https://doi.org/10.1145/1060745.1060766">
 

Title

SemRank: Ranking Complex Relationship Search Results on the Semantic Web

Document Type

Conference Proceeding

Abstract

While the idea that querying mechanisms for complex relationships (otherwise known as Semantic Associations) should be integral to Semantic Web search technologies has recently gained some ground, the issue of how search results will be ranked remains largely unaddressed. Since it is expected that the number of relationships between entities in a knowledge base will be much larger than the number of entities themselves, the likelihood that Semantic Association searches would result in an overwhelming number of results for users is increased, therefore elevating the need for appropriate ranking schemes. Furthermore, it is unlikely that ranking schemes for ranking entities (documents, resources, etc.) may be applied to complex structures such as Semantic Associations. In this paper, we present an approach that ranks results based on how predictable a result might be for users. It is based on a relevance model SemRank, which is a rich blend of semantic and information-theoretic techniques with heuristics that supports the novel idea of modulative searches, where users may vary their search modes to effect changes in the ordering of results depending on their need. We also present the infrastructure used in the SSARK system to support the computation of SemRank values for resulting Semantic Associations and their ordering.

Digital Object Identifier (DOI)

https://doi.org/10.1145/1060745.1060766

APA Citation

Anyanwu, K., Maduko, A., & Sheth, A. P. (2005). SemRank: Ranking Complex Relationship Search Results on the Semantic Web. Proceedings of the 14th International Conference on World Wide Web, 117-127.
https://doi.org/10.1145/1060745.1060766

Share

COinS