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RESEARCH Open Access

Applying time series modeling to assess
the dynamics and forecast monthly reports
of abuse, neglect and/or exploitation
involving a vulnerable adult
Nelís Soto-Ramírez1* , Janet Odeku1, Courtney Foxe1, Cynthia Flynn1 and Diana Tester2

Abstract

Background: Application of time series modeling to predict reports related to maltreatment of vulnerable adults
can be helpful for efficient early planning and resource allocation to handle a high volume of investigations. The
goal of this study is to apply: (1) autoregressive integrated moving average (ARIMA) time series modeling to fit and
forecast monthly maltreatment reports accepted for assessment reported to adult protective services (APS), and (2)
interrupted time series analysis to test whether the implementation of intake hubs have a significant impact in the
number of maltreatment reports after the implementation period.

Methods: A time series analysis on monthly APS intake reports was conducted using administrative data from SC
Child and Adult Protective Services between January 2014 and June 2018. Monthly APS data were subjected to
ARIMA modeling adjusting for the time period when intake hubs were implemented. The coefficient of
determination, normalized SBC, AIC, MSE, and Ljung-Box Q-test were used to evaluate the goodness-of-fit of
constructed models. The most parsimonious model was selected to predict the monthly APS intakes from July to
December 2018. Poisson regression was fit to examine the association of the implementation of the hubs and the
number of intake reports received to APS, adjusting for confounders.

Results: Over 24,000 APS intakes accepted for investigation were identified over a period of four calendar years
with an increase in the monthly average of APS intakes between 2014 and 2017. An increase in the number of
monthly APS intakes was found after the intake hubs were implemented in 2015 (Phase-1) and 2017 (Phase-2). Of
all the models tested, an ARIMA (12), 1, 1 model was found to work best after evaluating all fit measures for both
models. For Phase-1, the optimum model predicted an average of 488 APS intake reports between July and
December 2018, representing a 9% increase from January–June 2018 (median = 445). For Phase-2, the percent
increase was 32%.
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Conclusions: The implementation of the intake hubs has a significant impact in the number of reports received
after the implementation period. ARIMA time series is a valuable tool to predict future reports of maltreatment of
vulnerable adults, which could be used to allow appropriate planning and resource allocation to handle a high
volume of monthly intake reports.

Keywords: Forecast, Modeling, Auto-regressive integrated moving average (ARIMA), Vulnerable adults

Background
Time series models have been traditionally used as a
forecasting technique in various disciplines such as pub-
lic health and economics [1–5]. For instance, Zhang and
colleagues evaluated and compared the performances of
artificial neural network models and auto-regressive in-
tegrated moving average (ARIMA) models for modeling
and predicting future epidemic events [3]. One of the
advantages of using ARIMA models over simple regres-
sion models is that the former takes into consideration
the periodic variations, underlying changing trends and
random disturbances of a time series, and use the associ-
ations in the sequentially lagged relationships to predict
future values [2, 6, 7]. Forecasting techniques used in
epidemiological studies could be also applied in social
welfare research. Application of time series modeling to
predict reports related to maltreatment of vulnerable
adults can be beneficial for efficient early planning and
resource allocation to handle high volume of
investigations.
For the purpose of this study, intake data from the

South Carolina (SC) Child and Adult Protective Services
System (CAPSS) administrative database was used to
apply ARIMA time series analysis to fit and forecast
monthly intake reports related to maltreatment of vul-
nerable adults reported to Adult Protective Service
(APS). Prior to 2015, the Department of Social Services
(DSS) received calls for investigation of possible adult
and child abuse and/or neglect through its county offices
(46 counties). To improve the consistency of intake deci-
sions across the state, DSS began planning for and oper-
ationalizing a streamlined process of all intake calls to
be managed and evaluated in the five regional intake
hubs. This multi-year project had two phases. In the first
phase, from January 2015 to January 2016, DSS rolled 22
counties into the regional hubs, and in the second phase,
the remainder of the counties (n = 24) were imple-
mented from May 2017 to November 2017. As a result,
an increase in APS intake reports was observed after
2015. A second wave or spike was detected in the first
few months of 2018. Hence, for the time series analysis
we separated the analysis into two time series, one for
the 22 counties that became centralized into intake hubs
in 2015 (Phase 1), and the other for the 24 counties that

were centralized into intake hubs in 2017 (Phase 2).
These two time series were used to assess the impact of
the intake hubs and to predict the expected monthly
APS reports from July 2018 to December 2018. Hence,
in this study we aim: (1) to apply interrupted time series
analysis to test whether the implementation of intake
hubs have a significant impact in the number of mal-
treatment reports after the two implementation periods
(Phase 1 & 2), and (2) then to apply ARIMA time series
modeling to fit and forecast (predict) monthly maltreat-
ment reports accepted for assessment reported to APS
in South Carolina.

Methods
Study design and data source
This is a retrospective study of all APS intakes accepted
for assessment between January 1st 2014 and June 30th
2018 in South Carolina, USA. Monthly APS intakes is
the principal outcome variable of the study. Data were
obtained retrospectively from administrative files of the
South Carolina CAPSS system.

APS criteria of a vulnerable adult
A ‘vulnerable adult” is a person 18 years of age or older
who has a physical or mental condition which prevents
them from providing for his or her own care or protec-
tion. This include adults who are impaired because of
brain damage, advanced age, and physical, mental or
emotional dysfunction [8].

Criteria to accept a report or referral for investigation
For a report or referral to meet the criteria to be ac-
cepted for investigation, there must be an allegation that
a vulnerable adult is being maltreated through abuse,
neglect, self-neglect, or exploitation, in a community set-
ting. The APS Intake Tool must be used to determine if
the report meets the legal criteria for vulnerability.

Data analysis
Descriptive statistics included frequency distributions,
means, medians, and 95% confidence intervals (CIs) of
APS intakes. For the time series analysis, Box-Jenkins
(1970) [9] approach was used to fit the best ARIMA (p,
d, q) model for monthly APS intakes accepted for
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assessment from January 2014 to June 2018. The data
from January 2014 to December 2017 (in-sample data)
were used for training the forecasting model, and the
validation was performed on the monthly APS intakes
from January 2018 to June 2018 (out-of-sample data).
To re-estimate all parameters of the selected ARIMA
model, all data from January 2014 to June 2018 was used
to forecast intake reports for the subsequent 6 months.
ARMA models are a combination of auto-regression

(AR) and moving average (MA) models, in which the
current value of the time series is expressed linearly in
terms of its previous values as well as current and previous
residual series [10]. The ARIMA model deals with non-
stationary time series with differencing process based on
the ARMA model. This model-building process is de-
signed to make use of previous observations to make pre-
dictions of future values using lag parameter values, under
the assumption that the pattern will persist.
The parameter for the model includes p, the order of

AR; d, the order of difference (integration) and q, the
order of MA. To obtain the best model, three steps were
followed: model specification (identification), model fit-
ting (estimation), and model diagnostics [11]. The iden-
tification stage describes the serial correlation of the
data and any relations to external factors. Lagged
scatter-plots were evaluated and the augmented Dickey-
Fuller (ADF) unit root test was used to identify whether
or not the time series was stationary. If the ADF test in-
dicates that the series is non-stationary, it is required to
take differences and continue the model-building
process with the differenced series. Also, to stabilize the
variance, the monthly counts of APS intakes were trans-
formed using a quartic root transformation.
Once a stationary series was obtained, the AR and MA

orders were determined after the examination of the
autocorrelation function (ACF) and the partial autocor-
relation function (PACF) plots. The ACF measures
whether earlier values in the series have some relation to
later values. PACF captures the amount of correlation
between a variable and a lag of itself that is not ex-
plained by correlations at all lower order lags [3]. Once a
set of candidate models were identified, we proceeded
with parameter estimation and model diagnostics. To
compare different ARIMA models the following mea-
sures of overall fit were evaluated: (1) coefficient of de-
termination (R2), (2) Akaike Information Criterion
(AIC), (3) Schwartz Bayesian Criterion (SBC), and (4)
Mean Square Error (MSE). The best model is the one
with the highest R2 and the lowest AIC, SBC, and MSE.
In the model fitting step, we estimated the parameters of
the model selected and then tested for significance of
the parameter estimates. The parameters were estimated
with the maximum likelihood (ML) method after the
identification step [12].

In the model diagnostic step, the goodness of fit was
examined by means of Ljung-Box Q-test and by plotting
the ACF of the residuals of the fitted model. If the model
is adequate then residuals should be uncorrelated
(white-noise) and Q should be small. A non-significant
value indicates that the chosen model fits well. If more
than 5% of the autocorrelation fall outside this range
then the residual process is not white noise.

Exogenous variables
Exogenous variables were added to the ARIMA
model to assess the impact of the implementation of
the intake hubs. This exogenous variable is an event
that may influence the number of APS intakes re-
ported after 2015 and 2017. Hence, this event may
have a temporary effect on the number of intake re-
ports after 2015 and 2017 or a more permanent ef-
fect. Coefficients and standard errors of the
exogenous variables will show whether the effect of
the intake hubs on monthly APS intake reports is
significant, while the AIC and SBC will indicate
whether the model improves compared to the uni-
variate model [10]. The residuals of the models
should mimic white noise.

Forecasting future reports
To predict the future values, the most parsimonious de-
veloped ARIMA model was fitted to the entire data from
January 2014 to June 2018 and used to forecast over a
time span of 6 months, covering July 2018 and Decem-
ber 2018. In the forecasting stage, we predicted subse-
quent observations and their corresponding prediction
interval (95% prediction interval) for both time series. In
terms of y, the general forecasting equation [13] is:

To obtain the predicted values in the original scales, the
reverse transformation was calculated. Data were ana-
lyzed using SAS Software Version 9.4 (North Carolina
State University, Raleigh, NC, USA) and the level of sig-
nificance was set at 5%.
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Poisson regression
Poisson regression models with a robust error variance
were fit to examine the association of the implementation
of the hubs in 2015 and 2017 and the number of intakes
reports received to APS, adjusting for gender (proportion
of males), race (proportion of being Black), and age (me-
dian age) of the clients. The SAS PROC GENMOD pro-
cedure with REPEATED statement was used to obtain
robust standard errors for the poisson regression coeffi-
cients. Least squares means were estimated to get the pre-
dicted number of intakes (predicted counts).

Results
In 2015, all APS intakes for 22 of 46 counties became
centralized into intake hubs. As a result, an increase of
32.2% in monthly APS intakes was observed in 2015.
The remaining 24 counties were rolled into intake hubs
in May 2017. An increase of 38.4% in monthly APS in-
takes was evident in 2017 (Table 1 and Fig. 1). Figure 2
depicts the median of monthly APS intake reports from
2015 to 2018. It is noticeable that the highest average of
monthly APS intake reports was registered from June to
August (Median: June - 480, July – 478, August – 489),
followed by March (Median: 438).
The time series plot suggests a non-stationary process

with a linear upward trend (Fig. 1). In addition, there is
a notable non-constant variance, hence, to stabilize the
variance the counts of APS intakes were transformed
using a quartic root transformation. The Augmented
Dickey-Fuller (ADF) unit root test indicated that the two
series are nonstationary (ADF p-value ≥0.05), hence the
time series were first differentiated. The ACF for both
time series decayed very slowly, indicating that it is suit-
able to take first differences. The first differences of
quartic root transformed data f∇ ffiffiffiffiffi

Y t
4
p g appears to be

stationary (Fig. 3; Panel A (Phase 1) & B (Phase 2)).

Estimation stage of the ARIMA model
The data was split into training (80%; from January 2014 to
December 2017) and testing (20%; from January 2018 to

June 2018) sets for both Phase 1 and Phase 2 models. Phase
1 model comprise the 22 counties that became centralized
into intake hubs between January 2015 and January 2016,
and Phase 2 include data of the 24 counties that were cen-
tralized into intake hubs between May 2017 and November
2017. To estimate the ARIMA model we used the testing
data (January 2014 to December 2017) and then re-
estimated the model parameters using all data (January
2014 to June 2018). Different combinations of AR and MA
orders were tested after evaluating the ACFs and PACFs of
the stationary series (Table 2). The ACF function decays for
the first lag, then it drops off to zero abruptly. Therefore, a
MA order of 1 was considered for both time series. Also,
an AR order of (1) and (12) were considered based on the
PACF plots. Of all the models tested, an ARIMA (12), 1, 1
model (p = (12), d = 1, q = 1) was found to perform best
after evaluating all fit measures for both models (Phase 1
model: AIC = − 74.22, SBC = − 68.31, R2 = 0.86, MAE =
0.013; Phase 2 model: AIC = − 51.13, SBC = − 45.22, R2 =
0.81, MAE= 0.012). The Ljung-Box chi-square statistics
and the autocorrelation function of the residuals indicate
that the residuals are independent, and the chosen model is

Table 1 Distribution of APS intakes accepted for assessment with Intake Hubs implemented in 2015 and 2017

Intake Hubs implemented from January 2015 to
January 2016
Phase 1 (22 counties)

Intake Hubs implemented from May 2017 to
November 2017
Phase 2 (24 counties)

Calendar Year # of Intakes State Pct. Increase # of Intakes Median Percentile
25th,75th

Quartile Range # of Intakes Median Percentile
25th,75th

Quartile Range

2014 3676 – 2375 191 183, 221 38 1301 106 93, 124 32

2015 4861 32.2 3574 312 256, 335 78 1287 109 95, 119 24

2016 5052 3.9 3580 304 271, 315 44 1472 122 104, 136 32

2017 6990 38.4 4728 401 349, 428 80 2262 188 153, 225 72

2018 (Jan-Jun) 4331 – 2665 446 422, 462 40 1666 272 264, 294 30

Fig. 1 Trend of monthly APS intakes accepted for assessment
between January 2014 and June 2018. Gray bars indicate the time
period when the Hubs were implemented
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appropriate (Phase 1 model P Box-Ljung (Q) = 0.47; Phase 2
model P Box-Ljung (Q) = 0.09).
The constructed ARIMA models include a positive AR

component (Phase 1 coefficient = 0.561, p < 0.0001; Phase 2
coefficient = 0.343, p = 0.016) indicating that current
month’s number of APS intakes depends on the average
value of APS intakes plus some fraction of its deviation
from this average value a year ago, plus a random error
(Table 3). In addition, a positive MA component with a lag
of one (Phase 1 coefficient = 0.552, p < 0.0001; Phase 2 coef-
ficient = 0.695, p < 0.0001) indicates that each value of the
variable is determined by the current disturbance and pre-
vious forecast errors.
The ARIMA models improve after adding the exogenous

variables that takes the value ‘0’ before the hub implemen-
tation time period and ‘1’ after that. The impact of the hub
implementation variables are significant (Phase 1 coeffi-
cient = 0.279, p = 0.001; Phase 2 coefficient = 0.043, p =
0.004), showing a significant increase on monthly APS re-
ports after the implementation periods (Table 3). Clearly,
the dynamics of APS intake reports was influenced by the
implementation of the intake hubs. This model was used
for forecasting APS intake reports into the future.

Forecasting stage
The training data (January 2014 to December 2017) suc-
cessfully predicted the monthly APS intake reports be-
tween January 2018 and June 2018 (testing set; “out-
of-sample forecast”), in which the testing set fell
within the 95% confidence interval (see Add-
itional file 1; Table 1). After determining the optimal
model, the monthly forecast of APS intake reports
and the 95% prediction intervals were calculated for
the time period of July 2018 to December 2018
(Table 4). For Phase 1, the optimum ARIMA (12), 1,
1 model predicted an average of 488 APS intake re-
ports (95% prediction interval between 447 and 520)
between July and December 2018, representing a 9%
increase from January–June 2018 (median = 445). For
Phase 2, the percent increase from January–June 2018
(median = 272) to July–December 2018 (median = 358;
95% prediction interval: 336, 391) was 32%. Fig. 4 dis-
plays the actual number of APS intakes and the pre-
diction from the ARIMA model with the
corresponding 95% predicted intervals (Panel A: Phase
1 & Panel B: Phase 2 models). Major peaks can be
observed around June to August, and again a light
peak for March, adequately capturing the pattern in
the data.

Poisson regression
To corroborate the significant effect of the imple-
mentation of the hubs on the increase of cases re-
ported to APS found in the ARIMA model, poisson
regression analysis was performed after adjusting for
gender (proportion of males), race (proportion of be-
ing Black), and age (median age) of the clients. The
least square means of the estimates are shown in
Table 2 (see Additional file 1; Table 2). It seems that
the predicted number of intakes after the implementation
of the hubs in 2015 was (203.6/143.58) = 1.41 times the
predicted number of intakes before the implementation of

Fig. 2 Box-plot distribution of median monthly APS intakes
accepted for assessment. Line within the box represents median
values, border lines represent the first and the third quartile

Fig. 3 Stationary Phase 1 & 2 time series; first differences of quartic root transformed data. a: Phase 1; January 2015 to January 2016–22 counties.
b: Phase 2; May 2017 to November 2017–24 counties
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the hubs in 2015. Likewise, the predicted number of in-
takes after the implementation of the hubs in 2017 was
(107.33/64.24) = 1.67 times the predicted number of in-
takes before the implementation of the hubs in 2017.
These results validate the significant effect of the imple-
mentation of the hubs on the number of intakes reported
to APS that were found in the ARIMA models.

Discussion
With ARIMA modeling, we successfully assessed the dy-
namics and fluctuations of the APS intake reports and
accurately forecasted an increase in reports of maltreat-
ment of vulnerable adults into the future. We found that
the implementation of the intake hubs have a significant

impact in the number of reports received after the im-
plementation period. This exogenous variable (hub im-
plementation) added explanatory power to the ARIMA
process, substantially improving the ARIMA model.
We found that ARIMA (12), 1, 1 model is the most

appropriate model to predict APS intake reports into the
future. The results indicate that the predicted data by
ARIMA model are quite similar to the actual data during
early 2018 calendar year. Our findings also revealed that
monthly APS intakes are more frequent during March
and over the summer (June to August). It seems that the
implementation of intake hubs in 2015 and 2017
boosted the number of APS intake reports onward. The
ARIMA predictive model showed an ascending trend of

Table 3 Parameter estimates of the selected ARIMA model for APS intakes (# of observations = 53)

Phase 1: January 2015 to January 2016 (22 counties) Phase 2: May 2017 to November 2017 (24 counties)

Parameter Estimate Standard Error P-value Estimate Standard Error P-value Lag

MA1,1 0.552 0.115 < 0.0001 0.695 0.116 < 0.0001 1

AR1,1 0.561 0.117 < 0.0001 0.343 0.142 0.016 12

Hub 0.279 0.089 0.001 0.043 0.015 0.004 0

Table 2 ARIMA models and selection criteria

Phase 1: January 2015 to January 2016 (22 counties) Phase 2: May 2017 to November 2017 (24 counties)

ARIMA
Model

AIC SBC R2 MSE Ljung_Box
p-value

AIC SBC R2 MSE Ljung_Box
p-value

p(12); q = 1;
d = 1

−74.22 −68.31 0.86 0.013 0.47 −51.13 −45.22 0.81 0.020 0.09

p = 0; q (1) (12);
d = 1

- 70.94 −65.03 0.85 0.014 0.42 −49.52 −43.61 0.81 0.020 0.05

p (1) (12); q = 0;
d = 1

−74.61 −68.70 0.86 0.013 0.16 −44.19 −38.28 0.78 0.023 0.004

Table 4 Forecasted monthly APS intakes accepted for assessments

Lead times Phase 1: January 2015 to January 2016 (22 counties) Phase 2: May 2017 to November 2017 (24 counties)

Date Predicted APS intakes 95% CI Predicted APS intakes 95% CI

July 2018 491 398, 592 337 254, 430

August 2018 520 412, 640 336 250, 433

September 2018 486 373, 613 340 250, 444

October 2018 512 385, 656 375 273, 491

November 2018 464 338, 608 391 280, 517

December 2018 447 318, 596 387 272, 519

Median 95% CI Median 95% CI

July – December 2018 488 447, 520 358 336, 391

January – June 2018 446 407, 483 272 256, 309

Percent increase 9% – 32% –
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these reports, indicating a necessity for appropriate plan-
ning, allocation of funding and investigators to handle a
large volume of APS intakes in the future. Not only a
high demand of social workers are needed, but an in-
crease in health care expenditures among this popula-
tion is expected.
Based on projections made by the South Carolina

Revenue and Fiscal Affairs, South Carolina is expected
to reach aging population status by the year 2030, at
which point 22% of the total state’s population will
be 65 years or older [14]. As the number of older
adults is projected to increase dramatically over the
next 10 years, this will pose major challenges to our
social service agency, as there could be greater re-
ports of maltreatment of vulnerable adults among this
population making this a social and public health
issue. In our study, around 63% of the cases were 65
years of age or older, in which 62% were females.
This implies a higher need of social workers special-
ized in vulnerable older adults and gerontology.
One limitation of this study is that the univariate fore-

casting ARIMA model was used. However, the signifi-
cant effect of the implementation of the hubs on the
number of cases reported to APS were corroborated
with the poisson regression models after adjusting for
age, gender, and race. Nevertheless, the goal of this
paper is to evaluate the dynamics and fluctuations of
APS intake reports over time and the impact of the im-
plementation of the intake hubs on future intake reports
of vulnerable adults. While multiple statistical modeling
methods exist for analyzing caseload data [15], we se-
lected time series modeling and forecasting as an appro-
priate method to show the trend of APS intake reports
over a 4-year period.

Conclusions
In summary, ARIMA time series modeling is a valuable
tool for forecasting future reports of maltreatment of
vulnerable adults with a high accuracy. Policymakers
and program administrators at both the state and federal
levels need effective forecasts of future intake reports
which could help improve their ability to respond effi-
ciently to high volume of maltreatment reports as South
Carolina aging population continues to increase. Fore-
casting methods can be integrated into routine surveil-
lance practice in social service agencies. More research
on the accurate prediction of future intake reports of
maltreatment should be conducted and compared with
other forecasting techniques.
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