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THE JOURNAL OF SYMBOLIC LoGic 

Volume 42, Number 2, June 1977 

FRAGMENTS OF FIRST ORDER LOGIC, I: 
UNIVERSAL HORN LOGIC 

GEORGE F. McNULTY 

?0. Introduction. Let L be any finitary language. By restricting our atten- 
tion to the universal Horn sentences of L and appealing to a semantical notion 
of logical consequence, we can formulate the universal Horn logic of L. The 
present paper provides some theorems about universal Horn logic that serve to 
distinguish it from the full first order predicate logic. Universal Horn equival- 
ence between structures is characterized in two ways, one resembling Kochen's 
ultralimit theorem. A sharp version of Beth's definability theorem is estab- 
lished for universal Horn logic by means of a reduced product construction. 
The notion of a consistency property is relativized to universal Horn logic and 
the corresponding model existence theorem is proven. Using the model 
existence theorem another proof of the definability result is presented. The 
relativized consistency properties also suggest a syntactical notion of proof that 
lies entirely within the universal Horn logic. Finally, a decision problem in 
universal Horn logic is discussed. It is shown that the set of universal Horn 
sentences preserved under the formation of homomorphic images (or direct 
factors) is not recursive, provided the language has at least two unary function 
symbols or at least one function symbol of rank more than one. 

This paper begins with a discussion of how algebraic relations between 
structures can be used to obtain fragments of a given logic. Only two such 
fragments seem to be under current investigation: equational logic and 
universal Horn logic. Other fragments which seem interesting are pointed out. 
Next there is a survey of theorems concerning universal Horn logic. Some 
results here are only mentioned in passing, while others find application later in 
the paper. A new proof for a fundamental theorem of A. I. Mal'cev is provided. 
This theorem is used several times to obtain some of the new results mentioned 
above. Open problems are collected in the last section. 

I would like to thank Michael Makkai, Walter Taylor, Heinrich Werner, 
David Kelly, Steve Garland, and Harvey Friedman for interesting discussions 
on these topics. Research for this paper was supported in part by a grant from 
the National Research Council of Canada and by Dartmouth College. 

?1. The construction of logics based on preservation theorems. For the most 
part our notation is standard and follows that in the book [5] of Chang and 
Keisler fairly closely. The reader is directed to this book for all unexplained 
notions and terminology. 
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The ideas central to this section are most easily illustrated by an example. 
Let L be an ordinary first order predicate logic with equality. Suppose R is a 
relation between L-structures (L-structures are called models for L in [51.) An 
L -sentence sp is said to be preserved under R provided 931= 'p whenever W = 'p 
and W R ?3. A preservation theorem for L has the following form where A is a 
set of L-sentences and R is a relation between L-structures: An L-sentence 'p 
is preserved under R iff 'p is logically equivalent to some sentence in A. 

If R is a relation with an algebraic motivation and A admits a relatively 
simple syntactical description, the preservation theorem is especially interest- 
ing. Of course, the whole notion of preservation theorems extends to relations 
among structures which are not binary, for example the relation that e is 
isomorphic to the direct product of a system (Wi: i E I) of structures. 

Historically the first preservation theorem seems to be the following result: 
THEOREM. Let L be a language without relation symbols. An L-sentence 'p is 

preserved under the formation of substructures, homomorphic images, and direct 
products iff p is logically equivalent to the universal closure of a conjunction of 
equations between terms. 

This theorem can be obtained from a result Birkhoff proved in 1935 [3] by a 
simple application of the compactness theorem. We use this preservation 
theorem to illustrate how such theorems in general specify a fragment. 

We take as the sentences of Leq the universal closures of equations between 
L-terms, which are sometimes called identities. The semantical notions of truth 
and logical consequence are inherited from L. Leq is an equational logic. Now 
observe that L is very much stronger than Leq in the sense that the selection of 
mathematical notions expressible by sets of L-sentences is much richer than 
the selection expressible by sets of Leq-sentences. Nevertheless concepts like 
group, ring, lattice, Boolean algebra, rational vector space, and even the notion 
of set can be naturally formulated in the appropriate equational logics. One of 
the major tasks in the model theory of L is to devise means for constructing 
models of sets of L-sentences on the basis of structures already on hand. In Leq 

this task is greatly simplified by the inherent preservation properties. This 
analysis seems to indicate that Leq is semantically poorer than L but algebra- 
ically richer. Leq has a simpler, less diverse syntax than L. 

The first problem arising in equational logic is to provide a sound and 
adequate notion of proof that involves only equations. 'This was done by 
Birkhoff [3] in 1935. The syntactical notions of proof for equational logic are so 
sparse that it is difficult to find any deep theorems concerning equational proof 
theory. Some have been found. In recent years equational logic has experi- 
enced vigorous growth. The reader interested in pursuing this topic should 
consult Tarski's paper [33] which is a survey of results in equational logic prior 
to 1968. 

There are two essential parameters in the illustration provided by equational 
logic. They are the initial logic L, in this case ordinary first order logic, and the 
preservation theorem invoked. Our primary concern in the paper leaves L 
unchanged but we use the preservation theorem for the formation of substruc- 
tures and arbitrary nontrivial (reduced) products. Before passing to this case we 
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remark that there are many other interesting possibilities. Most of the logics 
investigated in recent years result from enriching the power of expression of 
first order logic in various ways, L,,l, and L(Q) are just two examples. In 
passing to richer languages the task of constructing models becomes more 
difficult. By considering fragments of these richer languages specified by 
preservation theorems it seems possible to regain some of the lost devices for 
constructing models and yet retain some of the richness of expression. For 
example, the fragment of L,, which is preserved under ultraproducts is richer 
than first order logic and yet possesses a compactness theorem. Another 
intriguing possibility is to develop the theory of "regular" logics. These are the 
logics specified with respect to first order logic by preservation theorems for 
relations between structures regular in the sense of Lindstrdm [17], cf. Makkai 
[19]. Galvin's paper [10] contains many interesting theorems concerning Horn 
logic, that fragment of first order logic preserved under reduced products. 
Galvin's results indicate this fragment is very close to first order logic. 

?2. A brief survey of unversal Horn logic. Throughout the remainder of 
this paper, except for the places indicated, L will be a fixed, though arbitrary, 
first order language. A formula (p of L is a basic Horn formula provided up is a 
disjunction of formulas at most one of which is atomic and all the remaining are 
negations of atomic formulas. A basic Horn formula is strict if exactly one of its 
disjuncts is atomic. up is a (strict) Horn sentence just in case sp is an L-sentence 
in prenex normal form the matrix of which is a conjunction of (strict) basic 
Horn formulas. Strict universal Horn sentences are sometimes called quasi- 
identities. 

Let K be a class of L-structures. We use the following terminology: 
SK - the class of all isomorphic images of substructures of members of K, 
PK - the class of all isomorphic images of direct products of arbitrary 

systems of members of K, 
P*K - the class of all isomorphic images of direct products of nonempty 

systems of members of K, 
PRK - the class of all isomorphic images of reduced products of arbitrary 

systems of members of K, 
P*K - the class of all isomorphic images of proper reduced products of 

nonempty systems of members of K, 
PuK - the class of all isomorphic images of ultraproducts of arbitrary 

systems of members of K, 
PSK - the class of all isomorphic images of subdirect products of nonempty 

systems of members of K, 
LK - the class of all isomorphic images of direct limits of directed systems 

of members of K. 
The class K of L -structures is called a universal Horn class iff K is the class 

of all models of some set of universal Horn sentences. Strict universal Horn 
classes are sometimes called quasi-varieties. The first goal of this section is to 
characterize the smallest universal Horn class containing a given class. The 
following theorems are essentially gathered from the literature. 
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THEOREM 1 (J. C. C. MCKINSEY [27]). Let (p be a universal L-sentence. up is 
preserved under proper (nonempty) direct products iff p is logically equivalent to a 
universal Horn sentence. 

This is probably the second preservation theorem to be found. We remark 
that if the direct product of the empty system of L-structures were considered 
in the above theorem then up would be equivalent with a quasi-identity. This 
modification can be made in most of the theorems below. 

THEOREM 2 (CHANG AND MOREL [6]). If up is a Horn sentence, then up is 
preserved under the formation of proper reduced products. 

The fundamental facts about reduced products can be found in Frayne, 
Morel, and Scott [7] or Chang and Keisler [5]. We tacitly use some of these 
facts below. 

Theorem 2 together with the Vos-Tarski preservation theorem for the 
formation of substructures allows us to write down the following well-known 
version of Theorem 1. 

THEOREM 1'. An L-sentence p is preserved under the formation of substruc- 
tures and proper reduced products iff up is logically equivalent with a universal 
Horn sentence. 

A. I. Mal'cev was apparently the first to characterize the least universal Horn 
class containing a given class. See [23, p. 215]. 

THEOREM 3 (MAL'CEV). Let K be a class of L-structures. SPRK is the class of 
all models of the set of quasi-identities true in K. 

The proof given in Mal'cev [23] is an argument depending on Corollary 2.15 
from Frayne, Morel, and Scott [7]. The same argument yields 

THEOREM 3'. Let K be a class of L-structures. SP*K is the least universal 
Horn class containing K. 

At the beginning of the next section we state an easy corollary of Theorem 3' 
and show how it may be proved directly. The proof given can easily be 
elaborated into a proof of Theorem 3' different from Mal'cev's. Other ways to 
characterize the least universal Horn class containing a given class have also 
been found. 

THEOREM 4. Let K be a class of L-structures, 
(a) (Gritzer and Lakser [13]) SP*PuK is the least universal Horn class 

containing K. 
(b) (Fujiwara [9]) LSP*K is the least universal Horn class containing K. 
(c) (Kashiwagi [15]) SPuP*K = SPSPuK = LSP*K. 
Free algebras play an important role in equational logic. Their impact in 

universal Horn logic promises to be considerable. Mal'cev in [25] showed that 
every universal Horn class is equipped with free structures. Indeed, his result is 
somewhat more general. Tabata [32] has achieved an interesting extension of 
Mal'cev's result. 

A. Selman in [29] established a completeness theorem for quasi-identity 
logic. Independently D. Kelly has shown me a completeness theorem for 
universal Horn logic. 

In [2] Baldwin and Lachlan have explored categoricity in power for universal 
Horn logic. Workng independently Abakumov, Palyutin, Taitslin, and Shish- 
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marev in [1] arrived at similar results. Steven Givant in [11] describes (up to 
definitional equivalence) those universal Horn classes which can be categorical 
in infinite powers. 

The well-known result of Boone and Novikov on the existence of a finitely 
presented group with a recursively unsolvable word problem can be construed 
quite naturally as a theorem about the universal Horn theory of groups. [4] is a 
good reference of related results. 

Various classes of structures arising in mathematics turn out to be universal 
Horn classes. For example see Herrmann and Poguntke [14] and Makkai and 
McNulty [21]. Chapter V of Mal'cev's book [23] is devoted to our exposition on 
quasi-varieties. 

?3. Equivalence of structures for universal Horn logic. LUH is the sublogic 
of L the sentences of which are exactly the universal Horn sentences of L. LUH 
is specified by the preservation theorem for substructures and proper reduced 
direct products. Two L-structures 2f and T are said to be universal Horn 
equivalent, in symbols 2f = ut, iff f and T satisfy the same universal Horn 
sentences. If K is a class of L-structures ThuHK denotes the universal Horn 
theory of K. Hence ThuHK = {>p: 'p is a universal Horn sentence and K l= sp }. In 
this section we take up the problem of characterizing universal Horn equival- 
ence algebraically. This problem corresponds to that for L of finding an 
algebraic characterization of elementary equivalence. The latter problem has 
been solved in three ways: the well-known Ehrenfeucht-Fraisse games, the 
ultralimit theorem of Kochen, and the Keisler-Shelah ultrapower theorem. We 
establish an analogue of Kochen's theorem and provide a very simple 
counterexample to the most obvious analogue to the ultrapower theorem. We 
do not know an Ehrenfeucht-Fraisse type game for universal Horn equival- 
ence. 

The first step is to draw a Frayne style corollary to Theorem 3'. 
COROLLARY 5. If 2f and ?3 are L-structures such that every universal Horn 

sentence true in T3 is also true in Af, then 2f is embeddable in a proper reduced 
power of T3. 

REMARK. Since this corollary is central to the section we provide a direct 
proof of it which specifies more closely the reduced power and the embedding 
involved. 

PROOF OF COROLLARY 5. To simplify notation we assume that A x B n L is 
empty. L(A X B) is the language obtained from L by adjoining each element 
of A x B as a new constant symbol. If 16 is an L-structure and f: A x B -+ C, 
then (%,f) is the L(A X B)-structure which uses each new constant (a, b) E 
A x B as a name for f(a, b). PA is the projection of A x B onto A. 

We adopt the following convention: if 0 is any L(A x B)-formula, then 0* is 
the L-formula obtained from 0 by replacing the constants from A x B by 
variables so that the same variable replaces both (a, b) and (a', b') iff a = a', 
and moreover no variable used to replace a constant occurs in 0. (This can be 
made precise by well ordering A x B.) 

Let 
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I = {(P: p is a conjunction of atomic sentences of L(A x B) 

and(9,pA)I= p}. 

I is the index set of our reduced power. Now observe that (p E I implies 
A = 3.9(p *, where every variable occurring in 'p * occurs in the sequence of 
variables x. 3xfp* is logically equivalent to the negation of a universal Horn 
sentence. Consequently 93 ?x Jp*. This observation permits us to pick, for 
each 'p E I, a function fp: A X B B and a function gl: A -B such that 

(i) g, 0 PA = ft for each 'p E I, 
(ii) (9,f ) I p for each p E I, and 
(iii) every function g from a finite subset of A into B can be extended to 

g: A -B with g oPA = ft for some (p E I. 
This last condition is assured since I contains sufficiently many validities. For 

example, if {(ao, bo), - - , (anl, bn l)} is the finite function to be extended, then 
we can take 'p to be 

(ao, bo) = (ao, bo) A ...A (an.-l, b1) = (an-l, b,1) 

and require that f, (ai, bi) = bi for 0 ' i < n, while choosing other values of fp so 
that (i) is fulfilled. 

Now let J,. = {o: (Q, fa)l= 'p and o E I} for each 'p E . Evidently F = 
{B: J, C B C I for some (p E I} is a filter. Finally, we define h: A -* B'/F such 
that 

h(a) = (g, (a): o E I)/F 

for each a E A. It remains to show that h embeds W into IE'/F. 
Let 4f be an atomic L-formula. For the sake of convenience we assume that 

only one variable occurs in 4i. Let a E A, b E B, and observe that the following 
statements are equivalent on the basis of the definitions involved. 

(1) 93' IFI=4(h(a)), 
(2) 9'/FF 4i((g,,-(a): o- E- I)IF), 
(3) {o: 9=4 (ga(a))} E F, 
(4) {o: (3, fu) l= 4'((a, b))} E F 
Now (4) implies that for some 'p E I 

Jf ; {o-:. (9I, f,,l= 4i((a, b)} 

Fix such a 'p El. Consequently for all o EI if (23fa)='p, then 
(2, fa)I= +4((a, b)). But this means that (T, fa)I= 'p * 4((a, b)) for every o E I. 
According to (iii) we obtain 

9~= Vk [(p ,-* 4((a, b))]* 

where every variable occurring in 'p --> q((a, b)) occurs in x9. Now 
Vik['p -* qi((a, b))]* is a universal Horn L-sentence. Therefore 

Hec= Ve [ p ((a, b))] 

Hence 
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(SK, pA) I= (p -((a, b)). 

Since (p e I, this means that (V, pA)I= ((a, b)). Hence (4) implies 

(5) a = qI/(a). 
But (5) clearly implies (S, pA)F= qf((a, b)) which puts qf((a, b)) E I. So J4((a,b)) E 

F. Thus (5) implies (4). Finally we conclude that (1) and (5) are equivalent and 
hence h is an embedding. This completes the proof of the corollary. 

It is not very difficult to elaborate the proof above to the point where a 
similar proof of Theorem 3' emerges. Care is needed to formulate the 
appropriate extension of (iii). 

DEFINITION. W is a reduced limit of T3 provided W is the direct limit of some 
system of reduced powers of Q3 directed by a system of embeddings. 

This definition is like the definition of ultralimits, the chief difference being 
that here the canonical embeddings play no special role. 

THEOREM 6. Let St and e be any two L-structures. t uHQ if some 
reduced limit of W is isomorphic with some reduced limit of T3. 

PROOF. Suppose W and T3 have isomorphic reduced limits, W and 93* 
respectively. Let up be a universal Horn sentence true in W. Then up is true in 
every reduced power of W and, since universal sentences are preserved under 
direct limits, up must be true in W and hence in T3*. Since T3 can be embedded 
in T * we know that f3l= p. By a symmetric argument we conclude that %=3 uHT 

The converse can be established by a straightforward "alternating chain" 
construction with the help of Corollary 5. 

It is tempting to think that two L-structures should be universal Horn 
equivalent iff they have isomorphic reduced powers. The next simple example 
shows that this is false. 

EXAMPLE. Let W = (w, < ) and 3 = (w + 1, < ). It is easy to see that W and 
T3 satisfy the same universal sentences (and so the same universal Horn 
sentences). However 

WII=Vx3y[x <y] 

whereas 

T 1= 3x Vy [-i (x < y)]. 

Both of these sentences are Horn sentences and each is logically equivalent 
with the negation of the other. So Vx3y[x < y] is true in every reduced power 
of W while 3xVy i(x < y)] is true in every reduced power of T3. So W and T3 
cannot have isomorphic reduced powers. 

The next theorem characterizes universal Horn equivalence in terms of 
reduced powers and universal equivalence, which is the best characterization 
by quantifier complexity to hope for, according to the example. 

THEOREM 7. WIuHT iff some reduced power of W is universally equivalent 
with some reduced power of T3. 

PROOF. Suppose W and T3 have universally equivalent reduced powers. 
Since W is universal Horn equivalent with each of its reduced powers and T3 
with each of its reduced powers, it follows that W and e are universal Horn 
equivalent. 
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To establish the converse suppose Th.H9 = Th.HT3. We define G = 

{F: F U Th.HI is consistent and F is a set of existential sentences}. In view of 
the compactness theorem G is a set of finite character. According to the 
Teichmfiller-Tukey lemma, let A be a maximal member of G. Hence, 
A UTh.H%= A U Th.HT is consistent. Let '6 be a model of A U Th.HI 

According to Corollary 5, IV can be embedded into some reduced power of W 
and also into some reduced power of T3. By the maximal nature of A these two 
reduced powers must be universally equivalent. So the theorem is proved. 

?4. Definability in universal Horn logic. In this section we will prove a 
version of Beth's definability theorem. We exploit the well-known connections 
between Beth's theorem, Craig's interpolation theorem, and Robinson's joint 
consistency theorem. Throughout this section Lo and L1 denote two fixed 
languages with the same function symbols. 

THEOREM 8 (JOINT CONSISTENCY). Let Fo and F, be any two sets of universal 
Horn sentences in the languages Lo and L1 respectively. Fo U F1 is inconsistent iff 
there is a universal Horn sentence 0 in Lo n L1 with Fj= 0 and {0} U F1 
inconsistent. 

PROOF. Suppose that Fo U F1 is inconsistent. Let Ki be the class of reducts to 
Lo n L1 of all models of Fi, for i = 0, 1. Clearly Ko n K1 is empty. Both Ko and 
K1 are closed under the formation of reduced products. Ko and K1 are also 
closed under the formation of substructures since Lo n L1 includes all of the 
functions symbols in Lo U L1. Consequently SP*Ko = Ko and SP*K1 = K1. By 
Theorem 3', Ko and K1 are universal Horn classes of Lo n L1-structures. Let Ai 
be the set of universal Horn sentences true in Ki, for i = 0, 1. So Ao U A, is 
inconsistent. The conclusion follows immediately from compactness. 

THEOREM 9 (INTERPOLATION). Let (p and qf be universal Horn sentences such 
that (p l= i qf. There is a universal Horn sentence 0 with (p l= 0 and 0= t1 such 
that each relation symbol occurring in 0 occurs in both cp and qf. 

Let & be a set of relation symbols not occurring in the language L. Let I be a 
set of universal Horn sentences of L U 9. Recall that I is said to be an implicit 
definition of 9 provided the reduct to L of each model of I has exactly one 
expansion to a model of 1. Moreover, the formula cp (xo,.**, x, 1) is an explicit 
definition of the n-ary relation symbol P with respect to I if 

V =Axo, x n-,[P(xo,**, Xn-1) , C P(Xo , X-1,)]. 

THEOREM 10 (DEFINABILITY). Let 9 be any set of relation symbols not 
occurring in the language L and let I be any set of universal Horn sentences for 
L U 9. Then I implicitly defines 9 iff for each relation symbol P E 9 there is a 
universal Horn L -formula 'p such that 'p is an explicit definition of P with respect 
to 1. 

The details of how Theorems 9 and 10 may be derived from Theorem 8 can 
be found in Chang and Keisler [5, pp. 87-88]. In this proof of Theorem 10 it is 
important to notice that Theorem 9 be used in place of Craig's interpolation 
theorem. 
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It is should be pointed out that the restrictions concerning function symbols 
in Theorem 9 and their consequent lack in the formulation of the definability 
theorem are essential. In fact, Harvey Friedman in [8] has recently shown that 
the quantifier complexity of explicit definitions for function symbols cannot be 
bounded even when the implicit definition is a set of four identities. He 
suggested the following example to me which serves to illustrate that Theorem 
10 cannot be expanded to include function symbols. Friedman's constructions 
in [8] are much more subtle. 

EXAMPLE. Consider a language L with a binary function symbol +, a unary 
function symbol f, and two constants 0 and a. Let E be the following set of 
equations: {Vx[x + 0 0 + x], Vx[x + 0 x], f(O>) a}. Evidently {0, a} is 
implicity defined by S. Suppose 0(x) is a formula of L -{0, a} such that 
EI= Vx [0(x) <* x - a], i.e. 0(x) explicitly defines a with respect to E. Let 
A ={1,a}, 1(d) a, 1(6)= a, +_a = a, a +O= a, 0+0=0, and a +a = a. 
Then W = (A, +, 0, a) is a model of S. Let B = {0, a, 0'}, f'(0) = a, f'(a) = a, 
f'(O') =, O.+'0' = O, 0'+'=, 0'+'0' = o', and c+'d =c+ d for all c, d E A. 
Then T3 = (B, +', f', O', 0) is a model of S. Now (A, +, f, 0) is a subalgebra of 
(B, +',f',O). But observe that (B,+',f',O)I=0(0). If 0(0) where a universal 
sentence, then (A, + , f, 0) 1= 0(0). But W= 0(c) iff c = d. Since a $ 0 any explicit 
definition of a cannot be universal, much less universal Horn. 

?5. Consistency properties for universal Horn logic. Consistency proper- 
ties find their origins in Henkin's proof of the completeness theorem for first 
order logic. They were first explicitly formulated for first order logic in 
Smullyan [30] (see also [31]). Their most fruitful applications so far have been 
to infinitary logic, see Makkai [19] and Keisler [16]. Here we propose a 
straightforward modification of the notion appropriate to the fragment in 
which we are interested: universal Horn logic. In order to demonstrate the 
usefulness of this notion we establish a model existence theorem for universal 
Horn consistency properties and employ it to obtain the joint consistency result 
of the previous section; we also observe that logical axioms and rules of 
inference can be obtained from the notion of consistency property and we give 
some indication of how to prove that these axioms and rules of inference 
completely characterize logical consequence. This provides another proof of 
the result of Selman [29] and David Kelly. 

Let L be a language and C be a nonempty set of new constant symbols. Let 
M be the language obtained from L by adjoining C. 

DEFINITION. S is a universal Horn consistency property if and only if S is a 
collection of sets of universal Horn M-sentences such that S is of finite 
character and for all s E S, 

(1) cp s or i cp s for every atomic M-sentence cp. 
(2) If 0 is a basic Horn M-sentence, i p is a disjunct, and 0, cp E s, then 

s U {0'} E S where 0' is obtained from 0 by deleting the disjunct -I p. 
(3) If p A Es, then s U {<p} E S and s U {I} E S. 
(4) If Vxp (x) E s, then S U {'p (T)} E S for every M-term T in which no 

variable occurs. 
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(5) For every M-term T in which no variables occur, s U {I r-A} E S. 
(6) If o-, T, and p are terms in which no variables occur and or -r , T, o p E s, 

then sU{p T}ES. 

(7) If or and X are terms in which no variables occur and up is an atomic 
M-sentence such that or r T, up E s, then s U {up'} E S where up' is obtained from 
up by replacing any one occurrence of X by i-. 

Our definition of universal Horn consistency properties differs from the 
more usual treatment of ordinary consistency properties (see Keisler [16]) in 
condition (2) and in the treatment of equations. Condition (2) reflects the fact 
that disjunctions are permitted only in basic Horn formulas. In usual formula- 
tions it is enough to state condition (6) only for the new constants from C and 
to state condition (7) for the case when ci E C. In connection with condition (7) 
this is still possible. On the other hand condition (6) turns out to be inadequate, 
in this weaker form, for the proof of the model existence theorem. This fact is 
more clearly revealed after the second proof of the joint consistency theorem. 

THEOREM 11 (MODEL EXISTENCE). If S is a universal Horn consistency 
property and s E S, then s has a model. 

PROOF. Let E = {s': s U s' E S}. E is a set of finite character since S is. Let 
s,, be a maximal member of E, which must exist according to the Teichmiiller- 
Tukey lemma. Observe that s C se,. Therefore it is enough to construct a model 
of se, which is what we will do. Let Te be the set of M-terms in which no 
variables occur. For c-, X E Te define ci X iff cr X E se,. Conditions (5) and 
(6) and the maximality of se, insure that is an equivalence relation on Te. Let 
A = Tel -, the set of equivalence classes. If ci E Te let CT denote the - 

equivalence class of c-. We define the structure W with universe A in the 
following way. Let f be a function symbol, say of rank r, and let 

- 
, * *, &rr E A. 

f '(&o, * r-1) = C&r iff fo.. *r-i 0 ar E sH. To show that f ? is a well-defined 
function condition (7) is essential. By a simple argument using induction over 
terms it follows that or' = CT for every ci E Te. Hence W 1= ci- X iff ci X E se, 
for all c-, X E Te. Now let R be an n-ary relation symbol and let To<0 *, 0n-i E 
Te. Define R (&o, **, an-l) iff R (to, *-l-, ) E n s. R t is well defined accord- 
ing to condition (7) and the maximality of se,. The resulting structure W is our 
desired model. So if up is an atomic M-sentence, then W I=ep iff sp E se,. 

Claim. 9f= s. 
PROOF. Proceed by induction on 0 E se,. 
Initial step. 0 is a basic Horn sentence. If 0 is atomic we have already 

essentially observed that AI= 0. If 0 is ( up and (p is atomic, then by condition 
(I) pX se, and so WV qp. Now suppose (p is atomic and | up is a disjunct of 0. If 

-1-ip, then W t 0. Otherwise by condition (2) and the maximality of 
se, 0' E se,,, where 0' is obtained from 0 by omitting --ip as a disjunct. In this 
way all disjuncts of 0 of the form I p where WI= p can be deleted. By 
condition (1) some disjuncts remain and W is a model of at least one of them. So 
W =0. 

Inductive step. This is a straightforward use of conditions (3) and (4) and the 
maximality of se,. 

With the claim the proof is complete. 
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THEOREM 9' (JOINT CONSISTENCY). Let up and ef be universal Horn sentences 
such that {01, 02} is consistent whenever <p F= 0, 4f @= 02, and 01 and 02 are 

universal Horn sentences such that every relation symbol occurring in either 01 

or 02 occurs in both p and Af. Then {p, Af} is consistent. 
PROOF. We display a consistency property S of which {fp, qf} is clearly a 

member. Let s E S iff the following three conditions hold: 
(i) s is a set of universal Horn M-sentences. 

(ii) s = s<, U sat where s, is a set of sentences involving only those relation 
symbols occurring in up and s4, is a set of sentences involving only those relation 
symbols occurring in Af. 

(iii) {01, 02} is consistent whenever s, += 01 and S4 5= 02 and 01 and 02 are 
universal Horn sentences involving only those relation symbols occurring in 
both sp and qj. 

S is of finite character according to the compactness theorem. There is no 
difficulty in establishing conditions (1)-(7). Since {fp, 4A} E S' it follows from the 
model existence theorem that {fp, Af} is consistent. 

This proof of the joint consistency theorem differs from the proof of the 
Craig-Lopez-Escobar interpolation theorem for L given in Keisler [16] (see 
also Makkai [20] and Smullyan [30]), but only to the extent that a universal 
Horn consistency property was used. As remarked earlier, the statement 
analogous to Theorem 9' concerning functional symbols is false. It is now 
apparent why the variant on the notion of universal Horn consistency property 
described immediately following the definition of universal Horn consistency 
property is inadequate. If a model existence theorem were true for that variant, 
then the function symbol analog to Theorem 9' could be proved in the same 
manner. Consequently there is no model existence theorem appropriate for the 
variant. Indeed, one could construct a collection of sets of universal Horn 
sentences on the basis of the example following Theorem 10 and the proof just 
given for Theorem 9', which would fulfill the variant notion of universal Horn 
consistency property and yet every nonempty set in the collection would have 
no model. 

The notion of universal Horn consistency property suggests a syntactical 
characterization of logical consequence which lies entirely within the domain of 
universal Horn logic. A. Selman in [29] has published such a syntactical notion 
and ours will be similar to his. In order to simplify the presentation we are 
going to suppress all the quantifiers of LUH. This is actually harmless since they 
are all universal and all our sentences are in prenex normal form anyway. Our 
syntactical notion of proof will be specified by a set of axioms and rules of 
inference in the usual way. 

Axioms for universal Horn logic. 
(1) X x. 

(2) -I x y v Ix = z v z y. 
(3) i x y v i p v up' for every atomic formula up and up' is obtained from up 

by replacing any one occurrence of y in up by z. 
(4) p v | up for every atomic formula cp. 
REMARK. (3) and (4) above are axiom schemata. 
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Rules of inference for universal Horn logic. 
(1) (A-elimination) From p Atfi deduce both p and Af. 
(2) (A-introduction) From up and qf deduce up A 4f. 
(3) (Substitution) From up deduce up' where up' is obtained from up by 

substituting any term for every occurrence of any variable in cp. 
(4) (v-simplification) Let 0 and qf be any basic Horn formulas such that if up 

is an atomic disjunct of Af, then ( up is a disjunct of 0. Let 0' be any basic Horn 
formula such that all the negated atomic disjuncts of fj are disjuncts of 0' and 
every disjunct of 0 that is not the negation of an atomic disjunct of 4f is a 
disjunct of 0'. From 0 and qf deduce 0'. 

We use E ( up to denote that there is a proof of (the matrix) of (p from (the set 
of matrices of) E on the basis of the axioms and rules of inference just given. In 
order to prove the completeness theorem for our notion of proof it is 
convenient to prove a version of the deduction theorem. Recall that every 
universal Horn formula is a (universal closure of a) conjunction of basic Horn 
formulas. 

THEOREM 12 (DEDUCTION THEOREM). If E U {Pp } H 0 and (p is an atomic Horn 
sentence, then E F 0 * where 0 * is obtained from 0 by inserting - (p as a disjunct 
in each conjunct of 0. 

The proof of this theorem is a straightforward induction on proofs. The proof 
does not depend on the equality axioms (1)-(3) nor on the rule of inference (3) 
(substitution). All the other rules of inference are used as is the remaining 
axiom schema (4). 

THEOREM 13 (COMPLETENESS). If E 1= (p, then E H (p. 

PROOF (SKETCH). We suppose that IY (p and construct a model for E in 
which (p is false. To the language L adjoin a countable set {do, d1, d2, * * } of 
distinct new constant symbols. Suppose that xo, xl, * - - is a one-to-one listing of 
all the variables. For every L-formula qf let Af* be the formula obtained by 
substituting di for each occurrence in mf of xi for every natural number i. By 
checking the rules of inference and the axioms we conclude that X, (p *. In view 
of the rule of inference (2) we assume without loss of generality that (p is a basic 
Horn formula. Because of the deduction theorem we can further conclude that 
E U I q* *, * 

- 
(, *q-l}oY 0 * where -I fo0, **, I qin-i, 0 is a list of all the disjuncts of 

(p. Note that 0* is atomic or negated atomic. So it is sufficient to construct a 
model of IU{ I<*,- --, f *} in which 0* fails. Let 

IS = S U I 41*0, * ** (Ji - U s Y 0*}- 

It is easy to check that S is a consistency property. S is of finite character since 
our proofs are finite. Conditions (2)-(7) are almost direct reflections of our 
axioms or rules of inference. We check (1). Let p be an atomic sentence. In 
view of v-simplification ip H 0* v ip and {p, 0 * v ip } H 0*. Consequently 
{p, ip}I 0* and so for s E S either p s or ip s. Now let sit be a maximal 
member of S and let % be the model of sit constructed in the proof of the model 
existence theorem. Recall that WI A= p iff p E sit for every atomic sentence p. 
Since 0* 0 sit we are done unless 0* is i 1T for some atomic sentence rr. So 
suppose this is the case. Then by the deduction theorem sit U {Io}/Y 0 *. By the 



UNIVERSAL HORN LOGIC 233 

maximality of s,, -T E so. Therefore A f= Hr and so A 0*. Finally W 1=H but 
W VSp and the proof is complete. 

It should be reiterated here that both A. Selman and David Kelly obtained 
similar complete syntactic notions of proof for universal Horn logic. Though 
our system seems to be somewhat simpler than the one given by Selman in [29] 
we present it here more as an application of consistency properties and the 
model existence theorem. 

?6. The decision problem for universal Horn sentences preserved under 
homomorphisms. The last section suggests that function symbols present the 
only source of any complexity or power of expression that universal Horn logic 
might possess. In this section we will be concerned with the terms available in 
L. Since we wish to discuss decision problems in a meaningful setting we will 
assume that L and all the usual sets associated with it, e.g. the set of all 
variables, the set of all L-terms, the set of all universal Horn L-formulas, are 
recursive. The reader interested in a detailed structure for L under these 
stipulations should consult [28]. In [18] R. Lyndon showed that the set of all 
L-sentences preserved under homomorphisms is not recursive, assuming L is 
provided with a relation symbol of rank at least two. We add to Lyndon's result 
by showing that the set of universal Horn L-sentences preserved under 
homomorphisms is not recursive, provided L has a function symbol of rank at 
least two or at least two unary function symbols. Our major tool for 
establishing this result will be sets of terms satisfying the subterm condition. 
We refer to [28] for all necessary details and proofs, but display below the 
definitions and theorems from [28] that we will use. 

DEFINITION. A set A of terms satisfies the subterm condition provided no 
variable is a member of A and if p, fr C A and 0 is a nonvariable subterm of (p, 
then no substitution instance of 0 is a substitution instance of (p unless 
0 = 'P = 0. 

DEFINITION. The language L is nontrivial iff L has at least two unary 
function symbols or some function symbol of rank at least two. 

THEOREM 14 (SEE THEOREM 2.9 IN [28]). If L is nontrivial, then there is an 
infinite set A of L-terms in a single variable such that A satisfies the subterm 
condition. 

The usefulness of sets of terms satisfying the subterm condition in building 
models is revealed in the following definition and theorem. 

DEFINITION. Let L. and L, be two languages and let 8 be a map from the 
function symbols of L. into terms of L,. We define in,, a map from terms of L. 
into the terms of L,, by the following recursion: 

(i) in x = x for every variable x, 
(ii) in,(f0o ... Or-i) = jf[ins6o, *, inter ] where 5f is the image of f under 8 

and 5f [in860, - - *, inter ] is obtained from 5f by substituting incubi for xi, for each 
< r. 
THEOREM 15 (SEE THEOREM 2.5 IN [28]). Let A be any set of L,-terms in a 

single variable which satisfies the subterm condition. Let Lo be a language whose 
only nonlogical symbols are the unary function symbols fs, one for each 8 C A. 



234 GEORGE F. McNULTY 

For any infinite LO-structure W there is an L,-structure e with the same universe 
as W such that (inO)' = Ol for every LO-term 0. (Here 0' is the unary function 
which interprets 0 in W.) 

THEOREM 16 (MALVCEV [24]). In a language with two unary function symbols 
f and g there is a finite set M of identities in f, g, and the variable x such that 
{6: M l= 6 and 6 is an identity in f, g, and x } is not recursive. 

One more theorem is necessary before we can accomplish our goal. 
THEOREM 17 (SEE LEMMA 3.8 IN [28]). For any infinite L-structure VI there is 

an infinite L-structure T such that for any two L-terms up and qf in just the 
variable x 

(i) If W V= Vx[p[-p q], then T V= Vx[<p f r]. 
(ii) If W V Vxx[qp qj], then there are one-to-one functions a, b, and c from B 

into B with the range of b disjoint from the range of c so that p0'(ai) = bi and 
qr'(ai) = ci, for each i E B. 

As a matter of notation we use 0[il] to denote the result of substituting iq for 
every variable in 0, whenever 0, iq are terms. 

THEOREM 18. If L is a nontrivial (recursive) language, then {fp: p is a 
universal Horn L-sentence and up is preserved under the formation of homomor- 
phic images} is not recursive. 

PROOF. Let f and g be two distinct unary function symbols not in L and let 
M, the finite set of identities specified by Theorem 16, be written in terms of f, 
g, and x. Let 8 be a one-to-one map from {f, g, 2,3, 4} into the set of L-terms in 
the variable x whose range satisfies the subterm condition. Let sp, 4f be any two 
terms in f, g and x. Define 

B((p, 4i) = in8M U {Vxy(52[incp [83]] 8 52[insfq [3[y]]]), 

Vx (52[infr [53]] z X), VX (84[4] 4 X), 

VXy(-I 84 XVX y)}. 

So B(<p, qf) is always a finite set of universal Horn L-sentences. We will treat 
B(<p, qf) as if it were itself a universal Horn sentence. Now suppose M l=Vx(cp = 

Af). Then in5M =Vx(inacp = infrq) by an easy semantical argument. So 
B((p, qf)F= Vxy(x y) by the way in which B(<p, qf) was defined. Consequently 
B(<p, qf) has only one-element models and hence is preserved under all 
homomorphisms. 

Now suppose MfVlx(cp - q). Then M has an infinite model WI in which 
Vx(cp - q) fails. On the basis of Theorem 17, M has an infinite model T such 
that there are one-to-one functions a, b, and c from B into B such that 
(p(ai) = bA and qj'(ai) = ci for each i E B, and such that b and c have disjoint 
ranges. Let h, k, and I be three entirely new unary function symbols. Let d be 
any function from B into B such that 

d(bi)= d(b,) for any i, jEB, 

d(ci)=i forany iEB. 

Let e be any involution of B without fixed points. Then (%3, d, a, e) is a model 
of 
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M U {Vxy(hp [kx] h [ky],Vx(hqi[kx] x), 

Vx(llx --x), Vxy(--l x = x vx = y)}. 

Similarly if e' is the identity function on B, then (Q3, d, a, e') is a model of 

M U {Vxy (hip [kx ] = hp [ky ]), Vx (hq [kx ] - x), Vx (lx = x)}. 

Apply Theorem 15 to these two expansions of e to obtain two infinite 
L -structures W and 1 ' so that W I= B (p, 4) and 

W'I= [B((p, 41) 
- 

VXY (--I 4 
x vX V y)}]. 

Now, 

W x I'd [B (9, 41) -fX {x(- 54 =: X V X =:= Y)}] 

since this set is a set of universal Horn sentences. On the other hand 5t is an 
involution of C without any fixed points while 8 " is the identity function on C'. 
Consequently, 84'"' is an involution of C x C' without fixed points. But this 
means W x 6'I=B(p, 4) while V)'$B(p, 4). Since @' is a homomorphic image 
of (6 x (g' it follows that B(<p, 4i) is not preserved under the formation of 
homomorphic images. Thus we have shown 

MI= Vx(ep =i ) iff B(9, i) 

is preserved under the formation of homomorphic images iff B(p, qi) is 
preserved under the relation of forming direct factors. According to Theorem 
16 this is sufficient to establish the theorem. 

COROLLARY 19. If L is a nontrivial (recursive) language, then {1p: Sp is a 
universal Horn L-sentence and Sp is preserved under the formation of direct 
factors} is not recursive. 

A set of sentences is satisfiable provided it has a model. The following 
theorem is closely related to a result of Ralph McKenzie, see especially item (4) 
in the introduction to McKenzie's paper [26]. 

THEOREM 20. Let L be a nontrivial language. The following sets are not 
recursive: 

(1) {Sp: Sp is a satisfiable universal Horn L-sentence}. 
(2) {Sp: Sp is a valid existential Horn L-sentence}. 
PROOF. As in the proof of Theorem 18 let f, g, h, k, and 1 be unary 

operation symbols not occurring in L and let M, the finite set of identities 
specified by Theorem 16, be written in terms of f, g, and the variable x. Let 
{16f, 82, 83, 84} be a set of five L-terms which satisfies the subterm conditions. 
Let 'p and 4i be any two terms in f, g, and the variable x and this time define 

B(<p, i).= in8M U {Vxy(82[innp [83]] - 
[in^Sn[83[yfl]), 

Vx (82[insq, [83]] ==x ), Vx [-I 864 = X ]}- 

Evidently B(p, 4i) is equivalent to a universal Horn sentence, so we will again 
ignore the slight difference. Also --i B ('p, 4i) is logically equivalent to an 
existential Horn sentence and we treat it as such. It is an important though 
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obvious point that the universal and existential sentences we have in mind can 
be obtained from B(p, qi) in a recursive way. Now proceeding just as in the 
proof of Theorem 18 suppose that MI=Vx[p qi]. Then 

B(p, i)I=Vxy x y]AVX [-164 x] 

and so B(p, qi) is not satisfiable and -iB(p, qi) is valid. Now if M$Vx[(p qi] 
then the structure W described in the proof of Theorem 18 is a model of 
B (p, 4i). Hence B (p, 4i) is satisfiable and -iB (p, 4i) is not valid. In view of 
Theorem 16, this completes theorem proof. 

While McKenzie's proof holds only if L has a function symbol of rank at 
least 2, under this provision he does prove (Corollary 5.2 in [26]) that the set of 
universal Horn sentences which have finite models with more than one element 
is recursively inseparable from the set of universal Horn sentences without 
models with more than'one element. 

?7. Open problems. 
1. Find an Ehrehfeucht-Fraisse type characterization for universal Horn 

equivalence between structures. 
2. Provide examples to show that the various definability theorems of 

Svenonius, Kueker, and Chang-Makkai (see ? 5.3 in Chang and Keisler [5]) fail 
for universal Horn theories when universal Horn defining formulas are 
required. 

3. Explore the connections between the canonical structures provided by the 
model existence theorem and the free structures discussed in Gratzer [12], 
Mal'cev [25], and Tabata [32]. 

4. Develop the theory of logics specified by regular relations as described in 
?1 above. 

5. Characterize those sentences of L,. preserved (kYos style) under the 
formation of ultraproducts. Develop the logic specified by that preservation 
theorem. 
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