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SUBSPACES OF ωω THAT ARE PARACOMPACT IN SOME

FORCING EXTENSION

AKIRA IWASA

Abstract. We discuss when a subspace of ωω is paracompact in some
forcing extension.

1. Introduction

Engelking and Lutzer proved in [?] that for a linearly ordered space X,
the following are equivalent:

(1) X is paracompact.
(2) X does not contain a closed copy of a stationary subset of an uncount-

able regular cardinal.

Motivated by this theorem, we are interested in the problem that for a
set of ordinals X, find a property φ so that the following are equivalent:

(1∗) X is paracompact in some forcing extension where the cardinality of
X is preserved.

(2∗) X has a property φ.

We study three cases:

Case 1. X ⊆ ω1. (Theorem ??)
Case 2. X ⊆ ωn for some n ∈ ω. (Theorem ??)
Case 3. X ⊆ ωω. (Theorem ??)

Case 1 is a simple theorem; we were not able to find a property φ for
Case 2 and Case 3, but found a sufficient condition for (2∗) to imply (1∗).
(There is substantial difficulty finding such a condition φ for Case 2 and
Case 3. See Remark ??.) The main idea in this paper is to make a non–
paracompact subspace of an ordinal in the ground model paracompact in
forcing extension. The author obtained this idea from [?, Theorem 1.7].

Notations 1.1. For a regular uncountable cardinal κ, let

S(κ) = {S ⊆ κ : S is a stationary subset of κ}.

For each limit ordinal α, we fix a monotonically increasing continuous map

fα : cf(α) → α

2000 Mathematics Subject Classification. 03E40, 54D20.
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2 AKIRA IWASA

cofinal in α. Note that for α with cf(α) > ω, X ∩ α contains a copy of a
stationary subset of cf(α) iff f−1

α [X ∩α] is a stationary subset of cf(α). For
a set of ordinals X, we write f−1

α [X] instead of f−1
α [X ∩ α] even if X is not

a subset of α.
For a set A and a cardinal κ, let [A]κ = {B ⊆ A : |B| = κ}, and

[A]<κ = {B ⊆ A : |B| < κ}.
Fix a regular cardinal λ such that λ ≫ ℵω and let Hλ be the collection of

all sets of cardinality hereditarily less than λ.

Using these notations, we can restate the theorem of Engelking and Lutzer
mentioned earlier in the case where X is a set of ordinals:

Theorem 1.2. [?, Theorem 2.3] Let θ be an ordinal and X ⊆ θ. The
following are equivalent:

(1) X is paracompact.
(2) For each α ∈ θ + 1 \X with cf(α) > ω, f−1

α [X] /∈ S(cf(α)).
In particular, for X ⊆ ω1, the following are equivalent:

(1’) X is paracompact.
(2’) X is not a stationary subset of ω1.

The poset CU(S).

Let us define a notion of forcing which we use throughout this paper. We
say S is a fat stationary subset of an uncountable regular cardinal κ iff for
every closed unbounded (club) subset C of κ, C ∩ S contains closed subsets
of any order type less than κ [?, p.644]. Note that every stationary subset of
ω1 is fat [?]. For a fat stationary subset S of a regular uncountable cardinal
κ, we define the partially ordered set

CU(S) = {p ⊆ S : |p| < κ and p is a closed subset of κ},
ordered by end–extension. Due to the result by Abraham and Shelah, we
have the following (they proved a more general case than that in Theorem
??; the case where n = 1 was proved by Baumgartner, Malitz, and Reinhardt
[?]):

Theorem 1.3. [?, Theorem 1] If S is a fat stationary subset of ωn and

ℵ<ℵn−1

n−1 = ℵn−1, then the following are true:

(1) Forcing with CU(S) adds a club subset C of ωn such that C ⊆ S;
(2) Forcing with CU(S) does not add new subsets of size < ℵn (so it

preserves the cardinals ≤ ℵn);
(3) If ℵ<ℵn

n = ℵn, then forcing with CU(S) preserves the cardinals > ℵn.

2. Case where X ⊆ ω1

Let us consider the case where X ⊆ ω1 first. Here is a technical lemma.

Lemma 2.1. Suppose that κ is an uncountable regular cardinal and forcing
with P preserves the cofinality of κ. If, in VP, a set A contains a club subset
of κ, then, in V, A is a stationary subset of κ.
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Proof. Assume on the contrary that, in V, A is not a stationary subset of κ.
Then κ \A contains a club subset, say C, of κ. In VP, C and a club subset
contained in A would be disjoint club subsets of an uncountable regular
cardinal κ, which is a contradiction. �
Theorem 2.2. For X ⊆ ω1, the following are equivalent:

(1) X is paracompact in some forcing extension in which ω1 is preserved.
(2) X is a co-stationary subset of ω1; that is, ω1 \X ∈ S(ω1).

Proof. (1) =⇒ (2): Suppose X is paracompact in VP for some notion of
forcing P. By Theorem ??, in VP, ω1 \X contains a club subset of ω1. By
Lemma ??, in V, ω1 \X ∈ S(ω1).

(2) =⇒ (1): Suppose that ω1 \ X ∈ S(ω1). Let P = CU(ω1 \ X); then
forcing with P preserves ω1 and adds a club subset C of ω1 contained in
ω1 \X, rendering X non–stationary. Therefore, X is paracompact in VP by
Theorem ??. �

3. Case where X ⊆ ωn

In this section, we let X be a subspace of ωn and, assuming GCH, find
a sufficient condition for X to be paracompact in some cardinal–preserving
forcing extension.

Theorem 3.1. Assume GCH. Let X ⊆ ωn for some n ≥ 1. Suppose that
for each i with 1 ≤ i ≤ n, there exists a fat stationary subset Si of ωi such
that for each α ∈ ωn + 1 \X with cf(α) = ωi, Si ∩ f−1

α [X] /∈ S(ωi). Then
X is paracompact in some cardinal–preserving forcing extension.

Proof. For i with 1 ≤ i ≤ n, we let

P(i) = CU(Sn)× CU(Sn−1)× · · · × CU(Si).

Claim 3.2. P(1) is cardinal-preserving.

Proof of Claim ??. We will show by (downward) induction that for each i
with 1 ≤ i ≤ n,

(1) forcing with P(i) does not add new subsets of size < ℵi (so it pre-
serves the cardinals ≤ ℵi), and

(2) forcing with P(i) preserves the cardinals > ℵi.

Since ℵ<ℵn−1

n−1 = ℵn−1 and ℵ<ℵn
n = ℵn (by GCH), forcing with P(n)(=

CU(Sn)) does not add new subsets of cardinality < ℵn and preserves cardi-
nals > ℵn by Theorem ??.

Assume that P(i + 1) satisfies (1) and (2), not adding new subsets of
size < ℵi+1 and preserving the cardinals > ℵi+1. We shall show that P(i)
satisfies (1) and (2). We have VP(i+1) |= (ℵ<ℵi−1

i−1 = ℵi−1 and ℵ<ℵi
i = ℵi).

Therefore, VP(i+1) |= (forcing with CU(Si) does not add new subsets of size

< ℵi and preserves cardinals > ℵi). Let Q̇ be a P(i + 1)–name for CU(Si)

constructed in VP(i+1). Then P(i+ 1) ∗ Q̇ does not add new subsets of size
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< ℵi and preserves cardinals > ℵi. Since CU(Si) is a subset of the power
set of ωi and forcing with P(i + 1) does not add new subsets of size ≤ ℵi,

we actually have that (CU(Si))
VP(i+1)

= (CU(Si))
V. Therefore, P(i+1)∗ Q̇

and P(i + 1) × CU(Si)(= P(i)) produce the same generic extension. Thus,
P(i) satisfies (1) and (2). � (Claim ??)

To show that X is paracompact in VP(1), fix α ∈ ωn + 1 \ X such that

cf(α) = ωk for some k ≤ n. We need to show that VP(1) |= f−1
α [X] /∈ S(ωk).

Working in VP(k+1) (in V if k = n), we have ℵ<ℵk−1

k−1 = ℵk−1 and so
forcing with CU(Sk) adds a club subset of ωk through Sk. Since P(k) =

P(k + 1)× CU(Sk), we have VP(k) |= (Sk contains a club subset of ωk). In

VP(1), Sk remains a club subset of ωk and it is still true that Sk ∩ f−1
α [X] /∈

S(ωk) (“non–stationary” is preserved by any forcing), which implies that
f−1
α [X] /∈ S(ωk). �
Remark 3.3. Abraham and Shelah gave an example of forcing which adds
a club subset of ω2 through a non–fat stationary set [?, Theorem 5]. So Sn

being a fat stationary subset of ωn in Theorem ?? is not a necessary condition
for Sn to contain a club subset of ωn in forcing extension. However, Stanley
showed in [?] that there is no satisfactory first–order characterization of
those subsets of ω2 that have club subsets in an outer model in which ω1

and ω2 are preserved.

4. Case where X ⊆ ωω

In this section we consider the case where X ⊆ ωω. To make X para-
compact, we would need to force with CU(Sn) for every n ≥ 1, where
Sn ∈ S(ωn). The following lemma assures us that we can do so. The point
is that for this iteration to work, Sn’s have to be lined up nicely so that
the set (??) in Lemma ?? is stationary in [Hλ]

ℵk . The poset Pω defined in
Lemma ?? is essentially the one defined by Stanley in [?, p. 372].

Lemma 4.1. Assume GCH. Suppose that {Sn : n ≥ 1} is a sequence of
sets such that:

• Sn is a fat stationary subset of ωn for each n ≥ 1;
• For α ∈ Sn such that cf(α) = ωk for some k ≥ 1 and α is a limit point

of Sn, f
−1
α [Sn] contains a club subset of ωk;

• For each k ∈ ω,

(4.1) {x ∈ [Hλ]
ℵk : (∀n > k) sup(x ∩ ωn) ∈ Sn}

is a stationary subset of [Hλ]
ℵk .

Let Pω = Πn≥1CU(Sn). Then

(1) Pω is cardinal–preserving, and
(2) In VPω , Sn contains a club subset of ωn for each n ≥ 1.

Proof. Let us show (1); (2) follows from the definition of Pω. Let

Pk = Π1≤n≤kCU(Sn)
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and

Pk+1 = Πk+1≤n<ωCU(Sn).

Claim 4.2. Pk+1 is ωk–distributive (the intersection of ωk many dense open
subsets of Pk+1 is dense).

Assuming that the claim is true, let us finish the proof of the lemma. The
claim implies that forcing with Pk+1 does not add new subsets of size ≤ ℵk,

so VPk+1 |= “Pk = (Pk)
V.” Therefore, Pk+1 × Pk and Pk+1 ∗ Q̇, where Q̇

is a Pk+1–name for Pk constructed in VPk+1
, produce the same extension.

Forcing with Pk+1 preserves the cardinals ≤ ℵk+1 (by the claim), and in

VPk+1
forcing with Pk preserves the cardinals ≥ ℵk+1 because |Pk| ≤ ℵk.

Therefore, forcing with Pk+1 ∗ Q̇ preserves ℵk+1, which implies that forcing
with Pω = Pk+1 × Pk preserves ℵk+1 for each k ≥ 0. Thus, forcing with Pω

preserves the cardinals ≤ ℵω. Since |Pω| ≤ ℵω, forcing with Pω preserves
the cardinals > ℵω as well. Now, it remains to show the claim.

Proof of Claim ??. Fix p∗ ∈ Pk+1 and a sequence
→
D= {Di : i < ωk} of dense

open subsets of Pk+1. We shall find q ≤ p∗ such that q ∈
∩
{Di : i < ωk}.

Choose M ∈ [Hλ]
ℵk such that

• M ≺ Hλ;
• sup(M ∩ ωn) ∈ Sn for each n > k;
(this is possible by the fact that the set (??) is stationary)

• [M ]<ℵk ⊆ M ;

• {p∗,Pk+1,
→
D} ⊆ M ;

• ωk ⊆ M .

Case 1. k = 0
We will construct a descending sequence {pi : i < ω} such that

• p∗ ≥ p0 ≥ p1 ≥ · · · ;
• pi ∈ M ∩Di for each i < ω;
• sup[

∪
i<ω pi(n)] = sup(M ∩ ωn) for each n ≥ 1.

Take p0 ∈ M such that p0 ∈ D0 and p0 ≤ p∗. Enumerate M = {xi : i <
ω}. Working in M , we can find pi ∈ Di such that pi ≤ pi−1 and for each
n ≥ 1 max pi(n) > xi if xi is an ordinal and xi ∈ ωn. Define pω so that
for each n ≥ 1, pω(n) =

[∪
i<ω pi(n)

]
∪ {sup(M ∩ ωn)}. Then pω ∈ P1 and

pω ∈ Di for each i < ω, showing that P1 is ω–distributive.

Case 2. k > 0.
Enumerate M = {xi : i < ωk}, and construct a sequence {Mi ∈ [M ]<ℵk :
i < ωk} so that

• Mi ≺ M for all i < ωk;

• {p∗,Pk+1,
→
D} ⊆ Mi;

• {xi : i < j} ⊆ Mj ;
• {Mi : i < j} ⊆ Mj and {Mi : i ≤ j} ∈ Mj+1;
• Mj =

∪
i<j Mi for each limit ordinal j.
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For each n ≥ k + 1, we have obtained a continuous increasing sequence
{sup(Mi ∩ωn) : i < ωk}, which is cofinal in sup(M ∩ωn). Let α = sup(M ∩
ωn); then cf(α) = ωk, and for each n ≥ k + 1, f−1

α [Sn] contains a club
subset of ωk (by the hypothesis) so fα[ωk] ∩ Sn contains a club subset of α.
Therefore, by taking a subsequence, we can obtain {Mi : i < ωk} such that

• sup(Mi ∩ ωn) ∈ Sn for each n ≥ k + 1 and i < ωk.

Choose a descending sequence {pi ∈ Pk+1 : i < ωk} such that

• p∗ ≥ p0 ≥ p1 ≥ · · · ≥ pξ ≥ · · · ;
• pi ∈ Mi+1;
• pi+1 ∈ Di;
• max pi(n) ≥ sup(Mi ∩ ωn) for all n ≥ k + 1;

(The last item implies that if j is a limit ordinal, then
sup[

∪
i<j pi(n)] = sup(Mj ∩ ωn) for each n ≥ k + 1. So we can define pj in

Mj+1 such that)
• if j is a limit ordinal, then pj(n) = [

∪
i<j pi(n)] ∪ {sup(Mj ∩ ωn)} for

each n ≥ k + 1.

Finally, define pωk
so that

• pωk
(n) =

[∪
i<ωk

pi(n)
]
∪ {sup(M ∩ ωn)} for each n ≥ k + 1.

Then pωk
≤ p∗ and pωk

∈ Di for all i < ωk, showing that Pk+1 is ωk–
distributive. �

Here is the main result of this paper:

Theorem 4.3. Assume GCH. Let X ⊆ ωω. Suppose that {Sn : n ≥ 1} is as
in Lemma ?? and for each α ∈ ωω\X with cf(α) = ωn, Sn∩f−1

α [X] /∈ S(ωn).
Then X is paracompact in some cardinal–preserving forcing extension.

Proof. Let Pω be as in Lemma ??, and we work in VPω . To show that X
is paracompact, fix α ∈ ωω \X such that cf(α) = ωk for some k ≥ 1. We
still have Sn ∩ f−1

α [X] /∈ S(ωk), and Sn contains a club subset of ωn, which
implies that f−1

α [X] /∈ S(ωk). Thus, X is paracompact by Theorem ??. �

5. Example

In order to show that Theorem ?? is not an empty theorem, we will
give an example of X and Sn’s as in the theorem such that X \ ωn is not
paracompact for all n ∈ ω. To do so, we look at two technical lemmas.

Lemma 5.1. Suppose κ and µ are regular cardinals such that κ < µ. Let
S be a stationary subset of µ such that for every α ∈ S, cf(α) = κ; then
S = {x ∈ [µ]κ : sup(x) ∈ S} is a stationary subset of [µ]κ.

Proof. Menas [?, Theorem 1.5] proved that for every club C ⊆ [µ]κ, there
exists a function f : µ × µ → [µ]≤κ such that Cf := {x ∈ [µ]κ : ∀⟨ξ, η⟩ ∈
x×x f(⟨ξ, η⟩) ⊆ x} ⊆ C. (Note that Cf is a club subset of [µ]κ.) It therefore
suffices to show that Cf meets S for all such f . Assume on the contrary that
for some f , Cf misses S.
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Claim 5.2. For each α ∈ S, ∃⟨ξ, η⟩ ∈ α× α such that f(⟨ξ, η⟩) * α.

Proof of Claim. Looking for a contradiction, assume that for some α∗ ∈ S,
f(⟨ξ, η⟩) ⊆ α∗ for all ⟨ξ, η⟩ ∈ α∗ × α∗. Take an increasing sequence {αξ :
ξ < κ} cofinal in α∗. We define Ai for i < κ. Let A0 = {α0}. If j = i + 1,
then let Aj =

∪
{f(⟨ξ, η⟩) : ⟨ξ, η⟩ ∈ Ai × Ai} ∪ {αj}. If j is a limit ordinal,

then let Aj =
[∪

i<j Ai

]
∪{αj}. Finally, let Aδ =

∪
i<δ Ai; then Aδ ∈ Cf ∩S,

which is a contradiction. � (Claim ??)

For each α ∈ S, choose ⟨ξα, ηα⟩ ∈ α× α such that f(⟨ξα, ηα⟩) * α. Since
ξα < α and ηα < α for all α ∈ S, by applying Fodor’s Lemma twice we can
find ξ∗ ∈ µ, η∗ ∈ µ and a stationary set S′ ⊆ S such that for all α ∈ S′,
f(⟨ξ∗, η∗⟩) * α, which is a contradiction. �
Lemma 5.3. Let Sn be a fat stationary subset of ωn. Then for k < n,

{x ∈ [Hλ]
ℵk : sup(x ∩ ωn) ∈ Sn}

is a stationary subset of [Hλ]
ℵk .

Proof. Since Sn is fat, {α ∈ Sn : cf(α) = ωk} is a stationary subset of ωn.
By Lemma ??, {x ∈ [ωn]

ℵk : sup(x) ∈ Sn} is a stationary subset of [ωn]
ℵk .

Menas [?, Corollary 1.9] proved that for A ⊆ B with |A| > κ, if S is a
stationary subset of [A]κ, then {x ∈ [B]κ : x∩A ∈ S} is a stationary subset
of [B]κ. Apply this result to the fact that ωn ⊆ Hλ. �
Example 5.4. We give an example of X and Sn’s as in Theorem ?? such
that X \ ωn is not paracompact for all n ∈ ω.

For each n ≥ 1, fix a stationary subset An ⊆ ωn \ (ωn−1 + 1) such that
cf(α) = ωn−1 for all α ∈ An, and {α ∈ ωn \ An : cf(α) = ωn−1} is also
stationary. Let

X =
∪
n≥1

An,

and for each n ≥ 1, set
Sn = ωn \An.

For every n ≥ 1, X \ ωn−1 is not paracompact because An ⊆ X \ ωn−1 and
An is a stationary subset of ωn and sup(An) = ωn /∈ X.

Let α ∈ ωω\X and suppose cf(α) = ωk for some k ≥ 1. We will show that
f−1
α [X]∩Sk /∈ S(ωk). We can find n ≥ k such that α ∈ ωn+1 \ωn. If α = ωn,
then we may assume that fα is the identity on ωn and so f−1

α [X] ∩ Sn =
X∩Sn, which is not in S(ωn) becauseX∩Sn ⊆ ωn−1. Next, suppose α > ωn.
It suffices to show that f−1

α [X \ωn] has no limit point in itself, which implies
that f−1

α [X] /∈ S(ωk). Indeed, each point in X \ωn(=
∪

i>nAi) has cofinality

≥ ωn. On the other hand, f−1
α [X \ ωn] ⊆ ωk.

We show Sn’s are as in Lemma ??. It is easy to see that Sn is a fat
stationary subset of ωn [?, Lemma 1.2] and f−1

α [Sn] contains a club subset
of ωk for each α ∈ Sn with cf(α) = ωk. Now, fix k ≥ 0; we shall show that

E1 = {x ∈ [Hλ]
ℵk : (∀n > k) sup(x ∩ ωn) ∈ Sn}
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is a stationary subset of [Hλ]
ℵk . Let

E2 = {x ∈ [Hλ]
ℵk : sup(x ∩ ωk+1) ∈ Sk+1}∩

{x ∈ [Hλ]
ℵk : (∀n > k) sup(x ∩ ωn) /∈ x}.

E2 is a stationary subset of [Hλ]
ℵk because the first set on the right side is

stationary by Lemma ?? and the second set is a club set. To observe that
E2 ⊆ E1, let x ∈ E2 and n > k + 1; then cf(sup(x ∩ ωn)) ≤ ωk < ωn−1 so
sup(x ∩ ωn) ∈ Sn (because {α ∈ ωn : cf(α) < ωn−1} ⊆ Sn).
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