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We presemh new expression for the cumulative reaction probabiliy (N(E)), cag in terms of
time-correlatiom functiors of reactah and produd¢ wave packets The derivation begirs with a
standad trace expressia for the cumulatiwe reactio probability, expresse in terms of the reactive
scatterilg matrix elemens in an asymptott internd basis By combinirg the propery of invariance
of the trace with a wave packe correlation function formulation of reactive scatteringwe obtan an
expressia for N(E) in terms of the correlation matrices of incoming and outgoirg wave packets
which are arbitrary in the internd coordinatesThis formulation like othe recen formulatiors of
N(E), allows calculation of the quantum dynamic just in the interactian region of the potential and
removes the neal for knowledg of the asymptott eigenstates However unlike earlier
formulations the presemnformulation is fully compatibé with both exad¢ and approximagé methods
of wave packe propagation We illustrate this by calculatig N(E) for the collinea hydrogen
exchang reaction both quantaly and semiclassicallyThes resuls indicat tha the use of wave
packé cross-correlatio functions as oppose to a coordinae bask ard flux operatorsregularizes
the semiclassidacalculation suggestig that the semiclassidaimplementatio describe here may
be applied fruitfully to systens with more degres of freedom © 199 American Institute of

Physics [S0021-96069)01706-1

I. INTRODUCTION

Calculatirg probabilities of chemicé reactiors is one of
the centrd goak of theoretich chemistry The complet in-
formation abou a scatterimg proces is containel in the scat-
tering matrix, S, definal throuch the overlgp of scattering

eigenstates referred to different sets of boundary
conditiong+?
Spal E)S(E—E)=(¢pelthaer). (D)

An individud matrix elemei gives the probability amplitude
of a transitim from the internd statea of reactants to the
internd state 8 of products at total energf, |Sz.(E)|?.
However for mary chemica reactiors at energis of interest
there may be hundred or thousand of energeticall acces-
sible internd states and one may be interesté only in the
averagd quantity the cumulatie reaction probability
(N(E)), defined as

N<E>=Eﬁ ENG (2)

The Boltzmam averag of N(E) is, within a normalization
factor, the thermd reaction rate constat k(T), which is per-
haps the mog importart single quantiy for characterizig a
chemicé reaction.
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One can use the straightforwad definition of Eq. (2) to
find N(E), but it is more efficient numericaly and appealing
conceptualf to find N(E) using alternative expressions
which make no explicit referene to the asymptott eigen-
states One of the mog elegam expressios of this type is
tha of Miller, Schwartz ard Tromp®

(27h)?
2

N(E)= Tr(FS(E—H)FS(E—H)), (3)

where H is the Hamiltonian of a systen ard F is the sym-
metrized flux operator Equatian (3) has two main advan-
tages It can be evaluatd in ary complet bass and it allows
one to conside dynamics in the interaction region only. An
alternative formulation due to Manthe Seideman and
Miller,*~® expresse N(E) as

N(E)=Tr(4¢°G(E) e,G(E) e?).

The operators%r,p are asymptott absorbimg potentias which
impose the outgoirg bounday condition on the Green func-
tion G(E). This approab has all the advantags of Eq. (3)
but appeas to be more efficiert numericalyy than the flux-
base approach.

Recently Light ard Zharg presentd a time-dependent
versim of Eq (3), which they cal the quantun transition
stae wave packeé method’° The trace is evaluate in the
bass constructd as eigenfunctios of the flux operator,

© 1999 American Institute of Physics
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F|+)=\|+), and a se of interna functiors of a transition
stak or ary surfa® separatig reactant and products,;

N<E>=2i (Wi|Fl ). 4)

The enery wawe functions; are the Fourig transforns of
the time-dependerwave functions

=N [ e E ) x gt

Anothea modificatin of Eq. (3) uses the spectrarepresenta-
tion of F, asin Eq. (4), for both flux operators?

Despie the considerald progres in formulatiors of
N(E), full guantum-mechanitacalculatiors of N(E) are
still limited to systens with no more than four atoms The
two main approachgto quantun dynamica calculatiors for
high dimension& systens are semiclassida method and
mean field of time-dependenself-consistenfield (TDSCH
methodsbut there was littl e attention paid if any, to formu-
lating N(E) in a way which can be convenienty imple-
mental using thee approximag techniques.

About five years agg Tanna and Weels presentd a
new formulation of state-to-sta reactive scatterimg in which
the individud Smatrix elemens are expresse as Fourier
transforns of a time cross-correlatin function betweea re-
actarnt ard produd wave packes with specifie asymptotic
bounday condition$?~2 (for arelated formulation see Refs.
17 and 18). The centrd dynamicd quantity in the methal is
an overlg betwea squae normalizabé states and thus the
methal is convenieh for dynamicé approximationsindeed,
the approab has been combinal successfull both with
semiclassicaf?' and time-dependen self-consisten field
(TDSCPH? propagatio methods Clearly, one could use the
Tanno—Weels formula to calculae N(E) by summirg over
all initial ard final states however the requiremento know
the form of the asymptott internd statesand the large num-
ber of energeticalf accessil# asymptott states in more
comple systemspresent asevee impediment.

In this pape we preseh a new formulation of N(E)
which isin the spirit of the Tanna—Weels formulation but
removes the requiremento know the asymptott states or to
propagag in from or out to the asymptott region The deri-
vation stars with the definition of N(E) in terms of the
Smatrix elemens betwe@& asymptott internd eigenstates,
Eg. (2), but utilizes the trace property of the cumulative
reaction probability

N(E) Tr(SpSp) (5

to expres N(E) in terms of wave packe correlation matrices
in an arbitray bask of internd coordinatesThe wave pack-
ets are requiral to be incoming and outgoirg in the transla-
tiond degre of freedam but do nat hawe to be starteal in the
asymptott region so long as they are sd up in the “nonre-
flecting” region of the potential In the internd coordinates,
the wawve functiors mug form acomplee set but are other-
wise arbitraly ard neeal not be normalizel or orthogonal.
The presen formulation like the work of Light and
Zhang isimplementé in terms of wave packetsbut like the
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work of Manthe and Miller avoids the use of flux operators.
Expressig N(E) in terns of wave packe correlation func-

tions seens to regulari2 the problem making the method
well suited for both exad¢ and approxima¢ propagation
methods We illustrate this by the semiclassidacalculation
of N(E) for the collinea hydrogen exchang reaction The
semiclassidacalculation of N(E) to dak has been limited to

a single study on a one-dimensiorlasysten?® and thus the

presen semiclassidacalculation of collinea hydrogen ex-

chang is astrorg indication of the utility of the new formu-

lation. In fact, we see no reasm tha the presemh approach
with its semiclassidaimplementatio shoutl not be appli-

cable in principle to large systens of greate chemica in-

terest.

The pape is organizel as follows. Sectio |1 provides a
simplified derivation of the wave packe correlation formu-
lation for individud S-matrix elements This is important
background since correlation functiors of this type are the
bast building blocks for the new expressioa for N(E) in
Sec Il and singe the new expressia for N(E) reducs to a
sum ove squars of thes expression for the individual
Smatrix elemens in the specid cas tha the wave packet
bass uses the asymptott internd eigenstatesSectio IlI
provides the derivation of the new formula In this section
we also preseh anothe expressiontha uses correlation
functiors of wave packes projectel onto the produd (or re-
actanj asymptott region which is ageneralizatia of a re-
cert wave packe correlation function formulation for initial-
state-selectitotd reaction probabilitie$* to initial states in
an arbitray internd basis Sectian |V illustrates the method
by calculatirg N(E) for the collinea hydrogen exchang re-
action using both quantum-mechanitgropagatio and the
semiclassidapropagato of Herman and Kluk. Section V
concludes.

II. SCATTERING MATRIX FROM WAVE PACKET
TIME-CORRELATION FUNCTIONS

A. Preliminaries

Conside the scatterimgy of a reactiwe systen with internal
degres of freedom A Hamiltonian H(R,r) goverrs the dy-
namics of the system wher R is atranslationacoordinate
ard r is a sd of internd coordinates By assumptionthe
interaction betwea fragmensg vanishes when the fragments
are far apart Thismears that H cen be written as asum of an
asymptott Hamiltonian H° (H ) and an interactian poten-
tial, V,, (Vp), (H= H°+V HB+vﬁ) wher V, (V,z) —0
for R—>oo The enery elgenfunctlms of H may be labeled
asincoming (") or outgoirg (), dependig on the direction
of the translationawave relative to the interaction region

Hlyye)=Elgpe) and Hlgg e)=Elgge). (6)

The first se of enery elgenstate{wa g} correlatesi.e, is
equivalen in the asymptott region to the eigenstate of H0
of the same enery E, with the sane internd label « and
incoming towards the interaction region from the reactant
side The secoml set {15 ¢} correlats with the eigenstag of

Copyright ©2001. All Rights Reserved.
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H% of the sane enery E and with the sane internd label 8,

but moving out of the interaction region on the produd side.
The parameteE is the totd energy of the system All energy
eigenfunctios within both set are orthogon& to ead other

(Uil )= 0,0 S(E-E')
and

<1/f,E,E|l//;r,E/>:5,65'5(E_E')- (7

The relation betwea the two set is expresse through ma-
trix elements

(W6 ¥aE)=SpalE)S(E-E'), ®
tha form the Smatrix S(E) ={Sg.(E)}.

B. Expressio n for the S-matrix elements

In the time-dependenframewok tha we exploit here,
the fragmens are describél as wave packes localized in
spae ard spreal in energy:

)= [ “nuEly e

and

N RIS ©

In the infinite pag the reactah wave packe |<DZ) is located
in the asymptott region of the reactantsWe require |® ) to

be a dired produd of an incomirg wave packe in the trans-
lationd degre of freedon and an eigenstat of the internal
reactah Hamiltonian with quantum numbersw in the infinite
past We can construt such awave packet since the Hamil-

tonian is separald in the internd and translationhdegres of

freedam in the asymptott region The overal direction of

motion of |® ) in the translationfcoordinae is towards the
interaction region Similarly, the produd wave packe [® ;)

has to be in the asymptott region of producs in the infinite

future The translationhmotion is separaté from the inter-
nd degres of freedom describe by a single se of internal
guantun numbersgB. This wave packet is purelgutgoing

i.e, it moves away from the interaction region when propa-
gated forward in time unde H%. We use =1 throughout
the paper The Fourig transfom of the time-correlation
function of the reactah and produd wave packets|® ) and
|<I> ), using Eqs (6) ard (8), gives the eleme Sg,(E) of

the Smatrix

f dt<(1)l;|ef|Ht|q)Z>e|Et

[ o [JoegEntelje

f dE” 17&( E//)| w; E”>) eIEt
0 ,

=27Tf f dE'dE"S(E—E"){3(E") 7,(E")
0Jo

Copyright ©2001.
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- +
X (g i )

:zwjo dE'C5(E") na( )Wy |0 )

~ 27 | B (5B 9 E) (B S5,(E)

=2m{5(E) 74(E)Spa(E). (10

Thus we obtan the expressia of Tanna and Weels for
the Smatrix element

Spa(E)= LJ (Dl )e'Fldt. (11)

gB(E na(E

The enery expansia coefficientsy,(E) and {4(E) can be
found analyticaly as an overlgp of a wawe packe and an
energy eigenstas of the asymptoti Hamiltonian? We found
it convenieh ard essentifor further derivation of N(E) to
use autocorrelatia functiors of wave packes to find the en-
ergy normalizatin functiors | { 4(E)| ard | 7,(E)|. The Fou-
rier transfom of a time-correlation function of two reactant
wave packets using Egs (6) ard (7), is

J ((DZ,|e"Ht|<D;’)e'E‘dt

:fx dt( fwdE'ni;,(E')wlf Efl)e'“t
o 0 ’

f dE” na(E”) | l//: E”>) eIEt
0 )

zzwf f dE'dE"S(E—E") %%, (E") n,(E")
0 Jo
(s el en)

:277]0 dE" 7% (E) mal EXW 00

~2m [ "B 77 () 1, (B)SE- B8,
0

:anzf(E)na(E)(Sa’a' (12)

Similarly, for produ¢ wave packets

f_x<d>;,|e"H‘|d>;>e'Etdt= 275 (E)E(E) Sprg-
(13

From Eqgs (12) ard (13) the energy normalization functions
are

Ina<E>|=<2w)‘1f_°°w<<1>2|e"'*t|<b2>e'adt " e
and

EE)l=lem [ (@gle e, as
Combinirg Eqg. (11) ard Egs (14) and (15) we obtain

All Rights Reserved.
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Uoioc(q);g|e_|Ht|(DZ>elEtdt|2
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Sga(E)|?=

The pha® of the enery coefficiens is irrelevant since the
reactio probabiliy is [Sg,(E)|%.

There are sever& points worth mentionirg abou the
S matrix expressionEqg. (11):

1. A single calculation gives a columrm of the Smatrix
for arange of energia tha depend on the choice of reactant
ard produd¢ wave packets.

2. Equation (11) is symmetre with respet to reactants
ard products and explicitly time reversible.

3. We can propagat the wave packets|® ') forward in
time and |® ;) backward in time, towards ead other. This
leads to a shorte propagatio for eadh wave packe which
leads in turn, to more localized wave packes hene a
smalle grid.

4. Note tha no additiond wave packe propagatio is
necessar to obtan the enery normalization factors Eqs.
(14) ard (15), sinee they can be calculatel at the sane time
as the cross-correlatio function in the numerator.

To implemen Eq. (11) we hawe to find internd eigen-
states of the asymptote Hamiltoniars H), and H ard propa-
gak wawe packes startirg in the asymptott regiors of frag-
ments We will shov below that this is not necessar if we
conside the cumulative reaction probability N(E), since the
reactive dynamic is determine entirely in the interaction
region where rearrangemenof fragmens takes place This
conclusim is consistehwith the trace formulafor N(E), Eq.
(3). Finally, we note that the reactian probability, expressed
as aratio of the Fouriea transforns of the wave packe cor-
relation functions Eq. (16), is suggestie of the expression
for the cumulatiwe reaction probability in the arbitrary inter-
nd stak bass set tha will be derived in Sec II1 A.

. NEW EXPRESSIONS FOR THE CUMULATIVE
REACTION PROBABILITY

A. N(E) based on the reactant/product wave packet
time-correlatio n functions

Conside a systean with N+ 1 internd eigenstatein the
asymptott channes of product and reactantsTake two sets
of wave packets {®,} on the reactan side of the potential
and {®,} on the produt side Thee wawve packes are some
unknown linear combinatioms of the enery eigenstate with
differert internd quantum number {|, ¢)} with incoming
bounday conditiors for reactah wave packets

|q)?>:f (70 E)| o)+ - - - + mon(E) | by ) dE

019~ [ (ro®Nuger+ -+ ma®)lus )0
a7

|12 (D gle M@ )eBldtf™ (D) |e D [ )e'Eldt|

(16)

ard {|,, £)} outgoirg bounday conditiors for produ¢ wave
packets

|<I>3> f (ool E)|$og) + - - - + Lon(E) | ¢n.e))dE

|©p)

[ B lvoe+ -+ cuniB v )
(18)

The enery expansio coefficiens can be arrangeé into ma-

trices whetre the first index i=0---N labek wave packets

ard the seconl index «/8=0---N labels energy eigenfunc-
tions tha are functiors of the energy

M (E)={7i.(E)} (19
and
Mp(E)=1Zig(E)}. (20)

Thus Egs (17) and (18) can be rewritten as

(69}~ [ “dEuge 1M E) @D

for reactantsand

(199103~ | “dE(uor T IMyE) (22

for products We emphasie tha the matrices M, , are un-

known, ard will not appeain our final working expression.
Here and below we decidel to write down vectos explicitly

to avoid additiond indices which the tens@ notatiors would

require.
Now we propagat the reactah wave packes and calcu-
late all the correlatian functiors amorg themselves
C! () =(®}|exp(— 1HY)| D)),

{i,jl=0--N. (23

This defines an (N+1)X(N+1) matrix. We may Fourier
transfom ead of the elemens of this matrix to obtain

AJ(E)= f dtCli(t)e'E. (24)

The numbes define anew matrix, A, (E). Substitutirg Egs.
(21) ard (23) into Eq. (24), ard using Eq. (12), it is readily
verified that A,(E) may be written as

Copyright ©2001. All Rights Reserved.
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o (Yoe'
Ar(E)chdtfo dE'M/(E")
(Inerl

% elet‘fO d E"(| ¢(;E”>. . | l/,;'E”»Mr(EH)eIEt

:2wf dE’f dE"M[(E")
0 0

X 8(E' —E")8(E—E")M,(E")

=27M/(E)M(E), (25)

where §(E’' —E") comes from the orthogonality of energy

eigenstate at differernt energis and §(E—E") comes from
the time integral Similarly, we defire the produd¢—product
correlation functiors C(t) =(®|exp(—1Ht)|®}), and its
Fourieg transform AH (E). Following a derivatian analogous
to tha for reactantsthe Fourig transforns of the produd—
produd correlation functions may be written in matrix form
as:

A(E)=27MI(E)M(E). (26)
Equatiors (25 and (26) provide a stratey for eliminating
the unknown coefficients M,(E), My(E) in terms of the
known matrices A, (E) and A,(E), provided tha the matrix
M;,, and its adjoirt always come together belov we will
show that this is indeal the case.

Finally, we defire the reactat—produd correlatian func-
tions C'(t)=(®Plexp(—1Ht)|®]) for {i,j}=0--"N. The
Fourie transfom of eadt of thes reactat-produd correla-
tion functions can be written as Agr(E). Using Eq. (10), the
matrix of Fourie transformatio of all the reactab—product
correlation functiors is readily see to be

) (Yop
Apr(E)ZZWJO dE'M}(E")
(Un.el
X(I4hog) - - [¥n,e) )M (E)

=2aMY(E) Sy (E)M, (E), 27
where S, (E) is by definition the scatteriig matrix More
precisely S, (E) is a pat of the scatterig matrix tha de-
scribes chos@ reactars and products Note, tha the product
of the stak vectosin Eq. (27) produce the matrix S, (E) of
dimensim (N+1)2. Formally, if there exiss an inverse of
the matrices M, and M, the S-matrix may be written as

Spr(E)=(2m) " *M] "X E) Ay (E)M; Y(E). (28)

Now, realizing tha the cumulatiwe reaction probability
can be expressé as a trace

N(E)=Tr(S,/(E)Sh(E)),

and using Eq. (28) for the S'matrix, we can write

(29
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N(E)=Tr(M} Y(E)A,(E)M, *(E)
XM!HE)AL(E)M, Y (E)), (30)

Permutatig matrices inside the trace ard using Eqs (25) and
(26) we obtain

N(E)=Tr(Ay(E)A; {(E)AL(E)A, {(E)). (31)
Thisis our final expressia for N(E) in terms of the dynam-
ics of incoming and outgoirg wave packes in an arbitrary
bass of internd states Note tha all dependeneon the ma-
trices M, and M,, which would require knowledg of the
asymptott states has disappeared.

If the wave packes are initially located in the asymptotic
region of the potentid and they ead correspod to asingle
internd eigenstater and B, then Eq.(31) reduces ta\(E)
=3 ,4Ss.(E)|?. Each Smatrix elemet in this sum takes
the form of Eq. (16).

B. N(E) based on the time-correlation of the wave
packets and the projectio n operator for
products

In a previows papef* we derived an expressia for the
totd initial-stake selectel reaction probability N,(E)
=3 4/Sp.(E)|? involving a projection onto products

JE2 (@ NP, @ Ye'Eldt

Na(E)= J2 (D) e M )e'Fldt

(32

Here @ is apurely incoming wave packe in the transla-
tiond coordinae and « is an eigenstate of the internal coor-
dinatke in the asymptott reactan region of the potential The
projectian operato is

P,=limeh(s)e ",

t—o

y
p2=p,, (33)

with h(s) being the Heaviside function of the reactian coor-
dinae s. A wawve packe @ is propagated forward in time
until its bifurcation is complete The nonreactie patt of it is
discardedand the reactiwe patt of the wave packe is propa-
gated backward in time. The autocorrelatia function of the
projectel wave packe or, equivalently the correlation func-
tion of the projectel wave packe with the initial wave
packet is Fouria transforme into enery spae and normal-
ized to yield N (E). We now shav tha this expressia also
can be generalizd for calculation of N(E) in an arbitrary
internd coordinak basis.

Asin Sec Il A, we take asd of N+1 incoming wave
packets{®,} to span aspae of N+ 1 internd statesas in
Eq (17). The matrix of Fourig transforns of all time-
dependencorrelation functiors that normalizes the energy
eigenstates, is given by Eq. (25, i.e., A/(E)
=27M/(E)M,(E). As beforg we assune tha M, is un-
known but that A, isreadily computed We defire the matrix
of Fouria transforns of the correlation functiors of the pro-
jected wave packes with the initial wave packes as

Copyright ©2001. All Rights Reserved.
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(@)
Aproj(E): eithﬁ)p(|<D?>'"|(I)L\‘>)eiEtdt,
(@]
(34)
where
ﬁ’p=§ fo dE' g e X¥pe]
(Yog
:fo dE'(W&E&'“W’],EJ) (39
(Yoe

Note tha Eq. (34) contairs a produd of a columm with a
row, generatig a matrix.

The projectian operatoy Eg. (35), acs on the reactant
wave packets Eq. (19), yielding

Po(| 7))

- | "aE e+l e

(boerl\
x| i . dE(|¢hoe)" | n.e)) M, (E)
(Yop/|

=JO dE’ fo dE(|¢hoe) [y ) Sor(E)
X S(E—E")M,(E)

:fode(|¢(;,E’>'"|'/’§,E'>)Spr(E)|V|r(E), (36)

where we hawe usel the definition of the Smatrix, Eqg. (8).
Substitutiny this resut into Eq. (34) we obtain

(Yoe!]
Aproj(E):J; dteiEtfo dE,M:(E’) : e~ iHt
(Yoe]

x f:dE'w;E»---|v,bg,En))spr(E")Mr(E")

_ “ ' * VRl Y= '
—JO dE jo dE"M/(E")S(E")

X S(E'—E")2m(E—E")Sy(E")M,(E")
=27M/(E)S],(E)Sy(E)M,(E). (37)

Above the integrd over time yielded 2775(E—E"), and the
produd of the columm {(zp;E,l} by the row {[¢, ¢.)} gave
the matrix SE,(E’)&(E’ —E") according to Eq(8).

Inverting this expressiontaking a trace ard permutating
matrices inside the trace we arrive at

S. Garashchuk and D. J. Tannor

N(E)=Tr (S} (E)Sy(E))
=Tr(M"HE)Auo EIM; X(E))
=Tr(Apo( E)A; H(E)). (39)

Thus we can evaluaé N(E) by propagatig a se of
incoming otherwige arbitrary, wave packets projectirg onto
products and then calculatirg correlation functiors of these
projectel packets Similar to Sec Il A, in the bass of
asymptott internd enery eigenstate the expressia (38)
reduces to N(E)=2_,N_,(E) with ead term being of the
form Eq. (32).

IV. NUMERICAL IMPLEMENTATION AND DISCUSSION
A. General remarks

In orde to derive Eq. (11) for the Sg,(E) and Eqs (31)
ard (38) for N(E) we assumd tha the reactah wave pack-
ets {®,} are purely incoming and tha the produd¢ wave
packes {®,} are purely outgoing A rigorous way to se up
sud purely incoming or outgoirg wave packes is to con-
strud them in the reactai (produc} asymptoft regiors as a
dired produd of incomirg (outgoing wave packes in the
translationh degree of freedan ard arbitray internd basis
functions However in practice we can bring the wave pack-
ets significantlyy close to the interactio region as long as
we ensue tha they correlae with the incoming (outgoing
translationh wave packes in the infinite pag (infinite fu-
ture).

Recently it was noted®?° tha for the Smatrix expres-
sions the restrictim on pure incoming or outgoirg wave
packes can be removal if the lower limit t= —oo in thetime
integrd in Eq. (11) is replacel by t=0, providel the energy
normalization can be determiné by sone othe means The
energy normalizatian is the overlgp of the reactam (produc)
wave packes with eigenstate of incoming (outgoing char-
acter This overla is trivial to calculate provided the reac-
tart (produc) wave packes are also of pure incoming (out-
going character Since there is no amplituce othe than that
of incoming character the eneryy normalization obtained
from the wave packe correlation functiors are the correct
overlg factors However if the wave packe is of mixed
incoming—outgoirg characterthe incoming—outgoirg com-
ponens would hawe to be separaté before the overlg could
be calculated This tends to negag ary saving from bringing
the wave packes close in, and belov we use purely incom-
ing ard outgoirg wave packes exclusively.

If we sd¢ up wave packes {®;} ard {®,} in the
asymptott regiors of the potentid and work in the bask of
enery eigenfunctionsthen the numbe of wave packes we
neal is N+ 1 for ead arrangemenchannel If the internal
bass is differert from the internd energ eigenfunctionsthe
numbe of wave packes can be expectd to be somewhat
large than N+ 1. However if the translationhwave packets
are positional close to the interaction region and we use an
efficiert internd basis for example energy eigenfunctios of
the surfa@ perpendiculato the reaction coordinaé of the
cente of a wawve packet we can exped the numbe of wave
packes to be smalle than N+ 1. In orde to invert the ma-
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TABLE |. Numericd parametes in atomt units Absorbirg potentid V,= kh(R—Ry)h(r—r,).

Grid size 128x128
Time step dt=7.29
k=4.439<107°

Grid spacig dr=0.11
Numbe of time stes 1000
translationacoordinaé R,=Ry+2.0

Grid startirg poirt r ,,;,=0.5

vibrationd coordinaér,=4.2

trices A,(E) and A,(E) in practie we use singula value
decompositia (SVD), since in general the numbe of the
internd functiors is large than the numbe of the energy
eigenstate for a specift value of energy.

Equation (31) is explicitly time reversible and reactants
ard producs ente on an equa footing. Since all the reactant
wave packets{®,}, are incoming and all the produ¢ wave
packets{®,}, are outgoing the reactat—produd correlation
functiors are zer for negative times Reactat-reactamn (and
produd¢—produc) correlation functiors for positive and
negatie times are related to ead other

Clp)(—)=Clip* (1), (39

ard they die off faste in time than reactat—produd corre-
lation functions Also, we can split the time propagatio be-
tween reactah and produd wave packes as

Chiv=(@}e |@l)=(e" 2D} e 2p]). (40

Thus half-propagatia of reactants{®,}, just forward in
time ard half-propagatia of products {®,}, just backwards
in time is sufficiert for calculation of all the matrices in-
volved in the expressia for N(E), Eq. (31). Thus we do not
hawe to propagat reactai (produc) wave packes bad (for-
ward in time, and we can use an absorbig potentid effi-
ciently.

Equation (38), containirg as it does aprojectian opera-
tor, does not hawe the reactat—produd¢ symmetry The ab-
sorbirg potentid canna be placel close to the interaction
region on the produd side Neverthelessthis asymmetry
might be usefd if the numbe of the produd eigenstats is
significantly greate than the numbe of the reactam eigen-
states.

B. Numerica | example : Collinea r H,+H scattering

We applied the formaliam of Sec II1 A, Eq. (31), to the
collinea hydrogen exchang reaction on the potentid energy
surfa® of Liu, Siegban Truhlar, and Horowitz (LSTH).?6-28
Reactahwave packes {®,} were set up in the Jacob coor-
dinates {R,r}, as a dired produa of the vibrationd eigen-
states and a Gaussia in the translationh coordinae R

OI(R,r)=e YRR PR Ry (1) (4D)

The wave packes {®,} were setyp in the produd Jacobi
coordinats and hawe the sanme parametes as the reactant
wave packets excep for the sign of the translationa mo-
mentun to make them outgoing

(42

The quantum-mechanita(QM) time propagatio of the
wave packes was performel using the split operator
method® on a grid in bord coordinats with an imaginary
absorbimy potential The numericé detaik are given in Table

’ 2 ’
BR(R!, 1) =€ R R PR —Ra)sc y 1),

I. In order to obtain the cumulative reaction probability for
energis belov 2.15 eV we propagatd wave packes with
the vibrationd quantun numbes from n=0 to n=3. We
chosey,(r) to be the nth enery eigenstate of eitha the
Morse oscillator

V(1) =0.178(exp(—1.04435(r —1.40083)) — 1)2,
or the harmonc oscillator
V},(r)=0.18%(r —1.40083)2.

Figure 1shows N(E) for two ses of wave packes using the
Morse oscillata eigenstatesThe first set k=1 in Table I,
was initially located in the asymptott region of the potential
at R{"=6.7 a.u The seconl set k=2 in Table Il was placed
in the interaction region at R$Y=4.7 a.u Smal eigenvalues
N were discarde in the SVD. The cutoff was A in/Amax
=0.02 The cumulative reactian probabilities for the two cal-
culatiors agree with eat othe for the range of enery val-
ues with slight discrepancige arourd the higha resonances.
We attribue the smal discrepancigto the fact tha the wave
packes with high quantum numbes n from the secomnl set
substantialf penetrag into the interaction regian of the po-
tential Thus they hawe large overlaps with the resonance
states which makes it difficult to obtain accura¢ spectral
amplitudes We believe tha the problan with resonances
can be remediel by using a high resolution spectré method,

like filter-diagonalization, instead of the Fourier
20 r
1.5 -
o
=z
10
05 -
0.0 : : :
0.0 0.5 1.0 15 2.0 25

Energy, eV

FIG. 1. The cumulati\e reactian probability calculatel from the Eq. (31)
using the Morse oscillata eigenstateas internd coordinaé basis The wave
packes are locatel in translationa coordinag in the asymptott region at
R{V=6.7 a.u — circles in the interactio region R{»=4.7 a.u — solid
line. Dashel line shows the resuls when the reactat-reactan correlation
functiors of the first, asymptott region se are usel to normaliz the
reactat—produd correlation functiors of the second interactia region set
of wave packets.
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TABLE . Parameters of the initial
=g "R-R)*+1P(R-Ro)y (1Y in atomi units.

wave packet ®}(R,r)

k 1 2 3 4 5
xn(r) Morse  Morse Morse Harmonic  Harmonic
R{ 6.7 4.7 4.2 47 4.2
for all k vy=6.0 py=-8.0 n=0.3

transform®-32 This methal works beg when combinel with
the Chebyshe propagato to obtan very accurag¢ time-
correlation functions or with the Chebyshe recursia which
can be usal as an alternative to time correlation functions.

Figure 1alsn shows tha the enery normalizatio in the
two calculatiors is, indeed different The long-dashd curve
represerd N(E) obtainel using wave packes tha were
placal in the interactia region but the energyy normalization
derived from the asymptott wave packe dynamics In this
case the chang in the normalizatian for the asymptott and
interaction region calculatiors is essentialf a shift in energy,
as se@ in Fig. 2. The maximd amplituce of the off-diagonal
reactam-reactan correlatio functiors C;' (i#j) was about
0.03 for the se (1) ard 0.07 for the se (2) for wave functions
normalizel to unity. We also obtainel N(E) using two dif-
ferert ses of harmont oscillata eigenstateslocated at
R{M=47 a.u ard RP=42 a.u (k=45 in Tabke II). The
matrix eigenvale cutoff was \ i /Amax=0.03 The harmonic
eigenstate are tighter than the Morse eigenstatesThey do
not penetra¢ into the interaction region as much as the
Morse eigenstatesyet they adequatsl descrike the reaction
for the chose range of energy The cumulative reaction
probability for thes wave packes is plotted in Fig. 3. Figure
4 compare N(E) for the harmonc and Morse oscillator
eigenstate (k=3 in Table Il) initially placal at Ry,=4.2 a.u.
One can see that as aresut of being more localized the
harmonc oscillata eigenstate give betta resuls than the
Morse eigenstate for nea resonahenergies.
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FIG. 2. The eigenvalus of the enery normalization matrices A,(E) and
Ap(E), as afunction of enery for the asymptott wave packe se (Rgl)
=6.7 a.u) — circles and the interactia region wave packe set (R
=47 a.u) — crosses.
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20 -

N(E)

0.0 :
0.0 0.5 1.0 1.5 2.0

Energy, eV

FIG. 3. The cumulati\e reaction probability calculatel using the harmonic
oscillatar eigenstate as y,(r) and initially locatel R{’=4.7 a.u.—solid
line; using the harmonc oscillata eigenstatse ard RE,5)=4.2 a.u.—dashed
line, compare to the resuls of the wave packe sd (1).

C. Cumulativ e reactio n probabilit y for the collinear
hydroge n exchang e reaction : Semiclassical
implementation

We also implemente Eq. (31) using the semiclassical
propagato of Herman ard Kluk (HK)33

KSC(X/ tXO):; do.da-R e'qut/h
A EEAY] (27Th)N pO qO pagt

X 9,(G,Pr,X") g3 (o, Po.X). (43
A function
4.0 B
30t
z 20 r ) i
10+
00 : : :
0.0 0.5 1.0 1.5 2.0

B ~ Energy, eV

FIG. 4. N(E) for the wave packes locatal at R{¥=4.2 a.u using Morse
eigenstate (solid line) ard locatal at R’=4.2 a.u (das line) usirg har-
monic eigenstatescompare to the resut of the wave packe se (1)
(circles.
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z N/4
™

|
xexp( - %(X_Qt)(x_%)"' 7P (X=a) |,

gy(qt 1P ,X):

(44)

isacomple Gaussia of the width y, which is a positive real
parameterVectors go=(dg, - . .,q3) ard po=(pgs. - - - ,PY)
are initial conditiors of a classich trajectoy at time zero.
Vectos g=(qy , . . .,q) and p=(p;, . . .,p}) aritscoor-
dinates and momena at time t. The classich action is

o
Spat= fo[pt"qt'—H(pv G, 1dt’. (49)

The prefacto carrying atrajectoy stability information is

Rpqt= Vdei(B), (46)
with the matrix elemens B={b;;} being
1/ op, oa; 1y aq; 1 Ip
O
Py Jdo dpg MY dqp

The sign of the squae roct in Eq. (47) has to be chos@ such
that R, is acontinuos function of time3* The integration
goes ove all initial values (gg,pg). The propagatois unitary
in the stationay pha® approximation and it is time
reversible®

The reactan and produd¢ wave packets Eqs (41) and
(42), were setp as for the quantum-mechanitaalculation,
with the parametersa=4.5, qy=4.7, ard py=—7.0. The
overlg integrak of g,(q;,p,x) with the reactan and prod-
ua wave packets neede to calculae the time-correlation
functions take the simple analytica form with this choice of
the internd functions The Wall-Porte potentid was used
for the semiclassidacalculation as in Ref 20. The reactant
wave packes were propagatd up to time T=2760 a.u with
the time stegp dt=4.6 a.u, and their time-dependeroverlaps
with the stationay produd wave packes were Fourie trans-
formed The reactam-reactan correlation functiors of time
duratian 918 a.u were usal to obtan the appropria¢ normal-
ization in energy The semiclassidanormalizatio was iden-
tical to the exa¢ normalization for practica purposes.

The cumulative reaction probability for the HK and QM
propagatio of the harmont eigenstat wave packes is plot-
ted in Fig. (5). The width of the expansio Gaussias was

y[2=a=4.5 a.u. in both dimensions. The sampling of trajec-

tories was Gaussian-weighte Monter Carlo sampling A
single se of the classicé trajectories contributel to all cor-
relation functions Tha made the timing of the exact
guantum-mechanitaand semiclassidacalculatiors compa-
rable Here we usal 1P classicé trajectories but using 10
times fewer trajectories also gave semiquantitatie agree-
ment althoudh the discrepancie arourd the resonah and
threshotl energies were more pronouncedThe matrix inver-
sion in Eq. (31) did not pos aproblem since the reactam—
reactan correlation functions which were nonzeo for the
first half of the propagatio time, were obtainel quite accu-
rately.
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3.0
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N(E)
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Energy, eV

FIG. 5. The cumulatiwe reactio probability, obtainel from the semiclassical
propagatio of wave packes (solid line) ard the quantum-mechanitaesult

(dash line). The wawe packes were initially locatel at Ry=4.7 a.u in the

translationh coordinaé and were constructd as the harmonc oscillator

eigenstatein vibrationd coordinate.

The presene of resonancein the H+H, systen and the
constrictel geomety make the state-to-stag reaction prob-
abilities quite structurel ard challengirg to descrile semi-
classically The dired calculation of the semiclassidaN(E)
performal her compare bette with the quantum-
mechanichresuls than the semiclassidacalculation of indi-
viduad Smatrix elemens obtainel previously?* Moreover,
the dired calculation of N(E) is easie than obtainirg all of
the state-to-sta probabilities since no asymptott states
were required The analytica form of the overlgp integrals
(9,(0)|®")y ard (@}'[g,(t)) betwea the HK Gaussiasand
the harmont oscillata eigenstate mace the calculation sev-
erd times faster In general one also expecs to find areduc-
tion in the lengh of time that the trajectories neeal to be
propagatd relative to the state-to-sta calculation since it is
not necessar for the trajectories to read the asymptott re-
gion. However for the collinea hydrogen exchang reaction
we observel no significant reduction in propagatio time.
This can be understod by recognizimg tha the resonances,
which are the mog challengimg patt of the calculation are
determiné by trappel trajectories which sper far more
time in the interaction region than in the approab or exit
from this region.

V. CONCLUSIONS

We presentd two new expressionsEqs (31) ard (38),
for the cumulatie reaction probability using the trace ex-
pressim N(E)=Tr(S;r(E)Spr(E)). The expressiona are
cad in terms of the cross-correlatin functions of wave pack-
ets which are incoming (outgoing in translatimm and arbi-
trary in the internd degres of freedom This allows one to
choo® a conveniethinternd bass set and to setp the reac-
tart (produc) wave packes close to the interactio region,
thus reducirg the size of the numeric grid and the propa-
gation time. Our formulation is explicitly symmetre with
respetto reactars and productsi.e., both reactat and pro-
dua wawve packes can be propagatd in time, forward and
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backward respectively The secom formulation which uses
projectian onto products might be usefd if the numbe of
the produd internd states is significanty large than the
numbe of the reactaninternd statesdespit the fact tha an
absorbimy potentid canna be usal as efficiently as in the
symmetrc formulation.

Both new formulatiors can be combinel with the high
resolution spectrbmethal of filter-diagonalizatio to shorten
the lengh of the propagatio time. However in our experi-
ene filter diagonalizatio works well only when usal with
an extremey accurag¢ propagatio method suc as Cheby-
shey method.

It would be very instructive to apply the presen formu-
lations to a systen with a long range attractive potential.
Here one might see aparticularly large saving of the trace
expressionEq. (31) ove a state-to-stat calculation by us-
ing convenienh internd functiors and settirg up wave pack-
efs in the interactian region.

Perhapg mod significart abou the presenformulation is
that it can be readily combinal with both exad¢ and approxi-
mate time propagatio methods Previously semiclassical
calculatiors of N(E) hawe bee possibe only in one dimen-
sion (1D); the presen semiclassidacalculatia of N(E) for
collinea H+H, is a significart achievementard shows the
usefulnes of the presemn formulation We see no reasonin
principle tha the presem formulation implementd semi-
classicaly canna be applied to large systens of greater
chemicd interest As afirst st in this direction 3D calcu-
lations on H+H, are in progressFinally, the formulation is
also completey compatibé with the time-dependenself-
consistenfield (TDSCH approachln particular by using an
arbitray internd bass it may be possibé to redue correla-
tion betwee translation and internd degres of freedom in-
creasig the accurag and efficiengy of TDSCF for reactive
scattering.
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