A Mathematical Model of a Sealed Nickel-Cadmium Battery

Deyuan Fan
Texas A & M University - College Station

Ralph E. White
University of South Carolina - Columbia, white@cec.sc.edu

Follow this and additional works at: https://scholarcommons.sc.edu/eche_facpub

Part of the Chemical Engineering Commons

Publication Info

© The Electrochemical Society, Inc. 1991. All rights reserved. Except as provided under U.S. copyright law, this work may not be reproduced, resold, distributed, or modified without the express permission of The Electrochemical Society (ECS). The archival version of this work was published in the Journal of the Electrochemical Society.
http://www.electrochem.org/
DOI: 10.1149/1.2085532
http://dx.doi.org/10.1149/1.2085532

This Article is brought to you by the Chemical Engineering, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact dillarda@mailbox.sc.edu.
A Mathematical Model of a Sealed Nickel-Cadmium Battery

Deyuan Fan* and Ralph E. White**
Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122

ABSTRACT

A mathematical model for the charge and discharge of a sealed nickel-cadmium (Ni-Cd) battery is presented. The model is used to study the effect of transport properties of the electrolyte and kinetic parameters of the electrode reactions on the cell performance during the charge and discharge period. The model can also be used to demonstrate the changes of cell performance during cycling. Some comparisons between model predictions and experimental results indicate that the model predictions appear to fit the experimental data well. Sensitivity analyses illustrate that the sealed nickel-cadmium battery operates under activation control. It is also shown theoretically that oxygen generated on the positive electrode during charge is reduced electrochemically on the negative electrode.

It is well known that the performance of a nickel-cadmium battery is based on the complex chemical and electrochemical phenomena (1-4) involved in the battery. These complex phenomena can be understood better through mathematical modeling of the battery. Similar work has been done for other battery systems such as the lead-acid battery by Gu (5) and the model predictions appear to fit the experimental data well. Sensitivity analyses illustrate that the sealed nickel-cadmium battery operates under activation control.

REFERENCES

Region 1: positive electrode.

Positive Electrode

\[2\text{NiOOH} + 2\text{H}_2\text{O} + 2e^- \overset{\text{charge}}{=} 2\text{Ni(OH)}_2 + 2\text{OH}^- \quad [A] \]

\[\frac{1}{2} \text{O}_2 + \text{H}_2\text{O} + 2e^- \overset{\text{charge}}{=} 2\text{OH}^- \quad [B] \]

Negative Electrode

\[\text{Cd} + 2\text{OH}^- \overset{\text{charge}}{=} \text{Cd(OH)}_2 + 2e^- \quad [C] \]

\[2\text{OH}^- \overset{\text{charge}}{=} \frac{1}{2} \text{O}_2 + \text{H}_2\text{O} + 2e^- \quad [D] \]

A schematic of a sealed nickel-cadmium cell is shown in Fig. 1. The cell consists of the following regions and boundaries: (i) the current collector at the positive electrode \((x = 0)\); (ii) the positive or nickel electrode \((0 < x < l_1)\); (iii) the interface between the positive electrode and the separator \((x = 1)\); (iv) the separator matrix \((l_1 < x < l_1 + l_2)\); (v) the interface between the separator and the negative electrode \((x = l_1 + l_2)\); (vi) the negative or cadmium electrode \((l_1 + l_2 < x < 0)\); and (vii) the current collector of the negative electrode \((x = 0)\).

There are six explicit unknowns (dependent variables) in the model: (i) base concentrations, \(c\); (ii) solid material porosity, \(\varepsilon\); (iii) potential in the solid phase, \(\phi_s\); (iv) potential in the liquid phase, \(\phi_l\); (v) superficial current density in the electrolyte, \(i_s\); and (vi) oxygen concentration, \(c_{\text{O}_2}\). The independent variables are the spatial coordinate \(x\) and time \(t\).

The governing equations and the boundary conditions for these six variables for the nickel-cadmium cell are presented next. The concentrated solution theory has been used to derive these equations.

Center of the positive electrode.

\[\frac{\partial c}{\partial x} = 0 \quad [1] \]
Electrolyte material balance
\[\epsilon_1 \frac{d \epsilon_1}{dt} + \epsilon_2 \frac{d \epsilon_2}{dt} = \left(\frac{D_{\text{ele}}}{\epsilon_1} \frac{d \epsilon_1}{dx} \right) + \frac{1}{F} \frac{J_{\text{ox}}}{F} \frac{d \epsilon_0}{dt} \]

Oxygen material balance
\[\epsilon_1 \frac{d \epsilon_0}{dt} + \epsilon_2 \frac{d \epsilon_0}{dt} = \frac{D_{\text{ele}}}{\epsilon_0} \frac{d \epsilon_0}{dx} + \frac{1}{4F} \frac{J_0}{0} \frac{d \epsilon_0}{dt} \]

where the kinetic expression for oxygen reaction is
\[J_0 = a_{\text{max}, \text{C}O_2} \left(\frac{\epsilon_1 - \epsilon_0}{\epsilon_{\text{max}} - \epsilon_0} \right) \left(\exp \left[\frac{\alpha_1 F \epsilon}{RT} \eta \right] - \frac{c_{O_2}}{c_{O_2, \text{ref}}} \right) \exp \left[-\frac{\alpha_1 F \epsilon}{RT} \eta \right] \]

Equation [8] is a modified form of Ohm’s law for the electrolyte which indicates that the current in the electrolyte is driven by the electric potential gradient and the electrolyte concentration gradient. Equation [9] is Ohm’s law for the solid phase. Equation [10] defines the transfer current that exists because of the electrode reactions which cause a gradient of the superficial current density in solution, \(\partial \eta / \partial x \). Equation [11] is the material balance in the solid phase which describes the porosity changes with time due to the conversion of the active solid materials with different densities by the electrode reaction. Equations [12] and [13] are the mass balance of the electrolyte (KOH) and oxygen (O_2), which indicate that the electrolyte and the "effective" oxygen concentration at any position changes with time because of the electrode reaction and mass transfer. Mass transfer of OH^{-} is considered to be only diffusion and migration. Convection transport of OH^{-} is neglected. The exponents, \(\epsilon_1 \) and \(\epsilon_2 \), in these equations are tortuosity factors for the porous electrode. The concept of an effective oxygen concentration is used to provide a means of accounting for both gas and liquid phase transport of oxygen without including separately the gas phase and dissolved oxygen transport in the electrodes and the separator. The same concept applies to the apparent diffusion coefficient of oxygen, \(D_{\text{O}_2} \). This is very important during overcharge process.

Interface between region 1 and 2.
\[\epsilon^{\text{ext}} \frac{d \epsilon_1}{dx}_{\text{region1}} = (f_{\text{sat}, \text{sep}}) \frac{d \epsilon_1}{dx}_{\text{region2}} \]

Equations [15], [19] and [20] are in accordance with the continuity of the flux conditions of the electrolyte, superficial current density and oxygen at this interface. Equation [16] is the material balance in the solid phase. Equation [17] shows that all of the current through the cell is in the solution at this interface. Since the current in the solid phase is equal to zero, the potential gradient in the solid phase at this interface is also equal to zero, as given in Eq. [18].

Region 2: separator.—Ohm’s law in the solution
\[\frac{I_2}{\kappa c_{\text{ex}2}} = -\frac{\partial \phi_2}{\partial x} + \frac{RT}{F} \left(1 - \epsilon_2 \right) \frac{\partial \ln c}{\partial x} \]

Current in solution
\[I_2 = I_{\text{cell}} \]

Solid phase potential
\[\phi_1 = 0 \]

Porosity
\[\epsilon = f_{\text{sat}, \text{sep}} \]

Electrolyte material balance
\[\epsilon_1 \frac{d \epsilon_1}{dt} = D_{\text{ele}} \frac{\partial^2 \epsilon_1}{\partial x^2} \]

Oxygen material balance
\[\epsilon_1 \frac{d \epsilon_0}{dt} = D_{\text{ele}} \frac{\partial^2 \epsilon_0}{\partial x^2} \]

Equation [21] again is a modified form of Ohm’s law for the electrolyte, which is similar to Eq. [8] in the positive electrode region. Since the solid phase of the separator is not conductive, the current is carried totally by the liquid phase as shown in Eq. [22] and the potential of the matrix is arbitrarily set to zero, Eq. [23]. Equation [24] shows that the void space available to the electrolyte is equal to the porosity of the separator, \(\epsilon_{\text{sep}} \), times the level of liquid saturation in the separator, \(f_{\text{sat}, \text{sep}} \). Finally, Eq. [25] and [26] are the material balance of the electrolyte and oxygen concentration.

Interface between region 2 and 3.
\[(f_{\text{sat}, \text{sep}}) \frac{d \epsilon_1}{dx}_{\text{region2}} = (f_{\text{sat}, \text{sep}}) \frac{d \epsilon_1}{dx}_{\text{region3}} \]

Equation \(\epsilon_1 \frac{d \phi_1}{dx}_{\text{region1}} = 0 \)

\[I_2 = I_{\text{cell}} \]

where, on discharge and at rest
\[J_{\text{ca}} = \alpha_{\text{max}} \frac{c_{\text{ref}}}{c_{\text{ref}}} \left(\frac{c_{\text{ref}} - c_3}{c_{\text{ref}} - c_3} \right)^{\alpha_2} \left(\exp \left[\frac{\alpha_2 F \epsilon}{RT} \eta \right] - \exp \left[-\frac{\alpha_2 F \epsilon}{RT} \eta \right] \right) \]

Downloaded 14 Jun 2011 to 129.252.106.20. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp
and on charge

$$J_{Cd} = a_{max}\alpha_{\text{O}_2}\text{ref} \left(\frac{c}{c_{\text{ref}}} \right) \left(\frac{E_s - E_{o_b}}{E_{max} - E_{o_b}} \right)^\alpha \{ \exp \left[\frac{a_{Cd} F}{RT \eta_c} \right] - \exp \left[-\frac{a_{Cd} F}{RT \eta_c} \right] \}$$ \[33b\]

and

$$\eta_c = \phi_{1,Cd} - \phi_2$$ \[33c\]

Region 3: negative electrode.—The equations given below for the negative electrode are almost the same as those used in the positive electrode region.

Ohm’s law in the solution

$$i_2 = \frac{\rho}{\varepsilon} \frac{\partial}{\partial x} \left(\frac{RT}{F} (1 - r) \frac{\partial \ln c}{\partial x} \right)$$ \[34\]

Conservation of charge

$$i_2 - \sigma_{Cd} \varepsilon_{33} \frac{\partial \phi_{L,Cd}}{\partial x} = i_{\text{ref}}$$ \[35\]

Transfer current

$$\frac{\partial i_2}{\partial x} = J_{Cd} + J_{O_2}$$ \[35\]

Porosity variation

$$\frac{\partial \varepsilon_3}{\partial t} = \frac{1}{2F} \left(\frac{M_{Cd(OH)2}}{\rho_{Cd(OH)2}} - \frac{M_{Cd}}{\rho_{Cd}} \right) J_{Cd}$$ \[36\]

Electrolyte material balance

$$\varepsilon_3 \frac{\partial c}{\partial t} + c \frac{\partial v_3}{\partial t} = \frac{\partial}{\partial x} \left(D_{33} \varepsilon_3 \frac{\partial c}{\partial x} \right) - \left(1 - r \right) \frac{1}{F} \frac{\partial \ln c}{\partial x} J_{Cd} + \frac{1}{F} J_{O_2}$$ \[37\]

Oxygen material balance

$$\varepsilon_3 \frac{\partial c_{O_2}}{\partial t} + c_{O_2} \frac{\partial v_3}{\partial t} = \frac{\partial}{\partial x} \left(D_{O_2} \varepsilon_3 \frac{\partial c_{O_2}}{\partial x} \right) + \frac{1}{4F} J_{O_2}$$ \[38\]

where the kinetic expression for oxygen reaction is

$$J_{O_2} = a_{max} v_{\text{O}_2} \text{ref} \left(\frac{E_s - E_{o_b}}{E_{max} - E_{o_b}} \right)^\alpha \{ \exp \left[\frac{a_{O_2} F}{RT \eta_c} \right] \}$$

and

$$\eta_c = \phi_{1,Cd} - \phi_2 - U_{O_2/Cd}$$ \[39a\]

and

$$\eta_c = \phi_{1,Cd} - \phi_2 - U_{O_2/Cd}$$ \[39b\]

Center of the negative electrode.—

$$\frac{\partial c}{\partial x} = 0$$ \[40\]

$$\frac{\partial \varepsilon_3}{\partial t} = \frac{1}{2F} \left(\frac{M_{Cd(OH)2}}{\rho_{Cd(OH)2}} - \frac{M_{Cd}}{\rho_{Cd}} \right) J_{Cd}$$ \[41\]

$$i_2 = 0$$ \[42\]

$$\frac{\partial i_2}{\partial x} = J_{Cd}$$ \[43\]

$$\frac{\partial \phi_2}{\partial x} = 0$$ \[44\]

The equations used at this boundary are very similar to those at the center of the positive electrode except that the solid phase potential is already established so the transfer current condition is used instead of setting a value for \(\phi_1 \).

The appropriate equations given above on discharge and rest or on charge were put into finite difference form and solved numerically using a pentadiagonal BAND(J) subroutine (14) and an implicit stepping technique for the time derivatives. The fixed parameters used in the calculations are given in Tables I-III. The parameter values given without references are assumed values. The simulated results are presented and discussed next.

Results and Discussion

Discharge characteristic.—The model simulated cell voltage vs. time curves for three discharge rates (solid

Fig. 2. Discharge characteristic of a nickel-cadmium cell

$$\frac{\partial \varepsilon}{\partial x} = 0$$ \[45\]

Fig. 3. Electrolyte concentration profiles at different discharge times

Downloaded 14 Jun 2011 to 129.252.106.20. Redistribution subject to ECS license or copyright; see http://www.ecsdl.org/terms_use.jsp
lines) and the corresponding experimental data [data points, refer to Ref. (15)] are shown in Fig. 2. It can be seen that the model has a very good fit to the experimental results. Both the model predictions and the experimental results indicate that the cell voltage drops quickly from the open-circuit potential (1.30 V) to certain values at the beginning of discharge, then decays very slowly during the main course of discharge, and finally falls off upon complete discharge.

Figure 3 presents the profiles of the electrolyte concentration for a typical discharge process at a rate of 10 mA/cm², which is approximately a 2h rate. It indicates that the electrolyte concentration increases in all three regions. This increase is not due to the generation of OH⁻ in the electrode reaction, because OH⁻ does not appear in the overall cell reaction. Although OH⁻ is generated on the positive electrode according to reaction [A], it diffuses through the separator and is reduced on the negative electrode according to reaction [C]; therefore, the overall accumulation of OH⁻ due to the electrode reactions is simply zero. This increase in the electrolyte concentration is due to the overall water consumption. During discharge, water is consumed within the positive electrode region which directly causes the overall electrolyte concentration to increase. In addition, because of the generation of OH⁻ in the positive electrode according to reaction [A] and the consumption of OH⁻ in the negative electrode according to reaction [C], the increase of electrolyte concentration in the positive electrode is greater than that in the negative electrode.

Figure 4 presents the predicted porosity profiles of the solid materials as a function of time at a discharge rate of 10 mA/cm². As can be seen, the porosity of both electrodes decreases during discharge, because during discharge the electrode active materials are converted from their dense state, e.g., NiOOH and Cd, to a loose state, e.g., Ni(OH)₂ and Cd(OH)₂. The decrease in the solid material density will result in a decrease in the overall void volume. The porosity shows an almost uniform decrease across the electrode section; therefore, the electrode reaction rate is not a strong function of spatial position. This feature is quite different from that of those systems under diffusion control (8). This implies that the discharge process probably is under activation control but not under diffusion control.

Charge characteristic.—Figure 5 shows the simulated and experimental (15) values of the cell potential under certain charge rates. Qualitative agreement again exists between the experimental and simulated values. Figure 6 shows that the electrolyte concentration continuously decreases during charge and overcharge due to production of water in the positive electrode. For a 1.5 recharge ratio (3h charge time/2h discharge time), the electrolyte concentration drops from about 8.5 mol/liter to about 6.4 mol/liter.

The effect of oxygen is very important in a nickel-cadmium battery. The cell performance is greatly affected by the oxygen generation and reduction process. Here we assume that all oxygen exists only in the solution phase; and an apparent oxygen diffusion coefficient (Dₒ₂) and an effective oxygen concentration (cₒ₂) are used to account for the two-phase transport of oxygen. As can be seen from Fig. 8, oxygen is generated on the positive electrode according to reaction [B], diffuses through the separator, and is reduced electrochemically on the negative electrode according to reaction [D]. Note that the oxygen builds up significantly in the positive electrode and reduces in the negative electrode region near the separator.

This process of oxygen reduction in the cell can be explained by constructing a simplified Evans plot for the

Table I. Properties of the electrolyte

<table>
<thead>
<tr>
<th>Properties</th>
<th>Values</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell temperature (T)</td>
<td>298.15 K</td>
<td>(2), p. 580</td>
</tr>
<tr>
<td>Ref. basic concentration (cₒ)</td>
<td>7.1 mol/liter</td>
<td>(2), p. 580</td>
</tr>
<tr>
<td>Ref. oxygen concentration (cₒₒ)</td>
<td>1.0 mol/liter</td>
<td>(2), p. 591</td>
</tr>
<tr>
<td>Diffusion coefficient of KOH (Dₒ)</td>
<td>2.13 × 10⁻³ cm²/s</td>
<td>(2), p. 591</td>
</tr>
<tr>
<td>Diffusion coefficient of oxygen (Dₒ₂)</td>
<td>1.00 × 10⁻³ cm²/s</td>
<td>(2), p. 591</td>
</tr>
<tr>
<td>Transfer number (τ)</td>
<td>0.78</td>
<td>(2), p. 598</td>
</tr>
<tr>
<td>Electrolyte conductivity (κ)</td>
<td>0.67 S/cm</td>
<td>(2), p. 503</td>
</tr>
</tbody>
</table>

Table II. Electrode and separator properties

<table>
<thead>
<tr>
<th>Properties</th>
<th>Positive (Region 1)</th>
<th>Separator (Region 2)</th>
<th>Negative (Region 3)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half-thickness (cm)</td>
<td>0.036</td>
<td>0.0125</td>
<td>0.040</td>
<td>(15)</td>
</tr>
<tr>
<td>Porosity (fully charged)</td>
<td>0.41</td>
<td>0.75</td>
<td>0.64</td>
<td>(2), p. 45</td>
</tr>
<tr>
<td>Maximum charge (Qmax, C/cm²)</td>
<td>2082</td>
<td>3032</td>
<td></td>
<td>(12)</td>
</tr>
<tr>
<td>Surface area (cm²)</td>
<td>5600</td>
<td>5600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tortuosity factors (εex/εcm)</td>
<td>2.50/0.5</td>
<td>2.5</td>
<td>2.5/0.5</td>
<td></td>
</tr>
<tr>
<td>Saturation level (fa)</td>
<td>—</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table III. Thermodynamic and kinetic parameters

<table>
<thead>
<tr>
<th>Properties</th>
<th>Main reactions</th>
<th>Oxygen reaction</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open-circuit potential (V)</td>
<td>1.290</td>
<td>1.21</td>
<td>(2), p. 533</td>
</tr>
<tr>
<td>1.0 (A/cm²)</td>
<td>6.1 × 10⁻⁸</td>
<td>1.0 × 10⁻⁸</td>
<td>(5), p. 15</td>
</tr>
<tr>
<td>Number of electrons</td>
<td>2</td>
<td>2</td>
<td>(5), p. 15</td>
</tr>
</tbody>
</table>

Fig. 4. Porosity profiles of solid material at different discharge times
electrode reactions in the cell. Figure 9 is an Evans plot for the electrode reactions [A-D]. The parameters used in preparing this plot are listed in Table IV. It is important to note that Fig. 9 is only a qualitative representation of the actual electrochemical process in the model and in the cell, but it is consistent with the model predictions. During the charging period, oxygen generation on the positive electrode is along the positive branch (AB) and the electrochemical reduction of oxygen on the negative electrode is along the negative branch (ACD). This hypothesis is consistent with the results presented by Turner (16) in which he stated that oxygen recombination may be due to the electrochemical reduction of oxygen on the cadmium of the negative electrode and that the recombination rate depends upon the amount of metallic cadmium on the negative electrode. Further consideration of Fig. 9 reveals that it is highly unlikely that Cd is oxidized to Cd(OH)$_2$ during the charging process because cadmium is cathodically protected. This is true because on charge the potential of the negative electrode is lower than the equilibrium potential of the electrode reaction [C], which is obviously on the Cd(OH)$_2$ reduction branch of the Evans plot of the cadmium electrode part (EF).

Voltage control charge characteristic.—In order to avoid pressure buildup due to oxygen generation during charge and overcharge, a voltage control charging technique is frequently used. In this charge mode, a constant charge current is applied at the beginning of charge when the cell voltage reaches a set value (1.35V) and is then changed to constant voltage charge, which allows the charge current to drop. This technique was developed based on the electrochemical phenomena shown in Fig. 9. According to Fig. 9, the entire process of oxygen generation, diffusion, and oxygen reduction is more likely to be controlled by diffusion of oxygen through the separator. If the charging rate is fast and the charging efficiency is low (e.g., during overcharge), then the cell pressure will increase quickly due to oxygen generation. If a constant voltage is applied, the oxygen generation, diffusion, and reduction will reach
Fig. 9. Evans plot for the electrode reactions in a nickel-cadmium cell.

Fig. 10. Charge current density as a function of time for the voltage control charge mode (i.e., first constant current charge at 10 mA/cm² until the voltage reaches 1.35, then constant voltage charge and current falls off).

Fig. 11. Oxygen concentration profiles during the voltage control charge mode.

Table IV. Parameters used in preparing the Evans plot

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active materials</td>
<td>NiOOH/Ni(OH)₂</td>
<td>Cd(OH)₂/Cd</td>
</tr>
<tr>
<td>i₀ for main reaction (A/cm²)</td>
<td>6.1 x 10⁻⁶</td>
<td>6.1 x 10⁻⁶</td>
</tr>
<tr>
<td>i₀ for oxygen reaction (A/cm²)</td>
<td>1.0 x 10⁻⁹</td>
<td>1.0 x 10⁻⁹</td>
</tr>
<tr>
<td>Equ. potential in 7.1M KOH (V)</td>
<td>0.44</td>
<td>-0.86</td>
</tr>
<tr>
<td>O₂ potential in 7.1M KOH (V)</td>
<td>0.35</td>
<td>0.35</td>
</tr>
</tbody>
</table>

* Refers to oxygen partial pressure as 1 atm.

Sensitivity analysis. It is important to determine the sensitivity of the model predictions to changes in the electrode kinetic parameters and transport properties. If the model predictions are relatively insensitive to one or more parameters, then a fairly wide range of values for these parameters could be used without significantly affecting the predictions of the model. The sensitivity of the model predictions to changes in parameters is determined by monitoring the change in cell voltage. While holding all other parameters constant, the parameter of interest is perturbed slightly and the resulting change in cell voltage is noted. A sensitivity coefficient (SC) is defined as follows:

\[
SC_i = \frac{\sum \Delta E(t_j)}{n|\Delta par_i|/par_i} \tag{46}
\]

where

\[
\Delta E(t_j) = E(t_j) - E^*(t_j) \tag{47}
\]

\[
\Delta par_i = par_i - par_i \tag{48}
\]

parᵢ and parᵢ* are the perturbed values of parameter i and the reference value of parameter i, respectively. E(tᵢ) is the value of the cell voltage at time tᵢ when using parᵢ; and, E*(tᵢ) is the value of the cell voltage at time tᵢ when using parᵢ*. In Eq. (46), n is the number of times over which the voltage values are compared, and its value is chosen so that 80% of the discharge or charge time is included in the analysis.

The results of the sensitivity analysis are shown in Fig. 12 and 13. Figure 12 shows sensitivity of the cell voltage to the electrode kinetic parameters describing the dis-
charge reaction over a range of discharge rates. Figure 13 is an analogous plot for the charging process. The kinetic parameter is represented by the product of exchange current density and the maximum specific surface area. The same values of exchange current density and specific surface area are used for both the positive and negative electrode (i.e., \(j_{\text{ex}} \cdot a_{\text{p(max)}} = j_{\text{ni,ref}} \cdot a_{\text{n(ref)}} = j_{\text{go,ref}} \cdot a_{\text{max}} \)). The transport parameter is characterized by the product of saturation level, \(f_{\text{sat}} \), and the porosity of the separator, \(\epsilon_{\text{sep}} \). The sensitivity analyses indicate that the most influential factor by far is the electrode kinetics (\(j_{\text{ex}} \cdot a_{\text{max}} \)), especially at high discharge or charge current density. The parameters characterizing the transport of the electrolyte through the separator have much less influence on the cell voltage during both the charge and discharge period. This indicates that the nickel-cadmium cell operates under activation control.

Future Model Refinement

The results presented here are some primary simulation results. Many other important features need to be incorporated into the model in order to have a better understanding of the electrochemical phenomena in a nickel-cadmium cell. Some future refinements to the model may include: (i) solid intercalation properties of the nickel electrode; (ii) semiconductor properties of the nickel electrode; (iii) proton diffusion in the nickel electrode; (iv) two-phase transport of oxygen; (v) porosity distribution across the electrode section; and (vi) degradation effects.

Conclusions

A mathematical simulation for the discharge and charge performance of a sealed nickel-cadmium battery has shown that the model can be used to predict cell performance. Thus, it can serve as a useful tool for cell designers and engineers in studying the effect of various design parameters on the discharge and charge performance of the cell. The sensitivity analyses indicate that the product of exchange current density and specific surface area is the most influential factor to cell performance.

Acknowledgments

The authors acknowledge gratefully that this work was supported by the Jet Propulsion Laboratory (NASA) under Contract No. 958344. We would also like to thank Gerald Halpert, Paul Timmerman, Karla Clark, Sal DiStefano, and Peter Glick for their helpful discussions and for providing many of the parameter values used in our model. Finally, we would like to thank Jet Propulsion Laboratory for use of their supercomputer and Cray Research, Inc., for time on the Cray YMP at Texas A&M University. Manuscript submitted Dec. 18, 1989; revised manuscript received Aug. 7, 1990.

Texas A&M University assisted in meeting the publication costs of this article.

LIST OF SYMBOLS

\(a_{\text{p(max)}} \) maximum specific active surface area of region \(j \), \(\text{cm}^2/\text{cm}^2 \) (\(j = 1, 3 \))

\(c \) concentration of the binary electrolyte, KOH, \(\text{mol/cm}^3 \)

\(c_{\text{ref}} \) reference concentration of the binary electrolyte, KOH, \(\text{mol/cm}^3 \)

\(c_{\text{O2}} \) effective oxygen concentration, \(\text{mol/cm}^3 \)

\(c_{\text{O2,ref}} \) effective reference oxygen concentration, \(\text{mol/cm}^3 \)

\(D_{\text{KOH}} \) diffusion coefficient for KOH, \(\text{cm}^2/\text{s} \)

\(D_{\text{ex}} \) apparent diffusion coefficient of oxygen, \(\text{cm}^2/\text{s} \)

\(\epsilon_{\text{j}} \) tortuosity factors of porous media in region \(j \) for liquid properties (diffusion coefficients and conductivities) (\(j = 1, 2, 3 \))

\(\epsilon_{\text{ex}} \) tortuosity factors of region \(j \) for solid properties (conductivity) (\(j = 1, 3 \))

\(f_{\text{sat}} \) level of electrolyte saturation in the separator

\(F \) Faraday’s constant, 96,487 C/mol

\(i_{\text{g,ref}} \) exchange current density of the reactions in region \(j \) at \(c_{\text{c sat}} \), A/cm\(^2\) (\(j = 1, 3 \))

\(i_{\text{g,ref,go}} \) exchange current density of oxygen reaction in region \(j \) at \(c_{\text{go,ref}} \), A/cm\(^2\)

\(i_{\text{c,ref}} \) current density in solution based on the projected electrode area, A/cm\(^2\)

\(i_{\text{c,el}} \) applied current density based on the projected electrode area, A/cm\(^2\)

\(j \) reaction current per unit volume of porous electrode, A/cm\(^3\)

\(j_{\text{Ni}} \) nickel reaction current per unit volume of positive electrode, A/cm\(^3\)

\(j_{\text{Cd}} \) cadmium reaction current per unit volume of negative electrode, A/cm\(^3\)

\(j_{\text{O2}} \) oxygen reaction current per unit volume of porous electrode, A/cm\(^3\)

\(l \) total thickness of a cell unit, cm

\(l_1 \) half thickness of the positive electrode, cm

\(M_i \) molecular weight of solid species \(i \), g/mol \(i = \text{NiOOH, Ni(OH)}_2, \text{Cd, Cd(OH)}_2 \)

\(n_e \) number of electrons involved in the electrode reaction

\(\text{par}_i \) perturbed values of parameter \(i \)

\(R \) universal gas constant, 8.3143 J/mol-K

\(t_i \) time, s

\(t_\alpha \) transference number of anion OH\(^-\) with respect to the solvent velocity

Fig. 12. Sensitivities of the predicted cell voltage to changes in the electrode kinetic parameter and separator property during the discharge processes.

Fig. 13. Sensitivities of the predicted cell voltage to changes in the electrode kinetic parameter and separator property during the charge processes.
Effect of Benzotriazole on Surface Processes during Copper Electrodedissolution in Sulfuric Acid

Claude Clerc¹ and Richard Alkire*

Department of Chemical Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801

ABSTRACT

Impedance spectra were obtained during anodic dissolution of copper in 0.5M H₂SO₄ and 40 mM benzotriazole (BTA) at 25°C. The spectra were evaluated according to the hypothesis that the electrode is covered with a barrier film having a stoichiometric composition through which the current is transported by ionic conduction. This barrier film is itself covered with an outer porous film of corrosion products. The experimental impedance spectra were fit to the model with nonlinear least squares program. A detailed analysis of the physical parameters obtained with this procedure suggested that the metallic ions transfer through the barrier film, which is likely to be hydrated copper sulfate or contains a non-negligible amount of BTA, under high-field conduction. Experiments carried out at the mass-transfer limiting current in the absence of BTA suggested that the electrode was also covered with a similar dual salt film, the inner layer of which, according to this view, presented in Fig. La, there is a thin porous film. A theoretical model was developed to describe the transport of the electrochemical species, assuming molecular diffusion and migration across the porous surface.

The presence of a surface film is a significant feature in virtually all cases of high-rate electrodeposition of a metal. Important practical applications of such phenomena include pitting corrosion (1-3), passivity (4), corrosion inhibition (5), electropolishing (6), and battery operations (7). Improved fundamental understanding of such surface films is therefore of widespread interest. Since such surface films respond to the unique conditions of the electrochemical environment in which they exist, it is a subject of characterization are strongly preferred. In the present work impedance spectroscopy was used.

REFERENCES

8. T. V. Nguyen, R. E. White, and H. Gu, This Journal, 137, 2998 (1990).

11. J. Desitvestro, D. A. Corrigan, and M. J. Weaver, ibid., 133, 897 (1986).

15. P. Timmerman, JPL, Private communication.

¹ Electrochemical Society Active Member.
² Present address: Medinvent SA, Lausanne, Switzerland.