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Machine‑learning algorithms 
for forecast‑informed reservoir 
operation (FIRO) to reduce flood 
damages
Manizhe Zarei1, Omid Bozorg‑Haddad1*, Sahar Baghban1, Mohammad Delpasand1, 
Erfan Goharian2 & Hugo A. Loáiciga3

Water is stored in reservoirs for various purposes, including regular distribution, flood control, 
hydropower generation, and meeting the environmental demands of downstream habitats and 
ecosystems. However, these objectives are often in conflict with each other and make the operation of 
reservoirs a complex task, particularly during flood periods. An accurate forecast of reservoir inflows 
is required to evaluate water releases from a reservoir seeking to provide safe space for capturing high 
flows without having to resort to hazardous and damaging releases. This study aims to improve the 
informed decisions for reservoirs management and water prerelease before a flood occurs by means 
of a method for forecasting reservoirs inflow. The forecasting method applies 1‑ and 2‑month time‑
lag patterns with several Machine Learning (ML) algorithms, namely Support Vector Machine (SVM), 
Artificial Neural Network (ANN), Regression Tree (RT), and Genetic Programming (GP). The proposed 
method is applied to evaluate the performance of the algorithms in forecasting inflows into the Dez, 
Karkheh, and Gotvand reservoirs located in Iran during the flood of 2019. Results show that RT, with 
an average error of 0.43% in forecasting the largest reservoirs inflows in 2019, is superior to the other 
algorithms, with the Dez and Karkheh reservoir inflows forecasts obtained with the 2‑month time‑
lag pattern, and the Gotvand reservoir inflow forecasts obtained with the 1‑month time‑lag pattern 
featuring the best forecasting accuracy. The proposed method exhibits accurate inflow forecasting 
using SVM and RT. The development of accurate flood‑forecasting capability is valuable to reservoir 
operators and decision‑makers who must deal with streamflow forecasts in their quest to reduce flood 
damages.

Floods are natural hazards that affect an average of 80 million people annually and cause more deaths and finan-
cial losses than any other natural  disaster1,2. One of the traditional ways to control floods is building dams and 
reservoirs, which are operated to create flood control space to store and regulate high flows. Water is released 
gradually according to the safe discharge in the rivers downstream to meet the required flood control space. 
Accurate forecasts of reservoir inflows must be made before the flood events. Identifying appropriate algorithms 
for forecasting future reservoir inflow is paramount to reservoir operators. An example of Forecast-Informed 
Reservoir Operation (FIRO) has been practised in Mendocino Lake, California, during the past few  decades3. 
FIRO is a strategy that improves informed decisions about releasing water from reservoirs and increases flexibility 
in the operation and management of reservoirs by improving hydrologic  forecasting3,4.

Physically-based and statistical models have been applied to forecast reservoir  inflows5. Physically-based 
models simulate the involved hydrological processes and estimate reservoir  inflow6–8. Physically-based models 
such as the Soil and Water Assessment Tool (SWAT)9, the watershed-scale Long-Term Hydrologic Impact Assess-
ment model (watershed-scale L-THIA)10 and the Hydrological Simulation Program—Fortran (HSPF)11 are used 
to simulate water cycle  components12. Physically-based models can be applied to simulate flood events account-
ing for the key hydrologic processes involved. They often require large volumes of hydro-geomorphological 
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data, detailed information about the characteristics and dynamic changes of a watershed, and are computation-
ally  expensive13. Besides, physically-based models make simplifications of hydrologic  processes14 and involve 
parameters that must be calibrated, sometimes with in-depth effort, which causes model forecasts to vary greatly 
among  models15.

Recent advancements in Machine Learning (ML) modeling techniques can address and overcome the dif-
ficulties that beset physically-based models, giving impetus to using data-driven algorithms and ML modeling 
in reservoir inflow forecasting, among others. ML algorithms can be applied to forecast reservoir inflow by rely-
ing on relevant data rather than simulating the hydrological processes  involved16. The advantages of using ML 
algorithms are easier and faster implementation, less computational effort, and reduced complexity compared to 
the physically-based models, particularly the distributed type  variety17,18. A variety of ML algorithms have been 
applied to analyze big data and large-scale systems, in particular for hydrologic modeling and water resources 
 management19–23. For example, Support Vector Machine (SVM) was implemented for lake water level  forecast24, 
modelling daily reference  evapotranspiration25, soil moisture  estimation26, water quality forecast  modelling27, 
and groundwater quality  characterization28. Artificial Neural Networks (ANNs) were applied to forecasting the 
runoff  coefficient29, river discharges  forecasting30, water demand forecasting under climate  change31, wastewa-
ter temperature  forecasting32, and groundwater level  simulation33. Genetic Programming (GP) was applied to 
forecasting rainfall-runoff  response34, suspended sediment  modeling35, calculating of the optimal operation of 
an aquifer-reservoir  system36, modelling of  groundwater37, and crop yield  estimating38.

Several previous studies have forecasted river flow for flood  routing39, flood susceptibility  mapping40 and 
calculating flood  damages41 in unregulated rivers. This work proposes a river flow forecasting method to improve 
flood mitigation by reservoirs and guide FIRO to reduce flood damages.

Heavy and continuous precipitation in 2019 led to severe floods in large areas of Iran, which caused great 
material and human losses. The southwestern basins of the country had the most share of precipitation and 
suffered significant damages due to floods. River flow forecasts did not forecast accurately the magnitude of the 
reservoirs inflow, which led to inadequate flood control by reservoirs  operation42. The 2019 flood event raised 
questions about the poor river flow forecasting performance. This work addresses these questions. This work 
develops methods for flood forecasting in terms of timing and magnitude to allow operators to release water from 
reservoirs and route the floods with minimal or no damage. The flood forecasts are made with 1- and 2-month 
time-lag patterns in the algorithms. Each time-lag pattern produces four flood projections, which correspond 
to the wettest months in the study area. Specifically, the flood forecasts provide operators with information 
about the reservoirs inflows likely to occur during the wettest months of the year (January, February, March and 
April) with one month lead time (obtained with the forecasts based on the 1-month time-lag pattern) and with 
two months lead time (obtained with the forecasts based on the 2-month time-lag pattern). This study’s flood 
forecasting methodology considers the effect that practical limitations, such as data scarcity, have on the accu-
racy of the forecasts. A challenge in developing countries is the scarcity of hydro-climate data due to the lack of 
modern hydrologic and weather monitoring stations. This paper’s data-driven flood forecasting methodology is 
intended to support FIRO and reduce flood damages.

Methods
This study applies the SVM, ANN, RT, and GP, for forecasting monthly reservoirs inflow with 1- and 2-month 
time lags. The historical data for inflow to the Dez, Karkheh, and Gotvand reservoirs were collected and used 
to build the ML algorithms. The inputs to the algorithms for the Dez, Karkheh, and Gotvand reservoirs are the 
monthly inflows for 1965–2019, 1957–2019, and 1961–2019, respectively. Four projections were designed for 
the 1-month time lag and the 2-month time lag patterns based on the input and output months, as depicted in 
Fig. 1. Figure 2 displays the flowchart of this paper’s methodology.
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Figure 1.  Schematic of projections of 1-month and 2-month time-lag patterns.
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Figure 2.  Flowchart of this study’s methodology.
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Support vector machine. Support Vector Machine was introduced by Vapnik et al.43. SVM performs clas-
sification and regression based on statistical learning  theory44. The regression form of SVM is named support 
vector regression (SVR). Vapnik et al.45 defined two functions for SVR design. The first function is the error 
function. (Eq. (1), see Fig. 3). The second function is a linear function that calculates output values for input, 
weight, and deviation values (Eq. 2):

where y , f (x) , ε , ξ , W , b , T denote respectively the observational value, the output value calculated by SVR, a 
function sensitivity value, a model penalty, the weight applied to the variable x , the deviation of WTx from the 
y , and the vector/matrix transpose operator.

It is seen in Fig. 3 that the first function (Eq. 1) does not apply a penalty to the points where the difference 
between the observed value and the calculated value falls within the range of (−ε,+ε) . Otherwise, a penalty ξ 
is applied. SVR solves an optimization problem that minimizes the forecast error (Eq. 3) to improve the model’s 
forecast accuracy. Equations (4) and (5) represent the constraints of the optimization problem.

Subject to:

where C , m, ξ−i  , ξ+i  , yi , and || || denote respectively the penalty coefficient, the number of input data to the model 
in the training phase, the penalty for the lower bound (−ε,+ε) , the penalty for the upper bound (−ε,+ε) , the i-th 
observational value, and vectorial magnitude. The values of W and b are calculated by solving the optimization 
problem embodied by Eqs. (3)–(5) with the Lagrange method, and they are substituted in Eq. (2) to calculate the 
SVR output. SVR is capable of modeling nonlinear data, in which case it relies on transfer functions to transform 
the data to such that linear functions can be fitted to the data. Reservoirs inflow is forecasted with SVR was 
performed with the Tanagra software. The transfer function selected and used in this study is the Radial Basis 
Function (RBF), which provided better results than other transfer functions. The weight vector W is calculated 
using the Soft Margin  method46, and the optimal values of the parameters ξ−i ,+ξ+i  and C were herein estimated 
by trial and error.

Regression tree (RT). RT involves a clustering tree with post-pruning processing (CTP). The clustering 
tree algorithm has been reported in various articles as the forecasting clustering  tree47 and the monothetic clus-
tering  tree48. The clustering tree algorithm is based on the top-down induction algorithm of decision  trees49; 
This algorithm takes a set of training data as input and forms a new internal node, provided the best acceptable 
test can be placed in a node. The algorithm selects the best test scores based on their lower variance. The smaller 
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Figure 3.  Illustration of the error function of SVR.
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the variance, the greater the homogeneity of the cluster and the greater the forecast accuracy. If none of the tests 
significantly reduces the variance the algorithm generates a leaf and tags it as being representative of  data47,48.

The CTP algorithm is similar to the clustering tree algorithm, except that its post-pruning process is per-
formed with a pruning set to create the right size of the  tree50.

RT used in this study is programmed in the MATLAB software. The minimum leaf size, the minimum node 
size for branching, the maximum tree depth, and the maximum number of classification ranges are set by trial 
and error in this paper’s application.

Genetic programming (GP). GP, developed by  Cramer51 and  Koza52, is a type of evolutionary algorithm 
that has been used effectively in water management to carry out single- and multi-objective  optimization53. GP 
finds functional relations between input and output data by combining operators and mathematical functions 
relying on structured tree  searches44. GP starts the searching process by generating a random set of trees in the 
first iteration. The tree’s length creates a function called the depth of the tree which the greater the depth of the 
tree, the more accurate the GP functional relation  is54. In a tree structure, all the variables and operators are 
assumed to be the terminal and function sets, respectively. Figure 4 shows mathematical relational functions 
generated by GP. Genetic programming consists of the following steps:

• Select the terminal sets: these are the problem-independent variables and the system state variables.
• Select a set of functions: these include arithmetic operators (÷ , ×, −, +), Boolean functions (such as "or" 

"and"), mathematical functions (such as sin and cos), and argumentative expressions (such as if–then-else), 
and other required statements based on problem objectives.

• Algorithmic accuracy measurement index: it determines to what extent the algorithm is performing correctly.
• Control components: these are numerical components, and qualitative variables are used to control the 

algorithm’s execution.
• Stopping criterion: which determines when the execution of the algorithm is terminated.

Sqrt

/

-+

X3X2X15

Root node

Functional nodes

Terminal nodes

Figure 4.  Example of mathematical relations produced by GP based on a tree representation for the 
function: f (X1,X2,X3) = (5X1/(X2X3))

2.

Table 1.  Operators and range of parameters used in GP.

Range or type of parameters The best case

Number of chromosomes 20–120 100

Number of genes 3–20 15

Generation 2000–5000 2000

Crossover 0–1 0.9

Mutation 0–1 0.1

Operators used +/−/÷/x/sin/cos/sqrt/x3/x2/exp/tan/and/or/if +/−/÷/x/sin/cos/sqrt/x2

Stopping criteria Generation number / Random / Best fitness Best fitness
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The Genexprotools software was implemented in this study to program GP. The GP parameters, operators, 
and linking functions were chosen based on the lowest RMSE in this study. The GP model’s parameters and 
operators applied in this study are listed in Table 1.

Artificial Neural Network (ANN). ANN, developed by McCollock and  Walterpits55, is an artificial intelligence-
based computational method that features an information processing system that employs interconnected data 
structures to emulate information processing by the human  brain56. A neural network does not require pre-
cise mathematical algorithms and, like humans, can learn through input/output analysis relying on explicit 
 instructions57. A simple neural network contains one input layer, one hidden layer, and one output layer. Deep-
learning networks have multiple hidden  layers58. ANN introduces new inputs to forecast the corresponding 
output with a specific algorithm after training the functional relations between inputs and outputs.

This study applies the Multi-Layer Perceptron (MLP). A three-layer feed-forward ANN that features a pro-
cessing element, an activation function, and a threshold function, as shown in Fig. 5. In MLP, the weighted sum 
of the inputs and bias term is passed to activation level through a transfer function to create the one output.

The output is calculated with a nonlinear function as follows:

where Wi , Xi , b , f  , and Y  denote the i-th weight factor, the i-th input vector, the bias, the conversion function, 
and the output, respectively.

The ANN was coded in MATLAB. The number of epochs, the optimal number of hidden layers, and the 
number of neurons of the hidden layers were found through a trial-and-error procedure. The model output 
sensitivity was assessed with various algorithms; however, the best forecasting skill was achieved with the Lev-
enberg–Marquardt (LM)  algorithm59, and the weight vector W is calculated using the Random Search  method60. 

(6)Y = f

(

n
∑

i=1

WiXi + b

)

Y1

X1

X2

Input Layer
Hidden Layer

Output Layer
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W1

W1

W1

X3

X3

X2

X1
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ƒ(.) Y1

Output

Inputs
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Figure 5.  The general structure of a three-layer feed forward ANN and processing architecture.
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Furthermore, the Tangent Sigmoid and linear transfer function were chosen by trial and error and used in the 
hidden and output layers, respectively.

70% of the total data were randomly selected and used for training SVM, ANN, RT, and GP. The remaining 
30% of the data were applied for testing the forecasting algorithms.

Performance‑evaluation indices. The forecasting skill of the ML algorithms (SVM, ANN, RT, and GP) 
was evaluated with the Correlation Coefficient (R), the Nash–Sutcliffe Efficiency (NSE), the Root Mean Square 
Error (RMSE), and the Mean Absolute Error (MAE) in the training and testing phases. The closer the R and NSE 
values are to 1, and the closer the RMSE and MAE values are to 0, the better the performance of the  algorithms20. 
Equations (7)–(10) describe the performance indices:

in which Qfore,i , Qobs,i , Qmean fore , Qmean obs , i , and n denote the forecasted inflow, observed inflow, mean forecasted 
inflow, mean observed inflow, time step, and the total number of time steps during training and testing phases, 
respectively.

Ethics approval. All authors complied with the ethical standards.

Consent to participate. All authors consent to participate.

Consent for publish. All authors consent to publish.

Case study
The Great Karun Basin, Iran, is part of the Persian Gulf catchment. It is located in southwestern Iran, with an 
area of about 67,257  km2. The main river of the basin, the Karun, with a length of about 950 km, stems from 
the Yellow Mountains and flows through mountainous areas in Indika and Masjed Soleyman and ultimately 
discharges into the Persian Gulf. Dez and Gotvand are the two main reservoirs which are located in this basin.

Karkheh Basin is located in western Iran, in the middle and southwestern regions of the Zagros Front. The 
area of this basin is about 51,604  km2. Karkheh reservoir is located in this basin. Table 2 lists the characteristics 
of the Dez, Karkheh, and Gotvand reservoirs. Figure 6 shows the location of Dez and Gotvand reservoirs in the 
Great Karun basin and the Karkheh reservoir in the Karkheh basin.

During March and April 2019 Iran faced three major waves of extreme precipitation, leading to extreme floods 
with long return periods in large parts of  Iran61,62. Before the 2019 flood many parts of Iran suffered drought 
and the drying of lakes and rivers for almost 30 years due to climatic  change63. The southwestern regions of 
Iran including Great Karun and Karkheh basins endured the brunt of the second and third waves of precipita-
tion and suffered severe damages due to fluvial floods.The Dez, Gotvand and Karkheh reservoirs received large 
volumes and precipitation and river flows. Table 3 shows the average, minimum, and maximum inflows to the 
Dez, Karkheh, and Gotvand reservoirs during January through April. This study develops a method to forecast 
reservoirs inflows in the Great Karun and Karkheh basins, which can be applied to future events.
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∑n
i=1

(

Qfore, i − Qobs,i

)2

∑n
i=1

(

Qobs,i − Qmean obs

)2
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Table 2.  Specifications of the Dez, Karkheh and Gotvand reservoirs.

Reservoirs Reservoir Type Capacity (×  106  m3) Height (m) River Purposes Basin Location

Dez Double arched concrete 2698 203 Dez River Hydropower, flood control, irrigation water Great Karun Khuzestan

Karkheh Soil with clay core 5900 127 Karkheh River Hydropower, Industrial, agricultural and drinking 
supply Karkheh Khuzestan

Gotvand Gravel and clay core 4500 760 Karun River Hydropower, flood control, agricultural water supply Great Karun Khuzestan
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Figure 6.  Location of the study areas in Iran; (a) Karkheh basin and (b) Great Karun basin (ArcGIS 10.8.1).

Table 3.  Minimum, maximum and average inflow to Dez, Karkheh and Gotvand reservoirs in January until 
April 2019.

Reservoir Min inflow  (m3/s) Max inflow  (m3/s) Average inflow  (m3/s)

Dez 1080.205 4509.307 2217.165

Karkheh 1067.600 5539.832 2412.184

Gotvand 1326.415 4640.422 2496.173
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Results and discussion
Dez reservoir evaluation. The values of the performance indices for SVM, ANN, RT and GP with the 
time-lag patterns in the Dez reservoir are listed in Table 4. It is seen that SVM had minimal RMSE, and RT had 
minimal MAE with the 1-month time-lag pattern applied to the January and April projections. SVM and RT 
performed better than the other algorithms in the testing phase. SVM had the best RMSE (MAE), 74.27 (74.26) 
for the February projection. RT achieved the best results for the March projection by having RMSE (MAE) of 
33.37 (8.34). Appendix 1 presents the performance of the applied forecasting algorithms corresponding to the 
1-month time-lag pattern for the Dez reservoir for the four projections.

The results listed in Table 4 indicate that the RT’s RMSE (MAE) obtained with the 2-month time-lag pattern 
applied to the January projection is 181.07 (63), which means a better forecast than the other algorithms in the 
testing phase. SVM had the best RMSE (MAE), 146.67 (144.15) for the February projection. SVM had the best 
values of RMSE for the other projections, and RT had the lowest values of the MAE. The 2-month time-lag pat-
tern results associated with the Dez reservoir are presented in Appendix 2.

Karkheh reservoir evaluation. It is seen in Table 5 that SVM and RT have the best RMSE and MAE val-
ues, respectively, with the 1-month time-lag pattern applied to the January projection and the February projec-
tion and produced more accurate forecasts than the other algorithms. The smallest RMSE and MAE recorded 
in the testing phase corresponded to SVM for the other projections. The 1-month time-lag pattern results cor-
responding to the Karkheh reservoir under the four projections herein considered are presented in Appendix 3.

The results in Table 5 indicate that RT had the best accuracy according to the RMSE and MAE values for 
the 2-month time-lag pattern in the testing phase for the January projection and April projection. The highest 
accuracy corresponded to SVM and RT according to the RMSE and MAE values, respectively, for the February 

Table 4.  Results of the applied algorithms obtained with the 1-month and 2-month time-lag patterns in Dez 
reservoir.

Algorithms Phase Projections

1-month time-lag pattern 2-month time-lag pattern

R NSE RMSE  (m3/s) MAE  (m3/s) R NSE RMSE  (m3/s) MAE  (m3/s)

SVM

Train

January 0.98 0.96 66.91 59.49 0.56 0.28 291.27 190.36

February 0.98 0.97 73.45 71.82 0.95 0.89 137.48 136.8

March 0.97 0.93 159.2 151.87 0.93 0.97 170.36 168.1

April 0.97 0.91 216.2 206 0.91 0.97 217.4 209.7

Test

January 0.98 0.97 66.76 61.51 0.55 0.17 375.528 263.67

February 0.99 0.98 74.27 74.26 0.97 0.94 146.67 144.15

March 0.97 0.89 171.13 170.02 0.96 0.9 166.37 163.81

April 0.99 0.95 214.1 203.25 0.99 0.95 224.14 221.14

ANN

Train

January 0.87 0.87 169.4 155.4 0.45 0.8 316.96 198.2

February 0.58 0.81 423.78 303.4 0.57 -0.03 396.52 421.6

March 0.84 0.76 374.27 321.3 0.73 0.87 602.68 351.6

April 0.92 0.97 315.63 229.7 0.77 0.91 464.32 536.1

Test

January 0.81 0.78 140.49 236.8 0.62 0.63 370.52 342.4

February 0.85 0.63 702.95 422.7 0.79 0.25 641.58 451.7

March 0.51 0.76 531.84 203.3 0.9 0.31 304.56 419.7

April 0.61 0 983.54 543 0.81 0.32 710.35 444.9

RT

Train

January 0.97 0.94 82.58 22.54 0.91 0.82 145.47 51.32

February 0.94 0.96 146.33 38.75 0.92 0.84 173.55 139.36

March 0.9 0.77 302.16 79.54 0.99 0.99 53.09 11.82

April 0.94 0.87 269.07 61.28 0.98 0.98 108.96 26.82

Test

January 0.94 0.89 138.55 51.98 0.85 0.81 281.07 83

February 0.9 0.75 301.22 93.25 0.88 0.76 294.99 209.52

March 0.99 0.99 33.37 8.34 0.93 0.84 209.24 81.65

April 0.97 0.94 232.32 58.08 0.9 0.8 437.14 130.88

GP

Train

January 0.85 0.72 180.24 150.4 0.86 0.74 174.06 122.3

February 0.89 0.78 200.93 156.1 0.89 0.95 258.72 203.3

March 0.92 0.75 262.57 198.1 0.89 0.93 376.74 285.4

April 0.88 0.77 348.69 270.2 0.89 0.95 339.29 274.7

Test

January 0.83 0.52 493.03 353.2 0.87 0.72 259.43 222.1

February 0.9 0.78 351.47 314.6 0.78 0.78 704.31 689.6

March 0.87 0.86 360.63 327.3 0.87 0.77 597.18 489.1

April 0.88 0.73 854.05 656.3 0.83 0.83 975.52 933.3
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and March projections. Appendix 4 presents the 2-month time-lag pattern results for the Karkheh reservoir with 
the applied forecasting algorithms.

Gotvand reservoir evaluation. The SVM, RT, ANN, and GP results associated with the Gotvand res-
ervoir are listed in Table 6. SVM and RT had the lowest RMSE and MAE values, respectively, for the January 
and April projections with the 1-month time-lag pattern in the testing phase. SVM produced the lowest RMSE 
(MAE), 93.46 (91.12) for the February projection. RT had the lowest RMSE (MAE), 257.91 (60.79) for the April 
projection. Appendix 5 presents the performance of the applied forecasting algorithms corresponding to the 
1-month time-lag pattern for the four projections associated with the Gotvand reservoir.

It is seen in Table 6 that RT had the best RMSE (MAE) value, 256.84 (209.1) corresponding to the 2-month 
time-lag pattern in the testing phase for the January projection. SVM had the lowest RMSE and MAE for the 
February and March projections. SVM had the lowest RMSE (260.76), and RT had the lowest MAE (111.73) for 
the April projection. Appendix 6 confirms the accurate forecasting skill of SVM and RT for inflow to Gotvand 
reservoir with the 2-month time-lag pattern compared to the other forecasting algorithms.

RT has the lowest MAE for several projections with both time-lag patterns in the three reservoirs, while the 
minimal RMSE was obtained by SVM. It is seen in Appendixes 1–6 that RT calculated excellent forecasts for most 
years for the four projections; yet, RT had a large forecast error in some years. In contrast, SVM forecasted inflows 
with a relatively constant error. The MAE (Eq. (9)) calculates the mean of the absolute values of the differences 
between the observed and forecasted inflows to the reservoirs assigning the same weights to the differences. This 
is the main reason RT had lower MAE values than SVM under most projections, as RT forecasted most of the 
observed inflows well. On the other hand, the RMSE is the root of the mean square differences, which assigns 

Table 5.  Results of the applied algoriths obtained with the 1-month and 2-month time-lag patterns in 
Karkheh reservoir.

Algorithms Phase Projections

1-month time-lag pattern 2-month time-lag pattern

R NSE RMSE  (m3/s) MAE  (m3/s) R NSE RMSE  (m3/s) MAE  (m3/s)

SVM

Train

January 0.98 0.97 36.88 36.7 0.66 0.39 172.9 108.71

February 0.94 0.89 108.88 107.87 0.95 0.89 109.75 109.32

March 0.98 0.94 117.48 109.55 0.97 0.94 118.88 112.91

April 0.97 0.9 237.75 225.75 0.96 0.9 234.55 220.96

Test

January 0.99 0.98 35.5 33 0.45 0.11 246.25 155.83

February 0.97 0.92 110.44 110.3 0.97 0.93 128.51 119.52

March 0.94 0.87 124.48 118.46 0.92 0.85 131.63 131.5

April 0.99 0.96 247.57 235.46 0.98 0.96 241.08 233.11

ANN

Train

January 0.81 0.94 142.74 89.62 0.61 0.89 185.02 115.48

February 0.84 0.84 213.89 205.7 0.73 0.83 267.32 192.73

March 0.86 0.87 254.17 236.72 0.73 0.78 268.1 316.71

April 0.89 0.89 331.79 351.23 0.92 0.87 384.32 385.78

Test

January 0.9 0.67 120.21 101.82 0.83 0.1 127.03 207.09

February 0.85 0.97 400.93 159.73 0.84 0.88 497.2 119.36

March 0.85 0.75 530.11 115.76 0.82 0.66 241.06 120.79

April 0.92 0.73 482.03 407.53 0.84 0.99 440.59 153.66

RT

Train

January 0.88 0.75 110.85 25.2 0.84 0.7 119.96 78.27

February 0.92 0.84 131.46 31.86 0.9 0.82 139.97 53.55

March 0.9 0.8 208.83 157.53 0.96 0.92 135.23 34

April 0.88 0.78 359.25 245.1 0.94 0.88 261.51 69

Test

January 0.97 0.96 52.82 16.98 0.87 0.84 105.09 83.34

February 0.92 0.79 232.26 74.25 0.96 0.93 133.07 43.66

March 0.89 0.79 157.8 137.77 0.9 0.79 156.5 47.58

April 0.95 0.77 562.09 337.45 0.99 0.98 182 66

GP

Train

January 0.88 0.74 111.39 86.5 0.92 0.96 103.76 82.99

February 0.89 0.8 146.99 109.91 0.89 0.96 144.02 103.5

March 0.91 0.82 199.54 168.72 0.88 0.93 329.02 249.39

April 0.91 0.82 318.21 257.65 0.9 0.81 336 246.47

Test

January 0.92 0.83 114.86 74.92 0.87 0.63 485.13 380.42

February 0.83 0.56 488.5 327.75 0.89 0.82 418.2 264.39

March 0.92 0.62 308.95 231.78 0.88 0.86 239.58 217.05

April 0.84 0.86 290.73 239.18 0.91 0.73 1312.2 667.64
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more weight to the large differences because of the squaring applied [see Eq. (10)]. This caused SVM to produce 
lower RMSE than RT.

Tables 4, 5 and 6 establish that all the applied algorithms had the lowest forecasting accuracy under January 
projection with the 2-month time-lag pattern in the three reservoirs compared with the other projections judging 
by the significant drop in the values of the performance indices. This is so because the hydrologic or water year 
starts in September–October in Iran, and the algorithms for the January projection with a 2-month time lag fore-
cast the reservoir inflows relying only on the October input data. It is evident in Fig. 7 that the reservoirs inflow 
in October 2019 are affected by the long-term reservoirs inflows and prolonged drought. Therefore, forecasting 
reservoirs inflow for the January projection with a 2-month time lag is more uncertain than the other projections.

A more detailed evaluation of the obtained results is the average improvement percentages (AIPs) of R and 
RMSE for the SVM and the AIPs of the MAE corresponding to the RT compared with the other forecasting 
algorithms in the testing phase when applying the 1-month and 2-month time-lag patterns. It is seen in Table 7 
the clear superiority of the average R and RMSE associated with SVM model when using the 1-month time-
lag pattern; that is, SVM features positive AIPs of R and RMSE when compared with RT, ANN, and GP. The 
largest AIPs of R and RMSE for SVM were obtained relative to ANN and GP (in Dez and Gotvand reservoirs), 
respectively. SVM featured negative AIPs of R compared to RT and GP in Dez reservoir and comparison with 
ANN, RT, and GP in the other reservoirs under the 2-month lag-time pattern, as shown in Table 7. Also, SVM 
had negative AIPs of RMSE in comparison with the RT in Karkheh and Gotvand reservoirs for the 2-month 
time-lag pattern. The reason for negative AIPs of R and RMSE for SVM was the SVM’s performance decline 
with respect to the January projection with a 2-month time lag compared to the other algorithms in forecasting 
the reservoirs inflow. The most negative AIPs of R for SVM was obtained when compared with RT. Therefore, 
under the 2-month time-lag pattern, RT had higher accuracy on average than SVM, ANN and GP with respect 

Table 6.  Results of the applied algorithms obtained with the 1-month and 2-month time-lag patterns in 
Gotvand reservoir.

Algorithms Phase Projections

1-month time-lag Pattern 2-month time-lag pattern

R NSE RMSE  (m3/s) MAE  (m3/s) R NSE RMSE  (m3/s) MAE  (m3/s)

SVM

Train

January 0.95 0.91 168.55 161.33 0.58 0.3 463.1 264.83

February 0.99 0.98 97.13 96.9 0.97 0.93 176.4 176

March 0.96 0.94 259.37 243.3 0.94 0.94 268.06 259.17

April 0.99 0.76 531.86 431.53 0.99 0.93 286.08 272.8

Test

January 0.98 0.96 168.36 162.52 0.5 0.13 752.73 423.8

February 0.99 0.97 93.46 91.12 0.94 0.92 152.67 29.4

March 0.97 0.83 266.91 256.87 0.97 0.83 260 68.67

April 0.99 0.86 451.71 328.71 0.97 0.94 260.76 118.59

ANN

Train

January 0.89 0.83 260.94 314.65 0.55 0.82 614.84 308.85

February 0.67 0.78 475.36 314.65 0.5 0.8 628.36 324.96

March 0.82 0.86 754.99 585.15 0.66 0.8 823.13 688.09

April 0.98 0.93 213.67 585.15 0.8 0.93 689.69 549.31

Test

January 0.75 0.78 608.82 356.91 0.77 0.82 262.02 324.96

February 0.83 0.91 561.41 356.91 0.71 0.78 638.53 308.85

March 0.81 0.78 1123.49 432.3 0.88 0.9 613.57 245.62

April 0.83 0.85 1265.67 432.3 0.89 0.93 641.84 352.06

RT

Train

January 0.99 0.98 75.29 19.84 0.87 0.76 269.88 205.18

February 0.98 0.97 125.33 32.79 0.94 0.88 231.38 73.84

March 0.97 0.96 229.28 77 0.95 0.89 362.89 93.13

April 0.93 0.86 400.06 118.1 0.9 0.83 462.5 134.4

Test

January 0.87 0.75 405.71 145.92 0.94 0.89 256.84 209.1

February 0.92 0.82 244.06 67.56 0.96 0.9 178.83 58.68

March 0.93 0.84 257.91 60.79 0.91 0.8 290.64 93.05

April 0.92 0.88 457.79 107.9 0.94 0.87 425.4 111.73

GP

Train

January 0.87 0.75 276.12 208.4 0.91 0.84 218.27 178.22

February 0.91 0.83 269.21 222.73 0.9 0.81 292.16 250.08

March 0.92 0.81 485.81 377.91 0.92 0.95 577.06 410.09

April 0.89 0.75 528.3 418.58 0.92 0.98 500.43 407.2

Test

January 0.87 0.89 687.57 555.22 0.83 0.79 1331 877.99

February 0.86 0.89 662.93 515.28 0.87 0.93 415.37 332.16

March 0.91 0.88 1396.59 1008.4 0.93 0.87 966.49 949.62

April 0.91 0.69 788.68 624.91 0.83 0.75 3325 2587
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Figure 7.  Mean long-term and 2019 reservoir monthly inflows: (a) Dez reservoir, (b) Karkheh reservoir and (c) 
Gotvand reservoir.
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to R. It is evident from Table 7 that RT had positive AIPs of MAE compared to SVM, ANN and GP except for 
the 2-month time-lag pattern in Gotvand reservoir. The largest positive AIPs of MAE for RT were obtained when 
compared with GP except for the 1-month time-lag pattern in the Karkheh reservoir.

Evaluation of time‑lag patterns. The distribution of the forecast errors is examined with boxplots for 
further evaluation of the forecasting algorithms’ performance. The error equals the difference between the 
observed and forecasted inflows to the reservoirs. Positive and negative error values indicate under-estimation 
and over-estimation, respectively. The lower quartile (Q25) and upper quartile (Q75) contains one-fourth and 
three-fourths of the errors, respectively; therefore, the upper quartile is more significant than the lower quartile 
for comparing the algorithms’ performance. Figure 8a–d shows the SVM, GP, RT, and ANN results, respectively. 
It is seen that the upper quartiles for the 1-month time-lag pattern were equal to 19.183, 86.703, 0.0003, and 
84.515, respectively, which were lower than the upper quartile for the 2-month time-lag pattern (138.243, 79.172, 
0.0004, and 123.067, respectively), except GP. Therefore, SVM, RT, and ANN applying the 1-month time-lag 
pattern and GP applying the 2-month time-lag pattern had better accuracy in forecasting the inflow to the Dez 
reservoir. It is seen in Fig. 9 that the SVM’s upper quartile Q75 = 92.978 was more accurate for the 1-month 
time lag pattern; however, GP, RT, and ANN had Q75 = 84.991, 0.0008, and 74.838, respectively for the 2-month 
time-lag pattern performed better than the 1-month time-lag pattern in Karkheh reservoir. The minimum upper 
quartiles were equal to 181.679 and 0.0012 for SVM and RT, respectively, with the 1-month time-lag pattern, as 
can be seen in Fig. 10. GP and ANN, on the other hand, had better performance with the 2-month time-lag pat-
tern based on the low values of their upper quartiles (equal to 197.765 and 206.622, respectively) in forecasting 
inflow to Gotvand reservoir.

Evaluation of the performance of the applied algorithms in forecasting reservoirs inflow in 
2019. Figures 11, 12 and 13 display the performance of the applied forecasting algorithms corresponding to 
the 1- and 2-month time-lag patterns in foresting reservoirs inflow in 2019. As shown in Figs. 11, 12 and 13, the 
observed inflows to the Dez, Karkheh and Gotvand reservoirs in April and February 2019 are larger than the 
other months. A comparison of the observed reservoirs inflow reveals that the largest inflow in February accrues 
to Gotvand reservoir, and in April it corresponds to Karkheh reservoir.

Table 7.  Average improvement percentages of R and RMSE with SVM, and of MAE with RT compared with 
the other algorithms in the testing phase.

Reservoir Time-lag pattern Algorithms

Top algorithms

SVM RT

R RMSE MAE

Dez

1-month

SVM – – 49.41

ANN 47.50 72.00 85.32

RT 3.56 13.62 –

GP 13.00 72.71 86.00

2-month

SVM – – 34.00

ANN 9.75 47.40 71.57

RT − 10.00 16.67 –

GP − 1.00 49.33 77.65

Karkheh

1-month

SVM – – 9.25

ANN 10.57 67.00 42.50

RT 4.33 40.58 –

GP 11.12 55.26 41.53

2-month

SVM – – 53.00

ANN − 10.00 29.11 60.20

RT − 25.00 − 15.62 –

GP − 18.00 61.30 82.45

Gotvand

1-month

SVM – – 44.90

ANN 22.25 74.00 75.28

RT 8.00 29.54 –

GP 10.80 71.28 84.34

2-month

SVM – – − 5.00

ANN − 5.60 32.00 61.77

RT − 20.10 − 0.50 –

GP − 9.20 68.00 85.35
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Dez reservoir. It is seen in Fig. 11a that under the projection-January, RT and SVM with a 1-month time lag 
forecasted the Dez reservoir inflow with a lower error than the other algorithms and another time-lag pattern, 
which are 42.7 and 55.4 m3/s, respectively. Figure 11b,c show that ANN and RT with a 1-month time lag were 
more accurate in forecasting Dez reservoir inflows in February and March. The error values for the February 
projection are 32.7 and 71.1  m3/s, respectively, and for the March projection are 27.19 and − 44.31  m3/s, respec-
tively. According to Fig. 11d the April projection with the RT model obtained with a 2-month time lag has an 
error of 38.0  m3/s, and SVM model with a 1-month time lag has an error of 236.6  m3/s.

Karkheh reservoir. Comparison of the forecasted inflows to Karkheh reservoir in 2019 shows that the RT model 
with 1- and 2-month time lag for the January projection (with errors equal to 6.9 and 13.9  m3/s, respectively) and 
the February projection (with errors equal to 1.2 and 5.0  m3/s, respectively) is superior to the other algorithms 
(see Fig. 12a,b). The minimum forecasts error of Karkheh reservoir inflows for the March projection belongs 
to RT with a 2-month time lag, and to ANN with a 1-month time lag (with errors equal to 89.4 and 149.7  m3/s, 
respectively) and for the April projections belongs to RT and ANN with a 2-month time lag (with errors equal 
to 3.2 and 6.7  m3/s, respectively).

Gotvand reservoir. Figures 13a,b show the superiority of RT and ANN for the 2-month time-lag pattern for the 
January projection (with errors equal to 22.4 and 1.2  m3/s, respectively) and for the February projection (with 
errors equal to 15.8 and 74.2  m3/s, respectively) in forecasting Gotvand reservoir inflows in 2019 compared to 
the other applied algorithms and another time-lag pattern. Furthermore, RT with 1- and 2- month time lag for 
the March projection (with errors equal to 39.1 and 31.8  m3/s, respectively) and for the April projection (with 
errors equal to 18.4 and 29.1  m3/s, respectively) had better performance accuracy in forecasting Gotvand reser-
voir inflows according to Fig. 13c,d.
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Figure 8.  Boxplot of the algorithms’ error distribution in the testing phase for the 1-month and 2-month time-
lag patterns in Dez resevoir: (a) SVM, (b) GP, (c) RT and (d) ANN.
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Concluding remarks
This study presents a method for forecasting reservoirs inflow. SVM, ANN, RT, and GP were selected to forecast 
the monthly inflows to Dez, Karkheh, and Gotvand reservoirs in Iran. The proposed method is applied to evalu-
ate the forecasting performance of the algorithms during the large flood of 2019. The applied algorithms were 
developed based on the 1-month and 2-month time-lag patterns. Monthly reservoirs inflow were used to train the 
forecasting algorithms. The forecasting skill of the algorithms were compared using the Correlation Coefficient, 
Root Mean Squared Error, Nash–Sutcliffe efficiency, and Mean Absolute Error. The capacity of RT to forecast 
the largest reservoir inflows in 2019 indicates that the reservoir inflows in 2019 could have been forecasted 
accurately. The results showed that SVM and RT had better accuracy among the algorithms. The SVM model 
with the 1-month time-lag pattern performed better (22.14%) than the 2-month time-lag pattern according to 
the upper quartile (Q75) of forecast errors distribution in forecasting the Karkheh reservoir’s inflow. In contrast, 
the RT model had better accuracy (99%) with the 2-month time-lag pattern. Furthermore, SVM and RT had 
better performance with the 1-month time lag based on the low value of Q75 in forecasting inflow to Dez (86.12 
and 25%, respectively) and Gotvand (1 and 7.69%, respectively) reservoirs.

This study’s results guide FIRO for improved reservoir management, decision-making and planning, and 
optimal reservoir storage allocation for flood control. Accurate forecasting of reservoir inflow is imperative for 
effective and timely flood control, reduction of damages, and for reducing the risk of not meeting downstream 
water demands.

Future research may be applied to develop ensemble models and comparing their performance with the ML 
algorithms in forecasting the 2019 reservoir inflows. Furthermore, comparing the forecasting skill of the ML 
algorithms with those of physically-based models for forecasting reservoir inflows would provide a compre-
hensive assessment of the relative advantages of these forecasting methods. Employing remote sensing data in 
data-sparse areas, especially for developing countries, would be worth pursuing in future works.
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Figure 9.  Boxplot of algorithms’ error distribution in the testing phase for the 1-month and 2-month time-lag 
patterns in Karkheh reservoir: (a) SVM, (b) GP, (c) RT and (d) ANN.
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Figure 10.  Boxplot of the algorithms’ error distribution in the testing phase for the 1-month and 2-month lag-
time patterns in Gotvand reservoir: (a) SVM, (b) GP, (c) RT and (d) ANN.
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Figure 11.  Forecasted inflow values of Dez reservoir in 2019 by the applied algorithms for 1- and 2-month 
time-lag patterns; (a) January projection, (b) Febuary projection, (c) March projection and (d) April projection.
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Figure 12.  Forecasted inflow values of Karkheh reservoir in 2019 by the applied algorithms for 1- and 2-month 
time-lag patterns; (a) January projection, (b) Febuary projection, (c) March projection, and (d) April projection.
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