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Cumulativ e reactio n probabilit y in term s of reactant-produc t wave packet
correlatio n functions

Sophya Garashchuka)

Department of Physics, Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame,
Indiana 46556

David J. Tannor
Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel

~Received 15 June 1998; accepted 6 November 1998!

We present new expressions for the cumulative reaction probability (N(E)), cast in terms of
time-correlation functions of reactant and product wave packets. The derivation begins with a
standard trace expression for the cumulative reaction probability, expressed in terms of the reactive
scattering matrix elements in an asymptotic internal basis. By combining the property of invariance
of the trace with a wave packet correlation function formulation of reactive scattering, we obtain an
expression for N(E) in terms of the correlation matrices of incoming and outgoing wave packets
which are arbitrary in the internal coordinates. This formulation, like other recent formulations of
N(E), allowscalculation of thequantum dynamics just in the interaction region of thepotential, and
removes the need for knowledge of the asymptotic eigenstates. However, unlike earlier
formulations, the present formulation is fully compatible with both exact and approximate methods
of wave packet propagation. We illustrate this by calculating N(E) for the collinear hydrogen
exchange reaction, both quantally and semiclassically. These results indicate that the use of wave
packet cross-correlation functions, as opposed to a coordinate basis and flux operators, regularizes
the semiclassical calculation, suggesting that the semiclassical implementation described here may
be applied fruitfull y to systems with more degrees of freedom. © 1999 American Institute of
Physics. @S0021-9606~99!01706-7#

I. INTRODUCTION

Calculating probabilities of chemical reactions is one of
the central goals of theoretical chemistry. The complete in-
formation about a scattering process is contained in the scat-
tering matrix, S, defined through the overlap of scattering
eigenstates referred to different sets of boundary
conditions1,2

Sba~E!d~E2E8!5^cb,E
2 uca,E8

1 &. ~1!

An individual matrix element gives the probability amplitude
of a transition from the internal statea of reactants to the
internal stateb of products at total energyE, uSba(E)u2.
However, for many chemical reactions at energies of interest
there may be hundreds or thousands of energetically acces-
sible internal states and one may be interested only in the
averaged quantity, the cumulative reaction probability
(N(E)), defined as

N~E!5(
ab

uSba~E!u2. ~2!

The Boltzmann average of N(E) is, within a normalization
factor, the thermal reaction rate constant k(T), which is per-
haps the most important single quantity for characterizing a
chemical reaction.

One can use the straightforward definition of Eq. ~2! to
find N(E), but it is more efficient numerically and appealing
conceptually to find N(E) using alternative expressions
which make no explicit reference to the asymptotic eigen-
states. One of the most elegant expressions of this type is
that of Miller , Schwartz, and Tromp3

N~E!5
~2p\!2

2
Tr ~ F̄d~E2H !F̄d~E2H !!, ~3!

where H is the Hamiltonian of a system and F̄ is the sym-
metrized flux operator. Equation ~3! has two main advan-
tages: It can be evaluated in any complete basis and it allows
one to consider dynamics in the interaction region only. An
alternative formulation, due to Manthe, Seideman, and
Miller,4–6 expresses N(E) as

N~E!5Tr ~4ê r
1/2Ĝ~E!†êpĜ~E!ê r

1/2!.

The operatorsê r ,p are asymptotic absorbing potentials which
impose the outgoing boundary condition on the Green func-
tion Ĝ(E). This approach has all the advantages of Eq. ~3!
but appears to be more efficient numerically than the flux-
based approach.

Recently, Light and Zhang presented a time-dependent
version of Eq. ~3!, which they call the quantum transition
state wave packet method.7–10 The trace is evaluated in the
basis constructed as eigenfunctions of the flux operator,a!Electronic mail: sgarashc@rainbow.uchicago.edu
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F̄u1&5lu1&, and a set of internal functions of a transition
state or any surface separating reactants and products,f i

N~E!5(
i

^c i uF̄uc i&. ~4!

The energy wave functionsc i are the Fourier transforms of
the time-dependent wave functions

uc i&5AlE
2`

`

eı~E2H !t~ u1&3f i&)dt.

Another modification of Eq. ~3! uses the spectral representa-
tion of F̂, as in Eq. ~4!, for both flux operators.11

Despite the considerable progress in formulations of
N(E), full quantum-mechanical calculations of N(E) are
still limited to systems with no more than four atoms. The
two main approaches to quantum dynamical calculations for
high dimensional systems are semiclassical methods and
mean field of time-dependent self-consistent field ~TDSCF!
methods, but there was littl e attention paid, if any, to formu-
lating N(E) in a way which can be conveniently imple-
mented using these approximate techniques.

About five years ago, Tannor and Weeks presented a
new formulation of state-to-state reactive scattering in which
the individual S-matrix elements are expressed as Fourier
transforms of a time cross-correlation function between re-
actant and product wave packets with specified asymptotic
boundary conditions12–16 ~for a related formulation, see Refs.
17 and 18!. The central dynamical quantity in the method is
an overlap between square normalizable states and thus the
method is convenient for dynamical approximations; indeed,
the approach has been combined successfully both with
semiclassical19–21 and time-dependent self-consistent field
~TDSCF!22 propagation methods. Clearly, one could use the
Tannor–Weeks formula to calculate N(E) by summing over
all initial and final states; however, the requirement to know
the form of the asymptotic internal states, and the large num-
ber of energetically accessible asymptotic states in more
complex systems, presents asevere impediment.

In this paper we present a new formulation of N(E)
which is in the spirit of the Tannor–Weeks formulation, but
removes the requirement to know the asymptotic states or to
propagate in from or out to the asymptotic region. The deri-
vation starts with the definition of N(E) in terms of the
S-matrix elements between asymptotic internal eigenstates,
Eq. ~2!, but utilizes the trace property of the cumulative
reaction probability

N~E!5Tr ~Spr
† Spr!, ~5!

to express N(E) in terms of wave packet correlation matrices
in an arbitrary basis of internal coordinates. The wave pack-
ets are required to be incoming and outgoing in the transla-
tional degree of freedom but do not have to be started in the
asymptotic region, so long as they are set up in the ‘‘nonre-
flecting’’ region of the potential. In the internal coordinates,
the wave functions must form a complete set, but are other-
wise arbitrary and need not be normalized or orthogonal.

The present formulation, like the work of Light and
Zhang, is implemented in terms of wave packets, but like the

work of Manthe and Miller avoids the use of flux operators.
Expressing N(E) in terms of wave packet correlation func-
tions seems to regularize the problem, making the method
well suited for both exact and approximate propagation
methods. We illustrate this by the semiclassical calculation
of N(E) for the collinear hydrogen exchange reaction. The
semiclassical calculation of N(E) to date has been limited to
a single study on a one-dimensional system,23 and thus the
present semiclassical calculation of collinear hydrogen ex-
change is astrong indication of the utility of the new formu-
lation. In fact, we see no reason that the present approach
with its semiclassical implementation should not be appli-
cable, in principle, to larger systems of greater chemical in-
terest.

The paper is organized as follows. Section II provides a
simplified derivation of the wave packet correlation formu-
lation for individual S-matrix elements. This is important
background, since correlation functions of this type are the
basic building blocks for the new expressions for N(E) in
Sec. II I and since the new expression for N(E) reduces to a
sum over squares of these expressions for the individual
S-matrix elements in the special case that the wave packet
basis uses the asymptotic internal eigenstates. Section III
provides the derivation of the new formula. In this section
we also present another expression, that uses correlation
functions of wave packets projected onto the product ~or re-
actant! asymptotic region, which is ageneralization of a re-
cent wave packet correlation function formulation for initial-
state-selected total reaction probabilities24 to initial states in
an arbitrary internal basis. Section IV illustrates the method
by calculating N(E) for the collinear hydrogen exchange re-
action, using both quantum-mechanical propagation and the
semiclassical propagator of Herman and Kluk. Section V
concludes.

II. SCATTERING MATRIX FROM WAVE PACKET
TIME-CORRELATION FUNCTIONS

A. Preliminaries

Consider the scattering of a reactive system with internal
degrees of freedom. A Hamiltonian H(R,r ) governs the dy-
namics of the system, where R is a translational coordinate
and r is a set of internal coordinates. By assumption, the
interaction between fragments vanishes when the fragments
are far apart. This means that H can be written as asum of an
asymptotic Hamiltonian, Ha

0 (Hb
0), and an interaction poten-

tial, Va (Vb), (H5Ha
01Va5Hb

01Vb) where Va (Vb) →0
for R→`. The energy eigenfunctions of H may be labeled
as incoming (1) or outgoing (2), depending on the direction
of the translational wave relative to the interaction region

Huca,E
1 &5Euca,E

1 & and Hucb,E
2 &5Eucb,E

2 &. ~6!

The first set of energy eigenstates $ca,E
1 % correlates, i.e., is

equivalent in the asymptotic region, to the eigenstates of Ha
0

of the same energy E, with the same internal label a and
incoming towards the interaction region from the reactant
side. The second set $cb,E

2 % correlates with the eigenstate of
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Hb
0 of the same energy E and with the same internal labelb,

but moving out of the interaction region on the product side.
The parameter E is the total energy of the system. Al l energy
eigenfunctions within both sets are orthogonal to each other

^ca,E
1 uca8,E8

1 &5daa8d~E2E8!

and

^cb,E
2 ucb8,E8

2 &5dbb8d~E2E8!. ~7!

The relation between the two sets is expressed through ma-
trix elements

^cb,E8
2 uca,E

1 &5Sba~E!d~E2E8!, ~8!

that form the S-matrix S(E)5$Sba(E)%.

B. Expressio n for the S-matrix elements

In the time-dependent framework that we exploit here,
the fragments are described as wave packets localized in
space and spread in energy:

uFa
1&5E

0

`

ha~E!uca,E
1 &dE

and

uFb
2&5E

0

`

zb~E!ucb,E
2 &dE. ~9!

In the infinite past the reactant wave packet uFa
1& is located

in the asymptotic region of the reactants. We require uFa
1& to

be a direct product of an incoming wave packet in the trans-
lational degree of freedom and an eigenstate of the internal
reactant Hamiltonian with quantum numbersa in the infinite
past. We can construct such awave packet, since the Hamil-
tonian is separable in the internal and translational degrees of
freedom in the asymptotic region. The overall direction of
motion of uFa

1& in the translational coordinate is towards the
interaction region. Similarly, the product wave packet uFb

2&
has to be in the asymptotic region of products in the infinite
future. The translational motion is separated from the inter-
nal degrees of freedom, described by a single set of internal
quantum numbersb. This wave packet is purelyoutgoing,
i.e., it moves away from the interaction region when propa-
gated forward in time under Hb

0 . We use \51 throughout
the paper. The Fourier transform of the time-correlation
function of the reactant and product wave packets, uFa

1& and
uFb

2&, using Eqs. ~6! and ~8!, gives the element Sba(E) of
the S-matrix

E
2`

`

dt^Fb
2ue2ıHtuFa

1&eıEt

5E
2`

`

dtS E
0

`

dE8zb* (E8)^cb,E8
2 u D e2ıHt

3S E
0

`

dE9ha~E9!uca,E9
1 & D eıEt

52pE
0

`E
0

`

dE8dE9d~E2E9!zb* ~E8!ha~E9!

3^cb8,E8
2 uca,E9

1 &

52pE
0

`

dE8zb* ~E8!ha~E!^cb,E8
1 uca,E

1 &

52pE
0

`

dE8zb* ~E8!ha~E!d~E2E8!Sba~E!

52pzb* ~E!ha~E!Sba~E!. ~10!

Thus, we obtain the expression of Tannor and Weeks for
the S-matrix element

Sba~E!5
~2p!21

zb* ~E!ha~E!
E

2`

`

^Fb
2ue2ıHtuFa

1&eıEtdt. ~11!

The energy expansion coefficientsha(E) andzb(E) can be
found analytically as an overlap of a wave packet and an
energy eigenstate of the asymptotic Hamiltonian.12 We found
it convenient and essential for further derivation of N(E) to
use autocorrelation functions of wave packets to find the en-
ergy normalization functions uzb(E)u and uha(E)u. The Fou-
rier transform of a time-correlation function of two reactant
wave packets, using Eqs. ~6! and ~7!, is

E
2`

`

^Fa8
1 ue2ıHtuFa

1&eıEtdt

5E
2`

`

dtS E
0

`

dE8ha8
* (E8)^ca8,E8

1 u D e2ıHt

3S E
0

`

dE9ha(E9)uca,E9
1 & D eıEt

52pE
0

`E
0

`

dE8dE9d~E2E9!ha8
* ~E8!ha~E9!

3^ca8,E8
1 uca,E9

1 &

52pE
0

`

dE8ha8
* ~E8!ha~E!^ca8,E8

1 uca,E
1 &

52pE
0

`

dE8ha8
* ~E8!ha~E!d~E2E8!daa8

52pha8
* ~E!ha~E!da8a . ~12!

Similarly, for product wave packets

E
2`

`

^Fb8
2 ue2ıHtuFb

2&eıEtdt52pzb8
* ~E!zb~E!db8b .

~13!

From Eqs. ~12! and ~13! the energy normalization functions
are

uha~E!u5U~2p!21E
2`

`

^Fa
1ue2ıHtuFa

1&eıEtdtU1/2

~14!

and

uzb~E!u5u~2p!21E
2`

`

^Fb
2ue2ıHtuFb

2&eıEtdtu1/2. ~15!

Combining Eq. ~11! and Eqs. ~14! and ~15! we obtain
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uSba~E!u25
u*2`

` ^Fb
2ue2ıHtuFa

1&eıEtdtu2

u*2`
` ^Fb

2ue2ıHtuFb
2&eıEtdt*2`

` ^Fa
1ue2ıHtuFa

1&eıEtdtu
. ~16!

The phase of the energy coefficients is irrelevant, since the
reaction probability is uSba(E)u2.

There are several points worth mentioning about the
S-matrix expression, Eq. ~11!:

1. A single calculation gives a column of the S-matrix
for a range of energies that depends on the choice of reactant
and product wave packets.

2. Equation ~11! is symmetric with respect to reactants
and products, and explicitly time reversible.

3. We can propagate the wave packets, uFa
1& forward in

time and uFb
2& backwards in time, towards each other. This

leads to a shorter propagation for each wave packet which
leads, in turn, to more localized wave packets hence a
smaller grid.

4. Note that no additional wave packet propagation is
necessary to obtain the energy normalization factors, Eqs.
~14! and ~15!, since they can be calculated at the same time
as the cross-correlation function in the numerator.

To implement Eq. ~11! we have to find internal eigen-
states of the asymptotic Hamiltonians Ha

0 and Hb
0 and propa-

gate wave packets starting in the asymptotic regions of frag-
ments. We wil l show below that this is not necessary if we
consider the cumulative reaction probability N(E), since the
reactive dynamics is determined entirely in the interaction
region where rearrangement of fragments takes place. This
conclusion is consistent with the trace formula for N(E), Eq.
~3!. Finally, we note that the reaction probability, expressed
as aratio of the Fourier transforms of the wave packet cor-
relation functions, Eq. ~16!, is suggestive of the expression
for the cumulative reaction probability in the arbitrary inter-
nal state basis set, that wil l be derived in Sec. II I A.

III. NEW EXPRESSIONS FOR THE CUMULATIVE
REACTION PROBABILITY

A. N„E… based on the reactant/product wave packet
time-correlatio n functions

Consider a system with N11 internal eigenstates in the
asymptotic channels of products and reactants. Take two sets
of wave packets, $F r% on the reactant side of the potential
and $Fp% on the product side. These wave packets are some
unknown linear combinations of the energy eigenstates with
different internal quantum number, $ucn,E

1 &% with incoming
boundary conditions for reactant wave packets

5
uF r

0&5E (h00(E)uc0,E
1 &1•••1h0N~E!ucN,E

1 &)dE

A

uF r
N&5E (hN0(E)uc0,E

1 &1•••1hNN(E)ucN,E
1 &)dE

,

~17!

and $ucn,E
2 &% outgoing boundary conditions for product wave

packets

5
uFp

0& 5 E (z00(E)uc0,E
2 &1•••1z0N(E)ucN,E

2 &)dE

A

uFp
N& 5 E (zN0(E)uc0,E

2 &1•••1zNN(E)ucN,E
2 &)dE

.

~18!

The energy expansion coefficients can be arranged into ma-
trices, where the first index i 50¯N labels wave packets
and the second index a/b50¯N labels energy eigenfunc-
tions, that are functions of the energy

Mr~E!5$h ia~E!% ~19!

and

Mp~E!5$z ib~E!%. ~20!

Thus, Eqs. ~17! and ~18! can be rewritten as

~ uF r
0&¯uF r

N&)5E
0

`

dE~ uc0,E
1 &¯ucN,E

1 &)Mr~E! ~21!

for reactants, and

~ uFp
0&¯uFp

N&)5E
0

`

dE~ uc0,E
2 &¯ucN,E

2 &)Mp~E! ~22!

for products. We emphasize that the matrices, Mr /p , are un-
known, and wil l not appear in our final working expression.
Here and below we decided to write down vectors explicitly
to avoid additional indices which the tensor notations would
require.

Now we propagate the reactant wave packets and calcu-
late all the correlation functions among themselves

Cr
i j ~ t !5^F r

i uexp~2ıHt !uF r
j &, $ i , j %50¯N. ~23!

This defines an (N11)3(N11) matrix. We may Fourier
transform each of the elements of this matrix to obtain

Ar
i j ~E!5E

2`

`

dtCr
i j ~ t !eiEt. ~24!

The numbers define anew matrix, Ar(E). Substituting Eqs.
~21! and ~23! into Eq. ~24!, and using Eq. ~12!, it is readily
verified that Ar(E) may be written as
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Ar~E!5E
2`

`

dtE
0

`

dE8Mr
†~E8!S ^c0,E8

1 u

A

^cN,E8
1 u

D
3e2ıHtE

0

`

dE9~ uc0,E9
1 &¯ucN,E9

1 &)Mr~E9!eıEt

52pE
0

`

dE8E
0

`

dE9Mr
†~E8!

3d~E82E9!d~E2E9!Mr~E9!

52pMr
†~E!Mr~E!, ~25!

where d(E82E9) comes from the orthogonality of energy
eigenstates at different energies and d(E2E9) comes from
the time integral. Similarly, we define the product–product
correlation functions Cp

i j (t)5^Fp
i uexp(2ıHt)uFp

j &, and its
Fourier transform, Ap

i j (E). Following a derivation analogous
to that for reactants, the Fourier transforms of the product–
product correlation functions may be written in matrix form
as:

Ap~E!52pMp
†~E!Mp~E!. ~26!

Equations ~25! and ~26! provide a strategy for eliminating
the unknown coefficients, Mr(E), Mp(E) in terms of the
known matrices Ar(E) and Ap(E), provided that the matrix
Mr /p and its adjoint always come together; below we will
show that this is indeed the case.

Finally, we define the reactant–product correlation func-
tions Ci j

pr(t)5^F i
puexp(2ıHt)uF j

r& for $ i , j %50¯N. The
Fourier transform of each of these reactant–product correla-
tion functions can be written as Apr

i j (E). Using Eq. ~10!, the
matrix of Fourier transformation of all the reactant–product
correlation functions is readily seen to be

Apr~E!52pE
0

`

dE8Mp
†~E8!S ^c0,E8

2 u

A

^cN,E8
2 u

D
3~ uc0,E

1 & . . . ucN,E
1 &)Mr~E!

52pMp
†~E!Spr~E!Mr~E!, ~27!

where Spr(E) is by definition the scattering matrix. More
precisely, Spr(E) is a part of the scattering matrix that de-
scribes chosen reactants and products. Note, that the product
of the state vectors in Eq. ~27! produces the matrix Spr(E) of
dimension (N11)2. Formally, if there exists an inverse of
the matrices Mr and Mp , the S-matrix may be written as

Spr~E!5~2p!21Mp
†21~E!Apr~E!Mr

21~E!. ~28!

Now, realizing that the cumulative reaction probability
can be expressed as a trace

N~E!5Tr ~Spr~E!Spr
† ~E!!, ~29!

and using Eq. ~28! for the S-matrix, we can write

N~E!5Tr ~Mp
†21~E!Apr~E!Mr

21~E!

3Mr
†21~E!Apr

† ~E!Mp
21~E!!, ~30!

Permutating matrices inside the trace and using Eqs. ~25! and
~26! we obtain

N~E!5Tr ~Apr~E!Ar
21~E!Apr

† ~E!Ap
21~E!!. ~31!

This is our final expression for N(E) in terms of the dynam-
ics of incoming and outgoing wave packets in an arbitrary
basis of internal states. Note that all dependence on the ma-
trices Mr and Mp , which would require knowledge of the
asymptotic states, has disappeared.

If the wave packets are initially located in the asymptotic
region of the potential and they each correspond to a single
internal eigenstatea and b, then Eq.~31! reduces toN(E)
5(abuSba(E)u2. Each S-matrix element in this sum takes
the form of Eq. ~16!.

B. N„E… based on the time-correlation of the wave
packet s and the projectio n operato r for
products

In a previous paper24 we derived an expression for the
total initial-state selected reaction probability Na(E)
5(buSba(E)u2 involving a projection onto products

Na~E!5
*2`

` ^Fa
1ue2ıHtuP̂pFa

1&eıEtdt

*2`
` ^Fa

1ue2ıHtuFa
1&eıEtdt

. ~32!

Here Fa
1 is a purely incoming wave packet in the transla-

tional coordinate anda is an eigenstate of the internal coor-
dinate in the asymptotic reactant region of the potential. The
projection operator is

P̂p5 lim
t→`

eıHth~s!e2ıHt, P̂p
25 P̂p , ~33!

with h(s) being the Heaviside function of the reaction coor-
dinate s. A wave packet Fa

1 is propagated forward in time
until its bifurcation is complete. The nonreactive part of it is
discarded, and the reactive part of the wave packet is propa-
gated backwards in time. The autocorrelation function of the
projected wave packet or, equivalently, the correlation func-
tion of the projected wave packet with the initial wave
packet, is Fourier transformed into energy space and normal-
ized to yield Na(E). We now show that this expression also
can be generalized for calculation of N(E) in an arbitrary
internal coordinate basis.

As in Sec. II I A, we take aset of N11 incoming wave
packets, $Fr% to span a space of N11 internal states, as in
Eq. ~17!. The matrix of Fourier transforms of all time-
dependent correlation functions that normalizes the energy
eigenstates, is given by Eq. ~25!, i.e., Ar(E)
52pMr

†(E)Mr(E). As before, we assume that Mr is un-
known but that Ar is readily computed. We define the matrix
of Fourier transforms of the correlation functions of the pro-
jected wave packets with the initial wave packets as
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Aproj~E!5E
0

`S ^F r
0u

A

^F r
Nu
D e2 iHt P̂p~ uF r

0&¯uF r
N&)eiEtdt,

~34!

where

P̂p5(
b

E
0

`

dE8ucb,E8
2 &^cb,E8

2 u

5E
0

`

dE8~ uc0,E8
2 &¯ucN,E8

2 &)S ^c0,E8
2 u

A

^c0,E8
2 u

D . ~35!

Note that Eq. ~34! contains a product of a column with a
row, generating a matrix.

The projection operator, Eq. ~35!, acts on the reactant
wave packets, Eq. ~19!, yielding

P̂p~ uF r
0&¯uF r

N&)

5E
0

`

dE8~ uc0,E8
2 &•••ucN,E8

2 &)

3S ^c0,E8
2 u

A

^c0,E8
2 u

D E
0

`

dE~ uc0,E
1 &¯ucN,E

1 &)Mr~E!

5E
0

`

dE8E
0

`

dE~ uc0,E8
2 &•••ucN,E8

2 &)Spr~E!

3d~E2E8!Mr~E!

5E
0

`

dE~ uc0,E8
2 &¯ucN,E8

2 &)Spr~E!Mr~E!, ~36!

where we have used the definition of the S-matrix, Eq. ~8!.
Substituting this result into Eq. ~34! we obtain

Aproj~E!5E
2`

`

dteiEtE
0

`

dE8Mr
†~E8!S ^c0,E8

1 u

A

^c0,E8
1 u

D e2 iHt

3E
0

`

dE9~ uc0,E9
2 &¯ucN,E9

2 &)Spr~E9!Mr~E9!

5E
0

`

dE8E
0

`

dE9Mr
†~E8!Spr

† ~E8!

3d~E82E9!2pd~E2E9!Spr~E9!Mr~E9!

52pMr
†~E!Spr

† ~E!Spr~E!Mr~E!. ~37!

Above, the integral over time yielded 2pd(E2E9), and the
product of the column $^ca,E8

1 u% by the row $ucb,E9
2 &% gave

the matrix Spr
† (E8)d(E82E9) according to Eq.~8!.

Inverting this expression, taking a trace and permutating
matrices inside the trace we arrive at

N~E!5Tr ~Spr
† ~E!Spr~E!!

5Tr ~Mr
†21~E!Aproj~E!Mr

21~E!!

5Tr ~Aproj~E!Ar
21~E!!. ~38!

Thus, we can evaluate N(E) by propagating a set of
incoming, otherwise arbitrary, wave packets, projecting onto
products, and then calculating correlation functions of these
projected packets. Similar to Sec. II I A, in the basis of
asymptotic internal energy eigenstates the expression ~38!
reduces to N(E)5(aNa(E) with each term being of the
form Eq. ~32!.

IV. NUMERICAL IMPLEMENTATION AND DISCUSSION

A. Genera l remarks

In order to derive Eq. ~11! for the Sba(E) and Eqs. ~31!
and ~38! for N(E) we assumed that the reactant wave pack-
ets $Fr% are purely incoming and that the product wave
packets $Fp% are purely outgoing. A rigorous way to set up
such purely incoming or outgoing wave packets is to con-
struct them in the reactant ~product! asymptotic regions as a
direct product of incoming ~outgoing! wave packets in the
translational degree of freedom and arbitrary internal basis
functions. However, in practice, we can bring the wave pack-
ets significantly closer to the interaction region, as long as
we ensure that they correlate with the incoming ~outgoing!
translational wave packets in the infinite past ~infinite fu-
ture!.

Recently, it was noted22,25 that for the S-matrix expres-
sions, the restriction on pure incoming or outgoing wave
packets can be removed if the lower limi t t52` in the time
integral in Eq. ~11! is replaced by t50, provided the energy
normalization can be determined by some other means. The
energy normalization is the overlap of the reactant ~product!
wave packets with eigenstates of incoming ~outgoing! char-
acter. This overlap is trivial to calculate, provided the reac-
tant ~product! wave packets are also of pure incoming ~out-
going! character: Since there is no amplitude other than that
of incoming character, the energy normalization obtained
from the wave packet correlation functions are the correct
overlap factors. However, if the wave packet is of mixed
incoming–outgoing character, the incoming–outgoing com-
ponents would have to be separated before the overlap could
be calculated. This tends to negate any savings from bringing
the wave packets closer in, and below we use purely incom-
ing and outgoing wave packets exclusively.

If we set up wave packets $Fr% and $Fp% in the
asymptotic regions of the potential and work in the basis of
energy eigenfunctions, then the number of wave packets we
need is N11 for each arrangement channel. If the internal
basis is different from the internal energy eigenfunctions, the
number of wave packets can be expected to be somewhat
larger than N11. However, if the translational wave packets
are positioned closer to the interaction region, and we use an
efficient internal basis, for example, energy eigenfunctions of
the surface perpendicular to the reaction coordinate of the
center of a wave packet, we can expect the number of wave
packets to be smaller than N11. In order to invert the ma-
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trices Ap(E) and Ar(E) in practice we use singular value
decomposition ~SVD!, since, in general, the number of the
internal functions is larger than the number of the energy
eigenstates for a specific value of energy.

Equation ~31! is explicitly time reversible, and reactants
and products enter on an equal footing. Since all the reactant
wave packets, $Fr%, are incoming and all the product wave
packets, $Fp%, are outgoing, the reactant–product correlation
functions are zero for negative times. Reactant–reactant ~and
product–product! correlation functions for positive and
negative times are related to each other

Cr ~p!
i j ~2t !5Cr ~p!

j i * ~ t !, ~39!

and they die off faster in time than reactant–product corre-
lation functions. Also, we can split the time propagation be-
tween reactant and product wave packets as

Cpr
i j ~ t !5^Fp

i ue2ıHtuF r
j &5^eıHt/2Fp

i ue2ıHt/2F r
j &. ~40!

Thus, half-propagation of reactants, $Fr%, just forward in
time and half-propagation of products, $Fp%, just backwards
in time is sufficient for calculation of all the matrices in-
volved in the expression for N(E), Eq. ~31!. Thus we do not
have to propagate reactant ~product! wave packets back ~for-
ward! in time, and we can use an absorbing potential effi-
ciently.

Equation ~38!, containing as it does aprojection opera-
tor, does not have the reactant–product symmetry. The ab-
sorbing potential cannot be placed close to the interaction
region on the product side. Nevertheless, this asymmetry
might be useful if the number of the product eigenstates is
significantly greater than the number of the reactant eigen-
states.

B. Numerica l example : Collinea r H21H scattering

We applied the formalism of Sec. II I A, Eq. ~31!, to the
collinear hydrogen exchange reaction on the potential energy
surface of Liu, Siegban, Truhlar, and Horowitz ~LSTH!.26–28

Reactant wave packets $Fr% were set up in the Jacobi coor-
dinates, $R,r %, as a direct product of the vibrational eigen-
states and a Gaussian in the translational coordinate R

F r
n~R,r !5e2g~R2R0!21ıp0~R2R0!3xn~r !. ~41!

The wave packets $Fp% were setup in the product Jacobi
coordinates and have the same parameters as the reactant
wave packets, except for the sign of the translational mo-
mentum to make them outgoing

Fp
n~R8,r 8!5e2a~R82R0!22ıp0~R82R0!3xn~r 8!. ~42!

The quantum-mechanical ~QM! time propagation of the
wave packets was performed using the split operator
method29 on a grid in bond coordinates with an imaginary
absorbing potential. The numerical details are given in Table

I. In order to obtain the cumulative reaction probability for
energies below 2.15 eV we propagated wave packets with
the vibrational quantum numbers from n50 to n53. We
chosexn(r ) to be the nth energy eigenstates of either the
Morse oscillator

Vm~r !50.1743~exp~21.04435~r 21.40083!!21!2,

or the harmonic oscillator

Vh~r !50.1898~r 21.40083!2.

Figure 1shows N(E) for two sets of wave packets using the
Morse oscillator eigenstates. The first set, k51 in Table II,
was initially located in the asymptotic region of the potential
at R0

(1)56.7 a.u. The second set, k52 in Table II was placed
in the interaction region at R0

(2)54.7 a.u. Small eigenvalues
l were discarded in the SVD. The cutoff was lmin /lmax

50.02. The cumulative reaction probabilities for the two cal-
culations agree with each other for the range of energy val-
ues with slight discrepancies around the higher resonances.
We attribute the small discrepancies to the fact that the wave
packets with high quantum numbers n from the second set
substantially penetrate into the interaction region of the po-
tential. Thus, they have larger overlaps with the resonance
states, which makes it difficult to obtain accurate spectral
amplitudes. We believe, that the problem with resonances
can be remedied by using a high resolution spectral method,
like filter-diagonalization, instead of the Fourier

FIG. 1. The cumulative reaction probability calculated from the Eq. ~31!
using the Morse oscillator eigenstates as internal coordinate basis. The wave
packets are located in translational coordinate in the asymptotic region at
R0

(1)56.7 a.u. — circles, in the interaction region R0
(2)54.7 a.u. — solid

line. Dashed line shows the results when the reactant–reactant correlation
functions of the first, asymptotic region, set are used to normalize the
reactant–product correlation functions of the second, interaction region, set
of wave packets.

TABLE I. Numerical parameters in atomic units; Absorbing potential Va5kh(R2Ra)h(r 2r a).

Grid size 1283128 Grid spacing dr50.11 Grid starting point r min50.5
Time step dt57.29 Number of time steps 1000

k54.43931023 translational coordinate Ra5R012.0 vibrational coordinate r a54.2
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transform.30–32 This method works best when combined with
the Chebyshev propagator to obtain very accurate time-
correlation functions, or with the Chebyshev recursion which
can be used as an alternative to time correlation functions.

Figure 1also shows that the energy normalization in the
two calculations is, indeed, different. The long-dashed curve
represents N(E) obtained using wave packets that were
placed in the interaction region, but the energy normalization
derived from the asymptotic wave packet dynamics. In this
case, the change in the normalization for the asymptotic and
interaction region calculations is essentially a shift in energy,
as seen in Fig. 2. The maximal amplitude of the off-diagonal
reactant–reactant correlation functions Cr

i j ( iÞ j ) was about
0.03 for the set ~1! and 0.07 for the set ~2! for wave functions
normalized to unity. We also obtained N(E) using two dif-
ferent sets of harmonic oscillator eigenstates, located at
R0

(4)54.7 a.u. and R0
(5)54.2 a.u. (k54,5 in Table II !. The

matrix eigenvalue cutoff was lmin /lmax50.03. The harmonic
eigenstates are tighter than the Morse eigenstates. They do
not penetrate into the interaction region as much as the
Morse eigenstates, yet they adequately describe the reaction
for the chosen range of energy. The cumulative reaction
probability for these wave packets is plotted in Fig. 3. Figure
4 compares N(E) for the harmonic and Morse oscillator
eigenstates (k53 in Table II ! initially placed at R054.2 a.u.
One can see that, as a result of being more localized, the
harmonic oscillator eigenstates give better results than the
Morse eigenstates for near resonant energies.

C. Cumulativ e reactio n probabilit y for the collinear
hydroge n exchang e reaction : Semiclassical
implementation

We also implemented Eq. ~31! using the semiclassical
propagator of Herman and Kluk ~HK!33

Ksc~x8,t;x,0!5
1

~2p\!NE E dp0dq0Rpqte
ıSpqt /\

3gg~qt ,pt ,x8!gg* ~q0 ,p0 ,x!. ~43!

A function

FIG. 2. The eigenvalues of the energy normalization matrices, Ar(E) and
Ap(E), as a function of energy for the asymptotic wave packet set (R0

(1)

56.7 a.u.! — circles and the interaction region wave packet set (R0
(2)

54.7 a.u.! — crosses.

FIG. 3. The cumulative reaction probability calculated using the harmonic
oscillator eigenstates as xn(r ) and initially located R0

(4)54.7 a.u.—solid
line; using the harmonic oscillator eigenstates and R0

(5)54.2 a.u.—dashed
line, compared to the results of the wave packet set ~1!.

FIG. 4. N(E) for the wave packets located at R0
(3)54.2 a.u. using Morse

eigenstates ~solid line! and located at R0
(5)54.2 a.u. ~dash line! using har-

monic eigenstates, compared to the result of the wave packet set ~1!
~circles!.

TABLE II. Parameters of the initial wave packet F r
n(R,r )

5e2g(R2R0)21ıp0(R2R0)xn(r ) in atomic units.

k 1 2 3  4  5
xn(r ) Morse Morse Morse Harmonic Harmonic
R0

(k) 6.7 4.7 4.2 4.7 4.2

for all k g56.0 p0528.0 n50.3
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gg~qt ,pt ,x!5S g

p D N/4

3expS 2
g

2
~x2qt!~x2qt!1

ı

\
pt•~x2qt! D ,

~44!

is a complex Gaussian of the width g, which is a positive real
parameter. Vectors q05(q0

1, . . . ,q0
N) and p05(p0

1 , . . . ,p0
N)

are initial conditions of a classical trajectory at time zero.
Vectors qt5(qt

1 , . . . ,qt
N) and pt5(pt

1, . . . ,pt
N) are its coor-

dinates and momenta at time t. The classical action is

Spqt5E
0

t

@pt8•q̇t82H~pt8 ,qt8 ,t8!#dt8. ~45!

The prefactor carrying a trajectory stability information is

Rpqt5Adet~B!, ~46!

with the matrix elements B5$bi j % being

bi j 5
1

2S ]pt
i

]p0
j

1
]qt

i

]q0
j

2
ıg

\

]qt
i

]p0
j

1
ı

\g

]pt
i

]q0
j D .  ~47!

The sign of the square root in Eq. ~47! has to be chosen such
that Rpqt is acontinuous function of time.34 The integration
goes over all initial values (q0 ,p0). The propagator is unitary
in the stationary phase approximation, and it is time
reversible.35

The reactant and product wave packets, Eqs. ~41! and
~42!, were setup as for the quantum-mechanical calculation,
with the parametersa54.5, q054.7, and p0527.0. The
overlap integrals of gg(qt ,pt ,x) with the reactant and prod-
uct wave packets, needed to calculate the time-correlation
functions, take the simple analytical form with this choice of
the internal functions. The Wall–Porter potential was used
for the semiclassical calculation as in Ref. 20. The reactant
wave packets were propagated up to time T52760 a.u. with
the time step dt54.6 a.u., and their time-dependent overlaps
with the stationary product wave packets were Fourier trans-
formed. The reactant–reactant correlation functions of time
duration 918 a.u. were used to obtain the appropriate normal-
ization in energy. The semiclassical normalization was iden-
tical to the exact normalization for practical purposes.

The cumulative reaction probability for the HK and QM
propagation of the harmonic eigenstate wave packets is plot-
ted in Fig. ~5!. The width of the expansion Gaussians was
g/25a54.5 a.u. in both dimensions. The sampling of trajec-
tories was Gaussian-weighted Monter Carlo sampling. A
single set of the classical trajectories contributed to all cor-
relation functions. That made the timing of the exact
quantum-mechanical and semiclassical calculations compa-
rable. Here we used 106 classical trajectories, but using 10
times fewer trajectories also gave semiquantitative agree-
ment, although the discrepancies around the resonant and
threshold energies were more pronounced. The matrix inver-
sion in Eq. ~31! did not pose aproblem, since the reactant–
reactant correlation functions, which were nonzero for the
first half of the propagation time, were obtained quite accu-
rately.

The presence of resonances in the H1H2 system and the
constricted geometry make the state-to-state reaction prob-
abilities quite structured and challenging to describe semi-
classically. The direct calculation of the semiclassical N(E)
performed here compares better with the quantum-
mechanical results than the semiclassical calculation of indi-
vidual S-matrix elements obtained previously.21 Moreover,
the direct calculation of N(E) is easier than obtaining all of
the state-to-state probabilities, since no asymptotic states
were required: The analytical form of the overlap integrals
^gg(0)uF r

n& and ^F r
nugg(t)& between the HK Gaussians and

the harmonic oscillator eigenstates made the calculation sev-
eral times faster. In general, one also expects to find areduc-
tion in the length of time that the trajectories need to be
propagated relative to the state-to-state calculation, since it is
not necessary for the trajectories to reach the asymptotic re-
gion. However, for the collinear hydrogen exchange reaction
we observed no significant reduction in propagation time.
This can be understood by recognizing that the resonances,
which are the most challenging part of the calculation, are
determined by trapped trajectories which spend far more
time in the interaction region than in the approach or exit
from this region.

V. CONCLUSIONS

We presented two new expressions, Eqs. ~31! and ~38!,
for the cumulative reaction probability using the trace ex-
pression N(E)5Tr(Spr

† (E)Spr(E)). The expressions are
cast in terms of the cross-correlation functions of wave pack-
ets which are incoming ~outgoing! in translation and arbi-
trary in the internal degrees of freedom. This allows one to
choose a convenient internal basis set, and to setup the reac-
tant ~product! wave packets closer to the interaction region,
thus reducing the size of the numerical grid and the propa-
gation time. Our formulation is explicitly symmetric with
respect to reactants and products, i.e., both reactant and pro-
duct wave packets can be propagated in time, forward and

FIG. 5. The cumulative reaction probability, obtained from the semiclassical
propagation of wave packets ~solid line! and the quantum-mechanical result
~dash line!. The wave packets were initially located at R054.7 a.u. in the
translational coordinate and were constructed as the harmonic oscillator
eigenstates in vibrational coordinate.
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backward, respectively. The second formulation, which uses
projection onto products, might be useful if the number of
the product internal states is significantly larger than the
number of the reactant internal states, despite the fact that an
absorbing potential cannot be used as efficiently as in the
symmetric formulation.

Both new formulations can be combined with the high
resolution spectral method of filter-diagonalization to shorten
the length of the propagation time. However, in our experi-
ence filter diagonalization works well only when used with
an extremely accurate propagation method, such as Cheby-
shev method.

It would be very instructive to apply the present formu-
lations to a system with a long range attractive potential.
Here one might see aparticularly large savings of the trace
expression, Eq. ~31! over a state-to-state calculation, by us-
ing convenient internal functions and setting up wave pack-
ets in the interaction region.

Perhaps most significant about the present formulation is
that it can be readily combined with both exact and approxi-
mate time propagation methods. Previously, semiclassical
calculations of N(E) have been possible only in one dimen-
sion ~1D!; the present semiclassical calculation of N(E) for
collinear H1H2 is a significant achievement, and shows the
usefulness of the present formulation. We see no reason, in
principle, that the present formulation implemented semi-
classically cannot be applied to larger systems of greater
chemical interest. As afirst step in this direction, 3D calcu-
lations on H1H2 are in progress. Finally, the formulation is
also completely compatible with the time-dependent self-
consistent field ~TDSCF! approach. In particular, by using an
arbitrary internal basis it may be possible to reduce correla-
tion between translation and internal degrees of freedom, in-
creasing the accuracy and efficiency of TDSCF for reactive
scattering.

1J. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Col-
lisions ~Wiley, New York, 1972!.

2R. G. Newton, Scattering Theory of Waves and Particles ~Springer-
Verlag, New York, 1982!.

3W. H. Miller , S. D. Schwartz, and J. W. Tromp, J. Chem. Phys. 79, 4889
~1983!.

4U. Manthe and W. H. Miller , J. Chem. Phys. 99, 3411 ~1993!.
5U. Manthe, T. Seideman, and W. H. Miller , J. Chem. Phys. 99, 10078
~1993!.

6U. Manthe, T. Seideman, and W. H. Miller , J. Chem. Phys. 101, 4759
~1994!.

7D. H. Zhang and J. C. Light, J. Chem. Phys. 104, 6184 ~1996!.
8D. H. Zhang and J. C. Light, J. Chem. Phys. 104, 4544 ~1996!.
9D. H. Zhang and J. C. Light, J. Chem. Phys. 106, 551 ~1997!.

10J. C. Light and D. H. Zhang, Faraday Discuss. ~in press!.
11S. M. Miller and T. C. Jr., Chem. Phys. Lett. 267, 417 ~1997!.
12D. J. Tannor and D. E. Weeks, J. Chem. Phys. 98, 3884 ~1993!.
13D. E. Weeks and D. J. Tannor, Chem. Phys. Lett. 207, 301 ~1993!.
14D. E. Weeks and D. J. Tannor, Chem. Phys. Lett. 224, 451 ~1994!.
15J. Q. Dai and J. Z. H. Zhang, J. Phys. Chem. 100, 6898 ~1996!.
16D. E. Manolopoulos, in Encyclopedia of Computational Chemistry, edited

by P. v. R. Schleyer ~Wiley, Chichester, 1998!, Vol. 4.
17G. G. Balint-Kurti, R. N. Dixon, and C. C. Marston, J. Chem. Soc., Far-

aday Trans. 86, 1741 ~1990!.
18G. G. Balint-Kurti, R. N. Dixon, C. C. Marston, and A. J. Mulholland,

Comput. Phys. Commun. 63, 126 ~1991!.
19F. Grossmann and E. Heller, Chem. Phys. Lett. 241, 45 ~1995!.
20S. Garashchuk and D. J. Tannor, Chem. Phys. Lett. 262, 477 ~1996!.
21S. Garashchuk, F. Grossmann, and D. J. Tannor, J. Chem. Soc., Faraday

Trans. 93, 781 ~1997!.
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