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Abstract: Drug resistance is the main obstacle to achieving cures with both conventional and targeted
anticancer drugs. The emergence of acquired drug resistance is initially mediated by non-genetic
transcriptional changes, which occur at a much higher frequency than mutations and may involve
population-scale transcriptomic adaptation. CDK8/19 kinases, through association with transcrip-
tional Mediator complex, regulate transcriptional reprogramming by co-operating with different
signal-responsive transcription factors. Here we tested if CDK8/19 inhibition could prevent adapta-
tion to drugs acting on epidermal growth factor receptor (EGFR/ERBB1/HER1). The development
of resistance was analyzed following long-term exposure of BT474 and SKBR3 breast cancer cells to
EGFR-targeting small molecules (gefitinib, erlotinib) and of SW48 colon cancer cells to an anti-EGFR
monoclonal antibody cetuximab. In all cases, treatment of small cell populations (~105 cells) with
a single dose of the drug initially led to growth inhibition that was followed by the resumption
of proliferation and development of drug resistance in the adapted populations. However, this
adaptation was always prevented by the addition of selective CDK8/19 inhibitors, even though such
inhibitors alone had only moderate or no effect on cell growth. These results indicate that combining
EGFR-targeting drugs with CDK8/19 inhibitors may delay or prevent the development of tumor
resistance to therapy.

Keywords: CDK8; CDK19; EGFR; gefitinib; erlotinib; cetuximab; drug resistance

1. Introduction

Cancer drug resistance, a key obstacle to achieving cures, was long thought to result
from the selection of rare preexisting tumor cells that carry genetic changes conferring
resistance. In recent decades, however, it became clear that resistance to both conventional
and targeted drugs involves metastable transcriptional changes that allow tumor cells to
adapt and survive drug exposure [1–8]. While conclusions from different studies using
the same drugs have varied in regard to the relative contributions of pre-existing genetic
and stable epigenetic variants towards drug resistance [9–13], a consensus is emerging that
transcriptomic plasticity of tumor cells and drug-induced adaptation is key to the initial
emergence of low-level resistance. This non-genetic resistance of tumor cell populations
provides the background for subsequent selection of stable genetic variants that yield
higher levels of resistance [5,13].

Most importantly from the therapeutic perspective, the induction of non-genetic resis-
tance was found to be preventable pharmacologically, which has been first demonstrated
by the ability of PKC/NFκB pathway inhibitors to prevent non-genetic induction of the
multidrug transporter ABCB1 (MDR1/Pgp) [1,2]. In more recent examples, resistance to
different classes of receptor tyrosine kinase inhibitors was reported to be prevented by
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THZ1, an inhibitor of transcriptional kinases CDK7, CDK12 and CDK13 [14], whereas
a BRD9 inhibitor was shown to prevent resistance to EGFR-targeting agents [15] and a
compound that prevented tamoxifen resistance was found to act by inhibiting NFκB [16].
However, agents that affect the general transcriptional machinery or inhibit basal NFκB ac-
tivity are usually cytotoxic, which complicates both the study interpretation (independent
cytotoxicity versus prevention of resistance) and the future clinical development.

We are exploring the potential utility of a new class of non-cytotoxic inhibitors of
CDK8/19 Mediator kinases that regulate transcriptional reprogramming as novel resistance-
preventing agents. CDK8 (ubiquitously expressed) and CDK19 (expressed in a tissue-
specific manner) [17] are alternative components of the regulatory CDK8 module associated
with the transcriptional Mediator complex; this module also includes cyclin C (CCNC,
the binding partner of CDK8 and CDK19) and proteins MED12 and MED13 [18]. Unlike
better-known CDKs (such as CDK2 or CDK4/6), CDK8/19 regulate transcription but not
cell cycle progression [18,19]. Unlike other transcriptional CDKs, such as CDK7 or CDK9,
they do not affect the overall transcription machinery. While CDK8 knockout is detrimental
to embryonic development, a process that relies on transcriptional reprogramming [20–22],
the knockout of CDK8 in adult mice has no apparent phenotypic consequences [23] and
the knockdown or knockout of CDK8 or CDK19 [24] or pharmaceutical CDK8/19 kinase
inhibitors [25–27] have little or no effect on the growth of most cell lines, in contrast to the
effects of CDK7, CDK9 or cell cycle regulating CDKs [24]. Instead, CDK8/19 act as cofac-
tors of several transcription factors, including β-catenin/TCF/LEF [28], SMADs [29,30],
HIF1A [31], STATs [32], ER [33] and NFκB [34]; CDK8/19 inhibition decreases the induction
of transcription of subsets of genes induced by the above transcription factors. CDK8/19 act
both by direct phosphorylation of some transcription factors (e.g., SMADs, STATs) and also
downstream of transcription factors by affecting (possibly indirectly) the phosphorylation
of the C-terminal domain (CTD) of RNA polymerase II (Pol II), which allows the paused
Pol II to detach from the promoter and complete transcription. The CTD phosphorylation-
based mechanism was shown to be responsible for downstream potentiation of the serum
response network [35], HIF1A [31], estrogen receptor (ER) [33] and NFκB [34] by CDK8/19.
Importantly, CDK8/19 inhibition suppresses CTD phosphorylation not globally but only in
the context of newly activated genes and CDK8/19 inhibitors suppress de novo induction
of gene expression but not basal transcriptional activity [34]. This unique transcription
regulatory pattern defines CDK8/19 as regulators of transcriptional reprogramming [34].

The first evidence for the role of CDK8/19 in drug resistance came from a chemical
genomics study where CDK8/19 were identified as the targets of senexin A and related
small molecules that suppressed chemotherapy- or radiation-induced transcription of
multiple paracrine factors that inhibit apoptosis and confer drug resistance [25]. These
effects of CDK8/19 inhibitors were shown to be due to a large extent to the attenuation
of NFκB-induced transcription [34]. In another study, we found that CDK8/19 inhibitors
senexin A and senexin B prevent the development of estrogen independence in three
different estrogen receptor-positive breast cancer cell lines during long-term estrogen
deprivation [33].

In the present study, we tested the ability of highly selective chemically distinct
CDK8/19 inhibitors senexin B [34,36,37] and 15w [36,37] to prevent resistance to drugs
targeting the epidermal growth factor receptor (EGFR/ERBB1/HER1). We have analyzed
the development of resistance to small-molecule EGFR inhibitors gefitinib and erlotinib,
which are used in non-small-cell lung cancers with mutated EGFR and that have been
tested in other EGFR-driven tumors including breast cancers [38–41] and cetuximab, an
anti-EGFR monoclonal antibody used for the treatment of colorectal cancer (with wild-
type KRAS), non-small cell lung cancer and head and neck cancer [42]. Cancers treated
with all the EGFR-targeted drugs eventually become resistant to them [43] indicating that
prevention of such resistance is an important medical need. We have analyzed the effects
of CDK8/19 inhibitors on the development of adaptive resistance in cell lines derived
from breast cancer (gefitinib, erlotinib) and colon cancer (cetuximab). In all cases, the
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CDK8/19 inhibitors, while showing moderate or no growth-inhibitory activity when used
alone, strongly suppressed the development of resistance to the EGFR-targeting agents.
These results suggest that CDK8/19 inhibition may delay or prevent the development of
resistance to EGFR-targeting drugs.

2. Materials and Methods
2.1. Cell Lines and Reagents

BT474, SKBR3 and SW48 cells were obtained from the American Type Culture Collec-
tion (Manassas, VA, USA). BT474 (ATCC: HTB-20) and SKBR3 (ATCC: HTB-30) cells were
maintained, respectively, in RPMI-1640 and DMEM (ThermoFisher Scientific, Waltham,
MA, USA) with 10% FBS, 1% penicillin-streptomycin and 2 mM L-glutamine. SW48 (ATCC:
CCL-231) were cultured in RPMI-1640 and 10% FBS. Cells were routinely confirmed to be
free of Mycoplasma (MycoAlert PLUS mycoplasma detection kit, Lonza, Walkersville, MD,
USA) and were authenticated by STR profiling by the University of Arizona Genetic Core or
by Source Bioscience in 2016. Gefitinib and erlotinib were purchased from LC Laboratories
(Woburn, MA, USA), cetuximab (Erbitux) was from ImClone/Eli Lilly (Indianapolis, IN,
USA), and senexin B and 15w from Senex Biotechnology (Columbia, SC, USA).

2.2. Gefitinib and Erlotinib Selection and Sensitivity Testing

To determine concentrations to select for acquired drug resistance, BT474 and SKBR3
breast cancer cells were seeded in 96-well plates (2500 and 1500 cells/well, respectively)
and treated with gefitinib (0–5 µM) and (in the case of BT474) with erlotinib (0–10 µM) for 10
days. Visual assessment and image densitometry were used to determine the approximate
minimum concentration necessary to produce maximum growth inhibition. Drug resistant
cells were selected by plating 150,000 cells in T25 flasks and treating continuously with
either erlotinib (BT474: 7.5 µM) or gefitinib (BT474: 1.25 µM; SKBR3: 2.0 µM), passaging as
necessary. Cells were concurrently treated with erlotinib or gefitinib in combination with
senexin B (1 µM) or 15w (250 nM). Cell cultures were photographed in situ (Zeiss Axiovert
200; Carl Zeiss Microscopy, White Plains, NY, USA) before treatment, at 3 days, and then
once weekly for 8–10 weeks after treatment initiation. Densitometric measurements were
made using ImageJ software. Statistics were calculated by 2-way ANOVA with post-hoc
multiple comparisons in Prism (GraphPad Software, San Diego, CA, USA). Representative
flasks were also fixed, stained with crystal violet, and photographed at 2, 4, and 8–10 weeks
after initiation of treatment.

For assessing drug resistance, BT474 and SKBR3 cells were seeded in 96-well plates
(2500 and 1500 cells/well, respectively) and incubated overnight. Cells were then treated
with DMSO (control), senexin B (0–3 µM), erlotinib (0–15 µM), or gefitinib (0–3 µM)
individually or in fixed ratio combinations (1:1 for gefitinib and senexin B and 5:1 for
erlotinib and senexin B). Cell growth was measured at 7 days after drug addition by MTT
assay and expressed as a percentage of untreated cell signal. Synergy was assessed by
calculating Combination Indices (CI values) using CompuSyn Software [44] and IC50
values were determined using the AAT Bioquest IC50 calculator (https://www.aatbio.
com/tools/ic50-calculator/).

2.3. Cetuximab Selection and Sensitivity Testing

SW48 cells were seeded in 6-well plates (40,000 cells/well) and treated with cetuximab
(0–1 µM) and senexin B (0.313–5 µM) for 7 days. The number of live cells was measured
by flow cytometry using a LSR II system (Becton Dickinson, Franklin Lakes, NJ, USA)
with a 96-well loader, after staining with 10 µg/mL propidium iodide. For long-term
selection, parental SW48 cells were plated in T75 flasks (500,000 cells/flask) and then
treated with vehicle (DMSO), or with cetuximab (100 nM) and senexin B (1 µM) alone and
in combination. Cells (in duplicates) were collected, live cell numbers were measured by
flow cytometry and cells were replated at the original density every 6–10 days for a total of
81 days. Changes in cell number over time were calculated relative to vehicle-treated cells

https://www.aatbio.com/tools/ic50-calculator/
https://www.aatbio.com/tools/ic50-calculator/
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using a multiplying factor (the ratio of the number of cells collected to the number plated
at each passage).

3. Results
3.1. Effects of CDK8/19 Inhibition on Gefitinib and Erlotinib Resistance

We used breast cancer cell lines to analyze the effects of CDK8/19 inhibitor senexin B
on the development of resistance to small-molecule EGFR inhibitors gefitinib and erlotinib.
Single-step selections of limited duration (2–3 months) were carried out starting from
1.5 × 105 cells. This starting cell number and duration of exposure are too low to select
drug-resistant mutants (see Discussion). Cells were plated in the presence of gefitinib or
erlotinib at concentrations that produced near-maximum inhibition of cell growth after
10 days (see Materials and Methods). The results of representative single-step selections
(from a total of three independent gefitinib and three erlotinib selections) conducted in
BT474 breast cancer cells (ER- and HER2-positive) are shown in Figure 1. Figure 1A shows
crystal violet staining of representative flasks at three time points of selection. Figure
1B shows phase contrast microscopic images of cells at multiple time points and Figure
1C presents densitometric measurements of microphotographs (four images per flask).
After two weeks of continuous treatment, cells were nearly undetectable by crystal violet
staining (Figure 1A) and very few cells were detectable microscopically (Figure 1B,C). After
an additional two weeks of treatment (four weeks total), cells resumed proliferation and
were actively growing at the 8-week time point, indicating that the cells had adapted to
EGFR inhibitors.

To test the effect of CDK8/19 inhibition on the outcome of selection, we have used the
compound senexin B (4-((2-(6-(4-methylpiperazine-1-carbonyl)naphthalen-2-yl)ethyl)amino)
quinazoline-6-carbonitrile), which is highly selective for CDK8/19 based on the lack of
off-target inhibition in extensive kinome profiling [45,46] and lack of phenotypic effects in
CDK8/19 knockout cells [38,47]. In contrast, when selection was carried out in the presence
of 1 µM senexin B (concentration sufficient for near-maximum CDK8/19 kinase inhibition
in cell-based assays [33,46]), cells did not grow out even after 8 weeks and were unde-
tectable by crystal violet staining (Figure 1A) or showed minimal numbers by phase contrast
microscopy (Figure 1B,C). To confirm the effects of CDK8/19 inhibition on the development
of EGFR inhibitor resistance, we employed a chemically unrelated CDK8/19 inhibitor,
15w (3-amino-4-(4-(4-(2-(dimethylamino)-2-oxoethyl)phenyl)-1,4-diazepan-1-yl)thieno [2,3-
b]pyridine-2-carboxamide), which is also highly selective for CDK8/19 based on kinome
profiling [36] and phenotypic analysis [37,46]. As with senexin B, the addition of 15w (used
at 250 nM, due to its higher potency [38]) prevented the emergence of both gefitinib and
erlotinib resistance, even after 8 weeks of treatment (Figure 1B,C), confirming that the
resistance-preventing effect of senexin B was mediated by CDK8/19 inhibition.

To confirm the observed effects in another cell line, we have used SKBR3 breast cancer
cells (ER-negative, HER2-positive) for gefitinib selection, using the same study design as
with BT474 cells. Figure 2 shows the results of a representative gefitinib selection (out
of 4 independent selections). Gefitinib resistance took longer to develop in SKBR3 cells
than in BT474, but by 10 weeks cells appeared fully adapted to the drug (Figure 2A–C). As
with BT474 cells, the development of resistance in SKBR3 cells was fully prevented by the
addition of different CDK8/19 inhibitors, senexin B and 15w (Figure 2A–C).
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Figure 1. CDK8/19 inhibitors senexin B (SNXB) and 15w prevent resistance to EGFR inhibitors ge-
fitinib (GEF) and erlotinib (ERLO) in BT474 breast cancer cells. (A). Representative photographs of 
crystal violet-stained flasks at 2, 4, and 8 weeks of treatment. (B). Representative phase-contrast 
microphotographs at 3 days, and at 1, 2, 3, 4 and 8 weeks of treatment. (C). Densitometric measure-
ments of microphotographs expressed as percentage of cell density in DMSO controls at 3 weeks. 
Data shown as mean (n = 4 images/flask) ± SEM. p < 0.0001 for GEF vs. GEF+SNXB/15w (*) and 
ERLO vs. ERLO+SNXB/15w (*) at 8 weeks. 

Figure 1. CDK8/19 inhibitors senexin B (SNXB) and 15w prevent resistance to EGFR inhibitors
gefitinib (GEF) and erlotinib (ERLO) in BT474 breast cancer cells. (A). Representative photographs
of crystal violet-stained flasks at 2, 4, and 8 weeks of treatment. (B). Representative phase-contrast
microphotographs at 3 days, and at 1, 2, 3, 4 and 8 weeks of treatment. (C). Densitometric measure-
ments of microphotographs expressed as percentage of cell density in DMSO controls at 3 weeks.
Data shown as mean (n = 4 images/flask) ± SEM. p < 0.0001 for GEF vs. GEF+SNXB/15w (*) and
ERLO vs. ERLO+SNXB/15w (*) at 8 weeks.
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Figure 2. CDK8/19 inhibitors senexin B (SNXB) and 15w prevent resistance to EGFR inhibitor ge-
fitinib (GEF) in SKBR3 breast cancer cells. (A). Representative photographs showing cell density 
(crystal violet staining) in flasks at 4, 8 and 10 weeks of treatment. (B). Representative phase-con-
trast microphotographs at 3 days, and at 1, 2, 3, 4, 8 and 10 weeks of treatment. (C). Densitometric 
measurements of photomicrographs expressed as percentage of cell density in DMSO controls at 2 
weeks. Data shown as mean (n = 4 images/flask) ± SEM. p < 0.0001 for GEF vs. GEF+SNXB/15w (*) 
at 8 weeks. 

We have asked if the prevention of gefitinib and erlotinib resistance by CDK8/19 in-
hibitors could be due either to synergy between EGFR-targeting drugs and CDK8/19 in-
hibitors or to the reversal of acquired resistance to gefitinib or erlotinib. Synergy analysis 
was carried out by the Chou-Talalay method [44], which compares the effects of different 
concentrations of drugs (gefitinib or erlotinib and senexin B) used individually or at fixed-
ratio combinations. In this method, the drug interactions are characterized by the Combi-
nation Index (CI), where a synergistic interaction is defined by CI < 1. To determine if 
CDK8/19 inhibitor reversed the resistance acquired under our conditions, the same anal-
ysis was carried out on the gefitinib- or erlotinib-adapted cell populations, and the degrees 
of resistance to individual drugs and their combinations were determined by comparing 
IC50 values between the unselected and drug-adapted populations. 

Figure 2. CDK8/19 inhibitors senexin B (SNXB) and 15w prevent resistance to EGFR inhibitor
gefitinib (GEF) in SKBR3 breast cancer cells. (A). Representative photographs showing cell density
(crystal violet staining) in flasks at 4, 8 and 10 weeks of treatment. (B). Representative phase-contrast
microphotographs at 3 days, and at 1, 2, 3, 4, 8 and 10 weeks of treatment. (C). Densitometric
measurements of photomicrographs expressed as percentage of cell density in DMSO controls at 2
weeks. Data shown as mean (n = 4 images/flask) ± SEM. p < 0.0001 for GEF vs. GEF+SNXB/15w (*)
at 8 weeks.

We have asked if the prevention of gefitinib and erlotinib resistance by CDK8/19
inhibitors could be due either to synergy between EGFR-targeting drugs and CDK8/19
inhibitors or to the reversal of acquired resistance to gefitinib or erlotinib. Synergy analysis
was carried out by the Chou-Talalay method [44], which compares the effects of different
concentrations of drugs (gefitinib or erlotinib and senexin B) used individually or at
fixed-ratio combinations. In this method, the drug interactions are characterized by the
Combination Index (CI), where a synergistic interaction is defined by CI < 1. To determine
if CDK8/19 inhibitor reversed the resistance acquired under our conditions, the same
analysis was carried out on the gefitinib- or erlotinib-adapted cell populations, and the
degrees of resistance to individual drugs and their combinations were determined by
comparing IC50 values between the unselected and drug-adapted populations.

The analysis of gefitinib/senexin B interactions in BT474 cells is shown in Figure 3A–C
and Table 1. Figure 3A shows the results of a 7-day growth inhibition assay of BT474 cells
treated with gefitinib, senexin B, or their 1:1 combination. IC50 values measured in these
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assays are shown in Table 1 and CI values (determined at IC50 levels) are indicated in the
graphs. Figure 3B,C and Table 1 show the results of the same analysis carried out with
cells that were adapted to gefitinib (Figure 3B) or erlotinib (Figure 3C). Both gefitinib- and
erlotinib-adapted BT474 cells showed increased gefitinib resistance (7.0-fold and 5.9-fold
increase in IC50 relative to unselected cells, respectively). The addition of senexin B did
not reverse resistance to EGFR inhibitors, as the resistant cells showed the same increase
in IC50 values for gefitinib + senexin B combination relative to parental cells (5.9-fold for
gefitinib-adapted and 7.0-fold for erlotinib-adapted cells). No significant synergy between
gefitinib and senexin B was observed in parental cells or in cells selected with gefitinib or
erlotinib (CI = 1.18, 1.13 and 0.91, respectively). These results indicate that the resistance-
preventing effect of the CDK8/19 inhibitor was due neither to overcoming resistance that
has already emerged nor to a synergistic interaction between the compounds.
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Figure 3. Effects of gefitinib and erlotinib alone and in combination with Senexin B in parental and gefitinib- or erlotinib-
adapted BT474 cells. (A–C). Effects of 7-day treatment with gefitinib (GEF) and senexin B (SNXB), alone or in 1:1 combination,
in parental (A), gefitinib-adapted (B), and erlotinib-adapted (C) BT474 cells. (D–F). Effects of 7-day treatment with erlotinib
(ERLO) and senexin B, alone or in 5:1 combination, in parental (D), gefitinib-adapted (E), and erlotinib-adapted (F) BT474
cells. Data shown as mean ± SEM of six replicate measurements. Combination index (CI) values at IC50 concentrations are
shown in lower left corner of each graph.

Table 1. IC50 values (µM) for parental and gefitinib- or erlotinib-adapted cell populations in 7-day growth inhibition assays
shown in Figures 3 and 4. In case of drug combinations, IC50 values are shown for each drug; fold change in IC50 relative to
parental cells shown in parentheses (italicized). IC50 values for senexin B in SKBR3 cells could not be determined due to the
low extent of growth inhibition.

BT474-Par BT474-GefR BT474-ErlR SKBR3-Par SKBR3-GefR

Gefitinib 0.140 0.973 (6.95) 0.863 (6.16) 0.619 1.530 (2.47)

Senexin B 1.547 2.430 (1.57) 2.561 (1.66) N/A N/A

Senexin B +
Gefitinib (1:1) 0.087/0.087 0.510/0.510 (5.86) 0.612/0.612 (7.03) 0.403 0.644 (1.60)

Erlotinib 2.489 7.329 (2.94) 8.520 (3.42) 2.478 3.437 (1.39)

Senexin B +
Erlotinib (1:5) 0.351/1.753 0.473/2.124 (1.35) 0.915/4.577 (2.61) 0.258/1.292 0.328/1.641 (1.27)
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Figure 4. Effects of gefitinib and erlotinib alone and in combination with senexin B in parental
and gefitinib-adapted SKBR3 cells. (A,B). Effects of 7-day treatment with gefitinib and senexin B,
alone or in 1:1 combination, in parental (A) and gefitinib-adapted (B) SKBR3 cells. (C,D). Effects
of 7-day treatment with erlotinib and senexin B, alone or in 5:1 combination, in parental (C) and
gefitinib-adapted (D) SKBR3 cells. Data shown as mean ± SEM of six replicate measurements.

The same analysis was carried out for erlotinib/senexin B interactions in BT474 cells.
Figure 3D–F and Table 1 show the response of parental and drug-adapted BT474 cells to
erlotinib, senexin B or their 5:1 combination. Both erlotinib- and gefitinib-adapted BT474
cells were resistant to erlotinib alone (3.4- and 2.9-fold relative to parental cells, respectively)
and to erlotinib+senexin B combination (2.6- and 1.4-fold, respectively). CI values showed
no synergy between erlotinib and senexin B for the parental and gefitinib-adapted cells (CI
= 1.05 and 0.93, respectively) but this drug combination appeared synergistic (CI = 0.66)
in erlotinib-adapted cells. Together with the finding that erlotinib-adapted cells were less
resistant to erlotinib + senexin B combination than to erlotinib alone, this result suggests
that reversal of erlotinib resistance could have contributed to the prevention of erlotinib
resistance by CDK8/19 inhibitors.

The same analysis for SKBR3 cells is shown in Figure 4 and Table 1. The effects
of gefitinib and senexin B (Figure 4A,B) and erlotinib and senexin B (Figure 4C,D) are
shown for the parental SKBR3 cells (Figure 4A,C) and their gefitinib-adapted population
(Figure 4B,D). While senexin B showed significant growth inhibition in ER-positive BT474
cells (Figure 3), likely due to its activity as an inhibitor of estrogen signaling [33], the
growth inhibitory effects of senexin B were very weak in ER-negative SKBR3 cells and
never approached 50 percent. Hence, CI values at IC50 for the combinations of EGFR and
CDK8/19 inhibitors could not be determined in SKBR3 cells. Gefitinib-adapted SKBR3 cells
showed a moderate increase in their IC50 values for gefitinib (2.5-fold) and erlotinib (1.4-
fold), whereas the increase in resistance to the combinations of these drugs with senexin B
was 1.6-fold and 1.3-fold, respectively.
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3.2. Effects of CDK8/19 Inhibition on Cetuximab Resistance

Cetuximab selection was carried out in SW48 colon carcinoma cells (wild-type KRAS),
using 100 nM cetuximab. As shown in Figure 5A, this concentration decreases the number
of live (propidium iodide (PI)-negative) SW48 cells to 30.9% of untreated cells after 7-day
treatment, whereas the dead (PI-positive) cell fraction was below 3%, indicating that the
effect of cetuximab is primarily cytostatic. The addition of senexin B at concentrations
below 2.5 µM had little effect on 7-day survival of cetuximab (Figure 5A). For long-term
selection, 5 × 105 SW48 cells were treated (i) with vehicle (DMSO) control, (ii) 1 µM senexin
B, (iii) 100 nM cetuximab, or (iv) 100 nM cetuximab + 1 µM senexin B. Cells were replated
and the number of live cells was determined (in duplicates) by flow cytometry every 6–10
days, for a total of 81 days. Changes in cell number (calculated at each time point taking
dilutions into account; see Materials and Methods) relative to the control cells are plotted
in Figure 5B.
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Figure 5. Effects of senexin B on the development of cetuximab resistance in SW48 colon carcinoma cells. (A) Effects of 7-day
treatment with the indicated concentrations of Senexin B combined with vehicle or 100 nM cetuximab on the number of live
(PI-) cells relative to vehicle control and the fraction of dead (PI+) cells. (B) Effects of prolonged treatment with senexin B
(1 µM), cetuximab (100 nM) or senexin B plus cetuximab combination. Cell numbers for each time point are shown relative
to untreated cells (mean ± SEM of duplicate measurements; error bars at most points are smaller than symbol size).

Senexin B alone had no significant effect on cell growth over time. 100 nM cetuximab
was growth-inhibitory for the first 19 days of treatment but after that point cetuximab no
longer inhibited cell growth and the cells continued to grow until the end of the study
(81 days), at a rate that was even higher than the control (marked by the slope of the
curve), indicating the development of a cetuximab-resistant phenotype. The addition of
senexin B initially decreased response to cetuximab, suggesting an apparently antagonistic
interaction until the time when cells treated with cetuximab alone developed resistance. In
contrast, the combination of cetuximab with the CDK8/19 inhibitor continued to inhibit cell
growth until the end of the study (day 81), with no apparent development of resistance. The
difference in calculated cell numbers between cetuximab alone and cetuximab + senexin B
treatments exceeded four orders of magnitude starting between days 62 and 69. Therefore,
despite the apparent antagonism in the short-term, the addition of CDK8/19 inhibitor
greatly improves the outcome of cetuximab treatment in the long-term, by preventing the
development of cetuximab resistance.
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4. Discussion

In the present study, we have analyzed the effects of CDK8/19 inhibition on the devel-
opment of adaptive resistance to EGFR-targeting small molecules (gefitinib and erlotinib)
or an antibody (cetuximab). We have carried out single-step selection for resistance to
EGFR-targeting drugs by plating a relatively small cell number (1.5 × 105 cells for BT474
and SKBR3 and 5 × 105 cells for SW48 cells) and using relatively short periods of drug
exposure (up to 10 weeks). According to recent analysis [47] mutation rates per base per
cell division in cancer are on the order of 10−8–10−7 and a minimum of 2 × 107 cells
(10 T175 flasks) would be required to have even a single mutant; it also takes 6–12 months
of selection to achieve full drug resistance. Nevertheless, in our study, resistance in all the
cell/drug combinations developed in every flask in less than 10 weeks, suggesting that
such resistance represented drug adaptation of cell populations and was not mediated
by genetic mechanisms. In all the tested cell-drug combinations, the development of this
adaptive resistance was prevented by a highly selective CDK8/19 inhibitor senexin B. The
role of CDK8/19 in the development of resistance was verified through the use of another
highly selective CDK8/19 inhibitor, 15w, which bears no structural similarity to senexin
B. To simplify future analysis of the role of CDK8/19 Mediator kinase in drug resistance,
we are currently generating a series of tumor cell lines with CRISPR/CAS9 knockout of
CDK8 and CDK19, followed by re-expression of the wild-type Mediator kinases and their
kinase-dead mutants.

Although CDK8/19 inhibitors consistently prevented the development of adaptive
resistance to EGFR-targeting drugs in all four tested cell line/EGFR inhibitor combinations,
this effect in most cases could not be attributed to drug synergy or to reversal of resistance.
In particular, gefitinib-adapted BT474 cells showed the same increase in resistance to
gefitinib or erlotinib as to combinations of these drugs with senexin B, although erlotinib-
adapted cells were less resistant to the combination of erlotinib with senexin B than
to erlotinib alone. No synergy was apparent in gefitinib or erlotinib combinations with
senexin B (in contrast to a strong synergy found between erlotinib and THZ1, an inhibitor of
CDK7/CDK12/CDK13 [48]). In the course of cetuximab selection, the addition of senexin B
even decreased the response to cetuximab in the short-term but nevertheless prevented the
development of cetuximab resistance. Hence, the observed prevention of resistance most
likely reflects the inhibition of CDK8/19-mediated transcriptional reprogramming [18,34]
that prevents the emergence of adaptive resistance to EGFR-targeting drugs.

Numerous mechanisms of resistance to EGFR inhibitors have been described [42,44,49,50].
These include activating mutations in EGFR itself, mutations of BRAF, KRAS and PIK3CA,
as well as amplification or non-genetic upregulation of HER2 and MET, and downreg-
ulation or mutation of PTEN. The resistance was also associated with the activation of
various compensatory pathways, such as Wnt/β-catenin and NFkB, and compensatory
growth factor receptor signaling, including overexpression of HER family ligands, as well
as HGF and FGF. Epithelial-mesenchymal transition (EMT) has also been identified as
a major mechanism of resistance to EGFR-targeting drugs [49]. As discussed above, the
small cell number used in our selections and the observed rapid development of resistance
argue against the involvement of any genetic mechanisms. In addition, cross-resistance of
gefitinib- and erlotinib-adapted cells argues against the involvement of inhibitor-specific
mutations in the EGFR gene. Since drug-resistant cell populations were isolated here via
rapid single-step adaptation, they almost certainly represent mixtures of cells with different
transcriptomic mechanisms of resistance. With the advent of single-cell (sc) RNA-Seq, it
became clear that adaptive drug resistance involves rapid transcriptional changes, which
are observed concurrently in the same cell population [5–7,50]. In particular, a heteroge-
neous pattern of resistance-associated transcriptional changes was observed in scRNA-Seq
analysis of the effects of short-term (5-day) cetuximab treatment in three head and neck
squamous cell carcinoma cell lines [51]. Transcriptomic heterogeneity within the same cell
lines was found to increase as an immediate response to cetuximab, and this effect was
suggested to indicate that different cell subclones in the same cell line are activating alter-
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native pathways to overcome EGFR inhibition [51]. In the future, we are planning to use
scRNA-Seq to identify the spectrum of CDK8/19-dependent transcriptomic mechanisms
that lead to non-genetic resistance to EGFR-targeting drugs.

We have previously reported that CDK8/19 inhibitors prevent the induction of
resistance-associated anti-apoptotic factors upon treatment with DNA-damaging drugs or
ionizing radiation [25] and suppress the emergence of estrogen-independent ER-positive
breast cancer cells upon prolonged estrogen deprivation [33]. These results, combined with
the present study, indicate a pleiotropic effect of CDK8/19 on the emergence of drug resis-
tance and suggest potential utility of CDK8/19 inhibitors in preventing the development
of resistance to different classes of drugs.
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