Trisodium Dicalcium Bismuth Hexaoxide

Irina V. Puzdrjakova
University of South Carolina - Columbia

Rene B. Macquart
University of South Carolina - Columbia

Mark D. Smith
University of South Carolina - Columbia, mdsmith3@mailbox.sc.edu

Hans-Conrad zur Loye
University of South Carolina - Columbia, zurloye@mailbox.sc.edu

Follow this and additional works at: https://scholarcommons.sc.edu/chem_facpub

Part of the Chemistry Commons

Publication Info

Publisher's version available [here](#).

This Article is brought to you by the Chemistry and Biochemistry, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.
Trisodium dicalcium bismuth hexaoxide
Irina V. Puzdrjakova, René B. Macquart, Mark D. Smith and Hans-Conrad zur Loye
Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Trisodium dicalcium bismuth hexaoxide

Irina V. Puzdrjakova, René B. Macquart, Mark D. Smith and Hans-Conrad zur Loye*

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
Correspondence e-mail: zurloye@sc.edu

Key indicators
Single-crystal X-ray study
T = 294 K
Mean |–O| = 0.002 Å
R factor = 0.013
wR factor = 0.032
Data-to-parameter ratio = 15.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Received 13 February 2007
Accepted 21 February 2007

Single crystals of the title compound, Na₃Ca₂BiO₆, were grown from a high-temperature reactive flux solution of Na₂CO₃. Na₃Ca₂BiO₆ crystallizes as an ordered rock-salt structure (space group Fddd), in which the octahedral holes in the oxide array are filled by an ordered 3:2:1 arrangement of Na⁺, Ca²⁺ and Bi⁵⁺ cations. All atoms except for one O atom lie on special positions; site symmetries are as follows: Bi 222, Ca 2, Na 222 and O 2.

Trisodium dicalcium bismuth hexaoxide

Comment

The most common bismuth oxidation state found in oxides is Bi³⁺ as, for example, in BiNbO₄ (Keve et al., 1973) and Bi₂MoO₆ (Teller et al., 1984). However, some oxides, including NaBiO₃ (Kumada et al., 2000), KBiO₃ (Nguyen et al., 1993), Li₄Sr₂BiO₆, Na₄Sr₂BiO₆, Li₆KBiO₆, Li₆RbBiO₆ and Li₂Ba₅Bi₂O₁₁ (Carlson et al., 1992) contain Bi(V) cations.

Compound (I) also possesses a fully ordered arrangement of Na⁺, Ca²⁺ and Bi⁵⁺ cations (Fig. 1). The metal-oxygen bond distances (Table 1) are normal and the octahedra are close to

Figure 1

The asymmetric unit of (I), expanded to show the metal coordination polyhedra. Displacement ellipsoids are drawn at the 75% probability level. Colour key: Ca yellow, Bi blue, Na green and O red. [Symmetry codes: (i) 4/-x, 4/-y, 4/-z; (ii) x, y, z; (iii) x, y, z; (iv) 4/-x, 4/-y, 4/-z; (v) 4/-x, 4/-y, 4/-z; (vi) 4/-x, 4/-y, 4/-z; (vii) 4/-x, 4/-y, 4/-z; (viii) 4/-x, 4/-y, 4/-z; (ix) x, y, z; (x) x, y, z; (xi) x, y, z; (xii) 4/-x, 4/-y, 4/-z; (xiii) 4/-x, 4/-y, 4/-z; (xiv) 4/-x, 4/-y, 4/-z; (xv) 4/-x, 4/-y, 4/-z; (xvi) 4/-x, 4/-y, 4/-z.]

© 2007 International Union of Crystallography
All rights reserved
regular. The rock-salt-type structure contains edge- and corner-sharing NaO$_6$, CaO$_6$ and BiO$_6$ octahedra (Fig. 2), ordered so that the calcium and bismuth octahedra share an edge.

Experimental

Bi$_2$O$_3$ (Alfa Aesar, 99.975%, 2.0 mmol) and CaCO$_3$ (Alfa Aesar, 99.95%, 1.0 mmol) were ground under acetone in an agate mortar until dry. The mixture, along with excess Na$_2$CO$_3$ (Fisher, ACS reagent, 12.5 g), was loaded into an alumina crucible, covered with an alumina lid, and placed into a programmable tube furnace. The system was heated to 1323 K at a rate of 873 K h$^{-1}$ and held at the target temperature for 24 h. It was then cooled slowly to 1073 K at a rate of 15 K h$^{-1}$ and held at that temperature for 1 h, at which point the furnace was shut off and the reaction allowed to cool to room temperature. The excess flux was dissolved in water and yellow transparent crystals of (I) were isolated using sonication and vacuum filtration.

Crystal data

Na$_3$Ca$_2$BiO$_6$

V = 1287.1 (3) Å3

Z = 8

Mo $K\alpha$ radiation

μ = 29.17 mm$^{-1}$

T = 294 (2) K

0.05 x 0.04 x 0.03 mm

Data collection

Bruker SMART APEX CCD diffractometer

Absorption correction: multi-scan (SADABS, Bruker, 2003)

T_{min} = 0.778, T_{max} = 1.000

(expected range = 0.324-0.417)

5827 measured reflections

499 independent reflections

414 reflections with $I > 2\sigma(I)$

R_{int} = 0.047

Refinement

$R[F^2 > 2\sigma(F^2)]$ = 0.013

$wR[F^2]$ = 0.032

S = 1.08

32 parameters

$\Delta\rho_{\text{max}}$ = 0.92 e Å$^{-3}$

$\Delta\rho_{\text{min}}$ = -0.65 e Å$^{-3}$

Table 1

Selected bond lengths (Å).

<table>
<thead>
<tr>
<th></th>
<th>B1–O1i</th>
<th>Na1–O1</th>
<th>Na2–O1iv</th>
<th>Ca1–O1iv</th>
<th>Na2–O2i</th>
<th>Ca1–O2iv</th>
<th>Na1–O2i</th>
<th>Na2–O2iv</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.117 (3)</td>
<td>2.696 (3)</td>
<td>2.4305 (13)</td>
<td>2.3040 (7)</td>
<td>2.458 (3)</td>
<td>2.533 (3)</td>
<td>2.398 (2)</td>
<td>2.458 (3)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, z + \frac{1}{2}$ (ii) $x - \frac{1}{2}, y + \frac{1}{2}, z + \frac{1}{2}$ (iii) $x + \frac{1}{2}, y, z$ (iv) $x + \frac{1}{2}, y - \frac{1}{2}, z + \frac{1}{2}$ (v) $x - \frac{1}{2}, y - \frac{1}{2}, z - \frac{1}{2}$ (vi) $-x + \frac{1}{2}, y - \frac{1}{2}, z - \frac{1}{2}$

Data collection: SMART-NT (Bruker, 2003); cell refinement: SAINT-Plus-NT (Bruker, 2003); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL (Sheldrick, 2001); software used to prepare material for publication: SHELXL.

This work was supported by the Department of Energy through grant DE-FG02-04ER46122 and the National Science Foundation through grant DMR:0450103.

References

