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RESEARCH METHODS Open Access

A spatial analysis of functional outcomes and
quality of life outcomes after pediatric injury
Nathaniel Bell1,2,6, Sami Kruse4, Richard K Simons2,6 and Mariana Brussoni3,4,5,7*

Abstract

Background: Changes in health-related quality of life (HRQoL) are more regularly being monitored during the first
year after injury. Monitoring changes in HRQoL using spatial cluster analysis can potentially identify concentrations
of geographic areas with injury survivors with similar outcomes, thereby improving how interventions are delivered
or in how outcomes are evaluated.

Methods: We used a spatial scan statistic designed for oridinal data to test two different spatial cluster analysis of
very low, low, high, and very high HRQoL scores. Our study was based on HRQoL scores returned by children
treated for injury at British Columbia Children’s Hospital and discharged to the Vancouver Metropolitan Area. Spatial
clusters were assessed at 4 time periods – baseline (based on pre-injury health as reported prior to discharge from
hospital), and one, four, and twelve months after discharge. Outcome data were measured used the PedsQL™
outcome scale. Outcome values of very low, low, high, and very high HRQoL scores were defined by classifying
PedsQL™ scores into quartiles. In the first test, all scores were assessed for clustering without specifying whether the
response score was from a baseline or follow-up response. In the second analysis, we built a space-time model to
identify whether HRQoL responses could be identified at specific time points.

Results: Among all participants, geographic clustering of response scores were observed globally and at specific
time periods. In the purely spatial analysis, five significant clusters of ‘very low’ PedsQL physical and psychosocial
health outcomes were identified within geographic zones ranging in size from 1 to 21 km. A space-time analysis of
outcomes identified significant clusters of both ‘very low’ and ‘low’ outcomes between survey months within zones
ranging in size from 3 to 5 km.

Conclusion: Monitoring patient health outcomes following injury is important for planning and targeting
interventions. A common theme in the literature is that future prevention efforts may benefit from identifying those
most a risk of developing ongoing problems after injury in effort to target resources to those most in need. Spatial
scan statistics are tools that could be applied for identifying concentrations of poor recovery outcomes. By
classifying outcomes as a categorical variable, clusters of ‘potentially low’ outcomes can also be mapped, thereby
identifying populations whose recovery status may decrease.

Keywords: Wounds and injuries; Spatial analysis; Quality of life; Epidemiology

Background
In Canada, an average of 25,500 children between the ages
of 0 to 14 are hospitalized annually for injury (SafeKids
Canada 2007). The most common causes of unintentional
childhood injuries include: drowning, falls, fires or burns,
poisoning, suffocation, and transportation-related injuries

(Public Health Agency of Canada 2010). Injuries sustained
in childhood have consequences that can last throughout
the life-course, including loss of function, ability, partici-
pation, stress and chronic pain (Davey et al. 2005; Gabbe
et al. 2011). Even children with less severe injuries experi-
ence long-term functional impairments and may require
long periods of therapy to restore pre-injury health (Polinder
et al. 2005; Rivara 2011).
Monitoring patient health outcomes following injury is

important for planning and targeting interventions. Some
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studies have shown that behavioral patterns and functional
outcomes are modifiable with early intervention (Kenardy
et al. 2008; Johnston et al. 2002; Gagnon et al. 2009; Kruesi
et al. 1999). Interventions aid in the recovery from injury
and constitute a valuable component to restoring near- and
long-term health. However, healthcare resources are often
limited, requiring many interventions to be delivered using
low cost tools and therapies (Marsac et al. 2011; Shields
et al. 2013). A common theme in the trauma outcomes lit-
erature has been the suggestion that future prevention ef-
forts may benefit from identifying those most at risk of
developing ongoing problems after injury and targeting re-
sources and interventions mainly upon them.
Spatial analysis of disease patterns is a robust and low-

cost approach for detecting a concentration, or cluster, of
outcomes in preparation for targeting prevention and inter-
vention measures (Jerrett et al. 2005; Musenge et al. 2013;
Cheung et al. 2012; Takahashi et al. 2008; MacKinnon et al.
2007; Green et al. 2003). Some studies have used spatial
cluster analysis to address risk factors associated with injury
risk for purposes of prioritizing geographic areas for plan-
ning and resource allocation (Warden 2008; Bell et al. 2008;
Geurts et al. 2005; LaScala et al. 2000). There are no
such studies demonstrating how these tools can be used
to explore geographic distributions of recovery out-
comes for purposes of prioritizing post-injury inter-
ventions. Spatial analysis could be used to identify
unexpected problems in the recovery process and the
location of groups of patients at high risk for long-term
disability.
In this proof of concept study, we explore the spatial

distribution of pediatric injury outcomes within Vancouver,
British Columbia, Canada. Our objective was to classify
pediatric outcomes into homogenous spatial groups based
on self-reported health-related quality of life (HRQoL) re-
sponses at different time periods. Public health studies rely
on statistical methods for examining determinants that in-
fluence the process of recovery after injury. Spatial analysis
of recovery patterns may similarly lead to new hypothesis
about the contexts that influence the recovery process and
how best to target resources to meet patient needs.

Patients and methods
Study population
Injured children and their caregivers were recruited
from the emergency department and in-patient units of
British Columbia Children’s Hospital. Patients were eli-
gible for participation if they were seeking treatment for
an injury, were aged 0–16, resided within the province
and had working knowledge of the English language. A
research assistant gave all participants verbal and written
explanation of the study. Caregivers provided written
consent for participation and children ages seven and
over also provided assent for participation. The study

recruitment ran from February 2011 to December 2012.
During this time 340 of the 784 persons who were eligible
for the study completed a baseline interview. Figure 1 il-
lustrates the study consent and enrolment cohort. The
analysis presented here is based on baseline and follow-up
data among persons whose postal codes were within the
Vancouver Metropolitan Area (n = 154).

Instrument
The PedsQL™ 4.0 Generic Core (Varni et al. 2001) and
the PedsQL™ Infant Scales (Varni et al. 2011) were used
to collect health-related quality of life (HRQoL) data for
children ages 2–16 years and 0–24 months. Both mea-
sures support the theoretical framework that HRQoL is a
multidimensional construct and includes physical, emo-
tional, cognitive and social health dimensions (Varni et al.
2011; Varni et al. 2003). The PedsQL™ 4.0 Generic Core
consists of 23 items and four subscales: physical function-
ing, emotional functioning, social functioning and school
functioning. The Infant Scales are composed of 45 items
and five subscales: physical functioning, physical symptoms,
emotional functioning, social functioning and cognitive
functioning. A five point Likert response scale ranging from
“never” to “almost always” was used in both instruments
to assess how different items may affect the child. For
both measures, individual item scores were obtained by
reverse scoring items and linearly transforming them to
a scale of 0 to100.
Psychosocial and Physical Health Summary Scores

were computed to allow for stratified analyses of HRQoL
outcomes. For the Generic Core, the Physical Health
Summary Score is identical to the physical functioning
subscale while the Psychosocial Summary Scale is pre-
sented as the sum of the emotional, social and school
functioning scales and divided by the number of items
answered (Varni et al. 2003). The Infant Scales Physical
Health Summary Score includes both the physical func-
tioning and physical symptoms scales and the Psycho-
social Summary Score combines the emotional, social
and cognitive functioning scales (Varni et al. 2011).

Data collection
Participation involved completing a questionnaire package
in hospital, and at one, four, and twelve months post-injury.
For follow-up, participants were mailed a paper copy of the
questionnaire with a self addressed and stamped envelope
and also provided with a web link and given the option to
reply online. The PedsQL™ instrument, included in each
questionnaire, asked the participant to consider their health
state during the past one month when responding to ques-
tions. As such, baseline participants’ responses reflect their
health status before the injury as reported prior to their ini-
tial discharge from hospital. The entire survey question-
naire also asked participants to describe the time and place
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of the injury event, as well as whether the individual had
any disability, long-term health problems, or prior injury
preceding to the injury event. Each person was also asked
to complete a posttraumatic stress disorder questionnaire,
provide information about household income, as well as de-
scribe the nature injury, the body part affected, and the in-
jury intent.

Spatial scan statistic
The spatial scan statistic is a method for measuring spatial
clustering of event data within adjacent geographic areas
and over closely overlapping time periods (Naus 1965).
Kuldroff ’s spatial scan statistic is a widely used spatial
cluster analysis method (Kulldorff 1997). It is both a deter-
ministic model, in that it identifies the locations of cluster-
ing, and an inferential model, in that it allows for the
evaluation of significance of each cluster (Chen et al.
2008). The method can be used to calculate spatial, tem-
poral, or spatiotemporal clustering of events (Kulldorff
et al. 2005).
Kuldorff ’s spatial scan statistic identifies clusters using

a scanning window placed at different spatial coordi-
nates within the study area. The scanning window can
be defined in kilometers and can take the shape of a cir-
cle, ellipsoid, or other shapes. Scan statistics are based
on likelihood ratio tests. The most likely cluster(s) are
identified from comparing the number of events con-
tained within the scanning window against the max-
imum value of the likelihood ratio test statistic. The null
hypothesis of the scan statistic is that events contained
within each scanning window are randomly distributed
in geographic space. The alternative hypothesis is that
within the scanning window there is an increased risk of
events as compared to the risk of events outside of the
window. Different probability models are used for spatial
scan statistics depending on the nature of the data.
Under different models the expected number of events
within each window can be measured using only counts
of events, or in proportion to a background risk; for

example, census population counts or emergency depart-
ment volume.

Data analysis
We applied Kuldorff ’s scan statistic for ordinal data
(Jung et al. 2007). In some clinical studies, the primary
outcome variable is the change in a patient’s condition
after treatment. This is often measured on a Likert out-
come scale as follows: 1 =much improved, 2 = slightly
improved, 3 = no change, 4 = slightly worse, 5 = much
worse. Similar scales are used to quantify socio-economic
status, cancer stages, and self-rated health responses. In
this study, PedsQL™ responses were transformed into
quartiles representing different classifications of HRQoL
states for each time period relative to the other responses
from the survey. The first through fourth quartiles were
coded as follows: 1 = very low HRQoL, 2 = low HRQoL,
3 = high HRQoL, and 4 = very high HRQoL, with scores of
1 representative of the worst outcome and scores of 4 rep-
resentative of the best outcome. The scan statistic for
ordinal data detects clusters for all four health states,
thus producing a detailed assessment of HRQoL re-
sponse scores that could represent very low, low, high,
or very high HRQoL responses. In this way, the clusters
do not always represent the ‘worst’ responses (e.g. 75th –
100th percentile), but could also represent clusters of per-
sons whose health may likely deteriorate (e.g. 50th – 75th

quartile) or those whose health outcomes are substantially
better than others (e.g. 1st – 25th percentile).
All respondent data were aggregated into Census Tract

(CT) administrative geographic boundaries. This was ac-
complished first by linking the respondents postal code
of residence to the Statistics Canada Postal Code Con-
version File (PCCF) geographic linkage dataset (Statistics
Canada 2009) and then by linking the PCCF to the CT
data file. CT’s are small and relatively stable geographic
areas with a population of 2,500 to 8,000 and roughly
correspond in size to an urban neighbourhood. In total,
410 CT areal units within the Vancouver Metropolitan

Figure 1 Study enrollment population. The spatial scan analysis was constructed using postal code data for participants (n = 154) residing in
the Vancouver Metropolitan Area.
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Area were used in the analysis. The spatial scan statistics
were derived using the geographic centroid for each CT.
Centroids were calculated using a commercial geo-
graphic information system (GIS) software package.
Candidate clusters were identified from the CT cen-

troids that fell within the scanning window. The radius
of the window was programmed to vary continuously,
with a maximum search area not exceeding 50% of the
population at risk. A maximum of 50% was used because
once the scanning window covers more than half the
geographic region and/or time period, the likelihood no
longer reflects a cluster of increased risk inside the scan-
ning window (Kulldorff et al. 1998). Each cluster was
evaluated using Monte Carlo hypothesis testing on 999
random replications of the data. All areas with a likeli-
hood ratio exceeding 95% of those obtained from the
simulation were considered statistically significant. Re-
sults were mapped using relative risk ratios for each CT
centroid.
We constructed two spatial cluster analyses using par-

ticipant HRQoL responses. The first analysis was a
purely spatial cluster analysis. In this model, the spatial
clusters were identified using all HRQoL scores irre-
spective of the time period when they were provided. In
other words, the clusters were representative of quartile
scores of those areas that produced similar scores at any
point in time (e.g. pre-injury or in follow-up). Thus, a
significant cluster could be identified from an area that
was in the lowest quartile at time period 1 (baseline) and
the lowest quartile at time period 3 (4 months), but not
at time period 2 or 4, and so on. This model represents
an aggregate assessment of HRQoL over the entire study
period. Significant spatial clusters are those areas that
consistently produced high- or low HRQoL responses ir-
respective of the time period when the responses were
recorded.
The second analysis was a space-time cluster analysis.

In this analysis, observed events in a cluster at each time
period were compared to what would be expected if
both the spatial and temporal locations of all events were
independent of each other. Time periods were assigned as
follows: 0 = baseline, 1 =month one, 2 =month four, and
3 =month twelve. In contrast to the spatial analysis model
described above, any cluster that was identified using this
method was representative of geographic areas having in-
dividuals reporting similar HRQoL responses during the
same time period. Both the purely spatial and space-time
models were constructed using only event (i.e. count)
data, but each event was labeled using its quartile ranking.
In this way, events could be analyzed with respect to its
value.
Table 1 summarizes the nine data fields generated

from the cluster analysis to aid in the interpretation of
the results. For interpretation of Tables 2, 3, 4 and 5 it is

important to note that data values within the columns
‘categories’, ‘observed’, ‘expected’, and ‘RR’ are all refer-
ring to the same set of observations. Thus, the numerical
value of the first data character in the ‘categories’ column
is similarly represented as the first numerical value in
the remaining columns. For example, in cluster #3 in
Table 2, the ‘categories’ column specifies that the cluster
is singularly represented by HRQoL scores 1 (very low
HRQoL), 2–3 (low HRQoL and high HRQoL), and 4
(very high HRQoL). HRQoL response scores 2 and 3 are
combined since there are not so many counts of events
with either a score of 2 or a score of 3 relative to the other
scores. Reading from left to right, one can identify that
within cluster #3 there are 12 observed counts of events
having scores equal to 1; 75 instances with scores equal to
2 or 3, and 49 instances of scores equal to 4. The expected
number of events for each score within the geographic
area of its size was 32.5, 63.8, and 39.7, with the resulting
rate ratio also provided.

Results
The analysis is based on 154 physical and psychological
responses to the PedsQL™ survey at baseline (pre-injury),
1 month, 4 months, and 12 months after injury. All re-
sponses were included in the analysis irrespective of
whether an individual completed all or only a portion of
the follow-up surveys. For the physical health component
of the PedsQL™, 30 individuals elected to complete only
the first assessment (pre-health survey), 17 completed the
first two assessments, 47 the first three assessments, and
60 completed all four assessments. For the psychological
health component of the PedsQL™, 28 individuals com-
pleted only the first assessment, 17 completed the first
two assessments, 47 the first three assessments, and 60
completed all four assessments. There were no statistically
significant differences in demographic or injury-related
characteristics of participants who elected to participate
for the full year versus those who dropped out or re-
enrolled (Table 6). The residential postal codes used to
build the spatial cluster model are shown in Figure 2A.
In model 1, the purely spatial analysis, statistically sig-

nificant clusters of HRQoL response scores were identi-
fied within 3 of the 13 clusters of PedsQL™ physical
health summary scores. The results are displayed in
Table 2 and in Figure 2B. Clusters 1 through 3 contained
concentrations of very low and low HRQoL scores
(categories 1 and 2) relative to good recovery scores.
The geographic concentration of these clusters ranged
from 1.4 to 5.4 kilometers, containing 52 CTs in total.
Clusters 4 and 5 contained areas with concentrations of
good recovery scores (Category 4), however these clusters
were not statistically significant in comparison to other
response patterns within the same area (clusters with
p values > 0.05 are not mapped).
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Statistically significant clusters were identified within 3 of
the 11 clusters of psychosocial summary scores. The results
are displayed in Table 3 and Figure 2C. Cluster 1 contained
concentrations of poor HRQoL scores in comparison to all
other responses whereas clusters 2 and 3 contained concen-
trations of good recovery scores in comparison to all other
responses. The geographic distance of these clusters ranged
from 3.7 to 21.0 kilometers, with the concentration of poor
scores contained within 76 CTs and the concentration of
good recovery scores contained in 110 CTs.
In model 2, the space-time analysis, statistically signifi-

cant clusters scores were identified within 3 of the 8
clusters generated from the PedsQL™ physical health
summary scores. The results are displayed in Table 4
and in Figure 2D. Cluster 1 contained concentrations of
very low scores in comparison to all other responses
during time period 1; the first month post-injury. Clus-
ters 2 and 3 contained concentrations of areas with re-
spondents reporting very low HRQoL scores relative to
all other responses across time periods 1 and 2; months
one and four post-injury in addition to a concentration of
populations reporting high and low scores. The cluster

radius ranged from 2.9 to 4.8 kilometers, containing 95
CTs in total. No statistically significant clusters of HRQoL
response scores were identified from the psychosocial
summary scores when measured over space and by
follow-up period. Spatial scan statistics for the space-time
analysis of psychosocial summary scores are shown in
Table 5.

Discussion
In this study, a methodology was presented using
pediatric PedsQL™ responses that can be applied for
identifying spatial concentrations of populations
reporting similar functional outcome and health-
related quality of life scores after injury. Three obser-
vations can be constructed from the results. First, the
data provide initial evidence that injury outcomes clus-
ter geographically. Second, the data show that geo-
graphic concentrations of similarly reported health-
related quality of life scores are identifiable at specific
time periods after injury. Lastly, the results suggest
that geographic areas with significant concentrations
of good or poor physical health summary scores are

Table 1 Summary of the data fields generated by the spatial scan statistic for categorical HRQoL data

Field Name Summary

1 Cluster Unique identifier assigned to each cluster. ID is re-generated for each cluster analysis.

2 Categories HRQoL response categoriy groupings determined from the data. Category 1 = very low HRQoL, 2 = low HRQoL, 3 = high HRQoL,
4 = very high HRQoL. Although the purpose of the spatial scan statistic is to detect clusters with high rates or low rates of
specific outcomes, this does not necessarily mean that the detected clusters will also produce an outcome pattern in a linearly
high or low manner. For example, it is possible for a cluster to be significant with a high rate of low HRQoL scores (value = 1)
compared to HRQoL scores of 2, 3, or 4. It is also possible for a cluster to contain a significantly high concentration of scores
equal to 1 compared to scores of 2 and 3 combined.

3 Observed The number of instances an HRQoL response category was observed.

4 Expected The number of instances an HRQoL response category was expected. Expected observations derived from the size of the
scanning window.

5 RR Relative risk (RR) attributed to each data category. RR scores provide a convenient single number summary of the direction and
magnitude of the HRQoL groupings. Areas that generate statistically significant RR scores greater than one map the geographic
locations where poor (or conversely, good) patient outcomes have clustered whereas areas that generate statistically significant
RR scores less than one map those areas where there is a decreased risk of either a good or poor outcome.

6 p-value The statistical significance of the spatial cluster (95%)

7 CTs in
cluster

The number of census tracts (CTs) contained within the cluster. Counts of populations within each CT can be obtained by
summarizing the scores generated in field 3.

8 Radius (km) The search radius of the scanning window.

9 Time Period The space-time scan statistic indicates at what time period the spatial cluster was evident.

Table 2 Purely spatial analysis of PedsQL™ physical health summary scores over the entire study period

Cluster Categories Observed Expected RR p-value CTs in cluster Radius (km) Time period

1 [1, 2, 3, 4] [13, 9, 2, 0] [5.6, 5.7, 2.4, 10.4] [2.4, 1.6, 0.8, 0.0] 0.003 7 1.4 …

2 [1, 2-3, 4] [16,3,2] [4.9, 7.0, 9.1] [3.5, 0.4, 0.2] 0.005 36 5.4 …

3 [1, 2-3, 4] [10, 3, 0] [3.0, 4.3, 5.6] [3.4, 0.7, 0.0] 0.042 9 2.7 …

4 [1, 2-3, 4] [4, 24, 41] [16.2, 23.0, 29.8] [0.2, 1.1, 1.4] 0.168 24 2.8 …

5 [1-3, 4] [0, 9] [5.1, 3.9] [0.0, 2.3] 0.457 3 3.1 …

13 [1-3, 4] [0, 6] [3.4, 2.6] [0.0, 2.3] 0.992 1 0.0 …

Categories: 1 = very low, 2 = low, 3 = high, 4 = very high.
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not necessarily aligned with the geographic concentra-
tions of good or poor psychosocial health recovery.
One potential application of the spatial scan statistic is

to identify concentrations of geographic areas where
populations report similar outcome scores. Geographic
locations identified from this methodology may be the
first place to target interventions at different time periods
after discharge since they contain significant concentra-
tions of patients classified into similar risk categories.
Similarly, this methodology also identifies concentrations
of potentially at-risk areas (e.g. areas with concentrations
of ‘low’ HRQoL responses), which is important for identi-
fying those who are potentially at-risk for experiencing
poorer outcomes over time. Conversely, identifying clus-
ters of good recovery outcomes is relevant for identifying
factors that materialize geographically at the local or
neighborhood scale that are beneficial for recovery.
Public health surveillance requires statistical analysis

of outcome data for examining determinants that influ-
ence the process of recovery from injury. However, most
statistical tests produce global results, providing little in-
formation about local variations in outcomes. Given lim-
ited resources, health care providers must be strategic
for targeting surveillance and interventions in order to
maximize positive impacts. Spatial scan statistics are
tools to identify where specific outcomes occur, thereby
providing initial information about specific groups pa-
tients at high risk for long-term disability. Spatial scan
statistics for ordinal data categorize outcomes, thereby
providing information not only on the most extreme

outcomes, but also about those who are likely to ‘fall
through the cracks’ if their health were to deteriorate.
Despite its significance as a leading public health prob-

lem for children, data on injuries are very limited in
Canada among pediatric populations. Most often, re-
searchers must rely on administrative data sets that were
not designed for injury surveillance purposes. No center
systematically collects data on post-injury outcomes,
which means our understanding of the recovery process
after hospitalization and the services that may be needed
to support recovery is virtually non-existent. In our view,
a prospective assessment of geographic patterns of injury
outcomes is important to (1) identify trends and patters
in changing needs, (2) evaluate whether policy and prac-
tice changes implemented as a result of these types of
analyses are actually having the intended effect, and (3)
for identifying whether there are sub-populations that
need specific support.
The methodology proposed in this study is exactly

what is needed to determine where there may be need
for more post-injury support and for developing new hy-
pothesis about the recovery process. For example, if data
were routinely available from individuals over time, such
information could be used to (a) plan the order in which
populations would receive treatment; (b) deliver inter-
ventions based on areas that have the greatest overlap
with other areas; (c) determine if areas with significant
concentrations of poor outcomes contain significant
concentrations of populations with low resource
utilization; or (d) determine if interventions delivered

Table 3 Purely spatial analysis of PedsQL™ psychosocial health summary scores over the entire study period

Cluster Categories Observed Expected RR p-value CTs in cluster Radius (km) Time period

1 [1, 2-3, 4] [95, 105, 59] [62.0, 121.5, 75.6] [2.0, 0.8, 0.7] 0.004 76 14.3 …

2 [1, 2, 3, 4] [5, 14, 27, 36] [19.6, 20.1, 18.4, 23.9] [0.2, 0.7, 1.5, 1.5] 0.007 81 21.0 …

3 [1, 2-4] [12, 75, 49] [32.5, 63.8, 39.7] [0.3, 1.2, 1.3] 0.035 29 3.7 …

4 [1, 2, 3, 4] [7, 0] [1.7, 5.3] [4.3, 0.0] 0.110 4 1.3 …

5 [1, 2, 3, 4] [0.0, 0.7, 1.3, 1.8] [6.7, 6.9, 6.3, 8.2] [0.0, 0.7, 1.3, 1.9] 0.140 4 1.2 …

11 [1, 2-3, 4] [6, 4, 0] 2.4, 4.7, 2.9] [2.6, 0.9, 0.0] 0.997 8 2.6 …

Categories: 1 = very low, 2 = low, 3 = high, 4 = very high.

Table 4 Space-time analysis of PedsQL™ physical health summary scores over the entire study period

Cluster Categories Observed Expected RR p-value CTs in cluster Radius (km) Time period

1 [1, 2-3, 4] [37, 20, 13] [16.4, 23.4, 30.3] [2.5, 0.9, 0.4] 0.001 66 4.5 1 to 1

2 [1, 2-4] [9, 0] [2.1, 6.9] [4.4, 0.0] 0.013 17 2.9 1 to 2

3 [1, 2-3, 4] [8, 0] [1.9, 6.1] [4.4, 0.0] 0.049 12 4.7 1 to 2

4 [1, 2-4] [9, 1, 0] [2.3, 2.3, 5.3] [4.0, 0.4, 0.0] 0.058 17 4.8 1 to 1

5 [1, 2, 3, 4] [13, 1, 0] [6.6, 1.4, 6.1] [2.0, 0.7, 0.0] 0.490 23 4.8 1 to 2

8 [1, 2-3, 4] [0, 8] [4.5, 3.5] [0.0, 2.3] 0.975 5 1.6 2 to 3

Categories: 1 = very low, 2 = low, 3 = high, 4 = very high.
Time period: 0 = baseline, 1 =month one, 2 =month four, 3 = month twelve.
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to specific areas resulted in a reduction or elimination
of health.
With regards to objective (a), interventionists could visit

sites in a way that might maximize time or maximize fuel
or resource consumption. With regards to objective (b),
outreach programs could be initiated at locations that
were equidistant between two neighboring areas, thereby
resulting in the greatest likelihood that populations from
both communities would attend. With regards to objective
(c), an overlap analysis between clusters of low or very low
outcomes with clusters of low or very low resource
utilization statistics (e.g. outpatient rehabilitation visits)
could lead to the identification of populations who may
benefit from alternative therapies, such as telemedicine re-
habilitation modalities. Use (d) could be evaluated by de-
termining whether an intervention resulted in significant
changes in functional outcomes or HRQoL after control-
ling for SES both overall as well as within the specified
geographic area. However, this would require additional
vigilance to the individual-level data that were controlled
for in the analysis. For example, certain factors (e.g. high
school education) are less likely to be indicative of change
in socio-economic position after injury relative to other
factors (e.g. change in one-year income). Potentially more

interesting, however, would be to use the spatial scan stat-
istic to help determine ‘what is the geographic extent that
communities remain influential determinants of health
and well-being after injury?’ For example, previous studies
have shown that certain features from the built environ-
ment, such level of cohesion, crime rates, employment op-
portunities or better access to transportation, as are
important determinants of recovery following injury.
(Liang et al. 2008; Hagglund et al. 2009) Such studies
could benefit from quantifying just how far the impact of
‘community’ spans, thereby helping to determine either
the buffer zone whereby these meso-level factors cease to
remain influential on health outcomes, and thereby the lo-
cations in which additional interventions/resources could
be targeted.
Some limitations of this analysis should be recognized.

First, this study was limited to a relatively small cohort
of trauma patients with the majority of persons requiring
less than 24 h stay in hospital. Moving forward, future ap-
plications of spatial scan statistics on trauma outcomes
would benefit from stratifying outcomes by injury grade
(e.g. ISS 0 – 8, 9 – 15, > 15) or mechanism to identify
whether geographic clustering of outcomes changes by
severity or mechanism. Secondly, we did not exclude

Table 5 Space-time analysis of PedsQL™ psychosocial health summary scores over the entire study period

Cluster Categories Observed Expected RR p-value CTs in cluster Radius (km) Time period

1 [1-2, 3-4] [15, 0] [7.3, 7.7] [2.1, 0.0] 0.064 22 3.9 0 to 1

2 [1, 2, 3, 4] [10, 8, 1, 0] [4.5, 4.7, 4.3, 5.5] [2.3, 1.7, 0.2, 0.0] 0.066 17 2.3 2 to 3

3 [1-2, 3, 4] [0, 6, 9] [7.3, 3.4, 4.4] [0.0, 1.8, 2.1] 0.152 30 4.2 0 to 1

4 [1,2-3, 4] [2,26,24] [12.4, 24.4, 15.2] [0.2, 1.1, 1.6] 0.278 12 2.6 0 to 1

5 [1, 2-3, 4] [13,9,1] [5.5, 10.8, 6.7] [2.5, 0.8, 0.2] 0.746 15 1.3 0 to 1

14 [1, 2-4] [4, 0] [1.0, 3.0] [4.2, 0.0] 0.999 3 1.3 0 to 1

Categories: 1 = very low, 2 = low, 3 = high, 4 = very high.
Time period: 0 = baseline, 1 =month one, 2 =month four, 3 = month twelve.

Table 6 Characteristics of the 154 participants by full and partial participation

Withdrew/Re-Enrolled (n = 91) Full participation (n = 60) p-value

Age (SD) 8.0 (4.8) 9.0 (4.7) 0.22

Sex 0.71

Male 63.7 66.7

Female 36.3 33.3

Total household income 0.38

< $14, 999 1.2 0.0

$15,000 - 29,999 3.5 5.3

$30,000 - 59,999 22.1 10.5

$60,000 - 79,999 14.0 14.0

> $80,000 59.3 70.2

Hospitalized 13.2 6.7 0.11

All values percentages unless otherwise noted.
Comparison p-values based on independent t-test for participation age, chi-square test for household income and sex, and Fisher's exact test for Hospitalization
due to small cell size.
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response data from participants who withdrew from the
study at different intervals. The analysis was on the col-
lective pattern of recovery within geographic areas.
Therefore, the results should not be interpreted as a spatial
analysis of individual outcomes. However, with population-
based registries individual-based surveillance could be feas-
ible. Thirdly, we conducted this analysis without adjusting

for known covariates associated with recovery, nor did we
present on all the different types of scan statistics that have
potential application in trauma outcome studies. Continued
study can improve our understanding of how injury se-
verity, mechanism, demographics, socio-economic, or
environmental factors influence the spatial distribution
of outcomes. With regards to the third limitation, one

Figure 2 Spatial cluster analysis of PedsQL health summary scores across Metropolitan Vancouver. (A) Geographic locations of respondent data
by six digit postal code. All respondent surveys were aggregated into their corresponding Census Tracts prior to running the analysis; (B) Purely spatial
scan statistic showing only statistically significant clusters based on PedsQL™ physical health summary score over the entire study period; (C) Purely spatial
scan statistic showing only statistically significant clusters based on PedsQL™ psychosocial health summary score over the entire study period; (D) Space-
time statistic showing statistically significant clusters based on PedsQL™ physical health summary scores over specific locations and time periods.
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additional spatial scan statistic that warrants further explor-
ation in the analysis of geographic clustering of outcomes
post-trauma is the Poisson permutation model. (Kulldorff
1997) For example, the Poisson permutation model can ad-
just for multiple covariates within each cluster, thereby
allowing practitioners to quantify how much impact in
outcomes or in health services utilization is determined
through geographic location. Lastly, as our primary ob-
jective was to identify concentrations of both ‘high risk’
and ‘potentially high risk’ populations based on physical
and psychosocial survey responses, we measured observed
and expected cases based on numerator data. Future assess-
ments whereby risk was based on counts of specific out-
comes (e.g. number of visitations to physiotherapy, days
since discharge) could account for the background popu-
lation at risk relative to the number of events within each
geographic area. It should also be noted that our rationale
for including only those persons who resided within the
Vancouver Metropolitan Area was multifaceted. For ex-
ample, the nature of Census Tracts limited the analysis
to urban areas as CT’s are only produced for metropolitan
areas with a base population of at least 50,000. It was also
necessary to ensure anonymity in response data, which
could not be maintained for rural areas do to the small
numbers.

Conclusion
In this study of pediatric physical and psychosocial out-
comes we demonstrated the utility of a spatial scan stat-
istic for identifying significant clusters of high- and low-
risk areas of a poor recovery after injury. Ordinal spatial
scan statistics identify different clusters of risk categor-
ies, thus producing a detailed assessment of clustering
across the different health states. Identifying these clus-
ters is relevant to targeting prevention interventions
based on need. This methodology could be integrated
into a tiered response protocol, whereby hospitals with
limited budgets could target intervention groups by geo-
graphic area and by need. Continued development and
exploratory analysis of spatial scan statistics will further
refine possible strategies of these tools for monitoring
patient outcomes after injury. These results provide initial
evidence that outcomes post-injury similarly result in
defined geographic clusters and also add to the trauma
outcomes literature by introducing a methodology for
exploring spatial clustering of outcomes over space
and over different time periods during recovery.
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