Document Type

Article

Subject Area(s)

Chemical Engineering

Abstract

A two-dimensional, axisymmetric, and time-dependent thermal model was developed to study the temperature behavior of the cylindrically shaped common-pressure-vessel nickel-hydrogen cell. A differential-energy-balance equation was used as the governing equation. A finite-element software package called PDE/Protran was used to solve this model. Different materials such as copper, copper beryllium, silver, and sterling silver were compared as heat-fin materials. The heat-fin geometry (thickness and height) and spacing were tested to find a design that yielded an acceptable temperature gradient inside a nickel-hydrogen cell. Pulse heat-generation rates were tested and correlated with the time-dependent heat-generation cases.

Share

COinS