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A SEQUEL TO “A SPACE TOPOLOGIZED BY

FUNCTIONS FROM ω TO ω”

TETSUYA ISHIU AND AKIRA IWASA

Abstract. We consider a topological space ⟨X, τ(F)⟩, where X =
{p∗} ∪ [ω × ω] and F ⊆ ωω. Each point in ω × ω is isolated and a
neighborhood of p∗ has the form {p∗} ∪ {⟨i, j⟩ : i ≥ n, j ≥ f(i)} for
some n ∈ ω and f ∈ F . We show that there are subsets F and G of ωω
such that F is not bounded, G is bounded, yet ⟨X, τ(F)⟩ and ⟨X, τ(G)⟩
are homeomorphic. This answers a question of the second author [?].

1. Introduction

Let us define a topological space ⟨X, τ(F)⟩. ωω denotes the set of all
functions from ω to ω, and for f ∈ ωω and g ∈ ωω, we write f ≤∗ g if
f(n) ≤ g(n) for all but finitely many n ∈ ω. Let X = {p∗} ∪ [ω × ω], where
p∗ /∈ ω×ω, and let F be a subset of ωω such that for any f1 ∈ F and f2 ∈ F ,
there exists f3 ∈ F such that f1 ≤∗ f3 and f2 ≤∗ f3. Each point in ω× ω is

isolated and a neighborhood of p∗ has the form {p∗} ∪ f↑≥n for some n ∈ ω
and f ∈ F , where

f↑≥n = {⟨i, j⟩ : i ≥ n, j ≥ f(i)}.

Recall that F ⊆ ωω is said to be a dominating family if for every g ∈ ωω
there exists an f ∈ F such that g ≤∗ f , and that F ⊆ ωω is said to be a
bounded family if there exists a g ∈ ωω such that for every f ∈ F , f ≤∗ g.

In [?], the second author gave a topological characterization of the space
⟨X, τ(F)⟩ when F is a dominating family, and asked if there is a topological
characterization of ⟨X, τ(F)⟩ when F is a bounded family. The purpose of
this note is to answer this question negatively by constructing two families
F and G such that

(1) F is not bounded in ωω,

(2) G is bounded in ωω, and

(3) ⟨X, τ(F)⟩ and ⟨X, τ(G)⟩ are homeomorphic.
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2. Theorem

In this section, we construct two spaces described in Introduction and
prove that they have the required properties.

Theorem 2.1. There exist subsets F and G of ωω such that F is not
bounded, G is bounded, and ⟨X, τ(F)⟩ and ⟨X, τ(G)⟩ are homeomorphic.

Proof. Let E = {2n : n < ω} and O = {2n + 1 : n < ω}. Let F be
the set of all f ∈ ωω such that f(2n) = 0 for every n < ω. Clearly, F is a
non-dominating but unbounded family.

Claim 1. Y ⊆ E×ω is τ(F)-closed if and only if there exists an n̄ < ω such
that Y ⊆ n̄× ω.

⊢ Clearly if Y ⊆ n̄× ω for some n̄ < ω, then Y is τ(F)-closed.
Suppose Y ⊆ E × ω and there is no n̄ < ω such that Y ⊆ n̄ × ω. Let

f ∈ F and n < ω. By assumption, there exists an ⟨n′,m⟩ ∈ Y such that
n′ ≥ n. Since Y ⊆ E×ω, we have n′ ∈ E. By the definition of F , f(n′) = 0.

So, ⟨n′,m⟩ ∈ f↑≥n. Thus, p∗ ∈ clτ(F)(Y ). Therefore, Y is not τ(F)-closed.

⊣ (Claim 1)

Let π : (O × ω) → ω be a bijection. Define A to be the set of all a ⊆ ω
such that π←a is τ(F)-closed. For each a ⊆ ω, define ga ∈ ωω by

ga(n) =

{
0 if n ̸∈ a

1 if n ∈ a

Let G = {ga : a ∈ A}. Note that G is bounded. To show that G is directed,
pick ga and gb from G. π←a and π←b are τ(F)-closed so π←a∪π←b is τ(F)-
closed as well. Since π←a∪ π←b = π←(a∪ b), a∪ b ∈ A. Clearly, ga ≤∗ ga∪b
and gb ≤∗ ga∪b.

We shall show that ⟨X, τ(F)⟩ and ⟨X, τ(G)⟩ are homeomorphic. Define a
function ν : X → X by

ν(⟨2n,m⟩) = ⟨n,m+ 1⟩
ν(⟨2n+ 1,m⟩) = ⟨π(2n+ 1,m), 0⟩

ν(p∗) = p∗

Claim 2. ν : ⟨X, τ(F)⟩ → ⟨X, τ(G)⟩ is a homeomorphism.

⊢
Subclaim 2.1. For every Y ⊆ ω × ω, if Y is τ(F)-closed, then ν→Y is τ(G)-
closed.

⊢ Suppose that Y is τ(F)-closed. Since ω × ω is τ(F)-discrete and
Y ⊆ ω × ω, Y ∩ (E × ω) is τ(F)-closed. By Claim ??, there exists an
n̄ < ω such that Y ∩ (E × ω) ⊆ (2n̄) × ω. Then, by the definition of ν,
ν→(Y ∩ (E × ω)) ⊆ n̄ × [1, ω). Since n̄ × [1, ω) is clearly τ(G)-closed and
ω × ω is τ(G)-discrete, ν→(Y ∩ (E × ω)) is τ(G)-closed.
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We shall show that ν→(Y ∩ (O × ω)) is also τ(G)-closed. Let a =
π→(Y ∩ (O × ω)). Then, since π←a = Y ∩ (O × ω) is τ(F)-closed, we have
a ∈ A. Let ⟨2n+1,m⟩ ∈ Y ∩(O×ω). Then, ν(⟨2n+1,m⟩) = ⟨π(2n+1,m), 0⟩.
Note that π(2n + 1,m) ∈ a. So, ga(π(2n + 1,m)) = 1 > 0. Hence,

ν→(Y ∩ (O × ω)) ∩ (ga)
↑
≥0 = ∅. Therefore, ν→(Y ∩ (O × ω)) is τ(G)-closed.

⊣ (Subclaim 2.1)

Subclaim 2.2. For every Y ⊆ ω × ω, if ν→Y is τ(G)-closed, then Y is τ(F)-
closed.

⊢ Suppose that ν→Y is τ(G)-closed. Since ν→Y ⊆ ω × ω and ω × ω is
τ(G)-discrete, both (ν→Y ) ∩ (ω × [1, ω)) and (ν→Y ) ∩ (ω × {0}) are τ(G)-
closed.

Since (ν→Y ) ∩ (ω × [1, ω)) is τ(G)-closed and for every g ∈ G and n < ω,
g(n) ≤ 1, by a similar argument as Claim ??, there exists an n̄ < ω such
that (ν→Y )∩ (ω× [1, ω)) ⊆ n̄× [1, ω). By the definition of ν, it follows that
Y ∩ (E × ω) ⊆ (2n̄)× ω. Thus, Y ∩ (E × ω) is τ(F)-closed.

Since (ν→Y ) ∩ (ω × {0}) is τ(G)-closed, there exist a ∈ A and n̄ < ω

such that (ν→Y ) ∩ (ω × {0}) ∩ (ga)
↑
≥n̄ = ∅. Note that (ν→Y ) ∩ (ω × {0}) =

ν→(Y ∩(O×ω)). Let Y ′ be the set of all ⟨2n+1,m⟩ ∈ Y ∩(O×ω) such that
π(2n+1,m) ≥ n̄. Since π is a bijection, there are only finitely many elements
⟨2n+1,m⟩ ∈ Y ∩(O×ω) such that π(2n+1,m) < n̄. Hence, (Y ∩(O×ω))\Y ′
is finite. So, in order to show that (Y ∩ (O×ω)) is τ(F)-closed, it suffices to
show that Y ′ is τ(F)-closed. To this end, it suffices to show that Y ′ ⊆ π←a
since π←a is τ(F)-closed and ω × ω is τ(F)-discrete. Let ⟨2n+ 1,m⟩ ∈ Y ′.

Then, ν(⟨2n + 1,m⟩) = ⟨π(2n + 1,m), 0⟩. Since ⟨π(2n + 1,m), 0⟩ ̸∈ (ga)
↑
≥n̄

and π(2n + 1,m) ≥ n̄, we have ga(π(2n + 1,m)) ≥ 1. It follows that
π(2n+ 1,m) ∈ a. So, ⟨2n+ 1,m⟩ ∈ π←a. ⊣ (Subclaim 2.2)

By these two subclaims, for every Y ⊆ ω × ω, Y is τ(F)-closed if and
only if ν→Y is τ(G)-closed. Therefore, by taking complements, for every
Z ⊆ X with p∗ ∈ Z, Z is τ(F)-open if and only if ν→Z is τ(G)-open. If
Z ⊆ ω×ω, then Z is τ(F)-open and ν→Z is τ(G)-open because each point in
ω×ω is isolated in both topologies. This shows that ν is a homeomorphism.

⊣ (Claim 2)
�(Theorem 2.1)
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