Western Portion

Introduction

Although the bottomland is virtually the same everywhere, in terms of soils, tree stands, swales and sloughs, oxbow lakes, and a flat topography, the western section of the property is different in accessibility. At least three major roads dissect the property and penetrate deeply into the swamp (Figs. 24, 25, 26, 27). Branching from these roads are numerous primitive trails that lead to deerfields, while other roads transect the swamp in east/west directions and eventually connect the major roads. These east/west roads also provide access to other hunting towers and deerfields.

All of these roads provide miles of visible soils which have been considerably disturbed by vehicles, maintenance, and road construction. Additionally, the cultivated deerfields offer other exposures in the form of openly disturbed soils. These roads and deerfields, therefore, by the virtue of being natural transects and thoroughly dissecting the interior and peripheral areas of the swamp, were utilized as a method of research for site discovery. The eastern section is entirely void of roads and deerfields, and subsequently, other methods of site discovery had to be utilized.

The western portion is designated as the area of Congaree Swamp bounded on the east by the New Road, on the south by the Congaree River, on the west by the North Road, and on the north by the upland boundary (Figs. 25, 26). Prior to the survey, and during the field reconnaissance, we spoke frequently with the Park Ranger, Mr. Guy Taylor, and members of the Cedar Creek Hunt Club, in an attempt to locate archeological sites and specific land forms such as sand ridges.

Method Of Survey

The reconnaissance survey was designed to inspect all available, disturbed soils, and to conform with the terms of the contract:

"The remaining areas of the National Monument have a lower management priority at this time. It is proposed that they be sampled by the use of widely spaced transects, by examining existing roads and trails, and by examining aerial photographs and attempting to locate sand ridges. It is proposed that 8-10 transects be designed approximately perpendicular to the river. The origins of these could be reached by boat along the river, or by swamp trails and roads, whichever is more convenient. Once the origin is located on the ground, the transect will be walked using a compass. Particular
Figure 24: Key map of Congaree Swamp and survey areas.
Figure 25: Map #1 indicating Archeological sites.
Figure 26: Map #2 indicating archeological sites.
Figure 27: Map #3 indicating Transect Locations and Cultural Sites.
attention will be devoted to discovery and testing of sand ridges within the swamp. In addition to transect and road/trail survey, attempts will be made to locate and test sand ridges that may appear on maps or aerial photos, as well as to locate site 38RD19 recorded for the area and the two historic sites indicated by Mill's Atlas (1825). At all sites discovered in the swamp, attempts will be made to excavate test pits and otherwise gather data sufficient for National Register determination, and purposive survey should allow coverage of the swamp sufficient for management at this time and for producing accurate, representative data useful to formulation of the settlement-subsistence model" (Brockington 1978).

Following the procedures set forth in the contract, every known road, trail, deerfield, and otherwise exposed piece of soil was examined on foot, while considerable time was spent walking through forested areas searching for site locations obtained through Mr. Guy Taylor and members of the Cedar Creek Hunt Club.

The conditions of the roads ranged from modern to primitive, but in all situations, the roads provided endless miles of transects and exposures to every conceivable environmental condition. The three main roads--North Road, Clubhouse Road and New Road--received various forms of maintenance which included extensive filling with gravel and dirt. The gravel is composed of crushed granite and small quartz pebbles, but the soil is locally transported from the adjacent upland areas or from the immediate swamp floor adjoining the roads. The excavation of soil within the swamp provided additional open areas for examination, and frequently provided stratigraphic profiles. The roads which connect the major roads are not well maintained but they do offer exposure, as do the barrow pits. The deerfields range in size from about one to five acres and appear to be cultivated annually in rye grass.

In addition to utilizing the exposed and disturbed soils, and the information provided through informants, considerable attention was also given to aerial photographs, modern topographic maps, and specific maps dating to the 18th and 19th centuries. These early maps used in research are:

• 1730--Map of the Province of South Carolina and Its Parrishes by Herman Moll
• 1757--A Map of South Carolina by DeBrahm
• 1773--A Map of South Carolina by Cook
• 1775--A Map of South Carolina by Henry Mouzon
• 1776--Approximation of Race and Density of Population of South Carolina by Robert Lee Meriwether
• 1786-1833 Canals, Roads of South Carolina by Henry Schenk Tanner
• 1825--Map of Richland County by Robert Mills
• 1822--Map of South Carolina by John Wilson
• 1823--A Geographical, Statistical, and Historical Map of South Carolina by John Drayton
Excepting the 1825 Mill's Atlas, which indicates a historic occupation within the swamp, the remaining maps fail to disclose any evidence of utilization or occupation of the area presently known as Congaree Swamp. Mill's map indicates that Adam's Quarter and Scott's Quarter were located adjacent to the Congaree River, but the reconnaissance survey failed to locate either occupation. If these habitation sites presently exist, then there is a high probability that both of them are buried beneath flood deposits that constantly accumulate. There is also the possibility that the habitations were washed away with river meanders.

The recent topographic maps did not reveal the presence of any sand ridges. Although there are some alluvial deposits in Cedar Creek and the Congaree River, two large sand ridges are known to exist outside of the property (Muller's Barn Ridge and Green Hill Mound).

Finally, the site recorded as 38RD19, which allegedly existed near the confluence of Cedar Creek and the Congaree River, was not found during the survey. Based on the description of the site and pertinent information regarding local terrain and highways, the site is probably located at the junction of Cedar Creek and the Old Columbia Highway. At this location there is a sand ridge overlooking Cedar Creek, and the site has yielded material similar to that described by Wauchope (notes on file with IAA). The environment at the confluence of Cedar Creek and the Congaree is represented by silts and clays, and in no way resembles the area described by Wauchope.

Therefore, the reconnaissance survey involving discovery and confirmation of sand ridges, historic sites, and 38RD19 failed to yield any information. However, the survey was able to locate other sites representing the historic and prehistoric periods.

Results of the Survey

Following an extended period of reconnaissance, the survey of the western section produced an inventory of historic earthen structures and small lithic scatters of the prehistoric period. Except for the large earthen mounds, the majority of archeological sites were relatively small and frequently represented by only a few lithic items. Site locations are provided in Figures 25, 26 and 27. Specific site data and location are recorded in Figures 28, 29 and 30.
Figure 28: Cultural materials.
Figure 29: Cultural materials.
Figure 30: Cultural materials.
Prehistoric Sites

38RD178

The site was discovered in the roadbed of the New Road, approximately 3,500 feet south of the upland terrace, and slightly south of a deerfield access road (Fig. 26). The surrounding area is represented by Tawcaw soils, stands of sweetgum and tupelo, and occasional depressed areas containing water. Considerable maintenance and roadbed filling has occurred throughout this section of the road, and the site, therefore, may represent lithic materials imported from the upland terrace at the location of Developmental Zone III.

Lithic Materials: (100% collection)
1 utilized quartz flake

38RD177

The site was discovered in the roadbed of the New Road (Fig. 26) approximately 4100 feet south of the upland terrace, and 700 feet south of 38RD178. The surrounding area is represented by stands of sweet gum, low depressions with standing water, and Tawcaw soils. Considerable road maintenance is also noted in this section of the road and the site could easily represent imported materials.

Lithic Materials: (100% collection)
1 light-yellow chert thinning flake with cortex
1 white and gray mottled, heat-treated chert biface fragment; fractured basal portion of Kirk stemmed projectile point (?).

38RD176

Lithic materials were found in the bed of the New Road approximately one mile south of the upland terrace (Fig. 26). The site is situated slightly north of a slough which crosses the road, and about 100 feet north of the road which eventually connects with the Clubhouse Road. Similar to the previous sites, this site is probably imported through road filling with upland soils. The immediate area represents a change from Tawcaw to Chastain soils, with low depressions and standing water throughout the vicinity. Associated flora would include cypress, tupelo, and sweetgum.

Lithic Materials: (100% collection)
1 chunk of light-yellow chert
1 light-yellow chert flake of biface retouch
1 white and gray mottled, heat-treated chert biface fragment; complete basal portion suggesting Kirk stemmed projectile point.

38RD175

Located approximately 1500 feet south of the above mentioned intersection, and at the junction of a deerfield road (Fig. 26), a small chert flake was found in the New Road. Because of road maintenance, there is a high potential for imported materials in the sandy clay matrix.
of the roadbed. The immediate environment consists of sweetgum, occasional sycamores, and infrequent oaks, while standing water appears absent.

Lithic Materials: (100% collection)
1 orange chert thinning flake

38RD188

The site was discovered about 500 feet east of the New Road and site 38RD175 (Fig. 26). Represented by scatter of rhyolite flakes, the site extends for a distance of about 175 feet in the roadbed while it parallels a large area of depression and standing water. The road is constructed across Tawcaw soils and there is no evidence of maintenance in the form of filling. Filling of ruts and holes is conducted by utilizing the adjoining soils, apparently through the use of a backhoe. Some of the adjacent environment represents cut-over areas, but cypress, tupelo, and sweetgum still occupy the Chastain soils in the depression, and mixed oaks and sycamore represent uncut trees on the slightly higher elevation. Although inspection was given to the small borrow pits along the edge of the road, no cultural materials were found in the eroded profiles or soils. The site, perhaps, is located entirely on the surface and in no way does it appear to be buried.

Lithic Materials: (100% collection)
1 yellow chert flake of biface reduction
44 rhyolite flakes of biface reduction, the majority of which display scrubbed, prepared platforms.

Pottery: (100% collection)
1 highly abraded and plain sand-tempered sherd

Although there is a relatively high incidence of flakes that were struck from preforms and perhaps finished bifaces, nothing diagnostic was found to suggest a temporal placement. The rhyolite flakes and the single pottery sherd could easily be associated, but they could also represent separate occupations in time and space.

38RD187

The site is located about 1500 feet east of the previously mentioned site, 38RD188, and on the same access road to a large deerfield (Fig. 26). Several rhyolite flakes were found scattered across the dirt road constructed on the Tawcaw soils. On the immediate southern edge is another large depression composed of Chastain soils and supporting a principal community of hydric plants such as cypress, tupelo, and sweetgum, while the trees on the slightly elevated Tawcaw soils provide support to mixed oaks and sycamore communities. The site appears to extend in an east/west direction for approximately 100 feet, and based on the absence of cultural materials in the adjoining borrow pits, the site is also shallow.

Lithic Materials: (100% collection)
3 rhyolite flakes of biface reduction
Approximately 3000 feet east of 38RD187 (Fig. 26), and situated on elevated Tawcaw soils is a lithic scatter representing several time periods. The site, which rises about two feet above the surrounding Tawcaw soils, is located on the western edge of a slough and extends west for a distance of about 200 feet. Although several large borrow pits adjoining the road were examined for additional occupational debris, the slumped profiles and eroding soils did not yield any further evidence. Because the cultural material is scattered rather evenly over a relatively large area, the chance of finding debitage in the small borrow pits (i.e., 6 feet square and 18 inches deep) is small. If material was not found in these excavated pits, the chance of finding additional material in test pits would be reduced significantly. The question regarding the occurrence of archeological materials in these roadbeds that are maintained by scattering local soils will be discussed later. Quite possibly these sites are shallow, being confined, perhaps, to the first few inches of the surface soils.

Lithic Materials: (100% collection)
- 13 pieces of shattered quartz cobbles
- 9 rhyolite flakes of biface reduction
- 2 yellow chert flakes of biface reduction
- 1 variegated yellow-orange, heat-treated chert flake of biface reduction
- 1 variegated yellow-brown-orange, heat-treated distal portion (blade portion) of a projectile point. Probably Kirk variety of the Early Archaic.
- 1 white chert, heat-treated basal portion of a Kirk stemmed point.
- 1 silicified sandstone Morrow Mountain projectile point
- 1 dark red fossiliferous chert Yadkin projectile point
- 1 fractured rhyolite preform
- 1 quartz preform

Pottery: (100% collection)
- 3 highly abraded and plain sand-tempered sherds

The site was discovered at the intersection of the New Road and a small deerfield access road, located approximately 2,600 feet south of site 38RD175 (Fig. 26). The immediate area is represented by Tawcaw soils and mixed hardwoods with occasional stands of tupelo and sweetgum in depressed areas. Like most of the swamp, the area is relatively flat with no apparent change in the elevation. The site is represented by a single chert flake which may have been imported in road fill.

Lithic Material: (100% collection)
- 1 light gray, heat-treated chert flake of biface reduction

The area is located about 1000 feet north of the Old Dead River and slightly east of a cluster of deerfields (Fig. 26). In the roadbed
constructed on Tawcaw soils one silicified sandstone flake was discovered. The surrounding environment has been reduced significantly through extensive logging operations, but those trees that remain suggest that mixed hardwoods, primarily oak and sycamore, once constituted the forest. Although portions of the road have been maintained, the road fill was taken from the adjoining Tawcaw soils.

Lithic Material: (100% collection)
1 silicified sandstone flake of biface reduction

38RD190

The North Road transects the swamp in a north/south direction until it reaches the Congaree River where it then turns and parallels the river for a distance of several thousand feet. As the road turns east at the river, there is a large sand bar approximately 1000 feet long (Fig. 25), and during its exposure at low water the bar is about 200 feet wide. During the fall drought of 1978, a considerable portion of the bar was exposed, allowing the discovery of highly abraded, water worn Mississippian ceramics. The origin of the pottery and other related items is unknown. A search of the upstream river banks failed to reveal any eroding site; therefore, during the development of a meander, the entire site must have been washed away and certain cultural components deposited on the sand bar. The highly eroded nature of the sherds attests to prolonged exposure to river currents and possible travel across the river bottom, in addition to travel across the abrasive sands of the bar. Associated components, such as animal bone and vegetal matter, would surely have suffered greatly in the river current and sand bars, while heavier lithic items in the form of grinding stones, celts, and other weighty items are not easily transported, and subsequently may remain further upstream embedded in silts and clays on the river bottom. However, without any more knowledge than the material at hand, any assessment of the prior occupation is difficult.

Ceramic Materials: (50% recovery)
2 sand-tempered plain sherds; one incurving rim fragment of a bowl
3 Lamar sand-tempered sherds, complicated stamped
5 Complicated stamped sherds; too worn for identification
7 Sand-tempered sherds with a high incidence of sand inclusions; too worn for any identification
1 fragment of daub with hand and stick impressions

Historic Sites

38RD194 (Cooner's Cattle Mount)

The site is located about 200 feet east of a small dirt road that leads to the Brady property. Elevated about 5 feet above the former swamp floor of Tawcaw silty clay, the mount is rectangular in shape and measures roughly 52 feet in width and 96 feet in length. The surface is virtually flat and each of the four sides has about a 45 degree slope, producing a symmetry which suggests a well executed construction (Fig. 31).
Soil removed from adjacent areas for mound fill.

Note:
1. Assumed elev.
2. Dimensions approximately 52' x 96' or 15.8 x 29.2 meters.

Plan view of Cooner's Mount

Section thru Cooner's Mount

(Note: All dimensions and contours are approximate)

Figure 31: Plan view and section through Cooner's Mount.
In contrast, the mount supports a mixed community of sweetgum and holly with a surface component of grasses, while the adjoining swamp floor sustains occasional cypress, mixed oaks, and infrequent sycamore, all of which blend with sweetgum in a complex of tree stands. The mount's antiquity (ca. 1840; Cely n.d.) is evidenced by the presence of several large sweetgum trees, one of which measures 24 inches (abh). The stump of a large cypress tree measuring about 48 inches (abh) occurs on the southeast slope and it appears to have been partially covered during the mount construction. Although the tree was cut at a later date, probably during the extensive removal of cypress during the early 1900's, its presence would suggest an uncut environment during the mount's construction.

In order to obtain stratigraphic data relevant to structure and actual height, an old intrusive pit was cleaned out and widened to 3x5 feet and excavated to a depth of 6 feet. Immediately below a thin humus of dark brown soil, mottled silty clay appeared and provided evidence for artificial deposition (Fig. 32). The mottling, created by successive deposition of separate soil loads, did not indicate the aboriginal method of basket filling. The sporadic occurrence of mottling suggests a combination of large and small soil loads, and thin horizontal bands of different soils suggest soil spreading to attain relative flatness during construction phases. Further evidence for historical association is the depression created by soil removal. Along the south and east periphery the depression still retains a degree of sharpness rather than highly eroded edges forming gentle contours.

Mottling continued to a depth of 5 feet and disappeared with the appearance of an old soil horizon. The former ground surface is represented by a brown silty clay containing numerous root holes, and with increased depth, the soil begins blending with yellowish brown silty clays. Throughout the excavation, attempts were made to find historic and prehistoric materials; however, material culture was not observed.

The physical evidence suggests that Cooner's Mount is an artificial structure. The method of construction, based on a single test pit, does not appear to represent aboriginal influences; while some antiquity is suggested by large trees, the area of soil removal is not highly eroded, nor partially filled; and the large cypress stump at the base of the mount further suggests construction prior to the early 1900's.

38RD193 (Old Dead River Cattle Mount)

The site is located approximately 3,000 feet southeast of the Old Dead River (oxbow lake), and about 150 feet east of the Old Dead River Dike (38RD192). Situated within the partial enclosure of the dike, the mount rises to a height of 3.5 feet above the swamp floor and measures about 45 feet wide and 80 feet long (see Figs. 33, 34, 35).

The immediate environment consists of Congaree silty clay soils and riverbank hardwoods representing dominant species of oak, sweetgum, sycamore, and occasional holly. In contrast, the mount supports a
Figure 32: Test Pit Profile at Cooner's Mount.
Figure 33: Cooner's Cattle Mount.

Figure 34: Old Dead River Cattle Mount.
Figure 35: Plan view and section through Old Dead River Cattle Mount.
similar stand of trees, but there is a high incidence of holly. Although several large trees may be seen in the surrounding environment, there is greater tendency towards smaller trees suggesting immaturity. This feature is noted not only in the surrounding forest, but trees on the dike and mount are generally small.

In 1825, the Congaree River flowed considerably closer to the dike system and the mount in a meander loop that incorporated the Old Dead River oxbow lake and the partially filled river channel that presently represents swales and sloughs. During the river's earlier pattern of flow, the property may have been owned by Paul Spigner, and he may have been responsible for the earthen structures. According to Cely (n.d.), "Another re-grant was a 370 acre tract on the river bank granted to Paul Spigner in 1839. This plat does show two cleared areas, each about fifteen acres in extent. Corn and cotton was probably grown here, and the dike enclosure for one of these fields still exists." If this is the location mentioned by Cely (n.d.), then the dike and cattle mount were probably constructed during the 1840's, relative to the construction of Cooner's mount. Because there are no other known dike enclosures on the Biedler property, and with the apparent young growth of trees in the vicinity of the dike and mount, these earthen structures are probably the same mentioned in Cely's (n.d.) report. The Cooner's mount has larger timber which may indicate it fell into disuse at an earlier date, while Spigner's may have experienced extended utilization.

Unfortunately, rising water levels prevented testing of the mount, and subsequently nothing is known of its internal structure. Several attempts were made at crossing the swollen swales and sloughs, but the continued rains of December and the resultant flooding covered the dead trees which span the drainage systems. With the loss of natural crossings and a virtual inaccessibility of the area, the testing had to be abandoned.

38RD192 (Old Dead River Dike)

This site, is located adjacent to the cattle mount (Fig. 26). The remains of the dike range in height from about 2 feet to 4 feet as it extends in an east/west direction on the northern edge and a north/south direction as it turns and parallels the old river channel. The dike is highly dissected from continuous flooding, and although it is difficult to trace for this reason, at least 300 feet were discovered. The soils, effective environment, and historical knowledge are recorded with the cattle mount (38RD193).

38RD195 (Big Lake Cattle Mount)

The cattle mount is located about 800 feet east of the New Road and about 200 feet north of a partially filled oxbow lake, referred to as Big Lake (Fig. 26). The mount has a relatively low profile, elevated only 2 feet above the swamp floor, and it extends in a northeasterly direction for about 75 feet with a width of about 35 feet. Surrounding the mount is a slight depression which may represent the location of soil removal for the earthen structure (Fig. 36).
Figure 36: Plan view and profile of the Big Lake Cattle Mount.
The setting is similar to those of the other earthen structures; the soil is Tawcaw silty clay. Trees present include mixed oaks, sycamore, sweetgum, and other hardwoods. The size of the trees on the mount indicates that it may have been used recently.

A test pit was placed near the center to obtain data regarding internal structure and stratification. This pit was excavated to a depth of 3 feet. Beneath a thin humus layer, the soil is a slightly mottled tan silty clay which varies from 11 to 13 inches in depth. This soil horizon overlies a dark brown silty clay of varying thickness which terminates on an original ground surface at a depth of 2 feet. This former ground surface is represented by a dark brown silty clay containing numerous root molds. These three different soil horizons demonstrate an artificial earthen structure through its reverse stratification. The dark brown soil lying unconformably on the old original surface is void of root molds and it represents a deposition of humus soils from the adjoining area of depression. The tan clays seen on the surface of the mount represent the deeper soil horizons of the Tawcaw soil series (Fig. 37). No cultural materials were recovered during the excavation of this test pit.

38RD196 (Brady's Cattle Mount)

Although the Brady Cattle Mount is presently located outside of the National Monument property, on the land of Mr. Jack Brady, it was briefly surveyed for comparative data. The mount is situated on the north edge of a large pasture and approximately 600 feet northwest of the Congaree River (Fig. 26). Constructed of silty clay loam, the mount rises to a height of about 6 feet and measures about 90 feet long and 50 feet wide. The mount is surrounded by a barbed-wire fence (Fig. 38).

It was constructed in the early 1900's by Jack Brady's grandfather for the explicit purpose of providing an elevation for cattle during flood stages. This earthen refuge has constantly been maintained and utilized by cattle ever since its construction, and during the recent flood of January 1979, Brady used a boat and motor to herd his cattle up on the mount.

An inspection of Mill's Atlas (Mills 1965) indicates that Brady's Mount is located adjacent to Scott's Quarter, but there is no association between the two.

Brady's Mount is located on Congaree soils, and the vegetation is riverland hardwoods, especially oaks, sycamore, and sugarberry. The mount, because of its continued utilization by cattle, is virtually barren (Fig. 38). This area was the last visited during the survey, and time would not permit testing.

38RD191 (North Boundary Dike)

This large earthen structure is located adjacent to the northeast boundary and approximately 2000 feet due west of Cedar Creek and parallel
Figure 37: The Big Lake Cattle Mount, Site 38RD195.

Figure 38: Brady's Cattle Mount, Site 38RD196.
with the North Road (Fig. 25). Dense undergrowth prevented an exact determination of the length of this feature. My estimate would be that the dike extends in a straight line for a distance of 2000 feet. The structure begins at the edge of the uplands east of Cedar Creek, and continues due south in broken segments ending in the flat bottomland (Fig. 39).

The dike, although badly slumped through time, is still about 6 feet high, while the base is nearly 20 feet wide. Several large oak trees which grow on flattened portions of the apex indicate that this feature is probably quite old. The immediate environment consists of mixed oaks, hardwoods, and loblolly pine. This changes as the dike enters the swamp with the trees present reflecting the more hydric conditions (Fig. 40).

The earthen structure was built prior to 1840 by James Adams, but was never completed. As Cely (n.d.) states, "As late as 1839, much of the land in the tract was unclaimed and unused. In that year over 4,000 acres of the 15,000 acre tract (Beidler tract) was regranted to the James Adams family. A plat of this regrant shows no signs of cleared land or fields. James Adams, Sr. evidently had plans to cultivate part of this tract, since his will of 1841 mentions the hope that his children will continue the dike construction he started. His children never finished this project, as evidenced by the incomplete dike existing today" (Cely n.d.: 93).

Eastern Portion

Method of Survey

The reconnaissance of the eastern portion was conducted by establishing a series of transect lines spaced 2400 feet apart and oriented in a north/south direction. These lines were connected to points on the Congaree River which provided access by boat and motor. By using a Brunton compass as a guide, methods of discovery involved inspecting the root and soil matrix of overturned trees; the eroded banks of swales, sloughs, and creeks; the rootings of wild hogs; freshly eroded flood channels; stumpholes; and any other area that would yield exposed soil and profiles. Small excavations with a shovel were attempted, but the clayey texture of the soil and its frequent dampness proved too time consuming. Additional problems were encountered in trying to walk the transects: the numerous occurrences of swales and sloughs, large wet depressions, muddy soils, and shallow ponds frequently retarded any deep penetration into the swamp. Occasionally, however, natural crossings were found on logs, but fallen trees did not always occur conveniently and at times we had to abandon the transects and search over hundreds of yards for a crossing. At several such locations, crossings could not be found and subsequently the transects were abandoned.
Figure 39: Eroded section through the North Boundary Dike, 38RD191.

Figure 40: Improved Primitive Road connecting the North Road with the Clubhouse Road.
Logistical problems involving penetration resulted in relatively short walks that ranged from about one quarter of a mile to about one mile (see Fig. 27).

Results of the Transect Survey

Although a total of eight transects was walked, and while considerable attention was given to exposed soils, evidence of either historic or prehistoric occupations could not be found. The area yielded only silty clay soils, an environment similar to the western portion, and a great deal of dissection with creeks, swales and sloughs, and filled or partially filled oxbow lakes. Sand ridges were not present in the flat terrain.

At two separate locations cypress trees were noted that displayed large scars created by axes. The scars, located about eight feet high, consisted of two cuts, each occurring on opposite sides of the trees (Fig. 41, 42). In both cases the trees were relatively large with rotted and hollow cores, and a thin outer surface. Apparently the cut marks on the trees occurred during the 1900's removal of cypress. Discovering a hollow core, the tree was abandoned by the lumber company. The height of the axe marks strongly suggest that timbering was done during periods of high water. This would further suggest that people were taking advantage of flood conditions in order to cut through the narrow portion of the cypress just above the wide basal buttress, while flooding would have provided easier access to the cypress. In reference to logging operations, Cely states, "The cypress tree was girdled by ax, allowed to 'dry out', then cut and floated down the river to the sawmill" (Cely n.d.: 93).

The second indication of human activities within the eastern portion is the recent discovery of three earthen embankments which suggest bridge abutments. These structures were discovered by Mr. Guy Taylor, Park Ranger for the property, during late summer. The earthen embankments are man-made, but there is uncertainty concerning the date of manufacture and the persons responsible. Although Issac Huger reportedly constructed a road through the eastern portion of the property, it would be difficult to state with any certainty that the structures are the results of Huger's activities. Conversely, the structures could easily be related to forms of logging operations during the turn of the century or any other activity during the past two centuries.

The areas immediately contiguous with the structures are highly dissected from annual flooding and there is no evidence of elevated causeways or any form of road construction. Consequently, there is no indication of pathways leading either to or from the earthen structures which prevents any interpretation of travel direction.

38RD207

The earthen embankments are located approximately a mile north of the Congaree River and about 1000 feet northeast of Transect Line #7.
Figure 41: Ax Marks on Cypress Tree in the eastern portion of the swamp.

Figure 42: Ax marks on Cypress in eastern portion of the swamp.
near the northern boundary of the property (See Fig. 27). The structures are aligned, roughly, in a north/south direction and appear to have traversed two moderate sized swales. Although slightly eroded from flooding, the embankments suggest an original form that would measure about 15 feet in width and 40 feet in length with an elevation of about 4 feet above the floodplain. The base of the earthen ramp rises from the floodplain at about a 30 degree angle and then truncates at the apex (Figs. 43, 44 and 45) for at least half the distance of the structure. Immediately adjacent to the two southerly structures are moderate-sized depressions which may represent borrow pits. However, with demonstrated local dissection, the depressions may represent nothing more than flood scouring.
Figure 43: Earthen structures in eastern portion of the swamp.

Figure 44: Earthen structures in eastern portion of the swamp.
Figure 45: Plan view and sections of earthen Bridge Abutments.