Two-Stepping into the Icehouse: East Antarctic Weathering During Progressive Ice-Sheet Expansion at the Eocene–Oligocene Transition

Howie Scher
University of South Carolina - Columbia, hscher@geol.sc.edu

Steven M. Bohaty
University of California - Santa Cruz

James C. Zachos
University of California - Santa Cruz

Margaret L. Delaney
University of California - Santa Cruz

Follow this and additional works at: https://scholarcommons.sc.edu/geol_facpub

Part of the [Earth Sciences Commons](https://scholarcommons.sc.edu/geol_facpub)

Publication Info

© Geology 2011, Geological Society of America
Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in subsequent works and to make unlimited copies of items in GSA’s journals for noncommercial use in classrooms to further education and science. This file may not be posted to any Web site, but authors may post the abstracts only of their articles on their own or their organization’s Web site providing the posting includes a reference to the article’s full citation. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official opinions of the Society.
Two-stepping into the icehouse: East Antarctic weathering during progressive ice-sheet expansion at the Eocene–Oligocene transition

Howie D. Scher1*, Steven M. Bohaty2†, James C. Zachos2, and Margaret L. Delaney1

1Ocean Sciences Department, and Institute of Marine Sciences, University of California–Santa Cruz, Santa Cruz, California 95064, USA
2Earth and Planetary Sciences Department, and Institute of Marine Sciences, University of California–Santa Cruz, Santa Cruz, California 95064, USA

ABSTRACT

In conjunction with increasing benthic foraminiferal δ18O values at the Eocene–Oligocene transition (EOT; ca. 34 Ma), coarse-grained ice-rafted debris (IRD; >425 µm) appears abruptly alongside fossil fish teeth with continentally derived neodymium (Nd) isotope ratios (εNd) in Kerguelen Plateau (Southern Ocean) sediments. Increased Antarctic weathering flux, as inferred from two steps to less radiogenic εNd values, coincides with two steps in benthic foraminiferal δ18O values. These results indicate that two distinct surges of weathering were generated by East Antarctic ice growth during the EOT. Weathering by ice sheets during a precursor glaciation at 33.9 Ma did not produce significant IRD accumulation during the first εNd shift. Glacial weathering was sustained during a terrace interval between the two steps, probably by small high-elevation ice sheets. A large increase in weathering signals the rapid coalescence of small ice sheets into an ice sheet of continental proportions ca. 33.7 Ma. Rapid ice sheet expansion resulted in a suppression of weathering due to less exposed area and colder conditions. Parallel changes in Antarctic weathering flux and deep-sea carbonate accumulation suggest that ice-sheet expansion during the EOT had a direct impact on the global carbon cycle; possible mechanisms include associated changes in silicate weathering on the East Antarctic craton and enhanced fertilization of Southern Ocean waters, both of which warrant further investigation.

INTRODUCTION

The sudden appearance of ice sheets on Antarctica during the Eocene–Oligocene transition (EOT) produced a surge of erosion that carried weathering products to depocenters around the circum-Antarctic. Remnants of this weathering event are found in Early Oligocene strata as glaciomarine sequences on the continental shelves (Cooper and O’Brien, 2004) and as coarse grains of ice-rafted debris (IRD) in pelagic sediments (Zachos et al., 1992). A shift from smectite- to illite-dominated clay mineral assemblages signals the transition from a chemical weathering regime on Antarctica to one of mechanical weathering by ice sheets (Ehrmann and Mackensen, 1992). However, knowledge of the timing and magnitude of weathering and IRD deposition in the Early Oligocene is limited compared to cooling and/or ice volume increase history gleaned from deep-sea benthic foraminiferal δ18O records, which reveal a two-step transition from greenhouse to icehouse climate (Coxall et al., 2005).

Radiogenic isotopes of long-lived radioactive systems are excellent paleoceanographic proxies for continental weathering (e.g., Arm-strong, 1971) because of the great isotopic disparity between mantle-derived and continental sources (e.g., Zachos et al., 1999; Dalai et al., 2006). Seawater neodymium (Nd) is almost exclusively derived from continental weathering (e.g., van de Flierdt et al., 2007) and has a short residence time (500–1000 yr) compared to the duration of the EOT (~200 k.y.). Fossil fish teeth in pelagic sediments take up large amounts of Nd during early diagenesis (Berman, 1975). Rates of postburial Nd uptake (e.g., Kocis et al., 2010) are very low relative to early diagenetic rare earth element (REE) uptake in oxidizing pelagic sediments (e.g., Staudigel et al., 1985; C. Trueman, 2010, personal commun.), permitting retention of bottom-water εNd values (e.g., Martin and Haley, 2000). Thus, changes in fossil fish tooth εNd records from sediment cores near Antarctica are likely to preserve a signal of Nd carried with the weathering surge in the EOT interval. The objectives of this study are to determine the signal of Antarctic weathering and evaluate the timing of weathering changes relative to IRD deposition and cooling and ice volume proxies across the EOT.

The εNd values reflect the 143Nd/144Nd ratio relative to bulk Earth, where εNd values of continental crust become less radiogenic (i.e., negative) with older mantle extraction ages (DePaolo and Wasserburg, 1976). Low-resolution Nd isotope records reveal anomalously low εNd values for Southern Ocean waters at 34 Ma (Scher and Martin, 2004, 2006), indicating a source of non-radiogenic Nd (i.e., typical of ancient continental crust). Low εNd values at the EOT could be a signal of Antarctic glacial weathering (Scher and Martin, 2004). Precambrian basement, including Archean terranes in Prydz Bay (Fitzsimons, 2003), outcrops in East Antarctica (Fig. 1A), contributing sediment with extremely nonradiogenic Nd to Prydz Bay and areas around the Kerguelen Plateau (Fig. 1B; Roy et al., 2007; van de Flierdt et al., 2007). These terranes are the likely source of low εNd values measured in Late Eocene glaciomarine sediments within Prydz Bay (van de Flierdt et al., 2008).

MATERIAL AND METHODS

We developed coupled records of benthic foraminiferal δ18O, fossil fish tooth εNd, and IRD concentrations from the EOT interval of Ocean

*Current address: Department of Earth and Ocean Sciences, University of South Carolina, Columbia, South Carolina 29208, USA; E-mail: hsch@geol.sc.edu.
†Current address: School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH, UK.

© 2011 Geological Society of America. For permission to copy, contact Copyright Permissions, GSA, or editing@geosociety.org. Geology, April 2011; v. 39; no. 4; p. 383–386; doi: 10.1130/G31726.1; 3 figures; Data Repository item 2011123.
Drilling Program (ODP) Site 738 (Fig. 2). ODP Hole 738B was sampled at an average interval of 11 cm between ~18.0 and 29.5 m below sea-floor (total 99 samples), spanning the interval between 34.1 and 33.4 Ma on our age model. Details for analytical methods and the age model are given in the GSA Data Repository.1

RESULTS

The δ18O record for Site 738 derived from the benthic foraminifera Cibicidoides praemundulus reveals a two-step pattern (Fig. 2), similar to that found by Coxall et al. (2005) at ODP Site 1218 in the equatorial Pacific. The first step occurs ca. 33.9 Ma and the second, larger step occurs ca. 33.7 Ma. An interval of intermediate and relatively uniform δ18O values produces a terrace between the two prominent steps (33.9–33.7 Ma).

The primary feature of the fossil fish tooth Nd isotope record is a two-stage excursion to less radiogenic εNd values (Fig. 2, center). During the preexcursion interval (34.5–33.9 Ma), εNd values average −7.3. The excursion interval (33.9–33.6 Ma) begins with a step decrease of 0.7 εNd that coincides with the first δ18O step. The first Nd isotope step is followed by an ~150 k.y. interval of uniform εNd values, similar to the δ18O terrace interval. The εNd terrace ends abruptly with a second, larger step decrease of 2.1 εNd at 33.75 Ma that coincides with the second δ18O step. The nadir of the excursion is −10.2 εNd at 33.7 Ma, which is followed by an ~130 k.y. recovery interval to higher values. The εNd values in the postexcursion interval (33.6–33.3 Ma) average ~8.0.

The first significant occurrence of IRD appears ~30 cm above the onset of the second step in δ18O and εNd values, in a thin stratigraphic horizon (~50 cm thick) (Fig. 2, right). IRD concentrations and mass accumulation rates reach peak values for ~75 k.y. centered ca. 33.7 Ma.

Individual fish teeth, including six samples from within the IRD horizon, show similar shale-normalized rare earth element and yttrium (REE + Y) profiles (Fig. 3). All of the patterns exhibit prominent cerium (Ce) and Y anomalies, which are diagnostic features of seawater (German and Elderfield, 1990; Nozaki et al., 1997). Furthermore, samples in this study define a relationship of Ce versus Y anomalies that is inconsistent with mixing between oxic seawater and continental crust (see the Data Repository), making postburial uptake of IRD-derived REE + Y by fossil fish teeth unlikely.

DISCUSSION

Timing of IRD Delivery to the Kerguelen Plateau

The record of IRD accumulation at Site 738 indicates that grains were delivered to the Kerguelen Plateau during a short episode of ice rafting (<75 k.y.), consistent with earlier studies (Zachos et al., 1992). The coincidence of peak IRD accumulation with the second larger δ18O step indicates rapid, large-scale ice sheet expansion. However, no significant ice rafting was associated with the first δ18O step of the EOT or with the earliest Oligocene glacial maximum (EOGM; Liu et al., 2004).

Nature of the Nd Isotope Excursion

The Nd isotope excursion begins slightly before the onset of IRD deposition (ca. 33.7 Ma), a strong indication that both are related to a single process. Variations in bottom-water εNd values reflect changes in water mass mixing and the weathering flux to the water mass source region. If late-stage diagenesis is not an issue, coherence between IRD and εNd records can be interpreted in two ways. One is a shift in ocean circulation coincident with the expansion of ice sheets during the second step of the EOT. Alternatively, the Nd isotope excursion could reflect an increase in the dissolved weathering flux entering the source area of the water mass bathing the upper Kerguelen Plateau. Here we evaluate the likelihood of each of these interpretations.

The least radiogenic water mass during the EOT was in the North Atlantic (εNd = −11; O’Nions et al., 1998). Northern Component Water (NCW) was exported into the South Atlantic and Southern Ocean during the Oligocene (Scher and Martin, 2008; Via and Thomas, 2006). However, mass balance indicates that the unlikely mixture of 78% NCW at ~63°S in the Indian sector of the Southern Ocean would have been required to produce the observed excursion. With the same parameters, 18% of NCW is required to produce the initial, smaller εNd values.

Figure 2. Ocean Drilling Program (ODP) Site 738 δ18O, Nd isotope, and ice-rafted debris (IRD) mass accumulation rates (MAR) records versus age. Vertical bar illustrates trends in εNd record that define preexcursion (red), excursion (green), and postexcursion (blue) intervals. Four phases of ice sheet growth and/or weathering discussed in text are labeled. Anomalous IRD grains (marked by X) that occur at the 738B-3H/4H core break are most likely due to contamination resulting from the coring process. Nd isotope results have been normalized to the La Jolla standard = 0.511858. Error bar reflects long-term reproducibility based on replicate analysis of Ames Nd standard. Benthic foraminiferal δ18O record from ODP Site 1218 is from Coxall et al. (2005). All δ18O results have been adjusted by +0.64‰. EOGM—earliest Oligocene glacial maximum.

Figure 3. Shale-normalized rare earth element and yttrium (REE + Y) concentrations of fossil fish teeth used in this study normalized to post-Archean Australian Shale (PAAS) using values from Taylor and McLennan (1985). Normalized concentrations of samples taken from preexcursion (red), excursion (green), and postexcursion (blue) intervals have been adjusted by factors of 10 (1, 10, and 100, respectively) to enable visual comparison. Prominent Ce and Y anomalies are present in samples from each interval.

1GSA Data Repository item 2011123, Tables DR1–DR5 and supplement; stable and radiogenic isotope, IRD, and REE data; and age model information, is available online at www.geosociety.org/pubs/ft2011.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
likely that the source of nonradiogenic Nd into the dissolved liquid water became scarce, and weatherable area diminished. It is likely that these factors contributed to the termination of IRD deposition at the study site during the earliest Oligocene glacial maximum.

Over the recovery interval to higher \(\varepsilon_{\text{Nd}} \) values, the impact of chemical weathering on Antarctica as a sink for CO\(_2\), diminished, permitting CO\(_2\) to build up in the atmosphere (e.g., Pearson et al., 2009). Zachos and Kump (2005) modeled the climate response of decreasing Antarctic weatherability as a function of ice coverage and found that the CO\(_2\) response could explain the warming trend that ended the earliest Oligocene glacial maximum. Results from our study provide partial support of this hypothesis, demonstrating that a decrease in weathering accompanied the final build-up and maximum extent of the East Antarctic ice sheet during the Early Oligocene.

CONCLUSIONS

A detailed weathering history of East Antarctica during the EOT has been reconstructed on the basis of IRD MAR and \(\varepsilon_{\text{Nd}} \) values from fossil fish teeth at ODP Site 738 on the Kerguelen Plateau. These tracers of terrigenous input track two extremes in the size spectrum of glacially weathered products that reach the pelagic realm: mechanically weathered coarse grains transported by drifting icebergs and chemically weathered dissolved solutes transported by proglacial rivers. We show for the first time that two distinct weathering pulses occurred during the EOT, simultaneous with two benthic foraminiferal \(\delta^{18}O \) steps. Ice sheets formed in the latest Eocene (33.9 Ma) were limited to elevated regions and did not reach sea level, but persisted throughout the terrace interval until the second step. The large ice sheet that formed suddenly at 33.7 Ma quickly reduced the weatherable area on Antarctica, resulting in a weathering flux decline, with effects on the progression of global climate change during the Early Oligocene.

ACKNOWLEDGMENTS

We are grateful to Cedric John and two anonymous reviewers for careful reviews of this work. We thank Michael Lawrence for enlightening us to the nuances of Y anomalies and Clive Trueman for sharing the Lu-HF results from bioapatites and encouraging productive discourse about rare earth elements in bioapatites. National Science Foundation awards OCE-0647876 to Delaney and ANT-0732940 to Scher, as well as a
REFERENCES CITED

Manuscript received 7 September 2010
Revised manuscript received 18 November 2010
Manuscript accepted 22 November 2010
Printed in USA