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AN OPTIMAL-ORDER ERROR ESTIMATE FOR A FAMILY OF
ELLAM-MFEM APPROXIMATIONS TO POROUS MEDIUM FLOW∗

HONG WANG†

Abstract. Mathematical models used to describe porous medium flow lead to coupled systems
of time-dependent nonlinear partial differential equations, which present serious mathematical and
numerical difficulties. Standard methods tend to generate numerical solutions with nonphysical
oscillations or numerical dispersion along with spurious grid-orientation effect. The ELLAM-MFEM
time-stepping procedure, in which an Eulerian–Lagrangian localized adjoint method (ELLAM) is
used to solve the transport equation and a mixed finite element method (MFEM) is used for the
pressure equation, simulates porous medium flow accurately even if large spatial grids and time steps
are used. In this paper we prove an optimal-order error estimate for a family of ELLAM-MFEM
approximations.
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1. Introduction. Mathematical models used to describe porous medium flow
processes in petroleum reservoir simulation, groundwater contaminant transport, and
other applications lead to coupled systems of time-dependent nonlinear partial differ-
ential equations (PDEs) [2, 11]. Due to the advection-diffusion feature of the transport
PDEs, the nonlinearity and couplings of the PDEs in the systems, and the strong ef-
fect of sources and sinks, these systems admit solutions with moving steep fronts and
complicated structures. Consequently, these problems present serious mathematical
and numerical difficulties. Standard finite difference or finite element methods (FDMs
and FEMs, respectively) tend to generate solutions with nonphysical oscillations. Up-
wind methods are often used to stabilize the numerical approximations, but they often
produce numerical dispersion and the grid-orientation effect [11]. Extensive research
has been carried out on the development of improved methods for advection-diffusion
PDEs [16, 18, 21].

An FEM-MFEM time-stepping procedure was presented and analyzed in [8, 9].
In the procedure, a mixed finite element method (MFEM) scheme [4, 5, 20] was used
to solve the pressure PDE, and an FEM was used to solve the transport PDE. MFEM
schemes generate an accurate approximation to the Darcy velocity, which is required
for accurate approximation to the concentration because advection and diffusion dis-
persion in the transport PDE are governed by Darcy velocity. MFEMs minimize the
numerical difficulties occurring in FDMs or FEMs caused by differentiation of the
pressure and then multiplication by rough coefficients [22]. Subsequently, an MMOC-
MFEM time-stepping procedure was proposed and analyzed in [12, 13], in which the
modified method of characteristics (MMOC) [10] was used to replace the FEM scheme
in [9]. The MMOC symmetrizes and stabilizes the transport PDE, greatly reduces
temporal errors, and so allows for large time steps in a simulation without loss of
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2134 HONG WANG

accuracy. However, the MMOC fails to conserve mass and has difficulties in handling
general boundary conditions.

The Eulerian–Lagrangian localized adjoint method (ELLAM) framework [6, 21]
provides a systematic approach to solve transient advection-diffusion PDEs with gen-
eral boundary conditions in a mass-conservative manner, while maintaining accuracy
and efficiency of Eulerian–Lagrangian methods. Numerical experiments show that
the ELLAM is very competitive in the context of model transport PDEs [26, 28] and
miscible porous medium flow [3, 17, 30, 32]. Nevertheless, corresponding theoreti-
cal analysis falls far behind. To date, error estimates for the ELLAM and related
schemes have been proved in the context of linear advection-dominated transport
PDEs [1, 14, 15, 24, 25, 27, 29, 31]. This is partly due to the fact that the analyses
are more complex than those for the MMOC and related methods [10, 29, 21]. In this
paper we derive an optimal-order error estimate for an ELLAM-MFEM approximation
to the coupled system of miscible porous medium flow.

The rest of the paper is organized as follows: In section 2 we review the mathe-
matical model. In section 3 we describe the ELLAM-MFEM time-stepping procedure.
In section 4 we present known theoretical results used in the analysis. In section 5
we prove an optimal-order error estimate for the ELLAM-MFEM time-stepping pro-
cedure. In section 6 we prove several lemmas used in section 5.

2. Mathematical model and notation. We present a mathematical model
for porous medium flow and introduce the functional spaces used in this paper.

2.1. Mathematical model. Let c(x, t) be the concentration of an invading
fluid or a concerned solute/solvent, and let p(x, t) and u(x, t) be the pressure and
Darcy velocity of the fluid mixture, respectively. The mass conservation for the fluid
mixture incorporated with the incompressibility condition, Darcy’s law, and the mass
conservation for the invading fluid lead to the following system of PDEs [2, 11]:

∇ · u = q, u = − K

μ(c)
(∇p− ρg∇d), x ∈ Ω, t ∈ [0, T ],(2.1)

φ
∂c

∂t
+ ∇ · (uc− D(x,u)∇c) = c̄q, x ∈ Ω, t ∈ [0, T ],(2.2)

u · n = (D∇c) · n = 0, x ∈ ∂Ω, t ∈ [0, T ],

c(x, 0) = c0(x), x ∈ Ω.
(2.3)

We assume that the medium is homogeneous vertically and take Ω ⊂ R
2 with a

nonuniform local elevation. φ(x) and K(x) are the porosity and the permeability
tensor of the medium, respectively, μ(c) and ρ are the viscosity and the density of
the fluid mixture, respectively, g is the gravitational acceleration, d(x) is the reservoir
depth, and q(x, t) is the source and sink term. D(x,u) = φ(x)dm I + dt|u| + (dl −
dt)(uiuj)

2
i,j=1/|u| is the diffusion-dispersion tensor, with dm, dt, and dl being the

molecular diffusion and the transverse and longitudinal dispersivities, respectively,
and I is the identity tensor. c̄(x, t) is specified at sources and c̄(x, t) = c(x, t) at sinks.
c0(x) is the initial concentration.

The combination of the first equations in (2.1) and (2.3) implies that q has mean
0. In addition, (2.1) with the noflow boundary condition (2.3) can determine the
pressure p(x, t) only up to an additive constant for all the time t ∈ [0, T ]. But this
indeterminacy is of no consequence since u is uniquely determined by Darcy’s law,
and only u (not p) is needed in (2.2).
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2.2. Notation. Let Wm
q (Ω) be the Sobolev spaces consisting of functions whose

derivatives up to order-m are qth integrable on Ω, and Hm(Ω) := Wm
2 (Ω). Let L2

0(Ω)
be the subspace of L2(Ω) with mean 0. We introduce vector-valued Sobolev spaces

Hm(div; Ω) :=
{
f(x) = (f1, f2) : f1, f2,∇ · f ∈ Hm(Ω)

}
,

‖f‖Hm(div;Ω) :=
(
‖f1‖2

Hm(Ω) + ‖f2‖2
Hm(Ω) + ‖∇ · f‖2

Hm(Ω)

)1/2

,

H0(div; Ω) :=
{
f(x) ∈ H0(div; Ω) : f(x) · n(x) = 0, x ∈ ∂Ω

}
.

We drop Ω in these notations when it is clear from the context.
For any Banach space X, we introduce Sobolev spaces involving time

Wm
q (t1, t2;X) :=

{
f(x, t) :

∥∥∥∂αf

∂tα
(·, t)

∥∥∥
X

∈ Lq(t1, t2), 0 ≤ α ≤ m, 1 ≤ q ≤ ∞
}
,

‖f‖Wm
q (t1,t2;X) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
m∑

α=0

∫ t2

t1

∥∥∥∂αf

∂tα
(·, t)

∥∥∥q
X
dt

)1/q

, 1 ≤ q < ∞,

max
0≤α≤m

esssupt∈(t1,t2)

∥∥∥∂αf

∂tα
(·, t)

∥∥∥
X
, q = ∞.

We also define the discrete norms

‖f‖L̂∞
c (0,T ;X) := max

0≤n≤N
‖f(x, tcn)‖X , ‖f‖L̂∞

p (0,T ;X) := max
0≤m≤M

‖f(x, tpm)‖X ,

‖f‖L̂2
c(0,T ;X) :=

(
N∑

n=0

‖f(x, tcn)‖2
XΔtcn

)1/2

,

with tcn and tpm being defined in (3.1) and (3.11), respectively. If (t1, t2) = (0, T ), we
drop it from these notations.

In this paper we use ε to denote an arbitrarily small positive number, Ai, Ki,
and Qi to denote fixed positive constants, and Q to denote a generic positive constant
that could assume different values at different occurrences. All of these constants are
independent of spatial and temporal grid parameters.

3. An ELLAM-MFEM time-stepping procedure. In this procedure an EL-
LAM scheme is used to solve the transport PDE (2.2), and an MFEM scheme is used
for the pressure system (2.1).

3.1. An ELLAM formulation for the transport equation. We define a
temporal partition on the interval [0, T ] by

0 =: tc0 < tc1 < · · · < tcn < · · · < tcN−1 < tcN := T,(3.1)

with Δtcn := tcn − tcn−1 and Δtc := max1≤n≤N Δtcn.
By multiplying (2.2) by any space-time test functions z that are continuous and

piecewise smooth, vanish outside the space-time strip Ω × (tcn−1, t
c
n], and are discon-
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tinuous in time at time tcn−1, we obtain a weak formulation for (2.2)

∫
Ω

φ(x)c(x, tcn)z(x, tcn)dx +

∫ tcn

tcn−1

∫
Ω

∇z(y, θ) · D(y,u(y, θ))∇c(y, θ)dydθ

−
∫ tcn

tcn−1

∫
Ω

c(y, θ)

[
φ(y)

∂z(y, θ)

∂θ
+ u(y, θ) · ∇z(y, θ)

]
dydθ

=

∫
Ω

φ(x)c(x, tcn−1)z(x, t
c,+
n−1)dx +

∫ tcn

tcn−1

∫
Ω

c̄(y, θ)q(y, θ)z(y, θ) dydθ,

(3.2)

where z(x, tc,+n−1) := limt→tcn−1, t>tcn−1
z(x, t) accounts for the discontinuity of z(x, t)

in time at time tcn−1. We replace the dummy variables x and t in the space-time
integrals in (3.2) by y and θ and reserve x for the point in Ω at time tcn or tcn−1.

In the ELLAM framework [6, 21, 30], the test functions in (3.2) are defined to be
the solutions of the adjoint equation of the hyperbolic part of (2.2)

φ(y)
∂z(y, θ)

∂θ
+ u(y, θ) · ∇z(y, θ) = 0, y ∈ Ω, θ ∈ [tcn−1, t

c
n].(3.3)

Thus, the last term on the left-hand side of (3.2) vanishes. Once the test functions
z(x, tcn) are specified in Ω, they are determined in the space-time strip Ω × (tcn−1, t

c
n]

by constant extension along the characteristics y = r(θ;x, tcn) defined by

dr

dθ
=

u(r, θ)

φ(r)
and r(θ; x̄, t̄)

∣∣∣
θ=t̄

= x̄.(3.4)

Evaluating the source term in (3.2) by the Euler formula at time tcn yields

∫ tcn

tcn−1

∫
Ω

c̄(y, θ)q(y, θ)z(y, θ) dydθ

=

∫
Ω

∫ tcn

tcn−1

c̄(r(θ;x, tcn), θ)q(r(θ;x, tcn), θ)z(x, tcn) det

(
∂r(θ;x, tcn)

∂x

)
dθdx

= Δtcn

∫
Ω

c̄(x, tcn)q(x, tcn)z(x, tcn)dx + Eq(c̄, z),

(3.5)

where Eq(c̄, z) is the local truncation error term given by

Eq(c̄, z) := −
∫

Ω

z(x, tcn)

{∫ tcn

tcn−1

[
c̄(x, tcn)q(x, tcn)

− c̄(r(θ;x, tcn), θ)q(r(θ;x, tcn), θ) det

(
∂r(θ;x, tcn)

∂x

)]
dθ

}
dx.

(3.6)

In (3.5) we have implicitly used the fact that the traceback operator r is a diffeomor-
phism and the determinant is positive [10].
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Likewise, we evaluate the diffusion-dispersion term in (3.2) to obtain

∫ tcn

tcn−1

∫
Ω

∇z(y, θ) · D(y,u(y, θ))∇c(y, θ)dydθ

=

∫
Ω

∫ tcn

tcn−1

∇rz(x, t
c
n) · (D(r(θ;x, tcn),u(r(θ;x, tcn), θ))

∇cr(r(θ;x, t
c
n), θ)) det

(
∂r(θ;x, tcn)

∂x

)
dθdx

=

∫
Ω

∫ tcn

tcn−1

det

(
∂r(θ;x, tcn)

∂x

)(
∂r(θ;x, tcn)

∂x

)−1

∇z(x, tcn)

· (D(r(θ;x, tcn),u(r(θ;x, tcn), θ))∇cr(r(θ;x, t
c
n), θ))dθdx

= Δtcn

∫
Ω

∇z(x, tcn) · D(x,u(x, tcn))∇c(x, tcn) dx + ED(c, z).

(3.7)

The subscript r emphasizes that the gradient is taken with respect to r. The local
truncation error ED(c, z) is given by

ED(c, z) :=

∫
Ω

∫ tcn

tcn−1

(
det

(
∂r(θ;x, tcn)

∂x

)(
∂r(θ;x, tcn)

∂x

)−1

− I

)
∇z(x, tcn)

· (D(r(θ;x, tcn),u(r(θ;x, tcn), θ))∇c(r(θ;x, tcn), θ))dθdx

−
∫

Ω

∫ tcn

tcn−1

∇z(x, tn) · (D(x,u(x, tcn))∇c(x, tcn)

−D(r(θ;x, tcn),u(r(θ;x, tcn), θ))∇c(r(θ;x, tcn), θ))dθdx.

(3.8)

We substitute (3.5) and (3.7) into (3.2) to obtain an ELLAM reference equation
for the transport PDE (2.2)∫

Ω

φ(x)c(x, tcn)z(x, tcn)dx + Δtcn

∫
Ω

∇z(x, tcn) · D(x,u(x, tcn))∇c(x, tcn)dx

=

∫
Ω

φ(x)c(x, tcn−1)z(x, t
c,+
n−1)dx + Δtcn

∫
Ω

c̄(x, tcn)q(x, tcn)z(x, tcn)dx

−ED(c, z) + Eq(c̄, z).

(3.9)

3.2. An MFEM formulation for the pressure and Darcy velocity. We
multiply the second equation in (2.1) by μ(c)K−1(x) and any test functions v ∈
H0(div; Ω) and apply the divergence theorem to the ∇p term. We then multiply the
first equation in (2.1) by any test functions w(x) ∈ L2

0(Ω) and integrate over Ω. The
system (2.1) is expressed as a time-parameterized saddle-point problem of finding a
map (u(x, t), p(x, t)) ∈ H0(div; Ω) × L2

0(Ω) such that∫
Ω

μ(c)K−1u · vdx −
∫

Ω

p∇ · vdx =

∫
Ω

ρg∇d · vdx,
∫

Ω

w∇ · udx =

∫
Ω

q(x, t)wdx

∀(v(x), w(x)) ∈ H0(div; Ω) ×L2
0(Ω), t ∈ [0, T ].

(3.10)
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It was proved [4, 8] that problem (3.10) has a unique solution (u(x, t), p(x, t)) ∈
H0(div; Ω) × L2

0(Ω) for all t ∈ [0, T ].
Let V k ⊂ H0(div; Ω) and Sk

p ⊂ L2
0(Ω) be MFEM spaces of index k ≥ 0 on a quasi-

uniform partition of Ω = ∪Ωp
e with the diameter hp [5, 20]. We define a temporal

partition on the time interval [0, T ] for the pressure grid by

0 =: tp0 < tp1 < · · · < tpm < · · · < tpM−1 < tpM := T,(3.11)

with Δtpm := tpm − tpm−1 and Δtp := max1≤m≤M Δtpm.
Given a concentration approximation ch(x, tpm) at time tpm, the MFEM scheme

determines the velocity uh(x, tpm) ∈ V k and the pressure ph(x, tpm) ∈ Sk
p such that

∫
Ω

μ(ch(x, tpm))K−1(x)uh(x, tpm) · vh(x)dx −
∫

Ω

ph(x, tpm)∇ · vh(x)dx

=

∫
Ω

ρg∇d(x) · vh(x)dx ∀vh(x) ∈ V k,

∫
Ω

wh(x)∇ · uh(x, tpm)dx =

∫
Ω

q(x, tpm)wh(x)dx ∀wh(x) ∈ Sk
p .

(3.12)

3.3. An ELLAM-MFEM time-stepping procedure. The velocity field usu-
ally changes less rapidly than the concentration. Moreover, at each time step the
MFEM system (3.12) is more expensive to solve than the ELLAM scheme for the
transport PDE (2.2). Therefore, we allow a larger time step for the pressure than that
for the concentration [9]. It is often computationally convenient to define the time
partition (3.1) for the concentration by subdividing the time partition (3.11) for the
pressure. Namely, there exist 0 =: N0 < N1 < · · · < Nm < · · · < NM−1 < NM := N
such that tcNm

= tpm for m = 1, 2, . . . ,M . For n = Nm−1 + 1, Nm−1 + 2, . . . , Nm, the
concentration time step tcn relates to the pressure time steps by tpm−1 < tcn ≤ tpm. In

the ELLAM scheme we define a velocity approximation ue
h (x, tcn) by an extrapolation

of uh(x, tpm−1) and earlier values [9]

ue

h (x, tcn) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 +

tcn − tpm−1

Δtpm−1

)
uh(x, tpm−1) −

tcn − tpm−1

Δtpm−1

uh(x, tpm−2),

Nm−1 + 1 ≤ n ≤ Nm, 2 ≤ m ≤ M,

uh(x, 0), 1 ≤ n ≤ N1, m = 1.

(3.13)

Let Sl
c ⊂ W 1

∞(Ω) be an FEM space, which contains the space of continuous piecewise
polynomials of degree at most l on a quasi-uniform partition of diameter hc. For
example, the FEM space Sl

c could be the space of piecewise polynomials of degree at
most l on triangular elements or the space of piecewise polynomials of degree at most
l in each coordinate direction on rectangular elements. We often utilize the fact that
velocity is smoother than the concentration to use a much larger grid size hp than hc

and to further reduce computational cost since (3.12) is more expensive to solve than
(3.14).

Let ch(x, 0) be an approximation to c0(x) (e.g., its L2 or Ritz projection, or
interpolation). An ELLAM-MFEM time-stepping procedure is formulated as follows:
For m = 1, . . . ,M , solve the MFEM scheme (3.12) at the pressure time step tpm−1.
For n = Nm−1 + 1, Nm−1 + 2, . . . , Nm, solve the following ELLAM scheme at each
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concentration time step tcn: Find ch(x, tcn) ∈ Sl
c such that for all zh(x, tcn) ∈ Sl

c∫
Ω

φ(x)ch(x, tcn)zh(x, tcn)dx

+ Δtcn

∫
Ω

∇zh(x, tcn) · D(x,uE
h (x, tcn))∇ch(x, tcn)dx

=

∫
Ω

φ(x)ch(x, tcn−1)zh(x, tc,+n−1)dx + Δtcn

∫
Ω

c̄h(x, tcn)q(x, tcn)zh(x, tcn)dx.

(3.14)

All of the integrals in (3.14), except for the first on the right-hand side, are in
Eulerian coordinates and can be evaluated as in FEMs. The first term on the right-
hand side of (3.14) is in Lagrangian coordinates and requires extra attention. By
definition, the test functions z in the ELLAM reference equation (3.9) are constant
along the characteristics r defined by the initial-value problem (3.4). Set

x̃ := r(tcn;x, tcn−1) = x +

∫ tcn

tcn−1

u(r(θ;x, tcn−1), θ)

φ(r(θ;x, tcn−1))
dθ;(3.15)

the test function z(x, tcn−1) in (3.9) is determined by

z(x, tc,+n−1) = z(x̃, tcn).(3.16)

Unlike in linear advection-diffusion PDEs [6, 26], the velocity u is unknown. In
(3.14) we compute an approximate characteristic rh(tcn;x, tcn−1) by solving a numerical
analogue of problem (3.4)

drh
dθ

=
ue
h (rh, θ)

φ(rh)
and rh(θ; x̄, t̄)

∣∣∣
θ=t̄

= x̄.(3.17)

For clarity of exposition, we assume an Euler tracking and set

x̃h := rh(tcn;x, tcn−1) = x +

∫ tcn

tcn−1

ue
h (rh(θ;x, tcn−1), θ)

φ(rh(θ;x, tcn−1))
dθ

= x +
ue
h (x, tcn−1)

φ(x)
Δtcn.

(3.18)

The test functions zh(x, tcn−1) in the ELLAM scheme (3.14) are evaluated by

zh(x, tc,+n−1) = zh(x̃h, t
c
n).(3.19)

This further complicates the analysis for the ELLAM-MFEM procedure.

4. Preliminaries. This section cites well-established estimates to be used in the
proof of the main theorem in section 5.

The finite element space Sl
c has the approximation and inverse properties [7] for

1 ≤ m ≤ l + 1, 1 ≤ p, q ≤ ∞

inf
zh∈Sl

c

(‖z − zh‖Lq + hc‖z − zh‖W 1
q
) ≤ A1h

m+1+( 2
q−

2
p )

c ‖z‖Wm
p

∀z ∈ Wm
p (Ω)(4.1)

and

‖zh‖H1 ≤ K1h
−1
c ‖zh‖L2 , ‖zh‖L∞ ≤ K1 | lnhc|1/2‖zh‖H1 ,

‖zh‖Wm
q

≤ K1h
−(1− 2

q )
c ‖zh‖Hm ∀zh ∈ Sl

c, m = 0, 1.
(4.2)
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The MFEM spaces (V k,Sk
p ) have the approximation and inverse properties [4, 5,

7, 19] for 2 ≤ q ≤ +∞ and 1 ≤ m ≤ k + 1

inf
vh∈V k

‖v − vh‖Lq ≤ A2h
m−(1− 2

q )
p ‖v‖Hm ∀v ∈ Hm,

inf
vh∈V k

‖v − vh‖H(div) ≤ A2h
m
p ‖v‖Hm(div) ∀v ∈ Hm(div),

inf
gh∈Sk

p

‖g − gh‖L2 ≤ A2h
m
p ‖g‖Hm ∀g ∈ Hm

(4.3)

and

‖vh‖Lq ≤ K2h
−(1− 2

q )
p ‖vh‖L2 ∀vh ∈ V k,

‖vh‖W 1
q
≤ K2h

−1
p ‖vh‖Lq ∀vh ∈ V k.

(4.4)

It is understood in (4.4) that

‖vh‖W 1
q

:=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( ∑
Ωp

e⊂Ω

‖vh‖qW 1
q (Ωp

e)

)1/q

for 2 ≤ q < +∞,

max
∀Ωp

e⊂Ω
‖vh‖W 1

q (Ωp
e) for q = +∞,

where Ωp
e ⊂ Ω are all of the elements of the pressure mesh.

Let Πc(x, t) ∈ Sl
c, t ∈ [0, T ], be the Ritz projection of c(x, t) defined by [23, 33]

∫
Ω

χ(x)(Πc(x, t) − c(x, t))dx

+

∫
Ω

∇χ(x) · D(x,u(x, t))∇(Πc(x, t) − c(x, t))dx = 0 ∀χ ∈ Sl
c.

(4.5)

The following estimates hold [7, 19, 23, 33] for 2 ≤ q ≤ +∞, 1 ≤ m ≤ l + 1:

‖Πc− c‖L∞(Lq) + hc‖Πc− c‖L∞(W 1
q ) ≤ A1h

m
c ‖c‖L∞(Wm

q ),

‖Πc− c‖H1(Lq) ≤ A1h
m
c ‖c‖H1(Wm

q ).
(4.6)

Here the constant A1 is independent of c and hc.
Let Ic(x, t) ∈ Sl

c, t ∈ [0, T ], be the interpolation of c(x, t). We use the estimates
(4.1) with p = 2 and q = +∞, (4.2) with q = +∞, and (4.6) with q = 2 to conclude
that for c ∈ L∞(W 1

∞ ∩H2)

‖Πc‖L∞(W 1
∞) ≤ ‖Πc− Ic‖L∞(W 1

∞) + ‖Ic− c‖L∞(W 1
∞) + ‖c‖L∞(W 1

∞)

≤ K1h
−1
c ‖Πc− Ic‖L∞(H1) + (A1 + 1)‖c‖L∞(W 1

∞)

≤ K1h
−1
c

(
‖Πc− c‖L∞(H1) + ‖Ic− c‖L∞(H1)

)
+ (A1 + 1)‖c‖L∞(W 1

∞)

≤ 2A1K1‖c‖L∞(H2) + (A1 + 1)‖c‖L∞(W 1
∞) =: K3.

(4.7)
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We similarly define a mapping (Πu,Πp) from H(div) × L2
0 to V k × Sk

p by∫
Ω

μ(c(x, t))K−1(x)(Πu(x, t) − u(x, t)) · vh(x)dx

−
∫

Ω

(Πp(x, t) − p(x, t))∇ · vh(x)dx = 0 ∀vh ∈ V k,

∫
Ω

wh(x)∇ · (Πu(x, t) − u(x, t))dx = 0 ∀wh ∈ Sk
p .

(4.8)

The following estimates hold, e.g., for Raviart–Thomas spaces [4, 8, 9]:

‖Πu − u‖L∞(H(div)) + ‖Πp− p‖L∞(L2)

≤ A
(

inf
vh∈V k

‖u − vh‖L∞(H(div)) + inf
gh∈Sk

p

‖p− gh‖L∞(L2)

)
≤ A2h

k+1
p (‖u‖L∞(Hk+1(div)) + ‖p‖L∞(Hk+1)).

(4.9)

Here A2 is independent of hp, u, p, and c.
We let I be an interpolation operator from H(div)×L2

0 to V k × Sk
p for t ∈ [0, T ].

We use the estimates (4.4) and (4.9) to conclude that

‖Πu‖L∞(L∞) ≤ ‖Πu − Iu‖L∞(L∞) + ‖Iu − u‖L∞(L∞) + ‖u‖L∞(L∞)

≤ K2h
−1
p ‖Πu − Iu‖L∞(L2) + (A2 + 1)‖u‖L∞(L∞)

≤ K2h
−1
p

(
‖Πu − u‖L∞(L2) + ‖Iu − u‖L∞(L2)

)
+ (A2 + 1)‖u‖L∞(L∞)

≤ 2A2K2

(
‖u‖L∞(H1(div)) + ‖p‖L∞(H1)

)
+ (A2 + 1)‖u‖L∞(L∞) =: K4.

(4.10)

For the analysis in section 5 we introduce an extrapolation of the exact velocity u

ue(x, tcn) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 +

tcn − tpm−1

Δtpm−1

)
u(x, tpm−1) −

tcn − tpm−1

Δtpm−1

u(x, tpm−2),

Nm−1 + 1 ≤ n ≤ Nm, 2 ≤ m ≤ M,

u(x, 0), 1 ≤ n ≤ N1, m = 1.

(4.11)

Then we routinely see that for 2 ≤ q ≤ +∞

‖uE(x, t) − u(x, t)‖Lq

≤
{

A3(Δtp)
3
2 ‖u‖H2(tpm−2,t

p
m;Lq) ∀t ∈ [tpm−1, t

p
m], m ≥ 2,

A3Δt1p‖u‖W∞
1 (tp0 ,t

p
1 ;Lq) ∀t ∈ [tp0, t

p
1], m = 1.

(4.12)

5. An optimal-order error estimate. In this section we prove an optimal-
order error estimate for the ELLAM-MFEM time-stepping procedure with any order
of approximating polynomials (k ≥ 0, l ≥ 1).

5.1. On the main theorem and its proof. Note that the test functions in
the ELLAM formulation are defined by (3.3), which can be evaluated by using (3.19).
However, the velocity u is unknown. This is in contrast to the ELLAM schemes for
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linear transport PDEs in which the true velocity is known and is used to evaluate
characteristics [6, 21, 26]. In the ELLAM-MFEM time-stepping procedure in section
3, we have to use the numerical velocity ue

h to evaluate the approximate characteristics
rh by solving problem (3.17). These issues further complicate the analysis [21, 25].

Theorem 5.1. Suppose that the solution (c, p,u) of problem (2.1)–(2.3) satisfies
c ∈ L∞(W l+1

2+γ) ∩ L∞(W 1
∞) ∩ H1(H l+1) for some γ > 0, p ∈ L∞(Hk+1), and u ∈

L∞(Hk+1(div)∩W 1
∞)∩W 1

∞(L∞)∩H2(L2). Let (ch(x, tcn), ph(x, tpm),uh(x, tpm)) be the
solution of the ELLAM-MFEM time-stepping procedure (3.12) and (3.14) with l ≥ 1
and k ≥ 0. Assume that the discretization parameters obey the relations

Δtc = O(hp), hl+1
c = o(hp), Δt1p = O(h2/3

p ), Δtp = O(h1/2
p ).(5.1)

There exist positive constants h∗
c , h∗

p, Δt∗c , Δt∗p, and Q∗ such that the following
optimal-order error estimate holds for 0 < hc ≤ h∗

c , 0 < hp ≤ h∗
p, 0 < Δtc ≤ Δt∗c ,

and 0 < Δtp ≤ Δt∗p:

‖ch − c‖L̂∞
c (L2) + |D|1/2min‖ch − c‖L̂2

c(H
1)

+ ‖uh − u‖L̂∞
p (H(div)) + ‖ph − p‖L̂∞

p (L2)

≤ Q∗Δtc

(
‖c̄‖L2(L2) + ‖c‖L2(H1) +

∥∥∥dc̄
dt

∥∥∥
L2(L2)

+
∥∥∥dc
dt

∥∥∥
L2(H1)

)

+Q∗((Δt1p)
3/2 + (Δtp)

2)‖u‖H2(L2) + Q∗hl+1
c (‖c‖L∞(W l+1

2+γ)

+ ‖c‖H1(Hl+1)) + Q∗hk+1
p (‖u‖L∞(Hk+1(div)) + ‖p‖L∞(Hk+1)).

(5.2)

Here d
dt refers to the material derivative along the characteristics defined in (3.4).

The constant Q∗ = Q∗(h∗
c , h

∗
p,Δt∗c ,Δt∗p, T ), but Q∗ is independent of the discretization

parameters hc, hp, Δtc, or Δtp.
To prove the theorem, we use (3.10), (3.12), and (4.8) to derive a relation∫

Ω

μ(ch(x, tpm))K−1(x)(uh(x, tpm) − Πu(x, tpm)) · vh(x)dx

−
∫

Ω

(ph(x, tpm) − Πp(x, tpm))∇ · vh(x)dx

=

∫
Ω

(μ(c(x, tpm)) − μ(ch(x, tpm)))K−1(x)Πu(x, tpm) · vh(x)dx,

∫
Ω

wh(x)∇ · (uh(x, tpm) − Πu(x, tpm))dx = 0 ∀(vh, wh) ∈ V k × Sk
p .

Combining this equation with (4.10) yields an estimate [4, 5, 8]

‖uh(x, tpm) − Πu(x, tpm)‖H(div) + ‖ph(x, tpm) − Πp(x, tpm)‖

≤ Q(1 + ‖Πu(x, tpm)‖L∞) ‖ch(x, tpm) − c(x, tpm)‖

≤ Q1‖ch(x, tpm) − c(x, tpm)‖, 0 ≤ m ≤ M.

(5.3)

For convenience, we have dropped the subscript L2.
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The estimates (4.9) and (5.3) show that the bound on ‖uh−u‖L̂∞
p (H(div)) +‖ph−

p‖L̂∞
p (L2) in (5.2) is a consequence of the bound on ‖ch − c‖L̂∞

c (L2).

5.2. Proof of the key estimate. To bound ‖ch − c‖L̂∞
c (L2), we set ξ(x, tcn) :=

ch(x, tcn) − Πc(x, tcn) and η(x, tcn) := Πc(x, tcn) − c(x, tcn). Note that ch − c = ξ + η
and that the estimate for η is known from (4.6). The key to prove the theorem is to
derive an estimate of the form (5.2) for ξ.

Proof. We subtract (3.14) from (3.9) for n = Nm−1 + 1, . . . , Nm to generate an
error equation for any zh(x, tcn) ∈ Sl

c

∫
Ω

φ(x)(ch(x, tcn) − c(x, tcn))zh(x, tcn)dx

+ Δtcn

∫
Ω

∇zh(x, tcn)·(D(x,uE
h (x, tcn))∇ch(x, tcn)−D(x,u(x, tcn))∇c(x, tcn))dx

=

∫
Ω

φ(x)(ch(x, tcn−1) − c(x, tcn−1))zh(x, tc,+n−1)dx

+ Δtcn

∫
Ω

(c̄h(x, tcn) − c̄(x, tcn))q(x, tcn)zh(x, tcn)dx

+ED(c, zh) − Eq(c̄, zh).

In the second term on the right-hand side, c̄h := c̄ is specified at sources so the
difference c̄h − c̄ vanishes. At sinks q = q− is specified but c̄h = ch and c̄ = c. We
rewrite the preceding equation with zh = ξ as

∫
Ω

φ(x)ξ2(x, tcn)dx + Δtcn

∫
Ω

∇ξ(x, tcn) · D(x,uE
h (x, tcn))∇ξ(x, tcn)dx

=

∫
Ω

φ(x)ξ(x, tcn−1)ξ(x, t
c,+
n−1)dx +

∫
Ω

φ(x)η(x, tcn−1)ξ(x, t
c,+
n−1)dx

+ Δtcn

∫
Ω

q−(x, tcn)ξ2(x, tcn)dx + Δtcn

∫
Ω

q−(x, tcn)η(x, tcn)ξ(x, tcn)dx

−Δtcn

∫
Ω

∇ξ(x, tcn) · (D(x,uE
h (x, tcn)) − D(x,u(x, tcn)))∇Πc(x, tcn)dx

−Δtcn

∫
Ω

∇ξ(x, tcn) · D(x,u(x, tcn))∇η(x, tcn)dx

−
∫

Ω

φ(x)η(x, tcn)ξ(x, tcn)dx + ED(c, ξ) − Eq(c̄, ξ).

(5.4)

We bound the third and fourth terms on the right-hand side of (5.4) by

∣∣∣∣Δtcn

∫
Ω

q−(x, tcn)ξ2(x, tcn)dx + Δtcn

∫
Ω

q−(x, tcn)η(x, tcn)ξ(x, tcn)dx

∣∣∣∣
≤ QΔtcn‖ξ(x, tcn)‖2 + Δtcn‖η(x, tcn)‖2

≤ QΔtcn‖ξ(x, tcn)‖2 + A2
1Δtcnh

2l+2
c ‖c‖2

L∞(Hl+1).
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We use (4.5) and (4.6) to bound the sixth term on the right-hand side of (5.4)∣∣∣∣Δtcn

∫
Ω

∇ξ(x, tcn) · D(x,u(x, tcn))∇η(x, tcn)dx

∣∣∣∣
=

∣∣∣∣Δtcn

∫
Ω

ξ(x, tcn)η(x, tcn)dx

∣∣∣∣
≤ QΔtcn‖ξ(x, tcn)‖2 + Δtcn‖η(x, tcn)‖2

≤ QΔtcn‖ξ(x, tcn)‖2 + A2
1Δtcnh

2l+2
c ‖c‖2

L∞(Hl+1).

The fifth term on the right-hand side of (5.4) is bounded in Lemma 6.3∣∣∣∣Δtcn

∫
Ω

∇ξ(x, tcn) · (D(x,uE
h (x, tcn)) − D(x,u(x, tcn)))∇Πc(x, tcn)dx

∣∣∣∣
≤ εΔtcn‖∇ξ(x, tcn)‖2 + QΔtcn(‖ξ(x, tpm−1)‖2 + ‖ξ(x, tpm−2)‖2)

+QΔtcn

(
h2l+2
c ‖c‖2

L∞(Hl+1) + h2k+2
p (‖u‖2

L∞(Hk+1(div)) + ‖p‖2
L∞(Hk+1))

+ δm,1(Δt1p)
2‖u‖2

W∞
1 (0,tp1 ;L2) + (1 − δm,1)(Δtp)

3‖u‖2
H2(tpm−2,t

p
m;L2)

)
,

(5.5)

where δi,j = 1 if i = j or 0 otherwise.
Note that the evaluation of source and sink terms and the diffusion-dispersion

term in the ELLAM scheme (3.14) does not involve any characteristic tracking. Hence,
(3.6) and (3.8) still hold, leading to the estimate

|Eq(c̄, ξ)| =

∣∣∣∣∣
∫

Ω

ξ(x, tcn)

∫ tcn

tcn−1

{∫ tcn

θ

d

dt
(c̄(r(t;x, tcn), t)q(r(t;x, tcn), t))dt

+ c̄(r(θ;x, tcn), θ)q(r(θ;x, tcn), θ)

[
det

(
∂r(θ;x, tcn)

∂x

)
− 1

]}
dθdx

∣∣∣∣∣
≤ QΔtcn‖ξ(x, tcn)‖2 + Q(Δtcn)2

(
‖c̄‖2

L2(tcn−1,t
c
n;L2) +

∥∥∥dc̄
dt

∥∥∥2

L2(tcn−1,t
c
n;L2)

)
.

We use the estimates (6.1) and (6.2) in Lemma 6.1 to bound |ED(c, ξ)| by

|ED(c, ξ)| ≤
∣∣∣∣∣
∫

Ω

∫ tcn

tcn−1

(
det

(
∂r(θ;x, tcn)

∂x

)(
∂r(θ;x, tcn)

∂x

)−1

− I

)
∇ξ(x, tcn)

· (D(r(θ;x, tcn),u(r(θ;x, tcn), θ))∇c(r(θ;x, tcn), θ))dθdx

∣∣∣∣∣
+

∣∣∣∣∣
∫

Ω

∫ tcn

tcn−1

∇ξ(x, tn) · (D(x,u(x, tcn))∇c(x, tcn)

−D(r(θ;x, tcn),u(r(θ;x, tcn), θ))∇c(r(θ;x, tcn), θ))dθdx

∣∣∣∣∣
≤ εΔtcn‖∇ξ(x, tcn)‖2 + Q(Δtcn)2

(
‖c‖2

L2(tcn−1,t
c
n;H1) +

∥∥∥dc
dt

∥∥∥2

L2(tcn−1,t
c
n;H1)

)
.
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The first term on the right-hand side of (5.4) is estimated in Lemma 6.4∣∣∣∣
∫

Ω

φ(x)ξ(x, tcn−1)ξ(x, t
c,+
n−1)dx

∣∣∣∣
≤ 1

2

∫
Ω

φ(x)ξ2(x, tcn−1)dx +
1

2

∫
Ω

φ(x)ξ2(x, tcn)dx + εΔtcn(‖∇ξ(x, tcn)‖2

+ ‖∇ξ(x, tcn−1)‖2) + QΔtcn(‖ξ(x, tcn)‖2 + ‖ξ(x, tcn−1)‖2).

(5.6)

The second and seventh terms on the right-hand side of (5.4) are estimated in
Lemma 6.5 ∣∣∣∣

∫
Ω

φ(x)η(x, tcn)ξ(x, tcn)dx −
∫

Ω

φ(x)η(x, tcn−1)ξ(x, t
c,+
n−1)dx

∣∣∣∣
≤ εΔtcn ‖∇ξ(x, tcn)‖2 + QΔtcn ‖ξ(x, tcn)‖2

+Qh2l+2
c ‖c‖2

H1(tcn−1,t
c
n;Hl+1) + QΔtcnh

2l+2
c ‖c‖2

L∞(W l+1
2+γ)

.

(5.7)

We incorporate the preceding estimates into (5.4) to get∫
Ω

φ(x)ξ2(x, tcn)dx + |D|min Δtcn‖∇ξ(x, tcn)‖2

≤ 1

2

∫
Ω

φ(x)ξ2(x, tcn)dx +
1

2

∫
Ω

φ(x)ξ2(x, tcn−1)dx + 3εΔtcn‖∇ξ(x, tcn)‖2

+ εΔtcn‖∇ξ(x, tcn−1)‖2 + QΔtcn

(
‖ξ(x, tcn)‖2 + ‖ξ(x, tcn−1)‖2

+ ‖ξ(x, tpm−1)‖2 + ‖ξ(x, tpm−2)‖2
)

+ Q(Δtcn)2
(
‖c̄‖2

L2(tcn−1,t
c
n;L2)

+ ‖c‖2
L2(tcn−1,t

c
n;H1) +

∥∥∥dc̄
dt

∥∥∥2

L2(tcn−1,t
c
n;L2)

+
∥∥∥dc
dt

∥∥∥2

L2(tcn−1,t
c
n;H1)

)
+QΔtcn

(
δm,1(Δt1p)

2‖u‖2
W 1

∞(0,tp1 ;L2) + (1 − δm,1)(Δtp)
3‖u‖2

H2(tpm−2,t
p
m;L2)

)
+Qh2l+2

c

(
Δtcn‖c‖2

L∞(W l+1
2+γ)

+ ‖c‖2
H1(tcn−1,t

c
n;Hl+1)

)
+QΔtcnh

2k+2
p

(
‖u‖2

L∞(Hk+1(div)) + ‖p‖2
L∞(Hk+1)

)
.

(5.8)

We choose ε = |D|min/8, sum this estimate for n = 1, 2, . . . , n∗, with n∗ ≤ Nm,
and cancel like terms to obtain∫

Ω

φ(x)ξ2(x, tcn∗)dx + |D|min

n∗∑
n=1

Δtcn‖∇ξ(x, tcn)‖2

≤ Q

n∗∑
n=1

Δtcn‖ξ(x, tcn)‖2 + Q(Δtcn)2
(
‖c̄‖2

L2(L2) + ‖c‖2
L2(H1)

+
∥∥∥dc̄
dt

∥∥∥2

L2(L2)
+
∥∥∥dc
dt

∥∥∥2

L2(H1)

)
+ Q

(
(Δtp)

4 + (Δt1p)
3
)
‖u‖2

H2(L2)

+Qh2l+2
c

(
‖c‖2

L∞(W l+1
2+γ)

+ ‖c‖2
H1(Hl+1)

)
+Qh2k+2

p

(
‖u‖2

L∞(Hk+1(div)) + ‖p‖2
L∞(Hk+1)

)
.

(5.9)
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Here we have used the estimate (6.8) to bound the initial value ‖ξ(x, 0)‖ that has
appeared on the right-hand side.

We choose Δtcn small enough such that QΔtcn < φmin/2 and apply Gronwall
inequality to (5.9) to get

‖ξ‖2
L̂∞

c (0,tc
n∗ ;L2)

+ |D|min ‖∇ξ‖2
L̂2

c(0,t
c
n∗ ;L2)

≤ Q(Δtcn)2
(
‖c̄‖2

L2(L2) + ‖c‖2
L2(H1) +

∥∥∥dc̄
dt

∥∥∥2

L2(L2)
+
∥∥∥dc
dt

∥∥∥2

L2(H1)

)
+Q

(
(Δtp)

4 + (Δt1p)
3
)
‖u‖2

H2(L2) + Qh2l+2
c

(
‖c‖2

L∞(W l+1
2+γ)

+ ‖c‖2
H1(Hl+1)

)
+Qh2k+2

p

(
‖u‖2

L∞(Hk+1(div)) + ‖p‖2
L∞(Hk+1)

)
.

(5.10)

Combining this estimate with (4.6) finishes the proof.

5.3. Discussion. The error estimate (5.2) contains only the H1 norm of c and its
material derivative in the Δtc term. These norms are much smaller than those of the
temporal derivatives c due to the Lagrangian nature of the transport PDEs. Hence,
larger time steps and spatial grids can be used in the ELLAM-MFEM time-stepping
procedure. In other words, Theorem 5.1 theoretically justifies the mathematical and
numerical strength of the ELLAM-MFEM time-stepping procedure, which was previ-
ously observed numerically [3, 17, 21, 30, 32].

In the ELLAM-MFEM time-stepping procedure (3.12) and (3.14), a linear ex-
trapolation in time is used to define the numerical velocity field ue

h (x, tcn) in (3.13).
A constant-in-time interpolation can be used instead:

ue

h (x, tcn) := uh(x, tpm−1) for Nm−1 + 1 ≤ n ≤ Nm, 1 ≤ m ≤ M.

The proof in Theorem 5.1 still goes through, leading to an estimate of the form

‖ch − c‖L̂∞
c (L2) + ‖uh − u‖L̂∞

p (H(div)) + ‖ph − p‖L̂∞
p (L2)

≤ Q(hl+1
c + hk+1

p + Δtc + Δtp).

An error estimate similar to Theorem 5.1 was proved in [9] for a Galerkin FEM-
MFEM time-stepping procedure for problem (2.1)–(2.3) and in [13] for an MMOC-
MFEM time-stepping procedure. These estimates require a restrictive condition that

Δtc = o(hp).(5.11)

In other words, these procedures are guaranteed to converge only if the Courant
number tends to zero asymptotically, which is more restrictive than the CFL condition
for an explicit scheme. This is especially important for the MMOC-MFEM time-
stepping procedure, since the strength of the MMOC scheme is really reflected in the
large time steps the MMOC scheme allows.

In Theorem 5.1 the restriction (5.11) is relaxed to be

Δtc = O(hp).(5.12)

This implies that the ELLAM-MFEM time-stepping procedure converges for any size
of Courant numbers. Thus, Theorem 5.1 provides a solid theoretical foundation to
show the competitiveness of the ELLAM-MFEM procedure, which was previously
illustrated and observed numerically [21, 30, 32].
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6. Auxiliary lemmas. In this section we prove several lemmas that were used
in the proof of Theorem 5.1.

6.1. Estimates on tracking. In this subsection, we derive various bounds for
tracking-related transformations.

Lemma 6.1. Assume that φ ∈ W 1
∞ and u ∈ L∞(W 1

∞). Then the Jacobian matrix
of the characteristic r(t;x, tcn−1) is bounded in the Frobenius norm | · |2 by

∣∣∣∣∣∂r(t;x, t
c
n−1)

∂x
− I

∣∣∣∣∣
2

≤ Q(t− tcn−1), t ∈ [tcn−1, t
c
n].(6.1)

Here Q depends on ‖u‖L∞(W 1
∞) but not on discretization parameters. In addition,

det

(
∂r(t;x, tcn−1)

∂x

)
= 1 + O(t− tcn−1), t ∈ [tcn−1, t

c
n].(6.2)

Proof. Differentiating (3.15) with respect to x yields, for t ∈ [tcn−1, t
c
n],

∂r(t;x, tcn−1)

∂x
− I =

∫ t

tcn−1

∇
(

u(r(θ;x, tcn−1), θ)

φ(r(θ;x, tcn−1), θ)

)
∂r(θ;x, tcn−1)

∂x
dθ.(6.3)

We apply Cauchy inequality to bound the Frobenius norm of ∂r
∂x − I by

∣∣∣∣∂r(t;x, tcn−1)

∂x
− I

∣∣∣∣
2

2

≤ (t− tcn−1)

∫ t

tcn−1

∣∣∣∣∇
(

u(r(θ;x, tcn−1), θ)

φ(r(θ;x, tcn−1), θ)

)
∂r(θ;x, tcn−1)

∂x

∣∣∣∣
2

2

dθ

≤ (t− tcn−1)
∥∥∥u

φ

∥∥∥2

L∞(W 1
∞)

∫ t

tcn−1

∣∣∣∣∂r(θ;x, tcn−1)

∂x

∣∣∣∣
2

2

dθ

≤ Q(t− tcn−1)
2 + Q(t− tcn−1)

∫ t

tcn−1

∣∣∣∣∂r(θ;x, tcn−1)

∂x
− I

∣∣∣∣
2

2

dθ.

Applying Gronwall inequality finishes the proof of (6.1), which directly gives
(6.2).

Lemma 6.2. Under the assumptions of Theorem 5.1,

h−1
p hl+1

c ‖c0‖Hl+1 ≤ 1,(6.4)

and

Δtc
hp

≤ Q2,
Δtp

h
1/2
p

≤ Q2,
Δt1p

h
2/3
p

≤ Q2,(6.5)

we have the following estimate for the difference x̃h − x̃:

‖x̃h − x̃‖Lq ≤ Q3Δtcnh
2
q
p .(6.6)
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Proof. We use (3.15) and (3.18) and the estimates (4.3) and (5.3) to bound
‖x̃h − x̃‖Lq for 2 ≤ q ≤ +∞ by

‖x̃h − x̃‖Lq =

∥∥∥∥∥ue
h (x, tcn−1)

φ(x)
Δtcn −

∫ tcn

tcn−1

u(r(θ;x, tcn−1), θ)

φ(r(θ;x, tcn−1))
dθ

∥∥∥∥∥
Lq

=

∥∥∥∥∥Δtcn

(
ue
h (x, tcn−1) − uE(x, tcn−1)

φ(x)
+

uE(x, tcn−1) − u(x, tcn−1)

φ(x)

)

−
∫ tcn

tcn−1

(
u(r(θ;x, tcn−1), θ)

φ(r(θ;x, tcn−1))
−

u(x, tcn−1)

φ(x)

)
dθ

∥∥∥∥∥
Lq

(6.7)

≤ 3φ−1
minΔtcn

(
‖uh − u‖L̂∞

p (tpm−2,t
p
m−1;L

q) + δm,1Δt1p‖u‖W∞
1 (tp0 ,t

p
1 ;Lq)

+ (1 − δm,1)(Δtp)
3/2‖u‖H2(tpm−2,t

p
m;Lq) + QΔtcn

)
.

Here Q depends on ‖du
dt ‖L∞(L∞) and ‖u‖L∞(L∞) but not on discretization parameters.

We combine (4.1), (4.6), and (5.3) to conclude that

‖ξ(x, 0)‖ ≤ ‖ch(x, 0) − Πc0(x)‖
≤ ‖ch(x, 0) − c0(x)‖ + ‖Πc0(x) − c0(x)‖ ≤ 2A1h

l+1
c ‖c0‖Hl+1

(6.8)

and

‖(uh − Πu)(x, 0)‖Lq

≤ K2h
−(1− 2

q )
p ‖(uh − Πu)(x, 0)‖ ≤ K2Q1h

−(1− 2
q )

p ‖ch(x, 0) − co(x)‖

≤ A1K2Q1h
−(1− 2

q )
p hl+1

c ‖co‖Hl+1 ≤ A1K2Q1h
2
q
p ,

(6.9)

provided that condition (6.4) is true.
By (4.4) and (5.1), the estimate (6.7) reduces to the following for n = 1, 2, . . . , N1:

‖x̃h − x̃‖Lq ≤ 3φ−1
minΔtcn

(
‖(uh − u)(x, 0)‖Lq + Δt1p‖u‖W∞

1 (tp0 ,t
p
1 ;Lq) + QΔtcn

)

≤ 3φ−1
minΔtcn

(
A2K2h

k+ 2
q

p (‖u‖L∞(Hk+1(div)) + ‖p‖L∞(Hk+1))

+A1K2Q1h
2
q
p + Δt1p‖u‖W∞

1 (tp0 ,t
p
1 ;Lq) + QΔtcn

)
≤ Q4Δtcnh

2
q
p .

(6.10)

For n = Nm−1 + 1, 2, . . . , Nm, we use (4.4), (5.1), (5.2), and (6.5) to bound (6.7)
as follows:

‖x̃h − x̃‖Lq

≤ 3φ−1
minΔtcn

[
‖uh − u‖L̂∞

p (tpm−2,t
p
m−1;L

q) + δm,1Δt1p‖u‖W∞
1 (tp0 ,t

p
1 ;Lq)

+ (1 − δm,1)(Δtp)
3/2‖u‖H2(tpm−2,t

p
m;Lq) + QΔtcn

]
≤ 3φ−1

minΔtcnh
2
q
p

[
(A2 + Q∗)K2h

k
p(‖u‖L∞(Hk+1(div)) + ‖p‖L∞(Hk+1))

+Q∗Q2

(
‖c̄‖L2(L2) + ‖c‖L2(H1) +

∥∥∥ dc̄
dτ

∥∥∥
L2(L2)

+
∥∥∥ dc
dτ

∥∥∥
L2(H1)

)
+Q∗Q2‖u‖H2(L2) + Q∗

]
≤ Q3Δtcnh

2
q
p .

(6.11)
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6.2. Miscellaneous estimates. In this subsection we prove the estimates (5.5),
(5.6), and (5.7) for the fifth, the first, and the second and seventh terms on the right-
hand side of (5.4), respectively.

Lemma 6.3. Under the conditions of Theorem 5.1, estimate (5.5) holds for n =
Nm−1 + 1, . . . , Nm.

Proof. It is straightforward to see that [8]

|D(x,u) − D(x,v)| ≤ Q4 |u − v|.

With this we bound the left-hand side of (5.5) by

∣∣∣∣Δtcn

∫
Ω

∇ξ(x, tcn) · (D(x,uE
h (x, tcn)) − D(x,u(x, tcn)))∇Πc(x, tcn)dx

∣∣∣∣
≤ Q4Δtcn‖∇ξ(x, tcn)‖ ‖uE

h (x, tcn) − u(x, tcn)‖ ‖Πc(x, tcn)‖W 1
∞

≤ K3Q4Δtcn‖∇ξ(x, tcn)‖ (‖uE
h (x, tcn) − (Πu)E(x, tcn)‖

+‖(Πu)E(x, tcn) − uE(x, tcn)‖ + ‖uE(x, tcn) − u(x, tcn)‖),

(6.12)

where at the last “≤” sign we have used (4.7).
The last term in the bracket is bounded in (4.12). We use the estimate (4.9) to

bound the second term in the bracket to get

‖(Πu)E(x, tcn) − uE(x, tcn)‖

≤ Q(‖Πu(x, tpm−2) − u(x, tpm−2)‖ + ‖Πu(x, tpm−1) − u(x, tpm−1)‖)

≤ Qhk+1
p (‖u‖L∞(Hk+1(div)) + ‖p‖L∞(Hk+1)).

We use (4.6) and (5.3) to bound the first term in the bracket of (6.12) by

‖uE
h (x, tcn) − (Πu)E(x, tcn)‖

≤ Q (‖uh(x, tpm−2) − Πu(x, tpm−2)‖ + ‖uh(x, tpm−1) − Πu(x, tpm−1)‖)

≤ Q (‖ch(x, tpm−2) − c(x, tpm−2)‖ + ‖ch(x, tpm−1) − c(x, tpm−1)‖)

≤ Q (‖ξ(x, tpm−2)‖ + ‖ξ(x, tpm−1)‖) + Qhl+1
c ‖c‖L∞(Hl+1).

We combine these two estimates with (4.12) to complete the proof.
Lemma 6.4. Under the conditions of Theorem 5.1, estimate (5.6) holds for n =

Nm−1 + 1, . . . , Nm.
Proof. The first term on the right-hand side of (5.4) can be written as

∫
Ω

φ(x)ξ(x, tcn−1)ξ(x, t
c,+
n−1)dx =

∫
Ω

φ(x)ξ(x, tcn−1)ξ(x̃h, t
c
n)dx

=

∫
Ω

φ(x)ξ(x, tcn−1)ξ(x̃, t
c
n)dx(6.13)

+

∫
Ω

φ(x)ξ(x, tcn−1)(ξ(x̃h, t
c
n) − ξ(x̃, tcn))dx.
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We use estimate (6.2) to bound the first term on the right-hand side of (6.13)∣∣∣∣
∫

Ω

φ(x)ξ(x, tcn−1)ξ(x̃, t
c
n)dx

∣∣∣∣
≤ 1

2

∫
Ω

φ(x)ξ2(x, tcn−1)dx +
1

2

∫
Ω

φ(x)ξ2(x̃, tcn)dx

=
1

2

∫
Ω

φ(x)ξ2(x, tcn−1)dx +
1

2

∫
Ω

φ(x̃)ξ2(x̃, tcn) det
(∂x
∂x̃

)
dx̃

+
1

2

∫
Ω

(φ(x) − φ(x̃))ξ2(x̃, tcn) det
(∂x
∂x̃

)
dx̃

≤ 1

2

∫
Ω

φ(x)ξ2(x, tcn−1)dx +
1

2

∫
Ω

φ(x)ξ2(x, tcn)dx + QΔtcn‖ξ(x, tcn)‖2.

(6.14)

Here we have rewritten x̃ as x in the second term.
We use (4.2), (6.6), and the relationship

ξ(x̃h, t
c
n) − ξ(x̃, tcn) = (x̃h − x̃) ·

∫ 1

0

∇ξ(x̃ + s(x̃h − x̃), tcn)ds,(6.15)

to bound the second term on the right-hand side of (6.13) by∣∣∣∣
∫

Ω

φ(x)ξ(x, tcn−1)(ξ(x̃h, t
c
n) − ξ(x̃, tcn))dx

∣∣∣∣
≤ Q‖ξ(x, tcn−1)‖L∞‖x̃h − x̃‖

(∫ 1

0

∫
Ω

|∇ξ(x̃ + s(x̃h − x̃), tcn)|2dxds
)1/2

≤ K1Q| lnhc|1/2‖ξ(x, tcn−1)‖H1‖x̃h − x̃‖ ‖∇ξ(x, tcn−1)‖
≤ εΔtcn(‖∇ξ(x, tcn)‖2 + ‖∇ξ(x, tcn−1)‖2 + ‖ξ(x, tcn−1)‖2),

(6.16)

provided that

2K1QQ3h
2q
p | lnhc|1/2 ≤ ε, 2K1QQ4h

2q
p | lnhc|1/2 ≤ ε.(6.17)

Lemma 6.5. Under the conditions of Theorem 5.1, estimate (5.7) holds for n =
Nm−1 + 1, . . . , Nm.

Proof. We decompose the second and seventh terms on the right-hand side of
(5.4) as follows:∫

Ω

φ(x)η(x, tcn)ξ(x, tcn)dx −
∫

Ω

φ(x)η(x, tcn−1)ξ(x, t
c,+
n−1)dx

=

∫
Ω

φ(x)

[∫ tcn

tcn−1

∂η(x, t)

∂t
dt

]
ξ(x, tcn)dx

−
∫

Ω

φ(x)η(x, tcn−1)(ξ(x̃h, t
c
n) − ξ(x̃, tcn))dx

−
∫

Ω

φ(x)η(x, tcn−1)(ξ(x̃, t
c
n) − ξ(x, tcn))dx.

(6.18)

The first term on the right-hand side of (6.18) is bounded by∣∣∣∣∣
∫

Ω

φ(x)

[∫ tcn

tcn−1

∂η(x, t)

∂t
dt

]
ξ(x, tcn)dx

∣∣∣∣∣
≤ Q(Δtcn)1/2 ‖ξ(x, tcn)‖ ‖η‖H1(tcn−1,t

c
n;L2)

≤ QΔtcn ‖ξ(x, tcn)‖2 + A2
1h

2l+2
c ‖c‖2

H1(tcn−1,t
c
n;Hl+1).

(6.19)
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We use (3.15) to bound the third term on the right-hand side of (6.18)∣∣∣∣
∫

Ω

φ(x)η(x, tcn−1)(ξ(x̃, t
c
n) − ξ(x, tcn))dx

∣∣∣∣
=

∣∣∣∣
∫

Ω

φ(x)η(x, tcn−1)(x̃ − x) ·
∫ 1

0

∇ξ(x + s(x̃ − x), tcn)dx

∣∣∣∣
≤ QΔtcn‖∇ξ(x, tn)‖ ‖η(x, tcn−1)‖
≤ εΔtcn ‖∇ξ(x, tcn)‖2 + QΔtcnh

2l+2
c ‖c‖2

L∞(Hl+1).

(6.20)

We use the estimate (6.6) with q = 2(2+γ)/γ and the generalized Hölder inequal-
ity to bound the second term on the right-hand side of (6.18) in a similar manner to
the estimate of (6.16) as follows:∣∣∣∣

∫
Ω

φ(x)η(x, tcn−1)(ξ(x̃h, t
c
n) − ξ(x̃, tcn))dx

∣∣∣∣
≤ Q ‖x̃h − x̃‖

L
2(2+γ)

γ
‖η(x, tcn−1)‖L2+γ‖∇ξ(x, tcn)‖

≤ εΔtcn‖∇ξ(x, tcn)‖2 + QΔtcnh
2l+2
c ‖c‖2

L∞(W l+1
2+γ)

,

(6.21)

provided that

QQ3h
γ

2+γ
p ≤ ε, QQ4h

γ
2+γ
p ≤ ε.(6.22)
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