Experiments on Dynamic Parallel Magnetism in Superfluid 3He

Richard A. Webb

University of South Carolina - Columbia, webbra@mailbox.sc.edu

R. L. Kleinberg

J. C. Wheatley

Follow this and additional works at: https://scholarcommons.sc.edu/phys_facpub

Part of the Physics Commons

Publication Info
© Physical Review Letters, 1974, American Physical Society

This Article is brought to you by the Physics and Astronomy, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact digres@mailbox.sc.edu.
Experiments on Dynamic Parallel Magnetism in Superfluid 3He†

R. A. Webb, R. L. Kleinberg, and J. C. Wheatley

Department of Physics, University of California, San Diego, La Jolla, California 92037

(Received 28 May 1974)

Observations are reported of the ringing of parallel magnetization in superfluid 3He when an incremental magnetic field parallel to a steady field is suddenly turned off.

We report novel experiments on the dynamic response of the nuclear magnetization of superfluid 3He A and 3He B parallel to the axis of a magnetic field which is suddenly changed by an incremental amount parallel to itself. These experiments, motivated by the theoretical work of Leggett\(^1\) and the experimental static magnetization measurements of Paulson, Johnson, and Wheatley,\(^2\) both illuminate the theoretical concepts and provide new insights into the nature of the superfluid state. The present experiments, performed over wide ranges of temperature, pressure, and magnetic field, reflect and support the remarkable parallel-resonance experiments on liquid 3He at melting pressure of Osheroff and Brinkman\(^3\) and of Bozler et al.\(^4\) which were reported while our measurements were in progress. Our experiments also allow important nonlinear phenomena to be studied. Moreover, they may be interpreted, at least in the case of 3He A and following both Leggett\(^1\) and Maki and Tsuneto,\(^5\) as a manifestation of an internal Josephson effect in the spin-triplet superfluid.

The 3He was measured in a 3-mm-i.d. tower above a main cell nearly filled with powdered cerium magnesium nitrate (CMN). A steady field H_0 parallel to the axis of the cylinder was trapped in a 6.5-mm-i.d. Nb tube. An incremental field dH parallel to H_0 was provided by a single-layer Nb solenoid of 3.25-mm i.d. The 3He magnetization was sensed by a 4-mm-i.d. by 4-mm-long Nb pickup coil with one end 3.5 mm from the end of the solenoid. The pickup coil was connected with Nb leads to an rf-biased superconducting quantum interference device operated as a nonoverloading, wide-band flux sensor of low dynamic range. Temperatures were sensed both in CMN in a second magnetically shielded tower above the cell and in the main CMN, although the latter could not be used while small fields in the magnetizing solenoid were controlling the temperature. Liquid 3He provided thermal contact between all parts of the cell. Provisional Kelvin temperatures based on noise thermometry and the attenuation of zero sound were assigned to magnetic temperatures by comparison with the line of second-order transitions (P, T_c) as in our earlier work.\(^6\)

Concepts regarding the nature of superfluid 3He which we used to design our experiments are illustrated in Fig. 1. The superfluid is assumed to be characterized by a vector order parameter \mathbf{q} in spin space which is a function of orbital variables described by the direction $\hat{\mathbf{n}}$ of BCS-like triplet pairs.\(^7\) To be specific, consider the case of 3He A where, following Anderson and Brinkman\(^7\) and in the absence of boundary or other orienting effects, the vector \mathbf{q} is thought to lie in a plane perpendicular to H_0, as in Fig. 1(a). For a fixed orbital configuration the temperature-dependent average nuclear dipolar interaction energy E_D varies periodically with angle θ as shown in Fig. 1(b) leading to a torque R_D on the nuclear spins [Fig. 1(c)] which is also periodic in θ. At equilibrium, in this example, θ is either 0 or π. In our experiment a steady field ($H_0 + dH$) \mathbf{q} is applied for a sufficiently long time, and then at time t_0 it is suddenly reduced to H_0 as in Fig. 1(d). Following Leggett\(^1\) and neglecting relaxation, the equation for the change of the z compo-
FIG. 1. (a) Configuration of field \(H_0\) and order parameter \(\delta\) for the nonequilibrium ABM state (Ref. 7). (b) Dipolar energy versus \(\theta\) for fixed orbital variables. (c) Dipolar torque versus \(\theta\) for fixed orbital variables. (d) Schematic dependence of magnetic field \(H\) and parallel magnetization \(m\) on time for the conditions of our experiment. The ringing frequency of \(m\) depends on temperature.

The magnetization \(\gamma S_z\) thus rings at the temperature-dependent frequency \((\gamma/2\pi)(\lambda/\chi)^{1/2}\) with amplitude \(\chi\Delta H\) as shown in Fig. 1(d). A similar result has recently been derived for \(^3\)He \(A\) by Maki and Tsuneto\(^3\) who observe that the angle \(2\theta\) is the phase difference between the order parameters \(d_{1l}\) and \(d_{i1}\) of the two equal-spin-pairing states which are coupled by the phase-dependent coupling energy \(E_D\) of Fig. 1(b) in an internal Josephson effect.

The ringing phenomenon has been observed in \(^3\)He \(A\) over a pressure range from 8.5 to 33 bar and an \(H_0\) range from 1 to 310 G, consistent with the effect of field on the phase diagram. Typical ringing-frequency results as a function of \(1 - T/T_c\) are shown in Fig. 2 for two values of \(H_0\) at a pressure of 29.4 bar. The ringing frequency \(f_A\) is field independent. However, \(f_A\) can depend on \(\Delta H\), as shown in Fig. 2 by the plus symbols, for which \(\gamma\Delta H/2\pi = 25\) kHz. If \(\Delta H\) is too large the angle \(\theta\) can become too large and the response is nonlinear. We will discuss this interesting effect elsewhere; for the present results we maintained \(\gamma\Delta H/2\pi \leq 2f_A(T)\), where \(f_A(T)\) is the \(\Delta H\)-independent ringing frequency. A plot of \(f_A^2(T)\) versus \(T\) was linear near \(T_c\) although the extrapolation to zero did not give perfect agreement either with the center of the second-order specific-heat transition\(^6\) in the main cell or with the center of the \(A - N\) magnetic feature.\(^10\) The data in Fig. 2 use \(T_c\) from the specific-heat transition. The ringing frequency at \(1 - T/T_c = 0.01\) varied from about 24.5 kHz at 33 bar to about 19 kHz at 21 bar. At 33 bar our values of \(f_A\) agreed within 1 or 2% over the full range of comparison possible with the resonance frequencies and shifts given by Osheroff and Brinkman\(^3\) at melting pressure, but were lower by 5 to 10% than those of Bozler et al.\(^4\) At very low values of \(H_0\) the signal was degraded: For \(H_0 = 0\), degradation was observed for \(1 - T/T_c < 0.01\) with the region of degradation progressively narrowing for 0.3 and 1 G. In all
fields decay of signals in 3He A was not reproducible and was characterized more by a "beating" phenomenon than by exponential decay. Good quality ringing was observed typically for 0.5 - 1 msec.

Ringing has been observed in 3He B in the pressure range from 8.5 to 21.5 bar in H_0 from 0 to 310 G, consistent with the phase diagram and the observation that for $H_0 > 1$ to 5 G no persistently good quality ringing is observed unless $1 - T/T_c$ is less than 0.1 to 0.2%. Within this temperature range and for fields from 5 to 310 G we observed frequencies like those shown in Fig. 3 for 21.2 bar and 30 G. The A-phase frequencies f_A were observed as functions of magnetic temperature T^* on cooling below T_c, while the B-phase frequencies f_B were observed on warming. The fortunate temperature overlap is a consequence of supercooling-superheating effects. Except below ca. 10 G, we found $f_B(T)/f_A(T) \approx 1.9 \pm 0.1$, independent of magnetic field to 310 G. The region of good B-phase signals did increase somewhat as H_0 increased up to about 30 G, but observations at 100 and 300 G showed no further change. In this region the signal had acceptable quality for 0.3 - 0.5 msec. At fields of 0, 0.3, and 1 G we observed an entirely different behavior in 3He B. Very near T_c some typical B-phase ringing might be observed. Then for $1 - T/T_c < 0.01$ we observed a ringing phenomenon in which the frequency depended only weakly, if at all, on temperature and pressure. (Signal quality did decrease at lower temperatures, but this may have reflected only the decreasing susceptibility.) Rather the frequency depended both on ΔH and time. For $\Delta H = 2$ G the frequency damping was not perceptible, but for $\Delta H = 10$ G the frequency could be observed to drop to $1/e$ of its initial value in about 2 msec. The initial ringing frequency f depended approximately linearly on ΔH, for ΔH in the range 2 to 10 G, with $\Delta f \approx \alpha (\gamma H)$. The coefficient α is about $1/3$ at $H_0 = 0$ and somewhat larger at $H_0 = 1$ G.

Owing to the presence of a significant magnetic background it was not possible to study the non-oscillatory decay of the 3He magnetization to its new equilibrium value following an incremental field change.

The existence of ringing in 3He B suggests that it, like 3He A, may be a spin-triplet superfluid. Observation of ringing would also agree with the parallel absorption reported by Osheroff and Brinkman. The ratio of 1.9 ± 0.1 for f_B/f_A is greater than the $(\frac{2}{3})^2$ expected near T_c and the polycrystalline point from Leggett's calculations if 3He A were the Anderson-Brinkman-Morel (ABM) state and 3He B the Balian-Werthamer (BW) state. However, Maki has suggested a variety of nearly degenerate BW-like states, each giving a different possible f_B/f_A ratio. Osheroff and Brinkman and Brinkman et al. have interpreted perpendicular NMR in 4He B at melting pressure and for $T/T_c \approx 0.8$ in a 6-mm-diam container as being profoundly affected by boundaries in the entire field range of our experiments. Our parallel-ringing measurements, carried out at lower pressures, in a 3-mm-diam tube and at temperatures down to about $0.8 T_c$, show low- and high-field regions with a transition between them in the range 1 to 5 G for both 3He A and 3He B. We presently suspect that all these different measurements represent truth and that 3He B is more complex than currently believed. Experiments have been performed under sufficiently different conditions as to make intercomparison questionable, particularly regarding magnetic properties. We cite in this connection Ahonen, Haikala, and Krusius who find in 3He B mixed with platinum powder a profoundly altered magnetic state but little change in thermal properties such as T_c and T_{AB}. We suspect that the easily observed ringing in
\(^3\text{He} \) and the rather sudden appearance of good quality ringing in \(^3\text{He} \) only very near to \(T_c \) reflect the known flow properties of the two phases.\(^{14}\) The chemical potential differences in space produced by \(\Delta H \) in our rather inhomogeneous geometry are comparable to those due to \(\Delta T \) in heat-flow experiments which drive \(^3\text{He} \) supercritical over a wide temperature range in \(^3\text{He} \) A, and \(^3\text{He} \) supercritical only very near \(T_c \). The tendency to “stir” the system by the flow of magnetization supercurrents\(^{15-18}\) is thus inhibited in \(^3\text{He} \) A but not inhibited in \(^3\text{He} \) B except very near \(T_c \). Experiments to test this possibility are now being considered.

We wish to acknowledge discussions with Dr. D. R. Fredkin, Dr. Bruce Patton, Dr. John Bardeen, and Dr. K. Maki, and helpful correspondence with Dr. A. J. Leggett and Dr. W. F. Brinkman. We are also grateful for conversations with Dr. D. M. Lee and Dr. D. D. Osheroff regarding their experiments.

\[^{1}\text{Work supported by the U. S. Atomic Energy Commission under Contract No. AT(04-3)-34.}\]
\[^{1}\text{D. N. Paulson, R. T. Johnson, and J. C. Wheatley, Phys. Rev. Lett. 31, 746 (1973).}\]
\[^{1}\text{K. Maki and T. Tsunetof, to be published.}\]
\[^{1}\text{J. C. Wheatley, Physica (Utrecht) 69, 218 (1973), Appendix A.}\]
\[^{1}\text{R. Balian and N. R. Werthamer, Phys. Rev. 131, 1553 (1963).}\]
\[^{1}\text{D. N. Paulson, H. Kojima, and J. C. Wheatley, Phys. Rev. Lett. 32, 1098 (1974).}\]
\[^{1}\text{D. N. Paulson, H. Kojima, and J. C. Wheatley, to be published.}\]
\[^{1}\text{K. Maki, private communication.}\]
\[^{1}\text{W. F. Brinkman, H. Smith, D. D. Osheroff, and E. I. Blount, to be published.}\]
\[^{1}\text{T. J. Greytak, R. T. Johnson, D. N. Paulson, and J. C. Wheatley, Phys. Rev. Lett. 31, 452 (1973).}\]

Coupled Nonlinear Electron-Plasma and Ion-Acoustic Waves

Kyoji Nishikawa, H. Hojo, and K. Mima

Faculty of Science, Hiroshima University, Hiroshima, Japan

and

H. Ikezi

Institute of Plasma Physics, Nagoya University, Nagoya, Japan

(Received 11 February 1974)

We obtain solutions describing stationary one-dimensional propagation of a coupled nonlinear electron-plasma wave and a nonlinear ion-acoustic wave. These waves have amplitudes linearly proportional to one another, and propagate with approximately the ion-acoustic velocity in the form of periodic wave trains, including solitary waves as a special case.

Nonlinear stationary propagation of plasma waves has been investigated extensively in recent years.\(^{1-14}\) One-dimensional propagation of small- but finite-amplitude ion-acoustic waves in a collisionless cold-ion plasma is described by a Korteweg–deVries equation,\(^5\) and the theoretical prediction of steepening and soliton formation has been confirmed by experiments.\(^6\) A long-wavelength electron-plasma wave obeys a nonlinear Schrödinger equation.\(^7\) Its stationary solutions in the one-dimensional case include envelope soliton, periodic wave train, and finite-amplitude plane wave. The latter is subject to a modulational instability under certain conditions.

In this paper, we present some special solutions which describe coupled, stationary, one-dimensional propagation of a nonlinear electron wave and a nonlinear ion wave. The basic equations are the Schrödinger equation for the electron wave, with a potential proportional to the