2-2007

catena-

Poly[[diaquadinitratozinc(II)]bis(μ-1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene)]

Shakoya Paulin
Francis Marion University

Pierre Kelly
Francis Marion University

Kenneth B. Williams
Francis Marion University

Andrea M. Goforth
University of South Carolina - Columbia

Mark D. Smith
University of South Carolina - Columbia

See next page for additional authors

Follow this and additional works at: https://scholarcommons.sc.edu/chem_facpub

Part of the [Chemistry Commons](https://scholarcommons.sc.edu/chem_facpub)

Publication Info
Published in *Acta Crystallographica Section E*, Volume E63, Issue 2, 2007, pages m420-m422.
Copyright © International Union of Crystallography
DOI: 10.1107/S1600536807000281
Publisher’s Version: http://dx.doi.org/10.1107/S1600536807000281

This Article is brought to you by the Chemistry and Biochemistry, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.
catena-Poly[[diaquadinitratozinc(II)]bis(μ-1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene)]

Shakoya Paulin, Pierre Kelly, Kenneth B. Williams, Andrea M. Goforth, Mark D. Smith, LeRoy Peterson Jr and Hans-Conrad zur Loye
The crystal structure of (I) is built upon neutral Zn(L2)2(OH)2(NO3)2 units (Fig. 1). The ZnII ion is located on an inversion center and is situated in a distorted N2O4 octahedral coordination environment. The axial positions are occupied by two N atoms from pairs of equivalent L2 ligands. The equatorial positions are occupied by four O atoms, from equivalent pairs of water molecules and two O atoms from equivalent pairs of monodentate nitrates (Table 1). For L2, the two pyridyl rings N1/C1–C5 and N4/C8–C12 are twisted at a dihedral angle of 34.6 (1)°. As expected for the nitrate, the N—O bond corresponding to the coordinated O atom is slightly longer than the other two N—O bonds (Table 1). One of the uncoordinated nitrate O atoms is...
involved in an intramolecular O4—H4B···O2 hydrogen bond (Table 2) to a coordinated water molecule located on the same ZnII center.

It is noteworthy that only one of the two pyridyl N atoms of L2 directly coordinates a ZnII ion. The other pyridyl N atom interacts indirectly with an adjacent ZnII ion by forming an outer-sphere O4—H4A···N4 hydrogen bond (Table 2) with a coordinated water molecule located on the adjacent ZnII center. This interaction, along with the inner-sphere ZnII···N2 coordination bond noted previously, generates a double chain structure (Fig. 2) involving two equivalent L2 ligands. The chains run along the [111] direction with a non-bonded ZnII···ZnII distance of 15.578 (1) Å. To our knowledge, the generation of such a double chain structure involving both inner- and outer-sphere coordination by L2 is the first of its kind for this ligand.

Experimental

All chemicals and solvents were purchased from commercial sources and used without further purification. The L2 ligand (Dong et al., 2000) was prepared as previously described. Complex (I) was obtained by slow diffusion of an ethanol solution containing zinc nitrate hexahydrate (0.50 mmol) into a dichloromethane solution (8 ml) containing a mixture of L2 (1.0 mmol) and of 4,40'-bipyridine (1.0 mmol). A mixture of yellow, irregularly shaped crystals of (I) and colorless bar-shaped crystals of formula [ZnII(4,4'-bipyridine)2(ONO2)2CH2Cl2]n were obtained at the interface of the two solutions after several weeks.

Crystal data

[Zn(NO3)2(C24H20N8)(H2O)2] V = 691.12 (16) Å³

Z = 1

Dc = 1.556 Mg m⁻³

Mo Kα radiation

μ = 0.96 mm⁻¹

T = 150 (1) K

Irregular fragment, yellow

0.40 × 0.26 × 0.14 mm

Data collection

Bruker SMART APEX CCD
diffractometer

ω scans

Absorption correction: multi-scan
(SADABS; Bruker, 2001)

Tmin = 0.670, Tmax = 0.870

6421 measured reflections

2831 independent reflections

2720 reflections with I > 2σ(I)

Rint = 0.027

θmax = 26.4°

Refinement

Refinement on F²

wR(F²) = 0.029

S = 1.07

2831 reflections

205 parameters

H atoms treated by a mixture of independent and constrained refinement

w = 1/[σ²(Fo²) + (0.0472P)² + 0.1395P]

where P = (Fo² + 2Fc²)/3

(Δ/σ)max < 0.001

Δρmax = 0.28 e Å⁻³

Δρmin = −0.27 e Å⁻³

Extinction correction: SHELXL97

Extinction coefficient: 0.026 (4)

Table 1

Selected geometric parameters (Å, °).

ZnI—O1	2.1839 (12)	N5—O3	1.236 (2)
ZnI—O4	2.0795 (12)	N5—O2	1.239 (2)
ZnI—N1	2.1487 (13)	N5—O1	1.2653 (18)
O1—ZnI—O1i	180	O4—ZnI—N1	89.21 (5)
O4—ZnI—O1	95.05 (5)	N1—ZnI—O1i	87.98 (5)
O4'—ZnI—O1	84.95 (5)	N1'—ZnI—N1	180
O4—ZnI—O4'	180		

Symmetry code: (i) −x + 1, −y + 1, −z.
Table 2
Hydrogen-bond geometry (Å, º).

<table>
<thead>
<tr>
<th>D—H</th>
<th>D···A</th>
<th>H···A</th>
<th>D···A</th>
<th>D—H···A</th>
</tr>
</thead>
<tbody>
<tr>
<td>O4—H4A···N4ii</td>
<td>0.79 (3)</td>
<td>1.97 (3)</td>
<td>2.750 (2)</td>
<td>170 (2)</td>
</tr>
<tr>
<td>O4—H4B···O2</td>
<td>0.78 (3)</td>
<td>2.29 (3)</td>
<td>2.856 (2)</td>
<td>130 (2)</td>
</tr>
</tbody>
</table>

Symmetry code: (ii) x + 1, y + 1, z + 1.

The water-bound H atoms were refined without constraint; see Table 2. The remaining H atoms were included in the riding-model approximation, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000) and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL.

Financial support from the National Science Foundation, awards CHE-0314164 and CHE-0315152, is gratefully acknowledged.

References

