples of elements of A. Let z_1, \ldots, z_n be representatives from S of $\hat{z}_1, \ldots, \hat{z}_n$. For $m \geq 1$, let $R_m : S \to E$ be the A-module homomorphism uniquely defined by $R_m(e_k) = x_{m+k}$ (here $(e_k)_{k=1}^\infty$ is the canonical basis of S as a free A-module). Given $\epsilon > 0$, there exists $m \geq 1$ such that

\[
\left\| \sum_{i=1}^{n} \alpha_i^k z_i \right\| - \left\| R_m(\sum_{i=1}^{n} \alpha_i^k z_i) \right\| < \epsilon
\]
for each $1 \leq k \leq N$. Setting $w_i = R_m(z_i)$ and using the fact that R_m is an A-module homomorphism, we obtain

$$\left| \left| \sum_{i=1}^{n} \alpha_i^k z_i \right| - \left| \sum_{i=1}^{n} \alpha_i^k w_i \right| \right| < \epsilon$$

for each $1 \leq k \leq N$. This completes the proof.

$(S, \| \cdot \|)$ has the property that, for all $k \geq 1$, for all natural numbers $n_1 < n_2 < \cdots < n_k$, and for all $a = \sum_{i=1}^{k} a_i e_i$ in S, we have $\| \sum_{i=1}^{k} a_i e_i \| = \| \sum_{i=1}^{k} a_i e_{n_i} \|$. In accordance with [4] such a semi-norm on S will be called “invariant under spreading” (or I.S.). We turn now to define an analogue of the “equal signs additive” norm of [5], [6]. For each $n \geq 1$, the averaging operator $A_n : S \to S$ is defined by $A_n(e_k) = \frac{1}{n}(e_k + e_{k+1} + \cdots + e_{k+n-1})$ with extension to S by A-linearity. Given $a = a_1 e_1 + \cdots + a_r e_r$ in S, we consider the vector $a_1 A_{n_1}(e_{s_1}) + \cdots + a_r A_{n_r}(e_{s_r})$, where $s_1 > 0$, $s_2 \geq s_1 + n_1, \ldots, s_r \geq s_{r-1} + n_{r-1}$. The I.S. property of $\| \cdot \|$ guarantees that the semi-norm of this vector does not depend on the choice of s_1, \ldots, s_r; it shall be denoted by $F(a; n_1, \ldots, n_r)$.

PROPOSITION 3.4. For each $a = a_1 e_1 + \cdots + a_r e_r$ in S, the limit of $F(a; n_1, \ldots, n_r)$ as $\inf \{ n_i : 1 \leq i \leq r \} \to \infty$ exists. This limit, denoted $|||a|||$, is a semi-norm on S.

If K denotes the kernel of $\| \cdot \|$, then S/K is a normed A-module; exactly as in Proposition 3.2 we have the following.

PROPOSITION 3.5. $(S/K, ||| \cdot |||)$ is both finitely representable and A-finitely representable in E.

Let $| \cdot |$ be a semi-norm on S. Then $| \cdot |$ will be said to be “equal terms additive” (E.T.A.) if, for each $a = a_1 e_1 + \cdots + a_r e_r$ in S with $a_i = a_{i+1}$ for some $1 \leq i \leq r - 1$, we have

$$|a| = |a_1 e_1 + \cdots + a_{i-1} e_{i-1} + (a_i + a_{i+1}) e_i + a_{i+2} e_{i+2} + \cdots + a_r e_r|.$$

It is easily seen that an E.T.A. semi-norm is automatically I.S.

PROPOSITION 3.6. $||| \cdot |||$ is an E.T.A. semi-norm on S.

PROOF: Suppose that $a = a_1 e_1 + \cdots + a_r e_r$ with $a_i = a_{i+1}$. Let $b = a_1 e_1 + \cdots + a_{i-1} e_{i-1} + (a_i + a_{i+1}) e_i + a_{i+2} e_{i+2} + \cdots + a_r e_r$. The I.S. property implies that $F(a; n_1, \ldots, n_{i-1} N, N, n_{i+2}, \ldots, n_r) = F(b; n_1, \ldots, n_{i-1}, 2N, n_r)$.
\(n_{i+2}, \ldots, n_r \) for all \(n_1, \ldots, n_{i-1}, n_{i+2}, \ldots, n_r, N \) and \(n \). The result follows at once.

4. \textbf{J-convexifying involutions}. This section is devoted to a proof of Theorem 1.1. We shall use the ideas of the previous section and follow the strategy of the proof of Theorem A given in [5]. Anything from [5] which transfers with only minor alteration will be stated without proof.

Using the notation of the previous section we shall show that the sequence \((x_n)_{n=1}^{\infty} \) contains a subsequence which is convergent in Cesaro mean when the hypotheses of Theorem 1.1 are met. This will show that \(E \) has the Banach-Saks property and, in particular, that \(E \) is reflexive.

Proposition 4.1 ([5]): If \(\|e_1 - e_2\| = 0 \) then \((x_n)_{n=1}^{\infty} \) contains a subsequence which is convergent in Cesaro mean.

Lemma 4.2. Suppose that \(T \) is a \(J \)-convexifying involution on a Banach space \(E \). Then there exists \(k \geq 1 \) such that \(I + T + T^2 + \cdots + T^k = 0 \).

Proof: Suppose that \(T \) is an involution of order \(k+1 \). Then \(\|T^n\|^{1/n} \to 1 \) as \(n \to \infty \), and so \(T - \lambda I \) is invertible for all \(\lambda > 1 \). It follows that either \(T - I \) is invertible or that \(T - I \) fails to be an isomorphism onto its range: in the complex case this is just the familiar fact that every point in the boundary of the spectrum of \(T \) is an approximate eigenvalue. If \(T - I \) is not an isomorphism onto its range then, given \(\epsilon > 0 \), there exists a unit vector \(x \) in \(E \) with \(\|Tx - x\| < \epsilon \). It follows that, for each \(n \geq 1 \), we have

\[
\inf_{0 \leq k \leq n} \|kx + T((n-k)x)\| \geq n - n\epsilon.
\]

Since \(\epsilon \) is arbitrary, this contradicts the fact that \(T \) is \(J \)-convexifying. So \(T - I \) is invertible and hence \(I + T + T^2 + \cdots + T^k = 0 \).

Now suppose that the element \(\alpha \) of \(A \) satisfies \(I + \alpha + \cdots + \alpha^{k-1} = 0 \). We shall say that \(\alpha \) is cyclic of order \(k \). A sequence of vectors \((f_n)_{n=1}^{\infty} \) in \(S \) is defined by

\[
f_n = e(n-1)k+1 + \alpha e(n-1)k+2 + \cdots + \alpha^{k-1} e nk;
\]

the real vector subspace spanned by \((f_n)_{n=1}^{\infty} \) will be denoted \(F \).
PROPOSITION 4.3. If \(\|e_1 - e_2\| \neq 0 \) then \((F, \|\|, \|\|)\) is a normed space.

PROPOSITION 4.4. \((f_n)_{n=1}^\infty\) is an orthogonal sequence in \(F\).

PROOF: We have to show that, for all \(m \geq 1 \), for all real \(\lambda_1, \ldots, \lambda_m \), and for each \(1 \leq r \leq m \), we have

\[
\|\lambda_1 f_1 + \cdots + \lambda_m f_m\| \geq \|\lambda_1 f_1 + \cdots + \lambda_{r-1} f_{r-1} + \lambda_{r+1} f_{r+1} + \cdots + \lambda_m f_m\|.
\]

The I.S. property is used to write the expression on the left hand side as each of the following \(n \) expressions:

\[
\|y + \lambda_r (e_{(r-1)k+1} + \alpha e_{(r-1)k+2} + \cdots + \alpha^{k-1} e_{rk}) + z\|;
\]

\[
\|y + \lambda_r (e_{(r-1)k+2} + \alpha e_{(r-1)k+3} + \cdots + \alpha^{k-1} e_{rk+1}) + z\|;
\]

down to

\[
\|y + \lambda_r (e_{(r-1)k+n} + \alpha e_{(r-1)k+n+1} + \cdots + \alpha^{k-1} e_{rk+n-1}) + z\|,
\]

where \(y = \sum_{i=1}^{r-1} \lambda_i f_i \) and \(z = U_n (\sum_{i=r+1}^{m} \lambda_i f_i) \) (here \(U_n : S \to S \) is the \(A \)-module homomorphism defined by \(U_n (e_k) = e_{n+k} \) for all \(k \geq 1 \)). Taking the average of these, and using the triangle inequality and the fact that \(I + \alpha \cdots + \alpha^{k-1} = 0 \), we obtain

\[
\|\lambda_1 f_1 + \cdots + \lambda_m f_m\| \geq \|y + z\| - \frac{\|\lambda_r\|}{n} \|a + b\|,
\]

where

\[
a = e_{(r-1)k+1} + (1 + \alpha) e_{(r-1)k+2} + \cdots + (1 + \alpha + \cdots + \alpha^{k-2}) e_{(r-1)k} + k - 1
\]

and

\[
b = \alpha^{k-1} e_{rk+n-1} + (\alpha^{k-1} + \alpha^{k-2}) e_{rk+n-2} + \cdots + (\alpha^{k-1} + \cdots + \alpha) e_{rk+n-k+1}.
\]

Using the I.S. property and taking the limit as \(n \) tends to infinity gives the required result.
Corollary 4.5. (a) $(f_n)_{n=1}^{\infty}$ is an unconditional basic sequence in F.

(b) Either c_0 is finitely representable in F or $|||f_1 + \cdots + f_n|||$ increases to infinity with n.

Proposition 4.6. Suppose that E is a normed A-module and that α is a J-convexifying cyclic element of A. Then either c_0 is finitely representable in E or E is reflexive.

Proof: If E is not reflexive then there exists a bounded sequence $(y_n)_{n=1}^{\infty}$ in E which has no Cesaro mean convergent subsequence. It follows from Propositions 4.1 and 4.3 that the space F constructed above is a normed space. If c_0 is not finitely representable in E, then by Proposition 3.5 c_0 is not finitely representable in S/K, of which F is a subspace; so by Corollary 4.5(b), $|||f_1 + \cdots + f_n|||$ increases to infinity with n. Now suppose that α is cyclic of order k and is $J(r, e)$-convexifying. For each $1 \leq j \leq r$ and $n \geq 1$, we define

$$v_n^j = (e_{j+r} + \alpha e_{j+2r} + \cdots + \alpha^{k-1} e_{j+kr}) + \cdots + (e_{j+(n-1)kr+r} + \cdots + \alpha^{k-1} e_{j+nkr}).$$

Let $d_n^s = v_n^1 + \cdots + v_n^s + \alpha (v_n^{s+1} + \cdots + v_n^r)$ ($0 \leq s \leq r$); we write $d_n^s = S_1 + S_2 + S_3$ by grouping the terms as follows:

$$S_1 = -e_{s+1} - \cdots - e_r;$$

$$S_2 = \{(e_{s+1} + \cdots + e_{s+r}) + \alpha (e_{r+s+1} + \cdots + e_{2r+s}) + \cdots + (e_{s+(k-1)r+1} + \cdots + e_{s+kr})\} + \cdots + \{(e_{s+1+(n-1)kr+r} + \cdots + e_{s+((n-1)k+1)r}) + \cdots + \alpha^{k-1} (e_{s+1+(nk-1)r} + \cdots + e_{nk+1})\};$$

$$S_3 = e_{nk+1} + \cdots + e_{(nk+1)r}.$$

The I.S. property implies that

$$|||v_n^j||| = |||f_1 + \cdots + f_n||| \quad (1 \geq j \geq r),$$

and so $|||S_1||/|||v_n^j|||$ and $|||S_3||/|||v_n^j|||$ both tend to zero as n tends to infinity. Moreover, the E.T.A. property implies that $|||S_2|| = r|||v_n^j|||$. Let $z_n^j = v_n^j/|||v_n^j|||$, so that $|||z_n^j||| = 1$. Then

$$\inf_{0 \leq j \leq r} |||z_n^1 + \cdots + z_n^j + \alpha (z_n^{j+1} + \cdots + z_n^r)||| \geq r - \epsilon_n,$$
where $\epsilon_n \to 0$ as $n \to \infty$. Hence α is not $J(r)$-convexifying for $(S/K, \|\| \|\|)$. But by Proposition 3.5 S/K is A-finitely representable in E, and so α is not $J(r)$-convexifying for E. This contradiction completes the proof of the proposition.

PROOF OF THEOREM 1.1: Let T be a J-convexifying involution on a Banach space E and suppose that c_0 is not finitely representable in E. By Lemma 2.6 the induced operator \tilde{T} on the ultrapower E^N/\mathcal{U} is J-convexifying; moreover, \tilde{T} is clearly also an involution. Let A be the subalgebra generated by \tilde{T} of the algebra of all bounded operators on E^N/\mathcal{U}. Then E^N/\mathcal{U} is a normed A-module, and by Lemma 4.2 \tilde{T} is a J-convexifying cyclic element of A. It follows from Proposition 4.6 that E^N/\mathcal{U} is reflexive, and so E is super-reflexive.

REFERENCES