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Threshold Power of Canonical Antennas for Inducing
SAR at Compliance Limits in the 300–3000 MHz

Frequency Range
Mohammod Ali, Senior Member, IEEE, Mark G. Douglas, Senior Member, IEEE,

Abu T. M. Sayem, Student Member, IEEE, Antonio Faraone, Senior Member, IEEE,
and Chung-Kwang Chou, Fellow, IEEE

Abstract—A study of the specific absorption rate (SAR) in an
exposed body induced by canonical antennas is presented, with the
aim of determining an upper bound for the antenna transmit power
that demonstrates that a product is inherently compliant with inter-
nationally accepted radio frequency (RF) exposure limits. Starting
from the fundamental limits in antenna quality factor (Q) and
the corresponding bandwidth, several antenna sizes are selected,
and their SAR distributions are computed using the method of mo-
ments (MoM) and finite-difference time domain (FDTD) method
in the frequency range 300–3000 MHz. The threshold powers are
then determined, below which the peak 1-g and 10-g averaged
SAR would not exceed the limits specified in international expo-
sure standards. From the data, simple expressions are derived to
estimate the threshold power over a wide range of antenna sizes,
frequencies, and distances from the body. It is demonstrated that
the results presented in this paper are conservative in compari-
son with the measured SAR data of real products as well as other
published data.

Index Terms—Antennas, electromagnetic fields, electromagnetic
propagation in absorbing media, finite difference methods, mo-
ment methods.

I. INTRODUCTION

S PECIFIC absorption rate (SAR) is a metric of radio fre-
quency (RF) energy exposure [1]. Proper evaluation of SAR

for wireless transmitters is essential both in terms of compliance
with RF exposure limits [2], [3] and antenna performance. SAR
is measured using automated measurement systems in phantoms
representing the human body [4], [5]. SAR can also be computed
using various numerical electromagnetic modeling techniques,
such as the finite-difference time domain (FDTD) method [6]
and the method of moments (MoM) [7].

In the literature, there has been considerable research on mo-
bile phone antennas and SAR [8]–[19]. Researchers have mainly
been interested in the electromagnetic exposure of users from
portable wireless devices and the influence of the user on the
antenna performance in the 800–900 MHz and 1800–1900 MHz
frequency bands. Most of the publications, to date, address dif-
ferent antenna types and their interaction with the human body,
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efficient numerical algorithms to compute SAR, and efficient an-
tenna designs to reduce SAR. In contrast, this paper is an attempt
to explore the relationship between SAR and antenna geometry
for canonical antennas in the 300–3000 MHz frequency range
with an aim to identify an upper bound of the transmitted power
to meet a given SAR limit.

RF exposure standards address localized exposure to radio
transmitters by limiting the peak mass-averaged SAR. For gen-
eral public exposures at the head and torso, these limits are either
1.6 W/kg averaged over a 1-g mass (adopted in the United States
of America, Bolivia, Canada, and South Korea) [2] or 2 W/kg
averaged over a 10-g mass (adopted in 35 other countries, in-
cluding Australia, Japan, and many European countries) [3].
The relationship between the peak SAR averaged over a mass
m (denoted as SARm) and the root-mean-squared (rms) power
transmitted by an antenna (Pt) can be described as

SARm =
Pm

m
=

1
m

Pm

Pabs

Pabs

Pt
Pt =

1
m

Fm(1 − ηrad)Pt (1)

where Pm is the rms power absorbed in mass m,Pabs is the
total rms power absorbed in the body, Fm = Pm/Pabs is an
absorption factor representing the percentage of the absorbed
power in the body that is dissipated in the averaging mass m, and
ηrad = 1 − Pabs/Pt is the radiation efficiency (i.e., the fraction
of Pt that is not absorbed in the body).

The CENELEC EN 50371 standard provides a 20-mW thresh-
old for the transmitted power above which SAR evaluation for
compliance with the 2-W/kg SAR limit is needed [20]. Substi-
tuting Pt = 20 mW, m = 10 g, and SAR10g = 2 W/kg in (1),
it is seen that this threshold is conservative, as it is based on
the assumption that all the power transmitted by the antenna is
absorbed in the body (i.e., ηrad = 0), making the device useless
for communication, and all the absorbed power is concentrated
in the 10-g mass (i.e., F10g = 1). However, in reality, ηrad > 0
and F10g < 1; thus, the threshold power should be higher than
20 mW. Similarly, the threshold power ought to be higher than
1.6 mW for compliance with the IEEE C95.1-1991 standard.

The main objective of this paper is to analyze the relationship
between SAR and antenna geometry, frequency, and bandwidth
to determine suitable threshold power levels above which SAR
evaluation must be done. Another objective is to derive a simple
expression from the data that accurately estimates the threshold
power from these parameters. It is important that the threshold
power is conservative so that there is a negligibly low probability

0018-9375/$25.00 © 2007 IEEE
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that a portable wireless device with a transmit power below the
threshold would induce a peak SAR exceeding the RF exposure
limit. Although there are myriad mobile device geometries and
body locations, we are interested in investigating relationships
and trends of a general nature. Therefore, we consider canonical
antennas (dipoles and loops) and a canonical body (a flat box
phantom) over the considered frequency range. It will be shown
that the phantom and antennas studied in this paper provide
conservatively high SAR values for a given amount of emitted
power compared to what would likely occur for a broad range of
antenna types and portable wireless devices. In fact, earlier work
by Okoniewski and Stuchly [9] showed that a flat phantom has
a significantly higher SAR than that of a spherical or a realistic
human head phantom. All considered antennas are lossless and
perfectly matched. This ensures 100% antenna efficiency, so
that the only losses are in the phantom, which also results in
higher SAR values. At the end of the paper, a comparison is
made between the results of this investigation and measured
data from real portable wireless devices. The antennas studied
can be regarded as representative of the radiation mechanisms
characterizing a large majority of portable wireless devices.
They may not be representative of highly directional antennas,
such as those frequently employed in indoor/outdoor fixed
transmitters, but such devices, which are not intended to operate
near the user’s head or body, are out of the scope of this paper.

II. METHODOLOGY

A. Numerical Modeling

SAR computations were conducted using commercial elec-
tromagnetic simulation codes based on FDTD (XFDTD v
6.3, Remcom Inc., State College, PA) [21] and MoM (FEKO
Suite 4.3, EM Software & Systems-S.A. (Pty) Ltd., Stellen-
bosch, South Africa) [22]. Results using the two methods are
checked against each other and against the measured and pub-
lished data in Section III-A.

The setup used for all calculations consists of an antenna at
a fixed distance from a flat phantom (see Fig. 1). The flat phan-
tom consists of a lossy tissue equivalent material and a lossless
phantom shell having a relative permittivity of 3.7. The dielec-
tric parameters (εr, σ) and minimum dimensions (L,W,H) of
the phantom material and the thickness (t) of the phantom shell
meet the IEEE Std 1528-2003 specifications [4], which are re-
produced in Table I. The phantom dielectric parameters were
chosen to provide a conservatively high SAR in a homogeneous
head model when compared to the heterogeneous case of a real
person [4], [13]. The conservativeness of the phantom dielec-
tric parameters has been verified independently [23], [24]. In
addition, a current proposal [25] is to use these same dielectric
parameters for the rest of the body. Thus, the results of this paper
are applicable to both the head and the body of the user. The
antenna is oriented in a plane parallel to the phantom shell with
its center directly beneath the center of the phantom shell. The
dipole antenna feed point is located between equal arms along
the antenna axis. The antenna axis is spaced at a distance s from
the interface between the phantom material and the phantom
shell.

Fig. 1. Antenna and flat phantom setup. The variables are defined and specified
in Table I.

TABLE I
PARAMETERS OF FLAT PHANTOM AND DIPOLE ANTENNA SETUPS

For the FDTD simulations, the voxel dimensions were kept
below λ/16 in all directions and in all media. The uniform
voxel dimensions were 1 mm for frequencies of 900 MHz and
above and 1.5 mm for frequencies of 450 MHz and below. The
FDTD model was bounded by perfectly matched layer (PML)
absorbing boundaries with at least four layers. The absorbing
boundaries were at a minimum distance of λ0/8 from the model.

For the MoM simulations, Green’s functions for planar mul-
tilayer dielectric media were chosen for the integral equations.
To discretize and solve the integral equations, FEKO uses tri-
angular expansion and testing functions for the wire models.
The wire model segment length was less than λ/15 and at least
3.3 times the wire diameter.

In all cases, SAR averaging was carried out as prescribed by
the IEEE Std C95.3-2002 [26].

B. Antenna Models

The purpose of this section is to define the antenna types and
an appropriate range of antenna sizes for the study. Antenna
sizes and types vary widely from one portable wireless device
to another. For mobile transmitters, antennas can be broadly
classified as external and internal antennas [27]. Examples of
external antennas include whip and helical monopole anten-
nas, while internal antennas include planar inverted-F anten-
nas (PIFAs) [28]–[33] and folded inverted conformal antennas
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(FICAs) [34]. This study focuses on two canonical antenna
types, thin-wire dipoles and loops. The advantage of studying
canonical antenna types is that it limits the number of variables
to be studied while also representing the fundamental radiation
mechanisms that characterize several broad classes of portable
wireless devices, such as mobile phones and two-way portable
radios and pagers. For example, only length and radius are varied
with thin-wire dipoles, whereas with PIFAs, the size and shape
of the patch element, the ground contact location, the feed lo-
cation, and the size of the ground plane would all be variables
in the investigation space. The applicability of the canonical
antenna results to real portable wireless devices is addressed in
Section III-C.

Since antenna size has a significant effect on SAR, it is im-
portant to determine the antenna sizes to be studied. The length
of the dipole antennas will be varied from λ/2 to a minimum
length. Dipole antennas longer than λ/2 are not of interest be-
cause the current distribution on such antennas has multiple
peaks, resulting in lower peak mass-averaged SAR values for
a given transmit power. Given that antenna size is related to
bandwidth and that antennas for portable wireless devices must
meet bandwidth requirements, it makes sense to use bandwidth
specifications as the rationale for choosing the minimum length
to be studied. The relationship between the size of an antenna
and its maximum bandwidth (or minimum quality factor Q) has
been studied extensively [35]–[39]. According to McLean [38],
the minimum radiation Q of a lossless antenna that is contained
within a sphere of radius a is given by

Qmin =
1

(βa)3
+

1
βa

(2)

where β = 2π/λ. This equation is accurate for electrically small
antennas, where βa ≤ 1 [38]. For thin-wire dipole antennas, this
corresponds to a length l ≈ 2a ≤ λ/π. The radiation Q is the
ratio of stored to radiated energy of an antenna, and when Q
is large, it is approximately equal to the inverse of the half-
power bandwidth [40]. The half-power bandwidth corresponds
approximately to a return loss of |S11| ≤ −7 dB [i.e., voltage
standing wave ratio (VSWR) ≤ 2.6] for impedance matched an-
tennas at resonance [41]. This bandwidth is denoted as BW7dB

in this paper. In general, BWxdB will denote the fractional
bandwidth over which |S11| ≤ −x dB. Portable wireless de-
vices are commonly designed to meet operating antenna band-
widths for |S11| ≤ −9.5 dB or −6 dB (corresponding to VSWR
≤ 2 or 3, respectively) rather than −7 dB. The fractional band-
width is equal to 100% ×∆f/f0, where ∆f = fmax − fmin and
f0 = (fmin + fmax)/2, and where fmin and fmax are the lowest
and highest frequencies over the range at which |S11| ≤ −x dB.
The values of Qmin and BW7dBmax = 1/Qmin are given in
Table II for a range of βa values.

In practice, there is no known antenna that achieves the upper
bandwidth bounds in Table II, given the difficulty to utilize the
spherical volume effectively [39]. Therefore, the bandwidths of
practical antennas are significantly narrower than these bounds.
Table III shows the fractional impedance bandwidths of dipole
antennas calculated using MoM both in free space and near the
flat phantom at three frequencies. None of these antennas are

TABLE II
Q AND BANDWIDTH LIMITS FOR ELECTRICALLY SMALL ANTENNAS

TABLE III
CALCULATED FRACTIONAL IMPEDANCE BANDWIDTHS OF DIPOLE ANTENNAS

resonant by themselves, and thus, to calculate bandwidths, each
antenna is made resonant by nullifying its reactance at the de-
sired frequency (by inserting a lossless inductor in series with the
capacitive reactance of the short antenna) and feeding it with
a source matched to the antenna input resistance. Broadband
matching networks can be used to achieve wider bandwidths at
the expense of lower antenna efficiency due to circuit losses.
For the results of Table III, the phantom parameters are as given
in Table I, and the dipole antenna parameters are as shown
in Table III. Results are shown at 300, 1450, and 3000 MHz,
representing the lowest, middle, and highest frequencies
studied.

The 7-dB bandwidths of the thin-wire dipoles in free space
at 1450 MHz (see column 5 of Table III) can be compared with
the McLean fundamental limits in Table II. The fractional band-
widths are about an order of magnitude narrower than those
of the fundamental limits. As the dipoles are placed next to
the phantom, the bandwidths increase significantly due to the
introduction of losses in the near field that reduce the stored
reactive energy of the antenna. At s = 5 mm (see column 6),
BW7dB is approximately twice that for the same dipole anten-
nas in free space. The other consequence of proximity to the
phantom is degradation in antenna radiation efficiency. For in-
stance, the radiation efficiency of the 1450-MHz dipole antenna
with s = 5 mm and l = λ/3.9 is only 3%.

The fractional bandwidths are also shown at 1450 MHz for the
practical cases of |S11| = −6 dB and −9.5 dB (see columns 4
and 7 of Table III). The fractional bandwidths for |S11| = −6 dB
are also given at the lowest and highest frequencies studied
for s = 5 mm (see columns 2 and 8 of Table III). The frac-
tional bandwidth is widest at f = 300 MHz due to the fact that
the antennas are electrically closest to the phantom, resulting
in higher losses and lower radiation efficiency. Column 3 of
Table III shows the influence of dipole diameter on bandwidth.
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TABLE IV
SOME TYPICAL FREQUENCY BANDS OF PORTABLE WIRELESS DEVICES

At a dipole diameter of d = 3.6 mm (from Table I), BW6dB

for 300 MHz dipole antennas next to the phantom is three to
four times wider than those of the same dipole antennas with
d = 0.2 mm. For this thicker dipole diameter, the tips of these
dipole antennas do not fit completely inside the sphere of radius
2a described by McLean. This results in a slightly increased
bandwidth, especially for the shorter antennas.

Finally, the operating bandwidths of the portable wireless
devices operating at various frequency bands are listed in
Table IV. Fractional bandwidths range from 3 to 17%. Since the
bandwidths of the λ/15.7 dipole antennas in Table III are narrow
compared to the bandwidths in Table IV, even when the antenna
is as close as 5 mm from the lossy phantom material, it does not
appear relevant to investigate the dipole antennas shorter than
λ/16. Thus, our study focuses on studying the SAR resulting
from canonical dipoles with lengths of λ/16, λ/12, λ/8, λ/4,
and λ/2

III. RESULTS

A. Validation of Numerical Models for SAR

To verify the accuracy of the numerical models and to esti-
mate the error of the results, the flat phantom and dipole antenna
setup shown in Fig. 1 was simulated using MoM and FDTD.
All SAR values are computed for an antenna transmit power
of Pt = 1 W. In Table V, the peak 1-g and 10-g averaged SAR
values from the MoM and FDTD simulations are compared with
the reference values of IEEE Std 1528 [4]. The geometric and
dielectric parameters of the setup were set as shown in Table I.
The reference values are shown as SARm in units of Watts per
kilogram, whereas the MoM and FDTD results are shown as
∆SARm, which is the percent change in SARm from the refer-
ence values. Table V also lists ∆SARm for measurements that
were conducted at the Motorola Corporate EME Research Lab-
oratory, Fort Lauderdale, FL, on the same setup (except at 1450
and 3000 MHz, where dipole antennas conforming to the IEEE

TABLE V
COMPARISON OF MEASURED AND SIMULATED SAR DATA WITH IEEE 1528

REFERENCE SAR DATA USING THE SETUP PARAMETERS OF TABLE I

TABLE VI
COMPARISON OF SIMULATED SAR DATA AT f = 900 MHZ AND s = 5 MM

Std 1528 specifications were not available) using the DASY4
system (Schmid & Partner Engineering AG, Zürich, Switzer-
land). The measured and simulated results are all within 8% of
the reference values. Thus, the deviation of the measured values
is always within the 11% measurement uncertainty (evaluated
according to [4] for k = 1 standard deviations).

Table VI shows a comparison of MoM and FDTD results at
900 MHz using the setup of Fig. 1 and Table I, except that the
antenna length is varied from λ/2 to λ/16, and a closer spacing
of the dipole antenna axis to the liquid of s = 5 mm is used. The
peak 1-g and 10-g averaged SAR values are given for the MoM
results along with ∆SARm, which is the percent difference
of the FDTD results from the MoM results. The two methods
compare very well with each other, with a maximum deviation
of 10%. The last column of Table VI shows the MoM results
for the identical setup of column 2, except that d = 0.2 mm.
The data show that changing the dipole diameter by more than
an order of magnitude does not significantly affect the SAR,
although, as discussed earlier, it does significantly affect the
bandwidth. Therefore, the SAR results presented in the next
section are expected to be stable over a wide range of practical
wire radii (very thick dipole antennas could have different SAR
values, but they are not of practical interest).

From the data in Tables V and VI, it is estimated that the
maximum error of the calculations presented in this paper is of
the order of 10%.

B. Threshold Power Results for Dipole Antennas

The SAR induced in a flat phantom by thin-wire dipole an-
tennas was calculated using MoM with the setup of Fig. 1. The
phantom dielectric parameters are specified in Table I across the
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Fig. 2. Threshold power levels for SARlimit,1g = 1.6 W/kg at s = 5 mm.

300–3000 MHz frequency range. The phantom shell thickness
was fixed at 2 mm to allow the antennas to be spaced 5 mm
from the phantom liquid. The dipole antennas have lengths of
l = λ/16, λ/12, λ/8, λ/4, and λ/2 at each frequency and a con-
stant diameter of d = 0.2 mm (i.e., not more than λ/500 at all
frequencies). The segment length of the wire models was kept
below λ/100. The dipole antenna was spaced away from the
phantom at distances of s = 5, 10, 15, 20, and 25 mm, corre-
sponding to the expected range of distances between the an-
tenna of a portable wireless device and the user’s body. Due to
the 2-mm thickness of the phantom shell, the thickness of the
plastic housing of a typical portable wireless device, and the
spacing of the antenna away from the side of the device facing
the body, a minimum distance of 5 mm was deemed reasonable.
The largest distance of 25 mm corresponds to the upper end of
distances recommended by the U.S. Federal Communications
Commission when evaluating portable wireless devices while
carried next to the body using suitable accessories [42].

As indicated earlier, the parameter of interest is the threshold
power Pth,m, which is the transmit power level at which SARm

evaluated at a transmit power of Pt has reached the SAR limit
SAR limit,m. Thus

Pth,m = Pt
SARlimit,m

SARm
. (3)

Figs. 2 and 3 show the computed threshold power levels as
functions of frequency at s = 5 mm for all dipole lengths under
consideration (the y-axis of Figs. 2–5 uses a logarithmic scale).
In Fig. 2, Pth,1g is given for SAR limit,1g = 1.6 W/kg [2], and
in Fig. 3, Pth,10g is given for SAR limit,10g = 2 W/kg [3].
As expected, shorter antennas (i.e., narrower bandwidths) yield
lower Pth,m. Also, Pth,m decreases with increasing frequency
partly due to the increase in tissue conductivity and partly due
to the more localized energy loss for the shorter antennas. It is
also observed that Pth,m is generally more sensitive to antenna
length at lower frequencies due to the shorter electrical distance
between the antenna and the phantom, which results in increased
antenna coupling.

In Figs. 4 and 5, the threshold power is plotted as a func-
tion of the antenna to phantom separation distance s for all

Fig. 3. Threshold power levels for SARlimit,10g = 2 W/kg at s = 5 mm.

Fig. 4. Threshold power levels for SARlimit,10g = 2 W/kg at f = 900 MHz.

Fig. 5. Threshold power levels for SARlimit,1g = 1.6 W/kg at f =
1900 MHz.

antenna lengths under consideration. In Fig. 4, Pth,10g is given
at 900 MHz for SARlimit,10g = 2 W/kg, as 900 MHz is a com-
monly used frequency for cellular telephone service in coun-
tries that follow the ICNIRP guidelines. Likewise, since the
1900 MHz band is commonly used in North America where
IEEE C95.1-1991 guidelines are followed, Pth,1g is given in
Fig. 5. It can be seen from Figs. 4 and 5 that the logarithm
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of Pth,m varies almost linearly with distance s. Also, the re-
lationship between Pth,m and l/λ is predominantly linear at
lower frequencies and logarithmic at higher frequencies. Thus,
a simple mathematical relationship can be developed to esti-
mate Pth,m from these two variables at a given frequency. For
instance, an equation of the form

ln P̂th,m = As + B ln(l/λ) + C(l/λ) + Ds ln(l/λ) + E
(4)

can be applied, where P̂th,m is an estimate of Pth,m (in mil-
liwatts), s is expressed in millimeters, and A,B,C,D, and E
are frequency-dependent parameters. Parameters A and D are
in units of 1/m and B,C, and E are unitless. The fourth term
in (4) accounts for the interaction between the first two terms,
as can be seen in Figs. 4 and 5. A least-squares fit of (4) to
the SAR1g data yields values for A,B,C,D, and E that can be
described by third-order polynomials of frequency, as shown in
(5), where f is in gigahertz. The rms error of (4) and (5) to the
SAR1g data is 8.7%:



1000A
100B
10C

1000D
10E


=




−9.67 43.9 1.49 4.48
−8.01 69.4 −194 185

3.18 −23.6 52.7 −11.6
−2.47 10.8 − 8.63 −21.2
−3.33 27.4 −79.3 90.8







f3

f2

f
1


 .

(5)
For SAR10g, a least-squares solution of (4) with an rms error

of 6.7% is given by



1000A
100B
100C
1000D
10E


 =




−9.75 43.9 −1.64 5.98
−6.38 55.9 −155 133
31.9 −219 420 −2.22
−2.89 13.9 −14.2 −11.0
−3.25 26.1 −70.8 88.1







f3

f2

f
1


 .

(6)
Thus, simple and accurate formulas have been derived to

determine the threshold power at any frequency, antenna length,
and distance from the phantom within the ranges studied.

It is also interesting to observe how the absorption factor
Fm and the radiation efficiency ηrad in (1) vary individually
with the input variables and to see which behaviors dominate in
determining Pth,m. Combining (1) and (3) yields an expression
for Pth,m as a function of ηrad and Fm

Pth,m = Pt
SARlimit,m

SARm
=

mSARlimit,m

Fm(1 − ηrad)
(7)

where the values of Fm and ηrad both lie between 0 and 1. As
explained earlier, the CENELEC EN 50371 standard gives a
value of Pth,10g = 20 mW for SARlimit,10g = 2 W/kg, which
is based on the overly conservative assumption that F10g = 1
and ηrad = 0. These choices of F10g and ηrad give the mini-
mum value for Pth,10g, and it was seen in Figs. 3 and 4 that
Pth,10g can be much higher than 20 mW in practice, particu-
larly at lower frequencies and larger distances from the phan-
tom. The variation of F10g and 1 − ηrad with frequency and
antenna length is shown in Fig. 6 for s = 5 mm (the same case
as in Fig. 3), whereas its variation with the separation distance
and antenna length is reported in Fig. 7 for f = 900 MHz (the
same case as in Fig. 4). The values of 1 − ηrad = Pabs/Pt were

Fig. 6. F10g and 1 − ηrad for SARlimit,10g = 2 W/kg at s = 5 mm.

Fig. 7. F10g and 1 − ηrad for SARlimit,10g = 2 W/kg at f = 900 MHz.

calculated from radiated power Prad = Pt − Pabs and transmit
power Pt, provided by the MoM simulations, and the values of
F10g were then calculated from (7), given that the other vari-
ables are known. For the dipole antenna setup studied in this
paper, the SAR distributions have contour lines of equal SAR
that are shaped like ellipses in the planes parallel to the phantom
shell. The absorption factor Fm quantifies how concentrated the
SAR distribution is about its peak (i.e., the spacing between the
contour lines) with lower values of Fm corresponding to a more
spread SAR distribution.

At lower frequencies, the radiation efficiency is very low,
with nearly all of the transmitted power being absorbed in the
phantom (see Fig. 6). This is due to the fact that the electrical
distance of the antenna to the phantom s/λ is the smallest.
However, F10g is lowest at lower frequencies, resulting in higher
Pth,m values. This is because the absorbed power is spread
over a larger volume in the phantom, partly due to the larger
antenna sizes, resulting in greater spreading of the currents on
the antenna, and partly due to the lower conductivity of the
phantom material resulting in larger penetration depth; thus,
there is less absorption near the exposed phantom surface. As
the frequency increases, the radiation efficiency increases, but
energy dissipation becomes more concentrated in the 10-g mass.
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The data show that the variation of Pth,10g with frequency is
predominantly influenced by F10g and that F10g and 1 − ηrad

vary inversely with frequency. On the other hand, F10g and 1 −
ηrad vary similarly with antenna length, with shorter antennas
having the largest values, and therefore, lowest Pth,10g values.

As the antenna is moved away from the phantom, the radiation
efficiency improves, and the absorbed energy in the phantom
becomes more spread, as expected (see Fig. 7). Both of these
phenomena result in higher Pth,10g values at larger distances.

Overall, the data show that the radiation efficiency data can,
in some cases, approach the ηrad = 0 assumption in CENELEC
EN 50371 (at least for the conservative setup used here; the
results for other setups will be discussed in the next section),
but the absorption factor is typically far from the F10g = 1
assumption. Incidentally, F1g is significantly lower than F10g.
The lower values of F10g largely explain the higher Pth,10g

values above 20 mW.

C. Comparison of Results With Other Findings

The objective of this section is to compare the results of the
previous section with other findings in order to demonstrate that
the results give conservative values for Pth,m, as discussed in
Section I. This section consists of three parts:

1) a comparison of the radiation efficiency values discussed
in the previous section with values found in the literature;

2) a comparison of the dipole results with the simulated re-
sults of a number of resonant antennas at 900 MHz;

3) a comparison of the dipole results with the measured re-
sults of portable wireless devices.

The radiation efficiencies for dipole antennas at 900 MHz in
Fig. 7 range from 0.7 to 32%, with most values less than 20%.
Okoniewski and Stuchly reported radiation efficiencies of a
915-MHz resonant monopole antenna on a box model of a
portable wireless device next to different head models [9]. When
a flat phantom was used, the radiation efficiency ranged from
16% at s = 15 mm to 40% at s = 25 mm. These results com-
pare well with the radiation efficiency of the half-wavelength
dipole in Fig. 7, which was 14–32% for same distances. The
higher radiation efficiency of the monopole antenna may be due
to the thickness of the box model that causes some currents on
the device to be displaced away from the phantom. When two
heterogeneous anatomical head models were used, Okoniewski
and Stuchly reported radiation efficiencies ranging from 51%
at s = 15 mm to 73% at s = 25 mm. These values are similar
to the values for a homogeneous sphere reported by the same
authors, and it was explained that the shape of the flat phantom
is the main reason for it resulting in lower radiation efficiency,
and thus, lower threshold power levels.

Others have also reported radiation efficiencies at 900 MHz
for antennas mounted on a simple handset model and held
against an anatomical head model. The reported radiation ef-
ficiencies are

� 22% and 29% for a meander monopole and a shorted patch,
respectively [43];

� 19% and 25% for a helix and a monopole antenna, respec-
tively [44];

Fig. 8. Meander dipole and square-loop antennas under investigation (dimen-
sions in millimeters).

TABLE VII
COMPARISON BETWEEN DIFFERENT ANTENNA TYPES AT f = 900 MHZ AND

s = 10 MM

� 44% and 54% for a monopole antenna and patch antenna,
respectively (a hand model was also used to hold the device)
[45];

� 47% and 32–52% for a monopole and three different PIFAs,
respectively (a hand model was also used) [46].

Since the handset is placed directly against the head model in
these cases, these radiation efficiencies are compared against the
dipole data for s = 5 mm, which range from 0.7% to 3.2% for
l = λ/16 to λ/2, respectively. This comparison indicates that
the flat phantom and dipole antenna models used in this study
give low values for radiation efficiency, resulting in conservative
values for Pth,m.

To compare Pth,m for 1-g and 10-g average SAR among
other canonical antennas, we also considered three resonant
antennas at 900 MHz: a strip dipole (1-mm wide strip infinitely
thin and 155-mm long), a square-strip loop, and a meander
dipole. The loop and meander dipole are shown in Fig. 8. All
antennas are two-dimensional, which has the advantage that all
parts of the antenna are at the same distance from the phantom.
Computed impedance bandwidths of these three antennas at s =
10 mm are shown in Table VII. The return loss was obtained with
reference to a 50-Ω source. Table VII shows that, as expected,
the bandwidth of the meander antenna is slightly narrower than
the relatively long strip dipole. The narrow bandwidth of the
loop antenna is due to its high resistance at resonance (110 Ω).

Table VII compares the threshold powers, absorption fac-
tors, and radiation efficiencies for each of these antennas. When
comparing between the strip and the meander dipoles, Pth,m

is clearly lower for the latter since its axial length is shorter
(115 mm) than that of the strip dipole (155 mm). Pth,m for the
square-strip loop antenna is the highest among the three anten-
nas because the SAR distribution from the loop has two separate
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Fig. 9. Peak 1-g average SAR distributions. (a) Square-loop antennas.
(b) Meander dipole antennas.

Fig. 10. Histogram of Pth,1g from 1344 SAR measurements of 54 portable
wireless devices, compared with the computed Pth,1g values for dipole antennas
of length λ/8, λ/4, and λ/2.

local maxima (see Fig. 9). For the meander dipole and square
loop, the results are also shown next to data for linear dipoles
with lengths that result in similar bandwidths. The threshold
powers for the λ/2.5 dipole are very similar to the data for the
meander dipole (within 6%), and the λ/3.1 dipole gives more
conservative values for Pth,m than does the square loop. This
supports the use of thin-wire dipole antennas for the main part
of this study.

The computed results of this paper are also compared with
data from the measured SAR of portable wireless devices. A to-
tal of 1344 SAR1g measurements were taken from 54 products.
The data are taken primarily from Motorola iDEN products,
operating from 806 to 870 MHz, with an operating bandwidth
requirement of 7.6%, as shown in Table IV. From Table III, it
can be found that a dipole antenna of length no smaller than
λ/8 will have a similar fractional bandwidth. We chose to ex-
amine the dipole antenna results for lengths of λ/8, λ/4, and
λ/2. All measurements were taken with the devices held to the
side of the head, so it makes sense to use a dipole antenna dis-
tance of s = 5 mm in the comparison. At a center frequency of
838 MHz, (4) and (5) yield Pth,1g = 29, 54, and 124 mW for
l = λ/8, λ/4, and λ/2, respectively. For the measured data, a
histogram of Pth,1g of the portable wireless devices is shown
in Fig. 10. The Pth,1g data are obtained by applying (3) to
scale the measured transmit power Pt up by the ratio between
SARlimit,1g = 1.6 W/kg and the measured SAR1g. It should
be noted that there is a bias in the measured data, as they are
from products that have been designed to be compliant with the

SAR limits. However, the measured output power of the devices
was typically 125 or 230 mW, both of which are less than the
minimum of the Pth,1g values of the measured data, which is
256 mW. The calculated Pth,1g values for the three dipole an-
tennas are significantly less than the measured Pth,1g values of
all 54 portable wireless devices, further demonstrating that the
calculated values of the power thresholds are conservative.

IV. CONCLUSION

The SAR characteristics of canonical antennas are investi-
gated with the objective of estimating upper bounds for the
transmit power of wireless communication devices demonstrat-
ing that the devices are inherently compliant with internationally
accepted RF exposure limits. Simple expressions have been de-
rived to estimate the threshold power levels over a wide range
of dipole antenna lengths, frequencies, and distances from the
phantom. Examples of meander and loop antennas are given to
demonstrate the suitability of thin-wire dipole antennas in the
study. Comparison of the simulated data with results from the
literature and measurements of portable wireless devices has
been used to demonstrate that the proposed approach gives con-
servative values for the threshold power. It is estimated that the
maximum error of the calculations presented in this paper is on
the order of 10%. Currently, further investigations are underway
to extend this research to encompass other classes of antennas.
The cost and complexity of compliance protocols could be pos-
sibly reduced if reasonable power thresholds for requiring SAR
testing could be defined. This is an attempt in such a direction.
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