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Abstract

Dependent data are very common in many research fields, such as medicine (repeated

measures), finance (time series), traffic (clustered), etc. Effective control/modeling of

the dependency among data can enhance the performance of the models and result

in better prediction. In many cases, the correlation itself may be of great interest. In

this dissertation, we develop novel Bayesian semi-/nonparametric regression models

to analyze data with various dependence structures. In Chapter 2, a Bayesian non-

parametric multivariate ordinal regression model is proposed to fit drinking behavior

survey data from DWI offenders. The responses are two-dimensional ordinal data,

drinking frequency and drinking quantity at each occasion. In Chapter 3, we develop

a hierarchical Gaussian process model to analyze repeated hearing test data of pe-

diatric cancer patients. A penalized B-spline is used to capture the overall trend of

the curve. Individual intercepts and slopes as random effects are allowed to model

individual deviation from the population mean. Since the curves are theoretically

smooth, a hierarchical Gaussian process is assumed on top of the individual-specific

mean function. In Chapter 4, we propose a constructive approach to imposing a

mean constraint in a finite mixture of multivariate normal densities. Implemented in

a linear mixed model, the effectiveness of the constraint is verified by both simulation

and data analysis using longitudinal cholesterol data.
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Chapter 1

Introduction

1.1 Dependent Data

Independence among data is a common assumption in regression analysis. Neverthe-

less, in reality, data can be dependent in various ways. Generally speaking, there

are two types of dependency in data. Firstly, subjects could be dependent on each

other in the sample. For example, a researcher wants to estimate the average base

salary of all employees in a company. Instead of doing random sampling, he collects

data from one particular research group. Conditioning on that they are from this

group, the employees’ data could be treated as independent. However, marginally,

the data are highly correlated because they are from the same group. The second

type of dependency is within subjects. For instance, a patient takes a hearing test

on a series of tone frequencies for both left and right ears. Test results of each sub-

ject are naturally correlated. This is called repeated measures. In particular, if the

measurements are taken over time, it is so-called longitudinal data. For example, a

patient’s blood pressure is tested repeatedly over a period of time during treatment.

Another type of dependence is when one subject is measured on different outcomes.

For example, a person may fill out a survey asking about her exercise behavior which

includes information about both exercise duration and frequency.

These dependent data are problematic for the classical methods of statistical anal-

ysis. There is a rich literature of methodology dealing with dependent data. One

branch is multivariate analysis. Tiao and Zellner (1964) use a Bayesian approach to
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analyze correlated responses. The model is quite flexible allowing the set of predictors

to be different for different response variables. Generalized versions of multivariate

models were also proposed to analyze categorical and binary data (Chib and Green-

berg, 1998 and O’Brian and Dunson, 2004). In longitudinal studies, data collected

may be unbalanced. For example, Individual A may be measured at t1, t2, . . . , tn but

Individual B are not measured at some time points. In this case, it is difficult to apply

multivariate models with a general covariance matrix. Laird and Ware (1982) propose

a family of mixed models, which assume an overall mean for the whole population

but allow variation of individual parameters (random effects) that induce correlation

among repeated measures within each subject.

In this introduction, I discuss selected models and tools that are used in the

development of the proposed models. Section 1.2 contains a brief introduction to

multivariate probit models that are used on dependent data for subjects measured

on the same responses. Linear mixed models are discussed in Section 1.3; these mod-

els can handle unbalanced data as well as high-dimensional repeated measurements.

Section 1.4 extends the discussion to curve fitting methods and models. In particu-

lar, Gaussian Process models and the B-spline approach are introduced. A general

overview of the three projects comprising this dissertation is contained in Section 1.6.

1.2 Multivariate Probit Models

Tiao and Zellner (1964) propose the general m-dimensional multivariate regression

model as follows:

yi = Xiβi + ei, i = 1, . . . ,m, (1.1)

where yi is a T × 1 vector of all T responses on outcome i, Xi a T × pi matrix of

regressors of rank pi including intercepts, βi the corresponding vector of regression

coefficients and ei a T × 1 vector of random errors. Let e = (e′
1, . . . , e

′
m)′ and
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assume e is normally distributed with zero mean and covariance matrix Σ ⊗ IT

where Σ is a m × m positive definite matrix, IT a T × T identity matrix and ⊗

denotes the Kronecker product. Write y = (y′
1, . . . ,y

′
m)′, β = (β′

1, . . . ,β
′
m) and

X = blockdiag(X1, . . . ,Xm)T m×p+ where p+ = ∑m
i=1 pi. Then, the multivariate

model is

y = Xβ + e,

where e ∼ NT m(0,Σ ⊗ IT ). If X1 = X2 = . . . = Xm, the model can be reduced to

the traditional multivariate regression model.

1.3 Linear Mixed Models

Laird and Ware (1982) propose a two-stage random-effects model for the analysis of

longitudinal data. Let β denote the population parameter vector and γi denote the

individual effects. Let Xi and Zi denote the design matrices that link yi with β and

γi, respectively. For each subject i,

yi = Xiβ +Ziγi + ei,

where ei is distributed as N(0,Σi). β is treated as fixed effects while γi are random

effects,

γi ∼ N(0,D).

Then, marginally, yi are independent normals with mean and covariance matrix as

follows:

E(yi) = Xiβ

and

Var(yi) = Σi +ZiDZ
′
i

Often times, it is assumed that Σi = σ2
i Ini×ni

, where I denotes the identity matrix

and ni is the total number of observations of individual i.

3



Note that linear mixed models may be easily generalized to models which can

handle categorical or Poisson data, termed generalized linear mixed models. They

can also be generalized in another direction: relaxing the normal assumption of the

error terms. These semi-parametric or non-parametric models can handle data with

more complicated structures, such as clustered, severely skewed, bimodal, etc.

1.4 Curve Fitting

Generally speaking, there are three major components in curve fitting models: a re-

gression function for the overall trend, individual parameters modeling the differences

among subjects or curves (e.g. random effects), and the variance-covariance struc-

ture for the repeated within-subject observations. Different approaches emphasize

different components, but they have gradually evolved in a more flexible and non-

parametric direction. In this section, I introduce nonlinear models that are employed

in my projects.

Instead of assuming E(Y ) = Xβ in linear models, let E(Y ) = µ(X,β) where µ(·)

is an unknown nonlinear function. In particular, a basis function expansion assumes

µ(x) =
H∑

h=1
βhbh(x),

where bh are prespecified basis functions and βh are basis coefficients. bh can take

a variety of forms. We will focus on the penalized B-spline approach in this intro-

duction. The B-spline is piecewise continuous function which is defined over some

prespecified set of knots. Often times, these knots are equispaced over the range of

the predictor x. For example, the “mother” quadratic B-spline basis function on [0, 3]

4



is defined as follows:

ϕ(x) =



0.5x2 0 ≤ x ≤ 1

0.75 − (x− 1.5)2 1 ≤ x ≤ 2

0.5(3 − x)2 2 ≤ x ≤ 3

0 otherwise

And the basis functions bh(·) on the range of predictor x are

bh(x) = ϕ
(
x− a

δ
+ 3 − h

)

where δ = (b− a)/(H − 2), a = min(x1, . . . , xn) and b = max(x1, . . . , xn).

The number of knots is determined by how oscillatory the curve is. A small num-

ber of knots will result in a function space that is not flexible enough to sufficiently

model the fluctuation of the curve. Too many knots will make the model too compli-

cated and computation-intense and may also result in overfitting. To solve this tricky

problem efficiently, Eilers and Marx (1996) propose a roughness penalty approach.

First, a relatively large number (e.g. 20) of equally spaced knots are chosen to ensure

the flexibility of the function space. Then the roughness is penalized through a dif-

ference penalty on adjacent B-spline coefficients (Lang and Brezger 2004), equivalent

to penalizing
∫ b

a |µ′′(x)|2dx.

The fitting of the B-spline models may be sensitive to the location and number of

knots. An alternative choice is to set up a prior on the regression function directly

using a Gaussian process:

µ ∼ GP(m, k),

where m is a mean function and K is a covariance function. For any prespecified set

{x1, . . . , xn}, {µ(xi)}n
i=1 follow a multivariate normal distribution as follows:

µ(x1), . . . , µ(xn) ∼ Nn ((m(x1), . . . ,m(xn)), K(x1, . . . , xn)) .

5



The mean function is an initial guess at the regression function (Gelman, 2014), which

could be the vector zero, a linear functionXβ, or even a B-spline function, depending

on how much information is available about the curve. The function k determines

the covariance between any two functional values µ(x) and µ(x′). A common choice

is the Gaussian covariance function

k(x, x′) = γ2exp
(
−θ|x− x′|2

)
,

where γ and θ are unknown parameters and |x−x′|2 is the squared Euclidean distance

between x and x′. γ controls the magnitude and θ the smoothness of the function.

1.5 Stick-Breaking Mixtures

In classical regression models, error terms are assumed to be normally distributed.

This assumption is strong and often times inappropriate. To model data with un-

certain or non-standard distributions, a variety of semi-/non-parametric approaches

have been proposed, among which are models based on mixtures of standard compo-

nents, such as normal mixtures. In this dissertation, we adopt mixture models which

assume stick-breaking priors.

Stick-breaking priors are random probability measures G defined as

G(·) =
N∑

k=1
wkδθk

(·), (1.2)

where δθk
(·) denotes a point mass at θk and wk are random weights with special

structure (below) that are independent of θk and such that 0 ≤ wk ≤ 1 and ∑N
k=1 wk =

1 almost surely (Ishwaran and James, 2001). Let a = (a1, a2, . . .) and b = (b1, b2, . . .)

be positive vectors. G = GN(a, b) is called a stick-breaking random measure if it is

of form (1.2) and

w1 = V1 and wk = Vk

∏
l<k

(1 − Vl), k ≥ 2,

6



where Vk ∼ Beta(ak, bk). Note that if a1 = a2 = · · · and b1 = b2 = · · · the weights

are stochastically ordered, i.e. E(w1) ≥ E(w2) ≥ · · ·

The number of Vk’s, N, could be either finite or infinite. In the case that N <

∞, setting VN = 1 guarantees that ∑N
k=1 wk = 1. Random weights defined in this

way have the generalized Dirichlet distribution, which is conjugate to multinomial

distribution. In the case that N = ∞, the prior is infinite dimensional and can

be denoted as G∞(a, b). One example of infinite-dimensional priors is the Dirichlet

process.

Ishwaran and James (2001) discuss two Gibbs sampling methods for stick-breaking

priors. In the first method, samples are drawn from the posterior of a hierarchical

model formed by marginalizing over the prior. In the case of mixtures of normals,

P (y|else) =
∫
ϕ(y|µ,Σ)dG(µ,Σ).

This is called “Polya urn Gibbs sampler” and can be applied to any random proba-

bility measure with a known prediction rule.

The second method, the “blocked Gibbs sampler”, avoids marginalizing over the

prior but directly samples from the nonparametric posterior. This method works even

if the prediction rule is unknown. The prior G is assumed to be a finite dimensional

GN(a, b) so that the model can be expressed entirely in terms of a finite number of

components. In particular, the mixture model can be written as follows:

Yi|θ, s
ind∼ π(Yi|θsi

), i = 1, . . . , n

si|w iid∼
N∑

k=1
wkδk(·)

w,θ ∼ π(w) ×HN(θ)

where s = (s1, . . . , sn), θ = (θ1, . . . , θN) and w = (w1, . . . , wN). si are component

membership indicators that identify the θk associated with Yi, θk are iid H, and wk

follow generalized Dirichlet distribution.

7



1.6 Summary

In this dissertation, we develop Bayesian semiparametric models to analyze dependent

data. In Chapter 2, multivariate ordinal data are modeled as a finite stick-breaking

mixture of multivariate probit models. Parametric multivariate probit models are

first developed for ordinal data, then generalized to finite mixtures of multivariate

probit models. Specific recommendations for prior settings are found to work well in

simulations and data analyses. Interpretation of the model is carried out by examining

aspects of the mixture components as well as through averaged effects focusing on

the mean responses. A simulation verifies that the fitting technique works, and an

analysis of alcohol drinking behavior data illustrates the usefulness of the proposed

model.

Distortion product otoacoustic emissions (DPOAE) testing is a promising alterna-

tive to behavioral hearing tests and auditory brainstem response testing of pediatric

cancer patients. The central goal of the study in Chapter 3 is to assess whether

significant changes in the DPOAE frequency/emissions curve (DP-gram) occur in

pediatric patients in a test-retest scenario. This is accomplished through the con-

struction of normal reference charts, or credible regions, that DP-gram differences lie

in, as well as contour probabilities that measure how abnormal (or in a certain sense

rare) a test-retest difference is. A challenge is that the data were collected over vary-

ing frequencies, at different time points from baseline, and on possibly one or both

ears. A hierarchical structural equation Gaussian process model is proposed to han-

dle the different sources of correlation in the emissions measurements, wherein both

subject-specific random effects and variance components governing the smoothness

and variability of each child’s Gaussian process are coupled together.

In Chapter 4, a simple constructive approach to imposing a mean constraint in

a finite mixture of multivariate Gaussian densities is proposed. All parameters in

the model except for one have closed-form full conditional distributions and are fit
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through a simple Markov chain Monte Carlo algorithm. For illustration, the mean-

constrained finite mixture is implemented in a linear mixed model. Simulations reveal

that the mean-constrained model is able to precisely estimate the regression coeffi-

cients and mean-constrained random effects distribution simultaneously. An analysis

of the Framingham cholesterol data shows that, with relatively simple structure, the

model has competitive predictive power with earlier approaches.
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Chapter 2

Bayesian Nonparametric Multivariate Ordinal

Regression1

2.1 Introduction

This chapter proposes a nonparametric regression model and associated inferential

methods for multivariate ordinal data. The development is quite general, allowing

for different sets of covariates to be tied to different ordinal outcomes. Specifically,

we observe m ordinal outcomes from each of T subjects in a study. The model is im-

mediately generalized to include mixtures of ordinal and continuous responses. Our

approach makes use of recent work in dependent prior processes, notably the depen-

dent Dirichlet process (MacEachern, 1999), but is easily simplified to an interpretable

finite mixture of multivariate probit models, as we demonstrate with our data analy-

sis in Section 2.6. The model presented here builds on and generalizes work by Tiao

and Zellner (1964); Kottas, Müller, and Quintana (2005); Lawrence, Bingham, Liuc,

and Naird (2008); and De Iorio, Johnson, Müller, and Rosner (2009).

Historically, there are two distinct approaches to regression modeling for mul-

tivariate multinomial data, models that assume underlying continuous latent traits

(threshold models), and models that focus on the discrete joint distribution of the re-

sponses directly in terms of cumulative logits and/or odds ratios. So-called threshold

models have their origins with Pearson (1904) who assumed latent bivariate normal

1The content in this chapter is a reprint by permission of John Wiley & Sons, Inc. for “Jun-
shu Bao and Timothy Hanson (2015). Bayesian Nonparametric Multivariate Ordinal Regression.
Canadian Journal of Statistics.”
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random variables underlying a two-way contingency table, leading to the tetrachoric

correlation measure of association for 2×2 tables and the more general polychoric cor-

relation for larger tables. In contrast, Yule (1900) proposed a direct measure, Yule’s

Q, for 2 × 2 tables that is a measure of concordance among two binary variables.

Agresti (2013, Chapter 17) reviews the history of categorical data analysis including

early disputes among Pearson, Yule, and Fisher. An example of a recent regression

formulation for multivariate ordinal data based on the threshold approach is Lesaffre

and Molenberghs (1991) and references therein; the direct approach is nicely typified

by Dale (1986).

Although some work has been done on nonparametric approaches to univariate

ordinal data (e.g. Hastie, Botha, and Schnitzler, 1989; Chu and Ghahramani, 2005;

Srijith, Shevade, and Sundararajan, 2013), there is very little in terms of nonpara-

metric approaches to multivariate ordinal data. Kottas et al. (2005) consider a

Dirichlet process mixture (DPM) of normals for modeling underlying latent traits

without covariates using the threshold approach. Yang (2006) also posited an un-

derlying Bayesian nonparametric prior, a mixture of multivariate Polya trees, adding

group offsets yielding a semiparametric MANOVA model, with application to bi-

variate ordinal drinking behavior data. De Yoreo and Kottas (2014) consider the

threshold model applied to the multivariate regression model of Müller, Erkanli, and

West (1995). Their model specifies a joint DPM model for the predictors and latent

continuous response (x̃, z̃) that induces a conditional model z̃|x̃; this approach is

most natural for strictly continuous x̃. We consider a generalization of Kottas et al.

(2005) allowing for the incorporation of categorical and continuous covariates in a

linear dependent Dirichlet process mixture (LDDPM) model that can be viewed as a

discrete mixture of multivariate probit regressions.

Following Chib and Greenberg (1998) the most general case where each ordinal

outcome is modeled using a different set of predictor variables is initially considered;
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this general parametric model is then further extended to mixtures of probit models.

However, we restrict ourselves to the case where each ordinal outcome has at least

three levels. Our model can handle the case where one or more outcomes are dichoto-

mous, but the incorporation of additional constraints are necessary (e.g. Hanson and

Pearson, 2007) or a parameter expanded model needs to be considered (e.g. Lawrence

et al., 2008).

Section 2.2 develops the multivariate probit model in detail; Section 2.3 generalizes

the parametric model to a nonparametric finite mixture. Model interpretation and

comparison is discussed in Section 2.4. Section 2.5 gives a simulation study for the

parametric and nonparametric models; Section 2.6 offers an analysis on bivariate

ordinal data on beer drinking quantity and frequency. Finally, Section 2.7 concludes

the chapter with a discussion.

2.2 Multivariate Probit Model

Parametric multivariate probit model for latent traits

There are many ways to parameterize a threshold ordinal regression model; one ap-

proach constrains the covariance matrix of the underlying latent trait vector to be a

correlation matrix (e.g. Chib and Greenberg, 1998). This approach disallows easy

posterior computation, and so we instead follow Chen, Shao, and Ibrahim (2000)

and fix the two outer cutoffs. Kottas et al. (2005) consider a flexible mixture model

underlying the table and so are able to fix all cutoffs in the model. The ith ordinal

outcome from subject j, yij, follows a latent trait model:

yij = r ⇔ αi,r−1 < zij < αi,r, (2.1)

where αi0 = −∞, αi1 = 0, αi,ci−1 = 1 and αi,ci
= ∞ (ci is the number of levels of the

ith ordinal outcome). Let yi = (yi1, . . . , yiT )′ be the ordinal outcomes for measure-

ment i on individuals j = 1, . . . , T and let zi = (zi1, . . . , ziT )′ be the underlying latent
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variables associated with yi. For each outcome i there are ci − 3 free parameters

αi2 < · · · < αi,ci−2 to estimate.

Consider the general multivariate regression model for the latent zi described

in Tiao and Zellner (1964). Let Xi be a T × pi matrix of regressors of rank pi

including intercepts, and βi the corresponding vector of regression coefficients for

ordinal outcome i. Let e = (e′
1, . . . , e

′
m)′. The model is

zi = Xiβi + ei, e ∼ NT m(0T m,Σm×m ⊗ IT ), (2.2)

where NT m stands for a T × m-dimensional multivariate normal, 0T m is a T × m-

dimensional vector of zero, Σm×m is the variance-covariance matrix of latent zi, and

IT is the T -dimensional identity matrix. Note that this allows for different predictors

for each latent outcome unlike the approaches of Lawrence et al. (2008) and Biswas

and Das (2002). Now take E = [e1 · · · em] to be the T × m matrix of errors. The

i = 1, . . . ,m columns are of course ei; let the j = 1, . . . , T row vectors be denoted ẽ′
j so

that E′ = [ẽ1 · · · ẽT ]. Note that E is matrix-normal; the matrix-normal formulation

was used by Geisser (1965) for the simplified model where each outcome has the same

set of predictors X1 = · · · = Xm.

Let µ̃j = E{z̃j|β} be the mean of m latent outcomes z̃j = (z1j, . . . , zmj)′ from

subject j given β = (β′
1, . . . ,β

′
m)′. Let Xi have jth row vector x̃ij and let X̃j =

blockdiag(x̃1j, . . . , x̃mj)m×p+ where p+ = ∑m
i=1 pi; then µ̃j = X̃jβ. An alternative

formulation of (2.2) is

z̃j = X̃jβ + ẽj, ẽ1, . . . , ẽT
iid∼ Nm(0m,Σ). (2.3)

Posterior updating under Jeffreys’ prior

As our approach is Bayesian, we obtain posterior inference through Gibbs sam-

pling. By now, Gibbs sampling is a standard tool in the statistician’s toolbox

and we refer the reader to textbooks such as Christensen et al. (2010) or Robert
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and Casella (2004). A Gibbs sampler is characterized by the full conditional dis-

tributions of all model parameters. Once these full conditional distributions are

derived, a Gibbs sampler simply samples from them in turn, updating parameter

values as they are sampled. The updated parameter values comprise a dependent

sample from the posterior, albeit one whose ergodic averages converge to posterior

means and empirical quantiles converge to posterior quantiles. Under the para-

metric model the posterior distribution augmented with the latent {zi} is denoted

[β,Σ,z1, . . . , zm,α1, . . . ,αm|y1, . . . ,ym]. A Gibbs sampler yields iterates from the

augmented posterior {(β(d),Σ(d),z
(d)
1 , . . . , z(d)

m ,α
(d)
1 , . . . ,α(d)

m )}D
d=1 where D is some

large number of iterates after an initial number are discarded (the burn-in).

Let B = blockdiag(X1, . . . ,Xm) and z = (z′
1, . . . , z

′
m)′. Under Jeffreys’ prior

p(β,Σ) ∝ |Σ|−
1
2 (m+1),

Tiao and Zellner (1964) show that

β|Σ,z ∼ Np+(β̂,V −1),

where V = [B′(Σ−1 ⊗ IT )B] and β̂ = V −1B′(Σ−1 ⊗ IT )z. Note that

V =



X ′
1X1Σ−1

11 X ′
1X2Σ−1

12 · · · X ′
1XmΣ−1

1m

X ′
2X1Σ−1

21 X ′
2X2Σ−1

22 · · · X ′
2XmΣ−1

2m

... ... . . . ...

X ′
mX1Σ−1

m1 X ′
mX2Σ−1

m2 · · · X ′
mXmΣ−1

mm


p+×p+

.

Here, Σ−1
ij is the ijth element of the precision matrix Σ−1. In the simplifying case

where X1 = · · · = Xm = X of dimension T × p (e.g. Lawrence et al., 2008) this

reduces to

V = [Σ−1 ⊗ (X ′X)]p+×p+ with inverse V −1 = [Σ ⊗ (X ′X)−1]p+×p+ .
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In general,

B′(Σ−1 ⊗ IT )z =


X1

∑m
i=1 ziΣ−1

i1
...

Xm
∑m

i=1 ziΣ−1
im

 .

The error matrix as a function of β and z is

E = [z1 −X1β1| · · · |zm −Xmβm]T ×m.

Then

Σ−1|β,z ∼ Wishm([E′E]−1, T ).

We will use Geweke’s (1991) method to sample the latent {zij}. Let z̃j,−i be the

vector z̃j with the ith element omitted. Then

zij|z̃j,−i,β,Σ, ỹj ∼ N

{
µ̃ij − 1

Σ−1
ii

Σ−1
i,−i(z̃j,−i − µ̃j,−i),

1
Σ−1

ii

}

truncated to (αi,yij−1, αi,yij
). Here, Σ−1

ii is the ith diagonal element of the precision

matrix Σ−1, Σ−1
i,−i is the (m − 1)–dimensional ith row of Σ−1 with the ith element

omitted and µ̃j,−i is the (m−1)–dimensional vector µ̃j with the ith element omitted.

That is,

zij|{zlj}l ̸=i,β,Σ, ỹj ∼ N

µ̃ij − 1
Σ−1

ii

∑
l ̸=i

Σ−1
il (zlj − µ̃lj),

1
Σ−1

ii


truncated to (αi,yij−1, αi,yij

).

Finally, as usual, given the independent proper prior

p(αi2, . . . , αi,ci−2) ∝ I{0 < αi2 < · · · < αi,ci−2 < 1},

we have

αir|{zij}T
j=1, ỹj ∼ U

(
max{zij : yij = r}, min{zij : yij = r + 1}

)
for i = 1, . . . ,m and 2 ≤ r ≤ ci − 2. U(a, b) stands for the uniform distribution with

support (a, b).
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Posterior updating under proper priors

The mixture approach in Section 2.3 requires proper priors for the posterior to be

proper (unless we force a few observations to come from each mixture component).

Furthermore, sensible proper priors are easy to develop due to parameterization αi1 =

0, αi,ci−1 = 1. So, proper priors were used throughout the simulation study and data

analysis for model comparison purpose. Consider conditionally conjugate priors

β ∼ Np+(b,M−1) ind. Σ−1 ∼ Wishm(S, ν). (2.4)

Then

β|Σ−1,z ∼ Np+{[V +M ]−1[B′(Σ−1 ⊗ IT )z +Mb], [V +M ]−1},

Σ−1|β,z ∼ Wishm([E′E + S−1]−1, T + ν).

See Section A.1 for more detail on posterior derivation for the parametric model.

By fixing the outer cutoffs αi1 = 0, αi,ci−1 = 1 we constrain the {zij} to “live”

in an interval containing, but not much larger than [0, 1]. In the worst-case scenario

where no covariate affects the mean of yij, a typical value of zij is simply the intercept

βi0. An average value is then the middle of the interval [0, 1], i.e. 0.5. Thus, in the

absence of real prior information, we center the m intercepts β10, . . . , βm0 at 0.5.

Prior mass should allow a typical value of yij to be either 1 or ci, so we set the prior

standard deviation of βi0 to be unity. At the other extreme, if a covariate is highly

predictive, the mean should span {1, . . . , ci} over the range of covariate values. Since

we standardize continuous covariates, and otherwise use zero/one dummy variables

for categorical predictors, a standard deviation of unity for the non-intercept elements

of {βi} allows for such highly predictive covariates. Finally, considering the spacing

of unity between the outer non-infinite cutoffs αi1 and αi,ci−1, we roughly center each

diagonal element of Σ at 0.22, corresponding to a precision of 25. Thus, the following
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prior is considered throughout

S = 25
m
Im×m, ν = m, b = (0.5, 0, . . . , 0)′ ∈ Rp+, M = Ip+×p+.

Note that the ith diagonal element of Σ−1, Σ−1
ii ∼ siiχ

2
ν where sii is the ith diagonal

element of S. For m = 2 this gives a 95% equal-tailed probability interval for the

standard deviation of zij of (0.1, 1.3). We have experimented with many alternative

prior settings, including flat priors, and have found inference to be quite robust to

prior choice is reasonable sample sizes.

2.3 Nonparametric extension

Stick-breaking mixture of probit models

A Dirichlet process generalization of the parametric model (2.3) is given by

z̃j|G ind.∼
∫
ϕm(·|X̃jβ,Σ)dG(β,Σ), G|α,G0 ∼ DP (αG0), (2.5)

where

G0 = Np+(b,M−1) × Wish−1
m (S, ν),

where DP stands for Dirichlet process, ϕm is the density function of m-dimensional

normal, and Wish−1
m is m-dimensional inverse-Wishart distribution. The parametric

model obtains in the limit α → 0+. A univariate version of this model on the latent

traits, the LDDPM model, was developed by De Iorio et al. (2009) for survival

data. Accordingly, the model developed in this section for the latent z̃j can be

easily modified to handle multivariate interval-censored survival data. Definitions of

dependent Dirichlet process (DDP) are found in Barrientos et al. (2012, Definitions

1, 2, and 3). A connection between the LDDPM and one special case (Definition 2)

of the DDP was illustrated in De Iorio et al. (2009).

There are two approaches to obtaining inference in Dirichlet process mixture mod-

els, marginalized or unmarginalized. Marginalized versions make use of the Polya urn
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representation of the Dirichlet process predictive measure (Blackwell and McQueen,

1973) whereas unmarginalized versions use the Sethuraman (1994) stick-breaking rep-

resentation of the Dirichlet process; we concentrate on the latter here as the resulting

algorithm is easier to implement. A truncated approximation

GN(·) =
N∑

k=1
wkδ(β(k),Σ(k))(·)

can instead be used (Ishwaran and Zarepour, 2000; Chung and Dunson, 2009), where

N is chosen to be large enough to adequately model the data. Alternatively, the

full model with N = ∞ can be implemented using the slice-sampling trick of Kalli,

Griffin, and Walker (2011). Here VN = 1 and

wk = Vk

∏
l<k

(1 − Vl) where V1, . . . , VN−1|α iid∼ beta(1, α).

A general stick-breaking prior simply allows a more general beta(θ, α) distribution for

the stick-pieces. Introduce component membership indicators such that sj = k when

z̃j comes from Nm(X̃ ′
jβ(k),Σ(k)). The nonparametric model is written hierarchically

z̃j
ind.∼ Nm{X̃jβ(sj),Σ(sj)},

P (sj = k) = Vk

k−1∏
l=1

(1 − Vl), k = 1, . . . , N,

{β(k),Σ(k)} iid∼ Np+(b,M−1) × Wish−1
m (S−1, ν), k = 1, . . . , N,

V1, . . . , VN−1
iid∼ beta(1, α).

The proper parametric prior (2.4) is generalized to

β(1), . . . ,β(N) iid∼ Np+(b,M−1) ind. Σ(1), . . . ,Σ(N) iid∼ Wish−1
m (S, ν). (2.6)

A referee has asked about centering the LDDPM at a parametric model, such as the

Gaussian. First note that as α → 0+, the Gaussian model is obtained. Griffin (2011)

discusses centering the DPM prior at an overall multivariate Gaussian distribution

when α > 0. Since the number of parameters grows rather quickly with N , we follow
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Hanson (2006) and opt to fix α at a relatively small value; in the sequel this is α = 1,

but we have found little difference in predictive inference by considering other small

values of α. The truncation level N can be set by bounding the truncation error of

those components “left off” of the sum, i.e. the tail probability UN = ∑∞
k=N+1 wk.

Ishwaran and Zarepour (2000) show E(UN) = αN/(1 + α)N . Setting N = 10 and

α = 1 gives E(UN) ≈ 0.00098, so the truncation error is about 0.1%. The precision

α is directly related to the number of distinct clusters 1 ≤ d ≤ N . In particular,

E(d|α) ≈ α log{(α + T )/α}. For instance the sample size T = 2000, slightly larger

than the drinking data, and α = 1 imply that E(d) ≈ 7.6. Under the posterior for all

simulations and data analyses the number of active components is E{d|data} < 5.

Therefore, the truncation level N = 10 is adequate for the simulations and data

analysis presented herein.

For finite mixtures, the model is not interpretable without further constraints on

model parameters; see e.g. McLachlan and Peel (2000) for a discussion. A natural

restriction in the multivariate setting is to order the stick-breaking weights w1 ≥ w2 ≥

· · · ≥ wN . This model offers enhanced interpretability over the traditional model

(where the weights are only stochastically ordered for α ≥ 1 when N < ∞), as the

first component is associated with the largest subpopulation, the second component

associated with the next-largest, etc. Recently a stick-breaking prior that orders the

weights has been introduced, the “geometric stick-breaking prior” (Mena, Ruggiero,

and Walker, 2011; Fuentes-García, Mena, and Walker, 2009) where wk is simply

replaced by E(wk) = λ(1 − λ)k−1, where λ = 1
1+α

. The resulting N = ∞ process still

enjoys full support with respect to the weak topology and has many other appealing

properties, especially in terms of posterior computation. As we choose relatively small

values for α and the truncation level N = 10, we want the stick-breaking weights to

be more flexible, and so do not model them via just one parameter λ, but instead

simply constrain w1 ≥ w2 ≥ · · · ≥ wN . This is accomplished in the MCMC algorithm
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by simply rejecting values of Vk that destroy the ordering, i.e. simple acceptance

sampling.

Note that truncated model (2.5) for the latent {z̃j}T
j=1 can be re-cast as

z̃j|β(k),Σ(k) ∼
N∑

k=1
wkNm(·|X̃jβ(k),Σ(k)),

where the stick-breaking prior induces the prior on {(β(k),Σ(k), wk)}N
k=1. This is a

finite mixture of multivariate probit regression models. The infinite N = ∞ version of

this model is commonly termed the “single weights” DDP. The single weights LDDPM

was used for univariate outcomes by De Iorio et al. (2004), De Iorio et al. (2009),

de Carvalho et al. (2013), and Hanson and Jara (2013); Jara et al. (2011) consider

a multivariate version but constrain the covariance matrix to be the same across

components. Gelfand et al. (2005), Dunson and Herring (2006), and Barrientos et al.

(2012) consider the DDPM model but with atoms that are Gaussian processes rather

than hyperplanes; Griffin and Steel (2006) and Chung and Dunson (2009) consider

predictor-dependent weights.

The implied mean under the LDDPM model is linear:

E(z̃j|β(k),Σ(k)) =
N∑

k=1
wkX̃β(k) def= X̃β̄,

so although the model does allow for heteroscedasticity in z̃j across values of X̃, the

mean is only as flexible as the functions entering into the design X̃. This naturally

leads to the question of how flexible the model actually is. For the model without

predictors, Kottas et al. (2005) argue that the discrete mixture of normals can come

arbitrarily close to placing any configuration of mass on the simplex into a single

contingency table with underlying probabilities P = {πy1···ym} where πy1···ym = (Y1j =

y1, . . . , Ymj = ym). Barrientos et al. (2012) proves full Kullback-Liebler or Hellinger

support for the conditional distribution of z̃|X̃ (thus implying full support on P|X̃),

but only for predictors that are stochastic processes. de Carvalho et al. (2013)
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suggest that linear combinations of flexible basis functions, e.g. B-splines, can well-

approximate Gaussian processes, and so should also roughly achieve full Hellinger

support. Although this argument also holds for the proposed model, a potentially

more relevant result is Theorem 2.1 in Viele and Tong (2002). They use a bracketing

entropy technique to show Hellinger consistency of p(z̃|X̃) for the finite mixture of

regressions model under mild conditions. Their theorem essentially states that a finite

mixture of regressions can consistently estimate a finite mixture of regressions. In

essence, the model is as flexible as desired, but requires the addition of, e.g., B-splines

in the predictor.

Posterior updating for nonparametric model

The Gibbs sampler now samples the model parameters

[β(1), . . . ,β(N),Σ(1), . . . ,Σ(N), w1, . . . , wN ,z1, . . . , zm|y1, . . . ,ym]. Following Kot-

tas et al. (2005), we fix the cutoff points at αi,r = r−1
ci−2 , for r = 1, . . . , ci − 1. We now

detail the updating of the {Vk}, {sj}, {β(k)}, and {Σ(k)}. The stick-breaking pieces

{Vk} are updated according to

Vk|else ∼ beta

nk + 1, α +
∑
l>k

nl

 ,
where nk = ∑T

j=1 I{sj = k} are number of observations from component k. The

constraint w1 ≥ · · · ≥ wN is incorporated through accept/reject. Component mem-

bership indicators are multinomial with probabilities proportional to

P (sj = k|else) ∝ wkϕm(z̃j|X̃jβ(k),Σ(k)),

for k = 1, . . . , N . The component covariance matrices are updated independently as

Σ−1(k)|else ∼ Wishm


 ∑

j:sj=k

(z̃j − X̃jβ(k))(z̃j − X̃jβ(k))′ + S−1

−1

, nk + ν

 .
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Let Xi(k) be an nk × pi matrix with rows comprising only those individuals j with

sj = k, where k = 1, . . . , N . Let B(k) = blockdiag(X1(k), . . . ,Xm(k)), and let

V (k) =



Σ−1
11 (k)

∑
j:sj=k x̃

′
1jx̃1j Σ−1

12 (k)
∑

j:sj=k x̃
′
1jx̃2j · · · Σ−1

1m(k)
∑

j:sj=k x̃
′
1jx̃mj

Σ−1
21 (k)

∑
j:sj=k x̃

′
2jx̃1j Σ−1

22 (k)
∑

j:sj=k x̃
′
2jx̃2j · · · Σ−1

2m(k)
∑

j:sj=k x̃
′
2jx̃mj

...
...

. . .
...

Σ−1
1m(k)

∑
j:sj=k x̃

′
mjx̃1j Σ−1

m2(k)
∑

j:sj=k x̃
′
mjx̃2j · · · Σ−1

mm(k)
∑

j:sj=k x̃
′
mjx̃mj

 .

Note that one can show that

V (k) = B′(k)(Σ−1(k) ⊗ Ink
)B(k).

Let zi(k) be those elements of zi such that sj = k in lexicographical order, and let

z(k) = (z1(k)′, . . . , zm(k)′)′. Then the regression effects are updated independently

as

β(k)|else ∼ Np+
(
[V (k) +M )]−1B(k)′(Σ−1(k) ⊗ Ink

)z(k)], [V (k) +M )]−1
)
.

Finally, the {zij} are updated

zij|else ∼ N

µ̃ij − 1
Σ−1

ii (sj)
∑
l ̸=i

Σ−1
il (sj)(zlj − µ̃lj),

1
Σ−1

ii (sj)


truncated to (αi,yij−1, αi,yij

). Here, µ̃ij = x̃ijβi(sj). See Section A.2 for derivation

details of the nonparametric model.

We also considered placing hyperpriors on b, M , and S.

b ∼ Np+(b0,M
−1
0 ), M ∼ Wishp+(M0,m0), S−1 ∼ Wishm(S0, ν0).

This model shrinks the regression effects and covariance matrices toward common

targets, borrowing strength across mixture components. The full conditional distri-

butions are

b|{β(k)},M ∼ Np+

(
[M0 +NM ]−1

[
M0b0 +M

N∑
k=1
β(k)

]
,M0 +NM]−1

)
,

M |{β(k)}, b ∼ Wishp+

[ N∑
k=1

(β(k) − b)(β(k) − b)′ +M−1
0

]−1

, N +m0

 ,
S−1|{Σ(k)} ∼ Wishm

[ N∑
k=1

Σ−1(k) + S−1
0

]−1

, Nν + ν0

 .
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Analogous to Section 2.2, a reasonable prior is

S0 = 1
25
Im×m, ν0 = m, m0 = p+, b0 = (0.5, 0, . . . , 0)′ ∈ Rp+, M0 = 1

p+
Ip+×p+.

More details on the nonparametric model with hyperpriors are available in Section

A.3.

2.4 Interpretation and model comparison

Interpretation of parametric model

The direction (positive or negative) and significance of regression effects are directly

interpretable in terms of the latent variables, and hence indirectly interpretable in

terms of the observed ordinal variables. For example if the posterior mean of β12 is 1.4

with posterior standard deviation 0.2, then the corresponding predictor significantly

increases the mean response of the first ordinal outcome. In terms of hypothesis

testing, this is enough.

Quantifying the effect of covariates on the mean responses takes a bit more

thought. If the observed data {(X̃j, ỹj)}T
j=1 are a random sample, we can consider

averaged effects; for Bernoulli data see Agresti (2013; Secs. 5.4.7 and 5.4.8). Con-

sider one of the m ordinal outcomes of subject j, Yij with corresponding predictor

x̃ij. Under the parametric model

E(Yij|x̃ij) =
ci∑

r=1
r

[
Φ
(
αir − x̃ijβi√

σii

)
− Φ

(
αi,r−1 − x̃ijβi√

σii

)]
, (2.7)

where Σ = [σi1i2 ]m×m. Thus we are able to get mean responses for any covariate

vector. Unfortunately, unlike the regression on zij, this is nonlinear in covariates. To

obtain easily-digestible inferential statements, we look at average causal effects. For

the drinking behavior data there are two 4-level outcomes per individual (Y1j, Y2j),

drinking frequency and quantity of beer consumption. There are three dichotomous

covariates: age (a), gender (g) and abuse (b). Define the average causal effects of
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frequency (δbf ) and quantity (δbq) due to abuse through (2.7) as

δbf = 1
T

T∑
j=1

[E(Y1j|b = 1, aj, gj) − E(Y1j|b = 0, aj, gj)]

and

δbq = 1
T

T∑
j=1

[E(Y2j|b = 1, aj, gj) − E(Y2j|b = 0, aj, gj)],

respectively. These measure how much more often an individual typically drinks, and

how much more an individual typically drinks when they have a history of abuse,

averaged over the age and gender categories in the population. The quantities are

straightforward to compute from MCMC output, and the idea generalizes to the

mixture model (below).

One aspect of inference that is often of interest, dating back to Pearson (1904),

is the polychoric correlation. After adjusting for covariates, the polychoric correla-

tion between Yi1,j and Yi2,j where 1 ≤ i1, i2 ≤ m is simply the correlation of the

underlying latent traits ρ̃i1i2 = σ̃i1i2/
√
σ̃i1i1σ̃i2i2 where σ̃i1i2 = cov(z̃i1 , z̃i2). For the

drinking behavior data, this provides a measure of association between drinking fre-

quency and quantity. Note that under the parametric model this association is static

across all covariate vectors X̃ and simply equal to ρ̃i1i2 = σi1i2/
√
σi1i1σi2i2 . Thus

the model provides a nonparametric, covariate-adjusted estimate of the polychoric

correlation, more properly termed a nonparametric multiple polychoric correlation.

Note that Pearson (1904, Section 8) examines a possible way to relax the multivariate

normality assumption underlying the estimation of the polychoric correlation. Upon

consideration of large numbers of categories in each dimension, Pearson validates

the usual Pearson correlation coefficient over the polychoric and finds “The practi-

cal importance of this result would appear to be great, for it frees us...from the need

for supposing normal frequency.” Ekström (2011) also considers a general polychoric

correlation as we do here.
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Interpretation of mixture model

Under the nonparametric mixture, the mean response is weighted according to com-

ponent membership

E(Yij|x̃ij) =
ci∑

r=1
r

N∑
k=1

wk

Φ

αir − x̃ijβi(k)√
σii(k)

− Φ

αi,r−1 − x̃ijβi(k)√
σii(k)

 . (2.8)

One simply uses (2.8) instead of (2.7) in the definitions of the average causal effects

δbf and δbq above.

In the parametric model, the correlation between zi1,j and zi2,j does not change

with covariates. However, in the nonparametric model the correlation does change.

For a random z̃j with design X̃j (defined in Section 2.2), let Σ = cov(z̃j) and

µ̃k = X̃β(k) for k = 1, . . . , N . Iterated covariance provides the covariance and hence

polychoric correlation:

Σ =
N∑

k=1
wkΣ(k) +

N∑
k=1

wkµ̃kµ̃
′
k −

[
N∑

k=1
wkµ̃k

] [
N∑

k=1
wkµ̃

′
k

]
.

Log pseudo marginal likelihood and maximal expected

discrepancy

Geisser and Eddy (1979) define the log pseudo marginal likelihood (LPML). The pre-

dictive conditional ordinate for the jth individual is defined to be CPOj = p(ỹj|ỹ−j),

the probability of seeing the response ỹj through the model given the remaining data

ỹ−j = {ỹj′ : j′ ̸= j}. Gelfand and Dey (1994) provide a means for estimating CPOj

from MCMC output. Let Aα
j = (α1,y1j−1, α1,y1j

) × · · · × (αm,ymj−1, αm,ymj
) ⊂ Rm be

the region that the latent z̃j lives in. Then for the parametric model

CPOj =

 1
D

D∑
d=1

1
Φ{Aα(d)

j |X̃jβ(d),Σ(d)}

−1

.

Under the mixture model

CPOj =

 1
D

D∑
d=1

1∑N
k=1 w

(d)
k Φ{Aα

j |X̃jβ(d)(k),Σ(d)(k)}

−1

.

25



The LPML is the sum of the log of the conditional predictive ordinates, LPML =∑T
j=1 log(CPOj). Larger LPML implies better fit of the model. The pseudo Bayes

factor (PBF) between two models is the exponentiated difference between the LPML

values for the two models.

A referee has brought up a potential problem with Gelfand and Dey’s (1994)

estimate of the CPO statistics, namely that harmonic mean estimators can have

very large, or infinite variance. This often happens when the harmonic mean is

used to estimate the marginal likelihood of the data, as the difference between the

prior and posterior distributions is typically so great that only a few MCMC atoms

have non-negligible mass in the importance sampling estimate. However, with CPO

computation, the distributions to consider are the full posterior and the posterior

computed leaving out one of the data values – these distributions are likely to be

very close and have similar behavior in the tails. We double checked our LPML

estimates by repeatedly fitting models and found them to be stable within one unit.

In addition to LPML, we also considered the maximal expected discrepancy in

probability (MED) to compare the models in simulation study. Let F (x̃) be the

known probability distribution function on X of the covariates and define Y =

{1, . . . , c1} × · · · × {1, . . . , cm} to be the set of all possible multivariate ordinal out-

comes ỹ. Then

MED = max
y∈Y

∫
X

∣∣∣P (Ỹ = ỹ|X̃ = x̃) − P̂ (Ỹ = ỹ|X̃ = x̃)
∣∣∣ dF (x̃)

is the maximal expected discrepancy of the true and estimated cell probabilities across

the contingency table. Here P̂ denotes estimates under the model being considered.

2.5 Simulation study

We examined the fit of both parametric and nonparametric models using simulated

data. The responses are bivariate ordinal variables (m = 2) with four levels in each
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dimension (c1 = c2 = 4). The covariates are generated as independent normals. We

also examined the models with binary covariates obtaining similar results.

First, we generated 5 datasets for each sample size T = 500, 1000, and 2000

from one distribution N2(β,Σ). Both parametric and nonparametric (α = 1, N =

10) models were fit to each data set. Second, we generated data from two distinct

clusters, (β(1),Σ(1)) and (β(2),Σ(2)), with 80% from one cluster and 20% from the

other. Last, we generated data from a bivariate normal whose correlation is covariate-

dependent. In particular, x ∼ N(0, 22) and then correlation ρ = 1−ex

1+ex . Then, the

bivariate latent variables z are centered at (0.5, 0.5) with variance 0.25 and correlation

ρ. Bivariate ordinal responses Y were obtained using (2.1) with cutoffs (0, 0.5, 1). For

this simulation, besides the parametric and nonparametric models, we fit one more

model: a model that includes the truth: z̃j ∼ N2(µ,Σ) where Σ = σ2R and R is

a correlation matrix with ρ(x) = 1−exp(τ0+τ1x)
1+exp(τ0+τ1x) . A flat prior was placed on the model

parameters are (µ1, µ2, log σ2, τ0, τ1) and updating proceeded via blockwise adaptive

MCMC (Haario et al., 2001). Fully 15000 iterations were generated with the last

D = 10000 iterations used for posterior inference. Since all chains mixed very well,

thinning was not necessary. LPML and MED values are in Table 2.1. Scatter plots

of simulated data from the mixture of normals and normal with covariate-dependent

correlation are in Figure 2.1.

When the data come from only one component, i.e. they are truly parametric, the

LPML difference between the parametric and nonparametric model ranged between

−4 and 1, and was typically about −1 indicating PBFs of e1 ≈ 3 in favor of the

nonparametric model. Their MED values are also very close; the average difference is

less than 0.001 for the 15 cases. Parameter estimates are in Table 2.2. When the data

come from two components, in all cases the LPML values grossly prefer the mixture

model with differences over 200. The nonparametric MED is only about one-tenth of

the parametric MED. Furthermore, the mixture model places essentially no mass in
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Figure 2.1 Scatter plots of T = 1000 simulated latent z̃. Left: mixture of two
bivariate normals. Right: bivariate normal with covariate-dependent correlation
ρ = 1−ex

1+ex

the unnecessary eight empty components and estimates the two ‘live’ component pre-

cisely; Table 2.3. For the data with bivariate latent normal with covariate-dependent

correlation, the nonparametric model fits much better than the parametric model.

When sample size T = 500 the LPML difference between nonparametric model and

the true model is typically between 20 and 30 while the difference between the para-

metric model and the true one is over 100. Contour plots of the true and estimated

densities for the three models are in Figure 2.2. In the posterior, a mixture of about

four normals was required to approximate the true distribution.

2.6 Data analysis

McMillan, Hanson, Bedrick, and Lapham (2005) consider bivariate ordinal data on

drinking behavior. The Lovelace Comprehensive Screening Instrument (LCSI) was

given to over 2000 driving-while-intoxicated (DWI) offenders mandated by the court

to undergo screening. Among other topics, the LCSI askes offenders questions about

28



True Density

z1

z2  0
.0

1 

 0.01 

 0
.1

 

 0.1 
 0.16 

 0.35 

 0.67 

 0
.9

4 

−0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5

True model

z1

z2

 0
.0

2 

 0
.0

2 

 0
.0

6 

 0.06 

 0
.1

1 

 0.11  0.15 

 0.19 

 0.22 

−0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5

Nonparametric model

z1

z2

 0.01 

 0
.0

1 

 0.03 

 0.09 

 0.22 
 1.52 

 3.24 

−0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5

Parametric model

z1

z2

 0.03 

 0.
03

  0.03 

 0.
03

 

 0.07 

 0.08 

 0
.0

8 

 0.08 

 0.19 

 0.44 

 0.61 

−0.5 0.0 0.5 1.0 1.5

−
0.

5
0.

0
0.

5
1.

0
1.

5

Figure 2.2 Contour plots of true and estimated densities from three models; latent
variables simulated from bivariate normal with covariate-dependent correlation
(E[(Z1, Z2)] = (0.5, 0.5), ρ = 1−ex

1+ex where x = −2).

psychological issues, drug and alcohol use, and sexual abuse history. The study

sample includes T = 1964 offenders who completed the LCSI and were self-reported

beer drinkers. Subjects were asked “How many times each month do you drink beer?”

and could reply that they drank beer “up to 1-2 times per month,” “a few times per

month,” “a few times per week,” or “almost daily;” these correspond to y1j = 1, 2, 3, 4

respectively. Respondents also were asked, “How much beer do you drink?’ and

specified the quantity of beer consumed per drinking occasion as “1,” “2–3,” “4–

5” or “6 or more” beers, corresponding to y2j = 1, 2, 3, 4 respectively. In addition,

subjects were asked, “When you were growing up, were you ever sexually abused or

molested by anyone?” (bj = 0 for no and bj = 1 for yes). Because beer is the primary

source of alcohol intoxication among DWI offenders, interest is in how history of

sexual abuse as a child, along with gender (gj = 0 for female and gj = 1 male) and

age (aj = 0 for ≤ 30 years old and aj = 1 for > 30), is associated with current

beer-drinking patterns. The full data are presented in Table 2.4.

We initially considered the main effects parametric and nonparametric models,

with age, gender and abuse for both frequency and quantity; Examining the signif-

icance of component effects {β(k)} we fitted reduced models with age, gender, and

abuse for frequency and gender and abuse for quantity; see Table 2.5 for posterior
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means and standard deviations for regression effects and component weights. Follow-

ing McMillan and Hanson (2005) we also tried adding a gender by abuse interaction in

the model but the interactions were not significant in any component and the LPMLs

were essentially the same. Among the main effects models the parametric LPML is

−4138.5 while the nonparametric LPML is −4137.0 yielding a PBF of about 5 times

in favor of the nonparametric model. Among the reduced models, the parametric

LPML essentially stays constant at −4137.5 whereas the nonparametric LPML drops

significantly to −4128.7; now the PBF is over 6000 in favor of the nonparametric

model.

Focusing on the nonparametric reduced model with N = 10, about 55% of the

population follows the first component, which has significant effects for age and gender

on drinking frequency. In this component going from female to male and/or from “not

older than 30-year old" to “older than 30-year old" significantly increases drinking

frequency. The second component, comprising about 29% of the population, has

no significant covariate effects at all. The third largest component is about 14%

of the population. Within this subpopulation, abuse has significant effect on both

drinking frequency and quantity. Note that you can compare the raw data in the

eight subtables of Table 2.4 directly to the eight panels in Figure 2.4; the data and

the model match each other quite well.

Average causal effects are in Table 2.6. For example, under the nonparamet-

ric model, going from non-abused to abused increases the mean ordinal frequency

response by an estimated 0.22, and increases the mean ordinal quantity by 0.18 av-

eraged over the population.

The polychoric correlation measures the association between drinking frequency

and quantity. The posterior mean is ρ̂ = 0.52 under the parametric model; frequency

and quantity are significantly, moderately correlated. Under the nonparametric model

the polychoric correlation changes with covariates. Note that a significant, positive
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Figure 2.3 Contour plots of estimated densities; parametric reduced model;
drinking data.

correlation exists for all DWI offenders.

For the data analyses in this section, Markov chains of length D = 100000 were

kept after burn-ins of 100000. All simulations and data analyses were carried out
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Figure 2.4 Contour plots of estimated densities; nonparametric reduced model,
drinking data.
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using compiled FORTRAN 90 code; code for fitting the drinking behavior data can be

found in Appendix A. Similarly, a careful derivation of all full conditional distributions

presented in this chapter are also available in Appendix A.

2.7 Conclusions

A mixture of multivariate probit models was presented along with computational

details, useful summary inferential loci, and several illustrations. For the drinking

quantity/frequency data, the nonparametric model provided significantly better fit

according to LPML than a parametric model and interesting interpretation in terms

of polychoric correlations. McMillan and Hanson (2005) found the parametric Dale

(1986) model underpredicted frequency and quantity for older males with a history

of abuse.

Model interpretation was advanced through consideration of regression effects, la-

tent variable density plots, average causal effects, and polychoric correlations. How-

ever, many researchers are used to interpreting contingency table data through odds

ratios. A logistic version of the proposed parametric model, marginally interpretable

in terms of odds ratios, can be developed via the approach of Holmes and Held (2006).

Augment the parametric model by one more layer so that

ẽj|Σ,ψj ∼ Nm(0, diag(2ψj)Σdiag(2ψj)),

where ψj = (ψ1j, . . . , ψmj)′ are iid from the Kolmogorov- Smirnov distribution. One

can then show that each yj marginally follow a proportional odds model; the poly-

choric correlation is no longer simple to compute, however. Nor is it clear that the

especially simple updating scheme developed in this chapter will remain. A somewhat

related approach was taken by O’Brien and Dunson (2004). If this augmentation is

applied to the mixture model, then each yj marginally follows a weighted mixture of

proportional odds models.
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MacEachern’s (1999) general approach allows for component membership proba-

bilities {wk} to also change with covariates, yielding an infinite hierarchical mixture of

experts (HME) model. One successful implementation of such a model is the probit-

stick breaking process of Chung and Dunson (2009); a more direct, finite HME model

was proposed by Villani, Kohn, and Giordani (2009). The model proposed herein can

certainly be modified accordingly, for example by simply taking the stick-breaking

pieces to change with individual j according to log{Vjk/(1−Vjk)} = θ′
kx̃j and placing

a shrinkage prior on the {θk}. Hanson, Branscum, and Johnson (2014) show how to

pick a normal prior on θk to match Vk to a particular beta distribution. However,

with just the LDDPM model developed here, we never found a case for more than

N = 10 components. Furthermore, as seen in the data analysis, the actual under-

lying joint distribution on the latent trait vector z̃j can change quite flexibly with

covariates without the introduction of covariate-dependent weights.
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Table 2.1 LPML and MED of parametric (P) and nonparametric (NP) models;
simulated data.

Size (T) Data Model Metric 1 2 3 4 5
500 Normal P LPML -1138 -1154 -1157 -1163 -1154

MED 0.017 0.009 0.020 0.015 0.009
NP LPML -1137 -1152 -1157 -1164 -1153

MED 0.018 0.010 0.016 0.021 0.009
Mixture P LPML -737 -790 -787 -767 -767
of normals MED 0.141 0.153 0.151 0.147 0.143

NP LPML -481 -546 -525 -530 -545
MED 0.016 0.012 0.016 0.015 0.017

Normal with P LPML -1299 -1323 -1322 -1313 -1324
covariate MED 0.136 0.135 0.135 0.135 0.134
dependent NP LPML -1199 -1207 -1227 -1203 -1264
correlation MED 0.030 0.030 0.029 0.031 0.037

True LPML -1177 -1191 -1203 -1177 -1228
MED 0.017 0.011 0.011 0.017 0.013

1000 Normal P LPML -2312 -2306 -2295 -2319 -2338
MED 0.013 0.008 0.013 0.015 0.017

NP LPML -2311 -2305 -2295 -2320 -2339
MED 0.007 0.007 0.014 0.015 0.020

Mixture P LPML -1502 -1531 -1518 -1563 -1570
of normals MED 0.145 0.150 0.144 0.158 0.151

NP LPML -1037 -1004 -1028 -1045 -1031
MED 0.017 0.001 0.007 0.009 0.017

Normal with P LPML -2657 -2632 -2661 -2649 -2644
covariate MED 0.135 0.135 0.135 0.134 0.135
dependent NP LPML -2481 -2414 -2492 -2407 -2450
correlation MED 0.024 0.027 0.021 0.020 0.017

True LPML -2458 -2396 -2457 -2384 -2418
MED 0.095 0.011 0.010 0.009 0.009

2000 Normal P LPML -4616 -4639 -4605 -4653 -4597
MED 0.009 0.009 0.010 0.007 0.006

NP LPML -4616 -4635 -4605 -4653 -4596
MED 0.006 0.007 0.007 0.007 0.006

Mixture P LPML -3059 -2968 -3036 -3013 -3038
of normals MED 0.146 0.153 0.156 0.155 0.157

NP LPML -2037 -2104 -2119 -2026 -2082
MED 0.036 0.036 0.034 0.036 0.035

Normal with P LPML -5277 -5223 -5240 -5307 -5251
covariate MED 0.134 0.134 0.135 0.134 0.135
dependent NP LPML -4819 -4785 -4817 -4882 -4803
correlation MED 0.018 0.020 0.014 0.018 0.021

True LPML -4776 -4748 -4778 -4833 -4779
MED 0.009 0.010 0.011 0.010 0.010
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Table 2.2 Posterior means and standard deviations from parametric and nonparametric
models (only non-empty components); simulated bivariate normal data, T = 2000.

Nonparametric
Parameter True Parametric k = 1 k = 2 k=3

wk NA NA 0.989 (0.014) 0.009 (0.012) 0.002 (0.003)
ρ -0.5 -0.513 (0.021) -0.514 (0.022) -0.050 (0.639) -0.070(0.684)

Y1 β10 0.5 0.492 (0.014) 0.500 (0.014) 0.530 (0.715) 0.473 (0.902)
β11 0.2 0.202 (0.012) 0.202 (0.008) 0.301 (0.751) 0.163 (0.886)

Y2 β20 0.3 0.298 (0.012) 0.300 (0.013) 0.431 (1.145) 0.238 (1.016)
β21 -0.1 -0.100 (0.006) -0.100 (0.006) -0.142 (0.761) 0.054 (0.937)

Table 2.3 Posterior means and standard deviations from parametric and
nonparametric models (only non-empty components); simulated mixture of
bivariate normal data, T = 2000.

True Nonparametric
Parameter k = 1 k = 2 Parametric k = 1 k = 2

wk 0.8 0.2 NA 0.803 (0.003) 0.197 (0.003)
ρ 0.5 -0.5 0.966 (0.004) 0.446 (0.076) 0.026 (0.254)

Y1 β10 0.8 -0.2 0.511 (0.012) 0.798 (0.004) -0.303 (0.051)
β11 0.2 -0.2 0.185 (0.012) 0.201 (0.004) -0.293 (0.049)

Y2 β20 0.7 -0.3 0.541 (0.012) 0.696 (0.005) -0.291 (0.020)
β21 0.6 0.5 0.602 (0.014) 0.611 (0.008) 0.486 (0.017)
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Table 2.4 DWI offender alcohol quantity-frequency data by age, gender, and
history of physical/sexual abuse.

Gender
Females Males

Beers/occasion Beers/occasion
Frequency 1 2-3 4-5 6+ 1 2-3 4-5 6+

Age≤ 30
No abuse Up to 1-2 times / month 20 53 4 0 65 171 42 7

A few times / month 1 30 12 1 12 130 81 19
A few times / week 0 4 2 1 1 32 27 14
Almost daily 0 0 0 0 0 2 2 4

Abuse Up to 1-2 times / month 4 19 3 0 12 43 7 8
A few times / month 0 13 7 0 4 49 25 9
A few times / week 0 0 1 5 1 11 12 7
Almost daily 0 0 0 0 0 3 2 1

Age> 30
No abuse Up to 1-2 times / month 24 33 3 0 62 159 27 6

A few times / month 2 22 11 2 5 106 59 16
A few times / week 0 8 4 1 3 50 40 8
Almost daily 0 0 0 0 0 6 1 9

Abuse Up to 1-2 times / month 4 25 2 1 15 53 9 1
A few times / month 0 11 6 2 2 56 22 10
A few times / week 0 4 3 2 1 28 21 12
Almost daily 0 0 2 0 0 4 4 14

Table 2.5 Posterior means and standard deviations from reduced parametric and
nonparametric models (only non-empty components are included); drinking data.

Nonparametric
Parameter Parametric k = 1 k = 2 k = 3 k = 4
wk NA 0.55 (0.07) 0.29 (0.07) 0.14 (0.03) 0.02 (0.02)
ρ 0.52 (0.02) 0.24 (0.08) 0.30 (0.35) 0.83 (0.16) 0.13 (0.63)

Frequency Intercept -0.18 (0.03) 0.05 (0.07) -0.97 (0.51) -0.38 (0.34) 0.10 (0.82)
Age 0.09 (0.02) 0.14 (0.04) -0.52 (0.64) 0.18 (0.20) 0.15 (0.98)
Gender 0.18 (0.03) 0.15 (0.05) 0.26 (0.64) 0.27 (0.25) -0.03 (0.85)
Abuse 0.16 (0.03) 0.07 (0.05) 0.10 (0.54) 0.48 (0.17) -0.10 (0.89)

Quantity Intercept 0.33 (0.02) 0.36 (0.03) 0.09 (0.07) 0.07 (0.35) 0.71 (0.99)
Gender 0.12 (0.03) 0.05 (0.03) 0.02 (0.05) 0.83 (0.35) 0.31 (0.96)
Abuse 0.11 (0.02) 0.02 (0.02) 0.07 (0.05) 1.06 (0.45) 0.11 (0.91)
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Table 2.6 Posterior means and standard deviations
of average causal effects from reduced parametric and
nonparametric models; drinking data.

Parametric Nonparametric
Frequency Age 0.128 (0.033) 0.141 (0.031)

Gender 0.252 (0.044) 0.231 (0.042)
Abuse 0.239 (0.041) 0.218 (0.041)

Quantity Gender 0.210 (0.045) 0.195 (0.042)
Abuse 0.200 (0.039) 0.181 (0.040)

Table 2.7 Posterior means and standard deviations of
polychoric correlations from reduced parametric and
nonparametric models; drinking data.

Age Gender Abuse ρ
Nonparametric ≤ 30 Female No 0.54 (0.10)

≤ 30 Female Yes 0.49 (0.10)
≤ 30 Male No 0.47 (0.09)
≤ 30 Male Yes 0.44 (0.09)
> 30 Female No 0.49 (0.10)
> 30 Female Yes 0.48 (0.09)
> 30 Male No 0.51 (0.08)
> 30 Male Yes 0.47 (0.08)

Parametric 0.52 (0.02)
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Chapter 3

Assessment of DPOAE Test-Retest Difference

Curves via Hierarchical Gaussian Processes1

3.1 Introduction

Cisplatin, a common chemotherapeudic agent used to treat a variety of cancers,

can cause ototoxicity (inner ear poisoning or hearing loss) at high doses. Cisplatin

induced ototoxicity typically affects both ears and is permanent. Ototoxicity is es-

pecially hurtful in children, where loss of hearing can affect speech, cognitive, and

social development (Rybak et al., 2009). Serial monitoring via audiometric analysis,

i.e. hearing tests, is often used to assess the presence and severity of ototoxicity; large

changes from baseline hearing levels indicate ototoxicity and may result in reduction

of the cisplatin dose or discontinuation of cisplatin. However, children treated with

cisplatin can be too young or too ill to complete an acceptable behavioral hearing

test. Traditionally, this difficulty is resolved by measuring the auditory brainstem re-

sponse, which is an electrophysiological assessment of the brain’s response to sound.

Unfortunately, this measurement technique requires sedating the child. Distortion

production otoacoustic emissions (DPOAE) testing is a promising, non-invasive al-

ternative to behavioral hearing tests or sedation coupled with auditory brainstem

response for evaluating hearing loss in pediatric cancer patients.

Children that are treated with cisplatin are seen for baseline testing before the first

1The content in this chapter is a reprint for “Junshu Bao, Timothy Hanson, Garnett McMillan,
and Kristin Knight (2015). Assessment of DPOAE Test-Retest Difference Curves via Hierarchical
Gaussian Processes. Biometrics. Revised and resubmitted”
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cisplatin course and then right before each subsequent cisplatin chemotherapy treat-

ment, usually the same day they are admitted for cisplatin chemotherapy. They have

an end-of-therapy evaluation approximately 4-6 weeks after the last cisplatin course.

After the end-of-treatment evaluation, re-evaluation is generally recommended at

least every 6 months. The schedule for cisplatin chemotherapy varies according to

the type of cancer and stage of disease, but on average children receive cisplatin

chemotherapy every 3-6 weeks; hearing is also tested every 3-6 weeks following the

chemotherapy schedule. Audiology evaluations for a few standard cancers follow.

For standard risk medulloblastoma, audiology evaluations occur every 6 weeks, right

before each cisplatin cycle; for osteosarcoma evaluations are administered every 6

weeks; for hepatoblastoma audiology evaluations are every 3 weeks; for germ cell

tumor, hearing is tested every 4 weeks.

In terms of the measured response, sound enters the ear as a pressure wave, which

is transmitted through the middle ear into the fluid-filled cochlea. In a healthy cochlea

tiny hair cells vibrate in response to specific frequencies in the pressure wave spec-

trum and through transduction deliver that information to the brain. The vibrations

generated by the outer hair cells are transmitted back through the middle ear into

the ear canal as an “otoacoustic emission,” or OAE. In general, OAEs with higher

amplitudes signify a healthier cochlea (i.e. more abundant and more responsive hair

cells) than weaker emissions (i.e fewer, damaged hair cells). Noise exposure, aging,

certain diseases, and ototoxic agents such as cisplatin will damage the cochlear outer

hair cells and weaken or eliminate the OAE.

One can elicit an OAE by sealing a small speaker and a small microphone in

the ear canal and playing a tone through the speaker. Pairs of tones (denoted the

primary frequency ‘f2’ and secondary frequency) generate a ‘distortion product’ OAE,

or DPOAE, measured in decibels of sound pressure level (dB SPL). Various clinical

and research protocols exist for measuring DPOAEs, though the most common is to
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play several tones at successively increasing frequencies and measuring the DPOAEs

at each primary frequency. This generates a ‘DP-gram’ that an audiologist can use

to evaluate the health of the cochlea. DP-grams measured over the course of a

serial monitoring protocol show how the cochlea is changing, perhaps in response

to treatment with ototoxic medications. Theoretically, each human has a smooth

DP-gram as a function of frequency at any given time and for a given ear; however

these curves do change from time to time and from left to right ear (the structure

and viability of each inner ear can be quite different within a person).

Pediatric cisplatin patients are serially monitored over a one year period after

the start of treatment with cisplatin. The clinical use of DPOAE testing is to as-

sess significant changes from baseline, i.e. before the start of cisplatin therapy, as

chemotherapy treatment progresses over the year. To optimize clinical practicability

of DPOAE testing, the main goal of this study is to identify normal shift standards

against which a particular pediatric patient’s otoacoustic emissions can be compared.

That is, a (simultaneous) reference region containing routine or “normal” differences

in the emissions curve from baseline is desired for different test-retest time window

lengths of up to one year.

There are about half a dozen clinical DPOAE systems in widespread use. Most

only measure DPOAEs at traditional audiometric test frequencies of 1, 2, 3, 4, 6,

and 8 kHz, while some allow the clinician to also test in 1/3rd octave steps (9 total

f2 primaries) or in 1/6th octave steps (18 total f2 primaries). Note that an octave is

a doubling or halving of a frequency, so two frequencies f1 < f2 that are one third

octave apart satisfy 1
3 = log2

(
f2
f1

)
, i.e. 21/3 = f2/f1. One system used in this study

measures up to 10 kHz in 1/4th octave steps, while DPOAE systems used in research

can theoretically test any f2 primary. It is clear that test-retest reference standards

must be suitable for any frequency list, thus any proposed modeling approach needs

to handle the computation of credible bands for any and all frequencies.

40



DP-grams for an 18-month old male child treated with cisplatin are shown in

Figure 3.1. The vertical axis shows the DPOAE amplitude, and the horizontal axis

shows the f2 primary frequency in kHz. As treatment progresses over time, the

patient shows considerable weakening of the DPOAE as a consequence of receiving

cisplatin, ultimately resulting in the long-dashed line at 13 months after the start of

treatment with cisplatin. The primary goal of pediatric ototoxicity monitoring is to

determine if, during the course of treatment, changes in the cochlea are sufficiently

alarming to indicate ototoxic damage and communicatively significant hearing loss,

and possible need for the Pediatric Oncologist and the child’s family to consider

modifying treatment. Pediatric ototoxicity monitoring is also necessary to implement

hearing, communication and educational services when needed.

Figure 3.1 Example DP-grams for 18-month old boy treated with
cisplatin at baseline and about 4, 10, and 56 weeks later.

To evaluate test-retest standards in a healthy, pediatric population we recruited 38

children age 10 years or younger from the Oregon Health and Science University Do-

ernbecher Children’s Hospital between February 2006 and July 2009. To be included
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in the study subjects had to have normal hearing sensitivity, defined as pure tone

thresholds 20 decibels of hearing loss (dB HL) or better between .5 and 8 kHz; have

measurable DPOAEs, no history of ototoxic treatment, ear pathology, ear surgery, or

tympanostomy tubes. Test sessions on an ear were excluded if there was conductive

hearing loss or abnormal tympanometry or the inability to measure DPOAEs due to

excessive subject noise or non-cooperation, e.g. the child was crying or pulled out

the headphones. DPOAEs were measured at twelve f2 primary frequencies of 1453,

1734, 2063, 2531, 3000, 3563, 4219, 5016, 6000, 7031, 8391, 10031 Hz using a loudness

ratio between the two tones of L2/L1 = 65/55 dB SPL and f2/f1 ratio of 1.22. For

example at 1453 Hz, two tones are broadcast, f2=1453 Hz at loudness 65 dB SPL

and f1=1191 Hz at loudness 55 dB SPL.

Generally speaking, there are three major components in growth curve modeling:

a regression function for the overall trend, individual parameters modeling the dif-

ferences among subjects or curves (e.g. random effects), and the variance-covariance

structure for the repeated within-subject observations. Different approaches empha-

size different components, but they have gradually evolved in a more flexible and

nonparametric direction. The most traditional approach probably is the MANOVA

(multivariate analysis of variance) model. MANOVA-type models have a long and

rich history in growth curve analysis, starting with Rao (1958); Eliston and Griz-

zle (1962); and Pothoff and Roy (1964), and eventually leading to general mixed

models (e.g. Fitzmaurice, Laird, and Ware, 2011). Our proposed Gaussian pro-

cess model generalizes the mixed model framework of Laird and Ware (1982). A

drawback of MANOVA is that it only models mean changes in growth curves on a

fixed grid of points. To improve MANOVA, various random-coefficient methods (e.g.

random-effect ANOVA) were proposed, one big branch of which is latent growth curve

modeling within the structural equation modeling framework (McArdle, 1988). The

latent growth modeling is comprehensive yet flexible, but it requires relatively larger
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samples in addition to equispaced observations, which limit its application on more

complex data.

A school of nonparametric approaches for developmental processes or curves is

structural analysis (Kneip and Gasser, 1992), which later on was extended to a dy-

namic time warping method (Wang and Gasser, 1997). However, warping methods

are more appropriate if a common structural pattern is observed among the curves.

In addition, the goal of warping usually is to find an average curve or to compare two

or more curves instead of doing prediction.

Wei and He (2006) proposed a semiparametric quantile regression model for

growth charts. In this model the quantiles of the response are the sum of a non-

parametric function of measurement time, an autoregressive function of the previous

responses (whose coefficients are linear functions of measurement time distances), and

a linear function of other covariates. Without any distributional assumptions, this

model can identify unusual growth patterns conditioning on the previous observations

of one subject. One limitation of this method is the requirement of a large sample

size.

As a nonparametric approach to modeling growth curves, Gaussian process (GP)

regression models are gaining more and more popularity. Gaussian process modeling

was first proposed by O’Hagan (1978), motivated by an optimal design problem in

a decision-making framework. However, it was until the early 1990’s that GP’s were

recognized as a powerful tool in regression, classification, and other fields. This is

likely due to the requirement of both sophisticated programming and high-speed

computers in order to implement efficient Bayesian modeling. Since the late 1990’s,

GP modeling has been widely used in many fields including Bayesian neural networks

(Neal, 1996), spatial and/or temporal modeling (Ripley, 1991), geostatistics (Diggle,

Tawn and Moyeed, 1998), and longitudinal data analysis (Diggle and Verbyla, 1998).

Good reviews could be found in Williams (1998) and MacKay (1998). Barry (1995)
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appears to be the first to use GP’s in a growth curve setting.

More recently, Shi, Murray-Smith, and Titterington (2005) proposed a Gaussian

process mixture model for regression. By allowing different parameters in the GP

model for different clusters, the model naturally handles heterogeneity among data.

For each cluster, the dimension of the covariance matrix which needs to be inverted

while implementing the model is much smaller than that of all the data, so that the

computational burden is very much lightened. Shi et al. (2007) extended the GP

regression model in yet another direction to a Gaussian process functional regression

model, which uses a functional regression model to model the mean structure and

a Gaussian process model to model the covariance structure simultaneously. In re-

lated work, Banerjee and Johnson (2006) proposed methodology for spatially varying

growth curve modeling. In particular, the growth curve is modeled by a linear function

of time, but the intercept and the slope are modeled as a bivariate spatial Gaussian

process. Müller and Yang (2010) considered GP models for sparsely observed fam-

ilies of functions. Yi, Shi, and Choi (2011) proposed penalized (e.g. LASSO) GP

regression and classification models for high-dimensional nonlinear data.

This chapter proposes a hierarchical GP model, which handles two sources (time

and ear) of correlation in the DPOAE measurements, wherein both subject-specific

random effects and variance components governing the smoothness and variability of

each child’s Gaussian process are coupled together. The resulting model for the

intermittently observed outcomes is a Laird and Ware (1982) mixed model, but

with subject-specific Gaussian process variance components correlated with subject-

specific random effects. This correlation is real, seen in preliminary analyses, and

requires a bit of thought and care in terms of obtaining posterior inference. The

model is further generalized to accommodate subject-specific covariates that affect

the variability and smoothness of each subject’s GP surface.

The rest of the article is organized as follows. Section 3.2 consists of a preliminary
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analysis on the DPOAE data and the hierarchical Gaussian process model. Section

3.3 shows how we obtain reference chart using a volume tube method. Section 3.4

discusses how to use an alternative method, posterior contour probability, to identify

abnormal DP-grams. The hierarchical GP model is generalized to include covariates,

for the DPOAE data the subject’s age and gender, in Section 3.5. An analysis of the

DPOAE data is presented in Section 3.6; Section 3.7 concludes the article.

3.2 Hierarchical Gaussian process model

Preliminary analyses

Proceeding to the modeling of the DPOAE data, Table 3.1 shows that 38 healthy

subjects provided 75 ears of data over a total of 196 measurement sessions. Subjects

ranged in age from 1 month to 120 months (10 years), with a mean of 38.8 months, or

about 3.2 years. Subjects were followed for varying lengths of time, ranging from less

than one month to a little over one year. Table B.1 in Appendix B shows the number

of valid DPOAE level measurements taken at each f2 Primary frequency. Across

frequencies, well over 300 measurements were provided. Figure B.1 in Appendix B

shows the followup times in months (baseline = 0 months) for each sample subject

listed on the y-axis. Several features stand out from this figure: (i) Two subjects

provided no valid baseline data; (ii) Despite some apparent regularity in followup

times, there is quite a bit of variation in the number of followups and the followup

intervals (see also Table 3.1); (iii) Despite our desire to establish DPOAE level shift

standards over a 12-month followup period, most of these data only cover up to about

7 months of followup. While all of these issues are easily handled within the mixed

model framework, it is important to recognize that, as a result of (iii), the precision

of our DPOAE level shift standards out to 12 months will be relatively small due to

the small amount of data at that time horizon.
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Figures B.2 to B.5 in Appendix B reveal observed differences in DP-gram patterns

among subjects. Particularly, the intercept and slope of linear trends underlying the

curves are quite different. This motivates us to include individual intercepts and

slopes as random effects in the DP-grams. In addition, the growth curves are non-

linear but tend to have an overall common “decreasing-increasing-decreasing” shape,

so a penalized B-spline function was used to model this overall nonlinear shape.

Theoretically, the curves are smooth, thus a subject-specific infinitely differentiable

Gaussian process is assumed on top of the subject-specific mean. Furthermore, there

obviously exists strong correlation among the curves of each subject and the left- and

right-ear curves are also highly correlated. This motivates the addition of another

hierarchy of correlation associated with observation time and ears in the covariance

structure. Finally, note that the degree of variability stays remarkably constant across

all frequencies when examining DP-grams across the 38 kids; this is further supported

by Figure B.10 in Appendix B showing differences in DP-grams from baseline for

different followup windows.

Table 3.1 Subject characteristics

Female Male Total
Number of subjects 25 13 38
Number of ears 50 25 75
Age (months) 46.6 (1–120) 23.8 (4–73) 38.8 (1–120)
Total follow-up time (months) 6.7 (3.0–12.2) 6.0 (0.9–9.2) 6.5 (0.9–12.2)
Number of valid study visits 5.1 (3–9) 5.2 (2–8) 5.2 (2–9)

Hierarchical Gaussian process regression model

Figures B.2 to B.5 in Appendix B shows DPOAE correlation across frequencies, be-

tween ears, and across visit times; however the degree of correlation clearly varies

from subject to subject with some subjects, e.g., having a large degree of correlation

across visits (almost identical curves) and others having considerably more hetero-
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geneity. Thus we initially posit a hierarchical Gaussian process model allowing for

differing slopes, intercepts, and amounts of correlation across visits and ears for each

patient. Later in Section 3.5 we generalize to a structural equation model regressing

these latent patient-specific factors onto age and gender. Consider the mixed model

for DPOAE response yijkl

yijkl = µ(fj) + bi0 + bi1fj + eijkl, (3.1)

where i = 1, . . . , n indexes the child; j = 1, . . . , F indexes the log-f2 levels f =

(f1, . . . , fF )′ considered; k = 1, . . . , Ti indexes the visit times ti = (ti1, . . . , tiTi
)′ for

subject i; and l = 1, 2 where l = 1 indicates the left ear and l = 2 indicates the

right. Define the total number of observations for subject i at frequency level fj as

nij = ∑Ti
k=1 Lijk where Lijk = 0 if neither ear was tested, Lijk = 1 if only one ear was

tested, and Lijk = 2 if both ears were tested. The total number of observations for

subject i is ni = ∑n
i=1

∑F
j=1 nij.

The model builds upon an overall nonlinear population mean µ(f) with a subject-

specific linear term bi0 +bi1f (e.g., Ghosh and Hanson, 2010); this provides the overall

shape of the DP-gram. A mean-zero subject-specific Gaussian process is added eijkl

that smoothly changes with visit time but also changes with ear. A model that

includes correlation across frequency in eijkl was also considered (Section 3.6), but was

found to provide poorer prediction. This is likely due to the fact that the correlation

induced by the random bi0 + bi1f among the DPOAEs at different frequencies is

adequate for the data. Let yijk = (yijk1) if only the left ear was tested on child i at

log-f2 level fj at time tik, yijk = (yijk2) if only the right ear was tested (both of these

imply Lijk = 1), yijk = (yijk1, yijk2)′ if both ears were tested (Lijk = 2), and yijk = ∅

if neither ear was tested at frequency fj at time tik. Then yij = (y′
ij1, . . . ,y

′
ijTi

)′ is the

set of all measurements taken on child i at frequency level fj (vacuous if the child was

never measured at fj) and yi = (y′
i1, . . . ,y

′
iF )′

ni×1 are all of child i’s measurements

over all frequency levels.

47



Population mean and linear model

The subject-specific intercepts and slopes are assumed normal: bi | β,Σb
iid∼ N2(β,Σb)

where bi = (bi0, bi1)′ and β = (β0, β1)′. The overall population mean as a function of

f , at any time t, for either ear is the linear portion β0 +β1f plus a penalized B-spline

µ(f)

µ(f) =
S∑

s=1
γsϕs(f). (3.2)

The knots are equispaced over the range of all log-frequencies in the data and S = 20

basis functions used; increasing the number of basis functions did not appreciably

change inference. Since µ(f) includes constant or linear functions as special cases the

mean β0 + β1f + µ(f) is overspecified unless constraints are introduced. Following

Gray (1992) we set two of the B-spline coefficients to zero, in our case the first

and last, γ1 = γS = 0, leaving the column space of the overall mean design matrix

unchanged. The parameters for the B-spline are then γ = (γ2, . . . , γS−1)′, which is

given a 2nd-order random-walk prior

p(γ) ∝ λ
S−2

2 exp{−0.5λ∥Dγ∥2}, (3.3)

where D is a (S − 4) × (S − 2) matrix with dii = di,i+2 = 1, di,i+1 = −2, and 0

elsewhere (e.g. Kneib, 2006, Section 4.2.2.1). Following Lang and Brezger (2004),

the penalization parameter λ follows a gamma distribution,

λ ∼ Γ(α1, α2), (3.4)

with α1 = 1 and α2 = 0.005 or 0.0005.

Let 1a denote an a × 1 vector of ones. Let Xijk = 1Lijk
⊗ (ϕ2(fj), . . . , ϕS−1(fj))

(vacuous if Lijk = 0), Xij = [X ′
ij1 · · ·X ′

ijTi
]′, and Xi = [X ′

i1 · · ·X ′
iF ]′; ⊗ denotes

the Kronecker product. Similarly, Zijk = 1Lijk
⊗ (1, fj), Zij = [Z ′

ij1 · · ·Z ′
ijTi

]′, and

Zi = [Z ′
i1 · · ·Z ′

iF ]′. Then each child’s vector of responses at frequency level fj follows

a linear model

yij = Xijγ +Zijbi + eij,
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for i = 1, . . . , n and j = 1, . . . , F . However, it is not a typical Laird and Ware (1982)

model as the subject-specific variance components governing the mean-zero “error”

vector eij are correlated with the subject-specific random effects bi as is described

next.

Child-specific deviation from the population trend

Past studies have shown a significant but very small (less than 1 dB) difference

between ears in children (e.g. Keogh et al., 2001). Kemp (2002) notes that “although

OAEs can differ enormously between healthy ears, they are usually quite similar in

the left and right ears.” We do see quite marked differences in the DPOAE data

analyzed here, therefore an ear effect needs to be included, as well as visit time.

Analogous to the response and frequency vectors define eijk = (eijk1) or eijk =

(eijk2) when Lijk = 1, or eijk = (eijk1, eijk2)′ when Lijk = 2, eij = (e′
ij1, . . . , e

′
ijTi

)′ for

child i at frequency level fj and ei = (e′
i1, . . . , e

′
iF )′

ni×1. The Gaussian process model

assumes

eij
ind.∼ Nnij

(0,Σij), (3.5)

where Σij is the covariance matrix of eij with separable covariance structure

cov(eijkl, eijk′l′) = σ2
i exp{−θti|tik − tik′|2 − θei|l − l′|2}.

Note that if both ears are measured at the same set of frequencies each time the

subject-specific covariance model reduces to

eij ∼ Nnij
(0, σ2

i Σti ⊗ Σei),

where Σti and Σei are all correlation matrices with simple structure that are functions

of θti and θei respectively. The subject-specific parameter θti measures the smoothness

of the ith subject’s responses over time, σ2
i measures the overall variability of the ith

subject’s DP-gram, and θei measures how similar responses are in subject i’s two ears.
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The covariance components governing subject i’s DP-gram surface (DP-gram func-

tion over time and ear) is vi = (log(σ2
i ), log(θti), log(θei))′. These are coupled with

the subject-specific intercept/slope deviates ri = (b′
i,v

′
i)′ and assumed normal

r1, . . . , rn | µr,Σr
iid∼ N5(µr,Σr), µr =

 β
τ

 , Σr =

 Σb Σbv

Σ′
bv Σv

 . (3.6)

Based on preliminary non-hierarchical individual fits in SAS’ proc mixed, multivari-

ate normality is reasonable. Further, the normality assumption allows ready calcu-

lation of contour probabilities in Section 3.4. Non-normal random effects can also

be considered if needed; Jara, Hanson, and Lesaffre (2009) compare several Bayesian

nonparametric approaches. At this point, the mixed model (3.1) specified through

the penalized B-spline (3.2)–(3.3), random effects/components (3.6) and residual DP-

grams (3.5) could be fit via the E-M algorithm yielding the maximum likelihood esti-

mates (µ̂r, Σ̂r, γ̂, λ̂). Instead, we adopt a Bayesian approach through the priors (3.4)

and (3.7, below), primarily to obtain accurate small-sample inferences concerning the

simultaneous credible region derived in the next section. The population parameters

have the standard conjugate prior

µr ∼ N5(m0,M0), Σ−1
r ∼ Wish5(Q, q). (3.7)

Based on preliminary fits obtained from SAS, we took q = 5, m0 to be mean of

r̂i, i = 1, . . . , n, M0 to be the sample covariance matrix of r̂i divided by n, and Q

to be the inverse of the sample covariance of r̂i divided by q. Quite different hy-

perparameter settings were used to perform a sensitivity analysis; posterior inference

changed negligibly.

Fitting the model

Markov chain Monte Carlo (MCMC) is by now a standard tool in the statistician’s

toolbox; a good reference is the book by Robert and Casella (2004). The MCMC
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scheme we develop makes use of several closed form full conditional distributions,

as well as adaptive Metropolis-Hastings (Haario, Saksman, and Tamminen, 2001

& 2005) strategies for those full conditional distributions that do not have easily-

sampled closed forms. The full conditional distributions and our final MCMC scheme

are presented in the Appendix B along with sample FORTRAN 90 code that calls

the IMSL library (Rogue Wave Software). After an initial burn-in, samples from

the augmented posterior (µm
r ,Σm

r ,γ
m, λm | y1, . . . ,yn) for m = 1, . . . ,M are kept

and used for posterior inference, in particular a simultaneous reference chart for

intermittently-observed responses on one ear at any time point for any child in the

population. The method prescribed for obtaining this simultaneous reference region

is described next.

3.3 Volume tube method for obtaining reference chart

One observation time

Let y∗ = (y∗
1, . . . , y

∗
F ∗)′ be a vector of correlated responses from a random child drawn

from the population at any time across the F ∗ frequencies f ∗ = (f ∗
1 , . . . , f

∗
F ∗)′, for

either ear. Unlike the actual data, these frequencies are on a fine mesh to approximate

a smooth DP-gram. Let X∗
j = (ϕ2(f ∗

j ), . . . , ϕS−1(f ∗
j )) and X∗ = [X∗

1
′ · · ·X∗

F ∗
′]′. Let

Z∗
j = (1, f ∗

j ) and Z∗ = [Z∗
1

′ · · ·Z∗
F ∗

′]′. Let r∗ = (b∗
0, b

∗
1, log(σ2∗), log(θ∗

t ), log(θ∗
e))′

be the vector of subject-specific effects/components associated with y∗, b∗ = (b∗
0, b

∗
1)′,

and let the F ∗ ×F ∗ matrix Σ∗ be σ2∗IF ∗ . Due to the model’s hierarchical nature, this

random child’s response is conveniently sampled given (µr,Σr,γ) by first sampling

the subject-specific variables

r∗ | µr,Σr ∼ N5(µr,Σr),

followed by sampling the DP-gram

y∗ | r∗,γ ∼ NF ∗(X∗γ +Z∗b∗,Σ∗).
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This sequence is carried out for all M iterates, i.e. r∗m ∼ N5(µm
r ,Σm

r ) then y∗m ∼

NF ∗(X∗γm + Z∗b∗m,Σ∗m), yielding a posterior sample of random DP-grams from

the population y∗1, . . . ,y∗M .

The volume tube approach of Crainiceanu et al. (2007) and Krivobokova, Kneib,

and Claeskens (2010) is modified to obtain a (1 − α)100% credible band. First note

that, due to linearity, the mean of any y∗ is simply µ∗ = X∗γ̄ + Z∗β̄ where γ̄

is the posterior mean of γ and β̄ is the posterior mean of β. At each frequency,

the usual equal-tailed pointwise (1 − α)100% credible interval is formed yielding

upper and lower pointwise interval endpoints u1, . . . , uF ∗ , l1, . . . , lF ∗ . These are well-

approximated by the MCMC empirical estimates uj = y
∗⌈(1−α/2)M⌉
j and lj = y

∗⌈(α/2)M⌉
j

where y∗(1)
j , . . . , y

∗(M)
j are the order statistics of random DP-gram values at frequency

f ∗
j and ⌈·⌉ denotes the ceiling function. Each pointwise interval (lj, uj) is adjusted by

increasing c > 1 to (µ∗
j − c(µ∗

j − lj), µ∗
j + c(uj − µ∗

j)) until exactly (1 − α)100% of the

y∗1, . . . ,y∗M lie between the two adjusted bands.

The band has the interpretation that any randomly selected child’s DP-gram

from the population, for either ear and at any time, will completely fall inside the

region (1 − α)100% of the time. Note that in actuality DPOAEs will observed at a

finite number of f2 frequencies so the band will be slightly conservative in that the

probability that a finite number of DPOAEs falling within the simultaneous band will

be ≥ (1 − α). Alternatively, the band will be exact if f ∗ is simply taken to coincide

with the actual frequencies a child’s response was observed at. In clinical practice

each DPOAE measurement system would simply have a distinct volume tube over

the f2 frequencies used by the manufacturer.

Two or more observation times

A 95% reference interval corresponds to the range of DPOAE level shifts that a clin-

ician can reasonably expect to see in a healthy population. Let y∗
1 = (y∗

11, . . . , y
∗
1F ∗)′
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and y∗
2 = (y∗

21, . . . , y
∗
2F ∗)′ be sets of emissions recorded on the same frequencies at

times t1 and t2, often baseline and then some months later. The difference at each

frequency is given by the F ∗ ×1 vector ∆ =
[
I −I

]
(y∗

1
′,y∗

2
′)′. A short calculation

reveals that

∆ ∼ NF ∗

(
0, 2(1 − exp{−θ∗

t |t1 − t2|2})Σ∗
)
, (3.8)

where Σ∗ is as defined in Section 3.3. The volume tube method immediately applies

to DPOAE DP-gram shifts over time.

3.4 Posterior contour probabilities for finding children with abnor-

mal DP-grams

The simultaneous credible band provides a very quick check that a child’s response

is normal. However, it may miss DP-grams that are unusual in ways different than

very high or low responses. For example, the ith child might have a highly oscillatory

DP-gram that still falls into the simultaneous credible region. A highly oscillatory

DP-gram could occur if σ2
i is unusually large relative to the rest of the population

but bi0 ≈ β0 and bi1 ≈ β1, etc.

A contour probability measures how rare or unusual an observation is in a manner

similar to a p-value. For continuous y ∼ p(·), the contour probability for seeing an

observation more unusual than y0 is P{p(y) < p(y0)}, i.e. the probability of finding

other random y ∼ p(·) in areas of even lower probability (Hanson and McMillan,

2012). Following the first part of Section 3.3 for one set of measurements y∗, the con-

tour probability for y0 is estimated using ergodic averages and standard multivariate

theory, e.g. Mardia, Kent, and Bibby (1979), as

P{p(y∗) < p(y0)} = 1
M

M∑
m=1

P{χ2
F ∗ > (y0−X∗γm−Z∗b∗m)′[Σ∗m]−1(y0−X∗γm−Z∗b∗m)}.

Following the second part of Section 3.3, the contour probability for the difference
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of two DP-grams taken at two different visits on the same ear, say ∆0, is

P{p(∆∗) < p(∆0)} = 1
M

M∑
m=1

P{χ2
F ∗ > ∆′

0[2(1 − e−θ∗m
t |t2−t1|2)Σ∗m]−1∆′

0}. (3.9)

This is the contour probability of seeing other random children’s DP-gram differences

in an area of even less probability, i.e. lower density, than ∆0 under the model.

3.5 Age-gender-specific model

Pediatric patients up to age 18 are monitored during treatment with cisplatin. There

is a well-known physiological basis for an age effect on OAE amplitude: DPOAE

amplitude decreases over the first few years of life as the ear canal gets larger and

the nervous system matures. Since DPOAE levels naturally change with cochlear

development, it is desirable to have age-appropriate DPOAE level shift standards as

necessary. Posterior means r̂i from the model presented in Section 3.2 are plotted

versus the child’s baseline age in Figure B.6 in Appendix B; different plotting symbols

are used for boys and girls. Note, e.g., that estimated intercepts decrease and slopes

tend to roughly increase with age for both boys and girls. In general, we allow

intercepts, slopes, and all four subject-specific variance components governing the

smoothness and variability among DP-grams to change smoothly with age and gender,

yielding a Gaussian process structural equation model.

Let ai be a p × 1 vector of baseline covariates associated with child i; then (3.6)

becomes

ri | µr,Σr
ind∼ N5(µrai,Σr), µr =

 b′

τ ′

 , Σr =

 Σb Σbv

Σ′
bv Σv

 , (3.10)

where

b′ =

 β11 · · · β1p

β21 · · · β2p

 and τ ′ =


τ11 · · · τ1p

τ21 · · · τ2p

τ31 · · · τ3p

 .
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Similar to the simpler hierarchical model, the posterior distributions of mean pa-

rameters b have closed forms while those of the covariance parameters do not. The

adaptive Metropolis-Hastings algorithm is adopted to generate samples from the lat-

ter. See Appendix B for derivation details.

3.6 Data analysis

A simulation study was used to check the validity of the estimation methods. Data

were generated based on the DPOAE data structure and modeling assumptions and

the models described in Sections 3.2 and 3.5 fit. From numerous fits to replicated

data sets of varying sizes, coefficient estimates are essentially unbiased and consistent.

In Section 3.2, general characteristics of the DPOAE data were discussed. Now we

apply both the simple hierarchical Gaussian process model followed by the age-gender-

specific generalization to the DPOAE data.

We first fit the hierarchical model without considering age and gender. Fully

20,000 MCMC iterates were generated with the last 10,000 iterations used for pos-

terior inference. All chains mixed very well so thinning was not necessary. The

log-pseudo marginal likelihood (LPML) of this model (Gelfand and Dey, 1994), a

leave-one-out measure of a model’s predictive ability, is -11786.9. During the last

10,000 iterations, a random child’s DP-gram was predicted, consisting of responses

corresponding to 31 log(f2 primary) levels. Based on these samples, both the point-

wise and simultaneous 95% credible bands were generated for DP-grams of a randomly

selected healthy child; see Figure 3.2. In addition, test-retest differences were pre-

dicted according to (3.8). Using the method discussed in Section 3.2, pointwise and

simultaneous credible bands for test-retest differences are also estimated. Figure 3.3

shows 10 DP-grams of test-retest differences and the 95% credible region when the

followup time is one month. The numbers along the curves are posterior contour

probabilities calculated by Equation (3.9). Note that the contour probability of one
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of ID 6’s DP-grams is only about 0.0206, though it is still within the credible region.

The two DP-grams of ID 9 have almost the same mean but their contour probabili-

ties are quite different (0.9953 versus 0.4935). The more oscillatory one has a much

smaller contour probability. This shows how important it is to combine the credible

region and the contour probability to identify abnormal DP-grams. To illustrate this

point in more detail, we designed three “extreme" cases of DP-grams of test-retest

differences and calculated the posterior contour probabilities. Note that although

they are quite extreme, they are still within the 95% credible bands; see Figures B.7,

B.8, and B.9 in Appendix B. Although all within the credible band, these figures

illustrate highly unusual DP-grams relative to what was seen in the actual data. In

most cases, the contour probabilities are very small, signaling significant changes in

DP-grams over time, alerting medical practitioners to possible hearing damage if the

current level of dosing is continued.
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Figure 3.2 95% credible bands and 10 sample DP-grams

The age-gender-specific model was also fit to the DPOAE data. By allowing
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Figure 3.3 10 sample DP-grams of test-retest differences of 5 children and
95% simultaneous credible band; followup time = 1 month.

subject-specific intercept-slope and Gaussian process variance components to be co-

variate dependent, the structural equation model may have better predictive power

than the hierarchical one, provided that baseline covariate information is available,

which of course is almost always the case. As before, 10,000 posterior samples were

kept after burn-in. The LPML for the age-gender model -11785.5 is a bit better than

the hierarchical model; the pseudo Bayes factor (exponentiated difference in LPML)

is about 4 in favor of the age-gender model. Figures 3.4 and 3.5 show that as followup

time increases, the credible band tends to be wider; the width of the credible band

increases quickly as followup time goes from half a month to two months. After two

months, the curve is essentially static, i.e. temporal correlation dies down to almost

zero. Also note that as the children get older, the credible band tends to be wider,

reflecting more variability in DPOAE response, and boys have wider credible bands

than girls at the same age with the same followup time. In a meta-analysis of ten
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earlier studies, Reavis et al. (2015) also found that increased variability in DPOAE

response as monitoring interval length increases.

0.5 1.5 2.5 3.5

5
10

15

All Children

followup time (month)

ha
lf 

w
id

th
 o

f C
B

Simultaneous
Pointwise

0.5 1.5 2.5 3.5

5
10

15

Girls, 1−month old

followup time (month)

ha
lf 

w
id

th
 o

f C
B

Simultaneous
Pointwise

0.5 1.5 2.5 3.5

5
10

15

Girls, 1.5−year old

followup time (month)

ha
lf 

w
id

th
 o

f C
B

Simultaneous
Pointwise

0.5 1.5 2.5 3.5

5
10

15

Girls, 3−year old

followup time (month)

ha
lf 

w
id

th
 o

f C
B

Simultaneous
Pointwise

0.5 1.5 2.5 3.5

5
10

15

Girls, 5−year old

followup time (month)

ha
lf 

w
id

th
 o

f C
B

Simultaneous
Pointwise

0.5 1.5 2.5 3.5

5
10

15

Girls, 10−year old

followup time (month)

ha
lf 

w
id

th
 o

f C
B

Simultaneous
Pointwise

Figure 3.4 Half widths of credible bands of test-retest differences
for all children and for girls.

As for the real out-of-sample 18-month-old male cancer patient’s DP-grams seen

in Figure 3.1, the posterior contour probabilities at 26, 70, and 391 days after baseline

are 0.19, 0.00, and 0.00. Figure 3.6 shows simultaneous bands constructed from the

half-widths obtained from Figure 3.5 (upper right) along with the test-retest difference

curves for the cancer patient. This subject’s test-retest difference first goes outside

the simultaneous bands at 70 days and is almost completely outside the bands at 391

days. For this patient, even the simultaneous bands for DP-grams observed only once

(Figure 3.6 lower right), the subject’s bands are “normal” at baseline and 26 days,

but become abnormal at 70 and 391 days. All three inferential loci: simultaneous

bands for one DP-gram, simultaneous bands for test-retest differences, and contour

probabilities imply the same finding: A marked shift the DP-gram is observed at 70

days, signaling an alert to the child’s oncology specialists.
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Figure 3.5 Half widths of credible bands of test-retest differences
for all children and for boys.

Eventually, it is hoped that doctors will use the half-widths in Figure 3.4 and

Figure 3.5 to serially monitor their pediatric cancer patients’ hearing, e.g. test-retest

differences will be automatically displayed along with the appropriate simultaneous

credible region, i.e. the horizontal bands. For example, one 5-year old girl with

followup time of one month gives half-width of 14.0, so if a test-retest difference

function has a separation greater than 14.0 in magnitude the subject is flagged as

having a significantly abnormal hearing change. Alternatively, these figures can be

used as is.

Several other models were considered. Originally, we considered a model that also

allowed for subject-specific correlation in f2 as well as time and ear, i.e.

cov(eijkl, eij′kl) = σ2
i exp(−θif |fj − fj′ |2).

The hierarchical and age-gender versions of this model have LPML values of -11846.6

and -11841.0 respectively; this is significantly worse than the models developed thus

far without residual correlation in frequency. Thus additional correlation in frequency
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simply adds unnecessary noise to the model. This is likely due to two reasons: (i) the

random subject-specific bi0 + bi1f on top of the population µ(f) induces correlation

across frequencies already and so residual correlation was unnecessary, and (ii) the

log- primary f2 values are reasonably sparse, enough so that the residual correlation

dies down to zero in between them. Simpler models with no residual correlation at all

were also considered, Σij = Inij
σ2

i (subject-specific variance only) and Σij = Inij
σ2

(usual Laird and Ware model);here Ia is an a× a identity matrix. These models had

LPML -14288.1 and -14723.3 respectively, much smaller than the other four models;

residual correlation in both time and ear significantly improve prediction for these

data. The models are described in Sections B.4 to B.7.
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Figure 3.6 Test-retest difference simultaneous bands at 4, 10, and
56 weeks (upper left, upper right, lower left) along with actual
difference for 18-month male cancer patient; credible band for one
DP-gram with corresponding DP-grams (lower right).
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3.7 Concluding remarks

Hierarchical Gaussian processes are suggested for the modeling of DPOAE in children.

DP-grams are theoretically smooth, but only sparsely sampled. Gaussian processes

assume little in the way of structure and DP-gram characteristics such as correla-

tion and variability are governed by subject-specific variance components, allowing

for a great deal of flexibility from child-to-child in DP-gram shape. Parsimony is

achieved through subject-specific slopes and intercepts atop an overall smooth popu-

lation trend modeled with a penalized B-spline. Subject-specific intercept, slope, and

variance components are further regressed onto a child’s age and gender, improving

both prediction and interpretation.

Fortunately the children’s DP-grams tend to closely follow one overall mean for

both ears, which we postulated as µ(f) + bi0 + bi1f . Ear-to-ear and time-to-time

variability was ably captured by the Gaussian process surface for each child. Had

the DP-grams been highly variable within many of the children, or variable across

ears, a more natural model would allow separate intercept/slope combinations at each

observation time and/or each ear.

The goal of this research to provide DPOAE system manufacturers accurate simul-

taneous regions and contour probabilities that are reported directly by the software.

The current plan is to increase the sample size to improve the precision with which

the bands are estimated and disseminate this information through subject-matter

journal publications and presentations. Also, we intend to extend these results to

children with cystic fibrosis, who are commonly treated with ototoxic antibiotics.
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Chapter 4

A mean-constrained finite mixture of normals1

4.1 Introduction

This chapter proposes a mean-constrained finite mixture of multivariate Gaussian

densities. The model proposed is constructive, i.e. the mean-constraint is built into

the model, versus approaches which impose mean constraints after fitting (e.g. Li,

Lin, and Müller, 2010; Jara, Hanson, and Lesaffre, 2009; Yang and Dunson, 2010) or

approaches that impose the constraints during nonparametric estimation (e.g. Hall

and Presnell, 1999; Eloyan and Ghosh, 2011; Laurence, Pignol, and Tabak, 2014).

Mean constraints are necessary in many inferential situations, including generalized

linear mixed models (e.g. Jara, Hanson, and Lesaffre, 2009), structural equation mod-

els (e.g. Yang and Dunson, 2010), and in the modeling of extreme value distributions

(e.g. Boldi and Davison, 2007), to name a few.

Linear mixed models (LMM) are widely applied on the analysis of longitudinal

and other types of repeated measures data. An open question in LMM is how to

best model the random effects. Classical approaches assume that the random effects

follow a mean-zero Gaussian distribution (Laird and Ware, 1982). However, it has

been found that this assumption is often violated, affecting prediction for subjects

not in the data set (Claeskens and Hart, 2009). To relax this assumption, novel

approaches have been proposed to model the random effects more flexibly including

the Dirichlet process prior (Kleinman and Ibrahim, 1998), Hermite expansions (Zhang

1The content in this chapter is a reprint for “Junshu Bao and Timothy Hanson (2015). A
mean-constrained finite mixture of normals. Statistics and Probability Letters. In revision”.
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and Davidian, 2001), penalized Gaussians over a grid (Ghidey, Lesaffre and Eilers,

2004), and mixtures of multivariate Polya trees (Jara, Hanson, and Lesaffre, 2009).

For identifiability, ideally a random effects distribution should be centered at zero,

enhancing interpretation of fixed effects in terms of population averages. This is a

simple constraint for parametric approaches but becomes challenging for semi- and

non-parametric approaches. In Section 4.2, we introduce the mean-constrained finite

mixture (MCFM) for multivariate density estimation and, for illustration, show how

the MCFM can be used in mixed models. In Section 4.3, we evaluate the performance

of the proposed MCFM model using a simple simulation study. Section 4.4 describes

one application of the model on the Framingham cholesterol data and Section 4.5

concludes the chapter.

4.2 Model

Consider p-dimensional data arising from a finite mixture model with J components.

Let µ = (µ1, . . . ,µJ), Σ = (Σ1, . . . ,ΣJ), and π = (π1, . . . , πJ)′ be component means,

covariance matrices, and weights respectively. Assume for now that π is given. Then

y1, . . . ,yn|π,µ,Σ iid∼ G =
J∑

j=1
πjNp(µj,Σj).

The mean-zero constraint

E(y) =
J∑

j=1
πjµj = 0p, (4.1)

which can be written as

[π′ ⊗ Ip]Vec(µ) = 0p,

forces Vec(µ) = (µ′
1, . . . ,µ

′
J)′ to live in a (J−1)×p-dimensional hyperplane in RJ×p.

Let θj = πjµj and θ = (π1µ1, . . . , πJµJ)′. The constraint (4.1) is satisfied when
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1′
Jθ = 0 where 1J is a vector of J ones. Define

θ = MJ×(J−1)Z(J−1)×p =


m1

...

mJ




z′

1
...

z′
J−1

 , (4.2)

where

z1, . . . , zJ−1|Ω ind.∼ Np(0,Ω)

andmj’s are 1×(J−1) vectors. Note that from Equation (4.2), we have θj = (mjZ)′.

The columns of matrix M , of dimension J × (J − 1), span the space orthogonal to

the vector of all ones 1J , C(1J). That is, C(M) = C(1J)⊥. As a concrete example,

M could have mjj = 1, mj+1,j = −1 for j = 1, . . . , J , and zeros elsewhere. Note then

1′
Jθ = 01×p a.s., i.e. E(y) = 0. Let si = j if yi comes from component j and define

s = (s1, . . . , sn)′. The data model conditional on the s = (s1, . . . , sn)′ is

yi|Z,Σ, s ind.∼ Np

(
π−1

si
(msi

Z)′,Σsi

)
, P (si = j) = πj.

The full conditional for Z is proportional to

p(Z|else) ∝
J−1∏
j=1

exp
{

−0.5z′
jΩ−1zj

} n∏
i=1

exp
{

−0.5
[
yi − π−1

si
(msiZ)′]′ Σ−1

si

[
yi − π−1

si
(msiZ)′]} .

Note that

π−1
si
Z ′m′

si
= π−1

si
[z1 · · · zJ−1]m′

si
= π−1

si

J−1∑
j=1

msi,jzj.

Thus,

zj |else ∼ Np

Vj

n∑
i=1

msi,jΣ−1
si

πsi

yi −
∑
k ̸=j

msi,kzk

πsi

 , Vj

 , Vj =
[
Ω−1 +

n∑
i=1

m2
si,j

Σ−1
si

π2
si

]−1

.

Under the prior

Ω−1 ∼ Wishp(dfΩ,O),

the full conditional for Ω is

Ω−1|else ∼ Wishp

dfΩ + J − 1,

O−1 +
J−1∑
j=1
zjz

′
j

−1
 .
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Note that ∑J−1
j=1 zjz

′
j = Z ′Z. Assuming the hierarchical model for the precision

matrices

Σ−1
1 , . . . ,Σ−1

J |S, dfΣ,∼ Wishp(dfΣ,S), p(S−1) ∝ |S−1|−
p+1

2 ,

we have

S−1|else ∼ Wishp

JdfΣ,

 J∑
j=1

Σ−1
j

−1
 ,

and

Σ−1
j |else ∼ Wishp

dfΣ +
n∑

i=1
I{si = j},

S−1 +
∑

i:si=j

Ei(j)E′
i(j)

−1
 .

where Ei(j) = yi − π−1
j (mjZ)′. The component indicators s = (s1, . . . , sn)′ are

sampled one at a time via

P (si = j|else) ∝ πjϕp(yi|π−1
j (mjZ)′,Σj), j = 1, . . . , J,

where ϕp(·|µ,Σ) is the usual p-dimensional normal density. A Gibbs sampler samples

from the full conditional distributions of {zj}J−1
j=1 , {si}n

i=1, {Σj}J
j=1, Ω, and S in turn.

Note that µj is indirectly sampled as π−1
j (mjZ)′, for j = 1, . . . , J .

Prior on π

A Dirichlet prior on π results in the so-called ‘label switching’ problem that plagues

discrete mixture models. Roughly speaking, allocations of observations to compo-

nents are arbitrary in that components can be relabeled without the likelihood chang-

ing value; this is the very definition of non-identifiability. Many approaches that en-

sure identifiability order parameters of the components in some manner. The easiest

ordering to consider for the multivariate model considered here is to order the proba-

bilities π1 > π2 > · · · > πJ . To this end, we consider an expected stick-breaking prior,

which yields geometric probabilities for π with the ordering π1 > π2 > · · · > πJ .
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A truncated Dirichlet process (Ishwaran and James, 2001) induces a prior on

π = (π1, . . . , πJ) as

πj = vj

j−1∏
k=1

(1 − vk), v1, . . . , vJ−1|M iid∼ beta(1,M), vJ = 1.

The geometric stick-breaking process (Mena, Ruggiero, and Walker, 2011; Gutiérrez,

Gutiérrez-Peña, and Mena, 2014) simply relaces each piece vj by its expectation

E(vj) = q = (1 +M)−1. Thus we replace (J − 1) free parameters in π with just one

parameter 0 < q < 1 yielding truncated geometric probabilities

πj = q(1 − q)j−1

1 − (1 − q)J
, j = 1, . . . , J.

This leads to the full conditional distribution

p(q|else) ∝ qn(1 − q)
∑n

i=1(si−1)

[1 − (1 − q)J ]n
n∏

i=1
ϕp

yi

∣∣∣∣ (msi
Z)′

[
1 − (1 − q)J

]
q(1 − q)si−1 ,Σsi

 .
The parameter q is updated using an adaptive Metropolis-Hastings (AM) step (Haario,

Saksman, and Tamminen, 2005).

Linear mixed model

Assume the Laird and Ware (1982) model for ni repeated continuous measures on

subject i, for i = 1, . . . , n. Let Xi = [x1 · · ·xni
]′ be the fixed effects design for subject

i and Ui = [u1 · · ·uni
]′ be the random effects design. The model is given by

yik = x′
ikβ + u′

ikγi + ϵik; γ1, . . . ,γn|G iid∼ G indep. ϵik
iid∼ N(0, σ2).

Subject i’s repeated measures are written in terms of matrices yi = Xiβ+Uiγi + ϵi.

Assume a priori σ−2 ∼ Γ(a, b). Standard calculations reveal the full conditional

distributions for the population effects β

β|else ∼ Nq

{
Vβ

[
Σ−1
β µβ + σ−2

n∑
i=1
X ′

i(yi −U ′
iγi)

]
,Vβ

}
,

66



where

Vβ =
[
Σ−1
β + σ−2

n∑
i=1
X ′

iXi

]−1

,

and the individual random effects γi, i = 1, . . . , n,

γi|else ∼ Np

{
Vγi

[
σ−2U ′

i(yi −Xiβ) + Σ−1
si
π−1

si
(msi

Z)′
]
,Vγi

}

where

Vγi
=
[
σ−2U ′

iUi + Σ−1
si

]−1
.

z1, . . . , zJ−1 are sampled one after another by

zj|else ∼ Np

Vzj

 n∑
i=1

msi,jΣ−1
si

πsi

γi −
∑
j′ ̸=j

msi,j′zj′

πsi

 ,Vzj

 ,
where

Vzj
=
[

n∑
i=1

m2
si,j

Σ−1
si

π2
si

+ Ω−1
]−1

.

The error precision is updated as

σ−2|else ∼ Γ
(
a+ 0.5n, b+ 0.5

n∑
i=1

ni∑
k=1

(yik − x′
ikβ − u′

ikγi)2
)
.

Finally, the full conditional of q is proportional to

p(q|else) ∝ qn(1 − q)
∑n

i=1(si−1)

[1 − (1 − q)J ]n
n∏

i=1
ϕp

γi

∣∣∣∣ (msi
Z)′

[
1 − (1 − q)J

]
q(1 − q)si−1 ,Σsi

 .
4.3 A Simulation study

A simulation study to evaluate the performance of the proposed MCFM LMM is

considered here. The random effects follow a mixture of two bivariate Gaussian

distributions. We used two settings of component weights: (0.7, 0.3) and (0.5, 0.5),

and two sample sizes: n = 50 and n = 200. For weights=(0.7, 0.3), the random

effects, γi, i = 1, . . . , n, follow:

γi ∼ 0.7 × N


 0.3

−0.3

 , 0.12

 1.0 −0.5

−0.5 1.0


+ 0.3 × N


 −0.7

0.7

 , 0.12

 1.0 0.5

0.5 1.0



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For weights= (0.5, 0.5),

γi ∼ 0.5 × N


 0.5

−0.5

 , 0.12

 1.0 −0.5

−0.5 1.0


+ 0.5 × N


 −0.5

0.5

 , 0.12

 1.0 0.5

0.5 1.0




The covariate for both random and fixed effects is time, tik = [(k − 1) − 2.5]/5, i =

1, . . . , n and k = 1, . . . , 5. The fixed effects intercept and slope are (β0, β1) = (−2.5, 1.8).

The standard deviation of the error is σ = 0.01. Given the random effects, the re-

sponse for each individual i at time k is

yik|β,γi, σ
2 ∼ N

(
β0 + β1tik + γi0 + γi1tik, σ

2
)

We initially used J = 5 components because there are only two clusters in the simu-

lated data. Table 4.1 and Table 4.2 show the true and estimated weights, fixed effects

and random effects. Although the random effects distribution is assigned J = 5 com-

ponents, there are still 70% (51% + 13% + 6%) with mean close to (0.3,−0.3) while

30% (27% + 3%) with mean close to (−0.7, 0.7). The fixed effects are also estimated

precisely. Similar results are found in Table 4.2. Figure 4.1 presents the true and

estimated distributions of the random intercept and slope for the two weight settings

and two sample sizes.

Table 4.1 Posterior means and standard errors (in brackets) from MCFM LMM;
simulated data, n = 200 subjects, weights=(0.7, 0.3)

True Estimates
Parameter j = 1 j = 2 j = 1 j = 2 j = 3 j = 4 j = 5
weight 0.70 0.30 0.51(0.03) 0.27(0.02) 0.13(0.02) 0.06(0.02) 0.03(0.02)
µj1 0.30 -0.70 0.28(0.02) -0.71(0.02) 0.36(0.06) 0.28(0.10) -0.83(0.48)
µj2 -0.30 0.70 -0.28(0.02) 0.70(0.02) -0.35(0.06) -0.29(0.09) 0.82(0.47)
ρj -0.50 0.50 -0.40(0.13) 0.46(0.13) -0.55(0.33) -0.37(0.48) 0.08(0.64)
β0 -2.50 -2.50(0.01)
β1 1.80 1.80(0.01)
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Table 4.2 Posterior means and standard errors (in brackets) from the MCFM LMM;
simulated data, n = 200 subjects, weights=(0.5, 0.5)

True Estimates
Parameter j = 1 j = 2 j = 1 j = 2 j = 3 j = 4 j = 5
weight 0.50 0.50 0.32(0.03) 0.25(0.03) 0.18(0.03) 0.14(0.02) 0.11(0.02)
µj1 0.50 -0.50 -0.50(0.02) 0.51(0.04) -0.52(0.03) 0.48(0.08) 0.52(0.10)
µj2 -0.50 0.50 0.48(0.02) -0.49(0.03) 0.50(0.03) -0.46(0.08) -0.50(0.09)
ρj -0.50 0.50 0.52(0.15) -0.12(0.35) 0.48(0.23) -0.21(0.51) 0.14(0.60)
β0 -2.50 -2.51(0.01)
β1 1.80 1.80(0.01)
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Figure 4.1 MCFM LMM estimates of random intercepts and slopes, with sample
size n = 50 and 200, weights=(0.7, 0.3) (top four panels) and (0.5, 0.5) (bottom
four panels). Estimated distributions (dashed line) are superimposed to the true
distributions (solid line).

4.4 Data analysis

We employ the longitudinal cholesterol data from the Framingham heart study to

illustrate our approach. The data set consists of a random sample of 200 subjects

from the study. For each subject, cholesterol levels were measured every other year

for ten years. Control factors such as gender and baseline age were also included.

The data are not balanced, with a total of 1044 observations. With this data set,
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Zhang and Davidian (2001), Ghidey, Lesaffre, and Eilers (2004), and Jara, Hanson,

and Lesaffre (2009) fitted linear mixed models following different assumptions on the

random effects as follows:

yik = β0 + β1agei + β2sexi + β3tik + γi0 + γi1tik + ϵik,

where i = 1, . . . , 200, k = 1, . . . , ni, and ϵik ∼ N(0, σ2). Initially, we fitted the MCFM

LMM to the cholesterol data with 5 components. The prior means and the starting

values of the parameters are set to be the estimates from the Gaussian linear mixed

model (R package: lme4). The results are shown in Table 4.3. The estimates from

the MCFM LMM and those of the classical Gaussian LMM are very close. We also

fitted a 10-component model but found that the posterior inference is almost the

same.

Table 4.3 Posterior means and standard errors (in
brackets) by the Gaussian LMM and MCFM LMM;
Framingham cholesterol data.

Models
Parameter Gaussian LMM MCFM LMM
β0(intercept) 1.5969(0.1503) 1.5582(0.0880)
β1(age) 0.0184(0.0035) 0.0186(0.0021)
β2(sex) -0.0630(0.0554) -0.0618(0.0379)
β3(time) 0.2817(0.0241) 0.2831(0.0170)
σ 0.2084(0.0057) 0.1947(0.0049)

Figure 4.2 is a visual demonstration of the model fitting results: the first panel

is the random effect distribution surface; the second panel is the contour plot with

the crosses being the posterior mean random effects of the 200 subjects; the last two

plots show the marginal densities of the random intercept and slope. Note that they

are both centered at zero, which indicates that our constraint works.

Being able to provide similar posterior inference, the proposed MCFM model is

more concise compared with other semi- or non-parametric models. If the dimension

of random effects is greater than two, it will be more difficult to use the penalized
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Gaussians model because the number of Gaussian basis functions grows exponentially

with dimension (Ghidey, Lesaffre, and Eilers, 2004). The proposed MCFM model

is able to model higher dimensional data without much extra effort. The LPML

(Geisser and Eddy, 1979) of the MCFM model is 6.00, which is slightly higher than

the LPML of the classical Dirichlet process mixtures model (4.22) and the mixture of

Dirichlet process model (5.59) but lower than the three mixtures of multivariate Polya

trees models (8.39, 11.49, and 11.54) in Jara, Hanson, and Lasaffre (2009). Thus,

the proposed model has competitive predictive power with similar non-parametric

approaches.
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Figure 4.2 Estimated random effects distribution from the MCFM LMM fitted to
the cholesterol data.

4.5 Conclusions

The LMM is readily generalized to generalized linear mixed models via the approach

of Gamerman (1997); for example, Komárek and Lesaffre (2008) generalized the LMM

of Ghidey, Lesaffre, and Eilers (2004) via this approach; also see Jara, Hanson, and

Lesaffre (2009).

In principle, a variance constraint can also be imposed. Iterated expectation gives

Cov(y) = ∑J
j=1 πj(Σj + µjµ

′
j). Setting this equal to a known Σ0 implies several

additional constraints on both {µj}J
j=1 and {Σj}J

j=1. Another extension is to allow

the shape of G to change with predictors. This can be accomplished through a linear
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dependent Dirichlet process (e.g. De Iorio et al., 2009). R code to fit the MCFM

LMM is available from the first author.
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Appendix A

Supplement to Chapter 2

In the derivation of models, we used notations slightly different from Chapter 2 due

to simplicity. We put tilde (˜) on the letter which represent the vector of subject j

in Chapter 2. For example, ỹj is the observed ordinal response vector for subject j.

In the derivation, we used yj, zj, and xj to denote ỹj, z̃j, and x̃j, respectively.

A.1 Derivation of the Parametric Model

Joint Posterior Distribution

p(Z,β,Σ,α|Y )

∝ p(Y |Z,α)p(Z|β,Σ)p(β,Σ|b,M ,S−1)p(α)

∝
T∏

j=1
p
(
yj|zj,α

)
︸ ︷︷ ︸

(1)

T∏
j=1

p
(
zj|β,Σ

)
︸ ︷︷ ︸

(2)

p
(
β,Σ|b,M ,S−1

)
︸ ︷︷ ︸

(3)

p(α)︸ ︷︷ ︸
(4)

for j = 1, 2, . . . , T ; i = 1, 2, . . . ,m.

j is the index for individuals. i is the index for dimensions.

(1) p
(
yj|zj,α

)
= ∏m

i=1 I
{
αi,yij−1 < zij < αi,yij

}
, where I stands for the indicator

variable.

(2) p
(
zj|β,Σ

)
= ϕm

(
zj|β,Σ

)
, where ϕm stands for the pdf of m-dimensional nor-

mal.
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(3) p
(
β,Σ|b,M ,S−1

)
= ϕp+

(
β|b,M

)
Wish−1

(
Σ|S−1, ν

)
, where p+ = ∑m

i=1 pi and

Wish−1 stands for the inverse-Wishart distribution.

(4) p(α) ∝ ∏m
i=1 I{αi,1 < αi,2 < . . . < αi,ci−1}.

Note that αi,0 = −∞ and αi,ci
= ∞.
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Y =



y11 y12 . . . y1T

y21 y22 . . . y2T

... ... . . . ...

ym1 ym2 . . . ymT


=
[
y1 y2 · · · yT

]
, where yj =



y1j

y2j

...

ymj



Z =



z11 z12 . . . zm1

z21 z22 . . . zm2

... ... . . . ...

zm1 zm2 . . . zmT


=
[
z1 z2 · · · zT

]
, where zj =



z1j

z2j

...

zmj



α =



α1

α2

...

αm


αi =



αi,1

αi,2

...

αi,ci−1



β =



β1

β2

...

βm


p+×c

where βi =



βi,1

βi,2

...

βi,pi


pi×1

Σ =



Σ11 Σ12 . . . Σ1m

Σ21 Σ22 . . . Σ2m

... ... . . . ...

Σm1 Σm2 . . . Σmm


m×m
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Full Conditionals

Σ−1|else

p(Σ−1|else)

∝
T∏

j=1
p(zj|β,Σ−1)p(Σ−1|S, ν)

∝
T∏

j=1
ϕm(zj|xjβ,Σ)Wish(Σ−1|S, ν)

∝
T∏

j=1

1√
|Σ|

exp
{

− 1
2

(zj − xjβ)′Σ−1(zj − xjβ)
}

×
[

1√
|Σ|

]ν+m+1

exp
{

− 1
2

tr(S−1Σ−1)
}

∝
[

1√
|Σ|

](T +ν)+m+1

exp
{

− 1
2

[ T∑
j=1

(zj − xjβ))′Σ−1(zj − xjβ) + tr(S−1Σ−1)
]}

∝
[

1√
|Σ|

](T +ν)+m+1

exp
{

− 1
2

tr
[ T∑

j=1
(z̃j − x̃jβ)(zj − xjβ)′Σ−1 + S−1Σ−1

]}

∝
[

1√
|Σ|

](T +ν)+m+1

exp
{

− 1
2

tr
[( T∑

j=1
(zj − xjβ)(zj − xjβ)′ + S−1

)
Σ−1

]}

So,

Σ−1|else ∼ Wish
([

T∑
j=1

(zj − xjβ)(zj − (xjβ)′ + S−1
]−1

, T + ν

)
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β|else

p(β|else)

∝
T∏

j=1
p(zj|β,Σ)p(β|b,M )

∝
T∏

j=1
ϕm(zj|xjβ,Σ)ϕp+(β|b,M )

∝
T∏

j=1

1√
|Σ|

exp
{

− 1
2

(zj − xjβ)′Σ−1(zj − xjβ)
}

exp
{

− 1
2
[
β − b

]′

M−1
[
β − b

]}

∝ exp
{

− 1
2

[
T∑

j=1

(
β

′
x

′

jΣ−1xjβ − β′
x

′

jΣ−1zj − z′

jΣ−1xjβ
)

+
(
β

′
M−1β − β′

M−1b− b′
M−1β

)]}

∝ exp
{

− 1
2

[
β

′( T∑
j=1
x

′

jΣ−1xj︸ ︷︷ ︸
W

+M−1
)
β −

( T∑
j=1
z

′

jΣ−1xj︸ ︷︷ ︸
∆1

+b′
M−1

)
β

+ β′( T∑
j=1
x

′

jΣ−1zj︸ ︷︷ ︸
∆′

1

+M−1b
)]}

∝ exp
{

− 1
2

[
β

′ (W +M−1)︸ ︷︷ ︸
D−1

β − (∆1 + b′
M−1)︸ ︷︷ ︸

K

β − β′(∆′
1 +M−1b)

]}

∝ exp
{

− 1
2
[(
β

′
D−1 −K

)
β − β′

K
′]}

∝ exp
{

− 1
2
[(
β −DK ′)′

D−1
(
β −DK ′)]}

Thus,

β|else ∼ Np+

(
DK

′
,D

)
where

D =
[
W +M−1

]−1

K = ∆1 + b′
M−1

86



zij|else

Let xij = (xi,j,1, xi,j,2, . . . , xi,j,pi
), where pi is the number of covariates of the ith

dimension, and µij = xijβi. Then,

p(zij|else)

∝ p(yij|zij,αi)p(zj|β,Σ)

∝
m∏

i=1
I
{
αi,yij−1 < zij ⩽ αi,yij

}
︸ ︷︷ ︸

I∗

exp
{

− 1
2

[
zj − xjβ

]′

Σ−1
[
zj − xjβ

]}

∝ exp
{

− 1
2

[(
zij − µij

)2
Σ−1

ii + 2
(∑

l ̸=i

(zlj − µlj)Σ−1
il zij

)]}
I∗

∝ exp
{

− 1
2

Σ−1
ii

[
z2

ij − 2
(
µij − 1

Σ−1
ii

∑
l ̸=i

Σ−1
il (zlj − µlj)

)
zij

]}
I∗

∝ exp
{

− 1
2

Σ−1
ii

[
zij −

(
µij − 1

Σ−1
ii

∑
l ̸=i

Σ−1
il (zlj − µlj)

)]2
}
I∗

Therefore,

zij ∼ N
(
µij − 1

Σ−1
ii

∑
l ̸=i

Σ−1
il (zlj − µlj),

1
Σ−1

ii

)

truncated to (αi,yij−1, αi,yij
).

αi|else

Let ci be the number of levels of the i-th ordinal response. Then, for r = 2, . . . , ci−

2,

αi,r|else ∼ Unif
(

max
j∈(1,...,T )

{zij : yij = r}, min
j∈(1,...,T )

{zij : yij = r + 1}
)

for i = 1, 2, . . . ,m.

The two end-cutoffs are fixed, i.e., αi,1 = 0 and αi,ci−1 = 1.
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A.2 Derivation of the Nonparametric Model

Joint Posterior Distribution

p(Z,β,Σ,V , s|Y )

∝ p(Y |Z)p(Z|β,Σ, s)p(β,Σ|b,M ,S−1)p(s|V )p(V )

∝
T∏

j=1
p
(
yj|zj

)
︸ ︷︷ ︸

(1)

T∏
j=1

p
(
zj|β(sj),Σ(sj)

)
︸ ︷︷ ︸

(2)

N∏
k=1

[
p
(
β(k),Σ(k)|b,M ,S−1

)
︸ ︷︷ ︸

(3)

]

T∏
j=1

p
(
sj|V

)
︸ ︷︷ ︸

(4)

N−1∏
k=1

p(Vk)︸ ︷︷ ︸
(5)

for j = 1, 2, . . . , T ; i = 1, 2, . . . ,m; k = 1, 2, . . . , N .

j is the index for individuals. i is the index for dimensions. k is the index for

components in the mixture of normals.

(1) p
(
yj|zj

)
= ∏m

i=1 I
{
αi,yij−1 < zij < αi,yij

}
,

where αi,r = r−1
ci−2 , r = 1, . . . , ci − 1, are the fixed cutoffs.

(2) p
(
zj|β(sj),Σ(sj)

)
= ϕm

(
zj|β(sj),Σ(sj)

)
(3) p

(
β(k),Σ(k)|b,M ,S−1

)
= ϕp+

(
β(k)|b,M

)
Wish−1

(
Σ(k)|S−1, ν

)
, where p+ =∑m

i=1 pi

(4) p
(
sj = k|V

)
= wk = Vk

∏
l<k(1 − Vl), where V = (V1, V2, . . . , VN)

(5) p(Vk) ∝ (1 − Vk)1−α, since Vk ∼ Beta(1, α)
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Y =



y11 y12 . . . y1T

y21 y22 . . . y2T

... ... . . . ...

ym1 ym2 . . . ymT


=
[
y1 y2 · · · yT

]
, where yj =



y1j

y2j

...

ymj



Z =



z11 z12 . . . zm1

z21 z22 . . . zm2

... ... . . . ...

zm1 zm2 . . . zmT


=
[
z1 z2 · · · zT

]
, where zj =



z1j

z2j

...

zmj



V =



V1

V2

...

VN


s =



s1

s2

...

sT



β =



β1(1) β1(2) . . . β1(N)

β2(1) β2(2) . . . β2(N)
... ... . . . ...

βm(1) βm(2) . . . βm(N)


p+×c

=
[
β(1) β(2) . . . β(N)

]

where

β(k) =



β1(k)

β2(k)
...

βm(k)


p+×1

βi(k) =



βi,1(k)

βi,2(k)
...

βi,pi
(k)


pi×1
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Full Conditionals

Vk|else

Let nk be the number of observations that follow the kth component, i.e.

nk =
T∑

j=1
I{sj = k}

Then,

p(Vk|else) ∝
T∏

j=1
p(sj|V1, V2, . . . , VN)p(Vk)

∝
∏

j:sj⩾k

p(sj|V1, V2, . . . , VN)p(Vk)

∝
∏

j:sj⩾k

{
Vsj

∏
l<sj

(1 − Vl)
}
p(Vk)

∝
∏

j:sj=k

Vk

∏
j:sj>k

(1 − Vk)p(Vk)

∝ V nk
k (1 − Vk)

∑
l>k

nl(1 − Vk)α−1

∝ V
(nk+1)−1

k (1 − Vk)(
∑

l>k
nl+α)−1

So,

Vk|else ∼ Beta(nk + 1,
∑
l>k

nl + α)

.
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sj |else

p(sj = k|else)

∝ p
(
zj|β(k),Σ(k)

)
p(sj = k|V )

∝ ϕm

(
zj|xjβ(k),Σ(k)

){
Vk

∏
l<k

(1 − Vl)
}

Define

oj =
N∑

k=1
p(sj = k|else) ≜

N∑
k=1

pj,k,

πj =
(
pj,1

oj

,
pj,2

oj

, . . . ,
pj,N

oj

)

then,

sj|else ∼ Multinomial(1,πj)
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Σ−1(k)|else

p(Σ−1(k)|else)

∝
∏

j:sj=k

p(zj|β(k),Σ−1(k))p(Σ−1(k)|S, ν)

∝
∏

j:sj=k

ϕm(zj|xjβ(k),Σ−1(k))Wish(Σ−1(k)|S, ν)

∝
∏

j:sj=k

1√
|Σ(k)|

exp
{

− 1
2

(zj − xjβ(k))′Σ−1(k)(zj − xjβ(k))
}

×
[

1√
|Σ(k)|

]ν+m+1

exp
{

− 1
2

tr(S−1Σ−1(k))
}

∝
[

1√
|Σ(k)|

](nk+ν)+m+1

× exp
{

− 1
2

[ ∑
j:sj=k

(zj − xjβ(k))′Σ−1(k)(zj − xjβ(k)) + tr(S−1Σ−1(k))
]}

∝
[

1√
|Σ(k)|

](nk+ν)+m+1

× exp
{

− 1
2

tr
[ ∑

j:sj=k

(zj − xjβ(k))(zj − xjβ(k))′Σ−1(k) + S−1Σ−1(k)
]}

∝
[

1√
|Σ(k)|

](nk+ν)+m+1

× exp
{

− 1
2

tr
[( ∑

j:sj=k

(zj − xjβ(k))(zj − xjβ(k))′

︸ ︷︷ ︸
∆2

+S−1
)

Σ−1(k)
]}

So,

Σ−1(k)|else ∼ Wish
([ ∑

j:sj=k

(zj − xjβ(k))(zj − xjβ(k))′ + S−1
]−1

, nk + ν

)

Let Xi(k) be an nk × pi matrix with rows comprising only those individuals j with

sj = k, where i = 1, 2, . . . ,m. Similarly, let Z(i) be an nk × m matrix defined as
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follows

Z(k) =
[
z1(k) z2(k) . . . zm(k)

]
nk×m

where zi(k) are those elements of zi such that sj = k. Define

Λ(k) =
[
X1(k)β1(k) X2(k)β2(k) . . . Xm(k)βm(k)

]
nk×m

Then it could be shown that

∆2 =
[
Z(k) − Λ(k)

]′[
Z(k) − Λ(k)

]
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β(k)|else

p(β(k)|else)

∝
∏

j:sj=k

p(zj|β(k),Σ(k))p(β(k)|b,M )

∝
∏

j:sj=k

ϕm(zj|xjβ(k),Σ(k))ϕp+(β(k)|b,M )

∝
∏

j:sj=k

1√
|Σ(k)|

exp
{

− 1
2

(zj − xjβ(k))′Σ−1(k)(zj − xjβ(k))
}

× exp
{

− 1
2
[
β(k) − b

]′

M−1
[
β(k) − b

]}
∝exp

{
− 1

2

[ ∑
j:sj=k

(
β

′(k)x′

jΣ−1(k)xjβ(k) − β′(k)x′

jΣ−1(k)zj − z′

jΣ−1(k)xjβ(k)
)

(
β

′(k)M−1β(k) − β′(k)M−1b− b′
M−1β(k)

)]}

∝exp
{

− 1
2

[
β

′(k)
( ∑

j:sj=k

x
′

jΣ−1(k)xj︸ ︷︷ ︸
W (k)

+M−1
)
β(k) −

( ∑
j:sj=k

z
′

jΣ−1(k)xj︸ ︷︷ ︸
∆′

3

+ b′
M−1

)
β(k)β′(k)

( ∑
j:sj=k

x
′

jΣ−1(k)zj︸ ︷︷ ︸
∆3

+M−1b
)]}

∝exp
{

− 1
2

[
β

′(k) (W (k) +M−1)︸ ︷︷ ︸
D−1

β(k) − (∆′

3 + b′
M−1)︸ ︷︷ ︸

K

β(k)

− β′(k)(∆3 +M−1b)
]}

∝exp
{

− 1
2
[(
β

′(k)D−1 −K
)
β(k) − β′(k)K ′]}

∝exp
{

− 1
2
[(
β(k) −DK ′)′

D−1
(
β(k) −DK ′)]}

Thus,

β(k)|else ∼ Np+

(
DK

′
,D

)
where

D =
[
W (k) +M−1

]−1

K = ∆′

3 + b′
M−1
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Now, let us take a closer look at W (k) and ∆3. Recall that Xi(k) is an nk × pi

matrix with rows comprising only those individuals j with sj = k. Let B(k) be the

block-diagonal matrix defined as

B(k) =



X1(k)

X2(k)
. . .

Xm(k)


Then, it is not difficult to verify that

W (k) = B
′(k)

(
Σ−1(k) ⊗ Ink

)
B(k)

Let z(k) =
(
z

′
1(k), . . . , z′

m(k)
)′

, where zi(k) are those elements of zi such that sj = k

. Then one can show that

∆3 = B
′(k)

(
Σ−1(k) ⊗ Ink

)
z(k)
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zij|else

Let xij = (xi,j,1, xi,j,2, . . . , xi,j,pi
), where pi is the number of covariates of the ith

dimension, and µij = xijβi(sj). Then,

p(zij|else)

∝p(yij|zij)p(zj|β(sj),Σ(sj))

∝
m∏

i=1
I
{
αi,yij−1 < zij < αi,yij

}
︸ ︷︷ ︸

I∗

× exp
{

− 1
2

[
zj − xjβ(sj)

]′

Σ−1(sj)
[
zj − xjβ(sj)

]}
∝exp

{
− 1

2

[(
zij − µij

)2
Σ−1

ii (sj) + 2
(∑

l ̸=i

(zlj − µlj)Σ−1
il (sj)zij

)]}
I∗

∝exp
{

− 1
2

Σ−1
ii (sj)

[
z2

ij − 2
(
µij − 1

Σ−1
ii (sj)

∑
l ̸=i

Σ−1
il (sj)(zlj − µlj)

)
zij

]}
I∗

∝exp
{

− 1
2

Σ−1
ii (sj)

[
zij −

(
µij − 1

Σ−1
ii (sj)

∑
l ̸=i

Σ−1
il (sj)(zlj − µlj)

)]2
}
I∗

Therefore,

zij ∼ N
(
µij − 1

Σ−1
ii (sj)

∑
l ̸=i

Σ−1
il (sj)(zlj − µlj),

1
Σ−1

ii (sj)

)
truncated to (αi,yij−1, αi,yij

).

A.3 Derivation of the Nonparametric Model with Hyperpriors

Joint Posterior Distribution

p(Z,β,Σ,V , s|Y )

∝ p(Y |Z)p(Z|β,Σ, s)p(β,Σ|b,M ,S−1)p(s|V )p(V )p(b,M )p(S−1)

∝
T∏

j=1
p
(
yj|zj

)
︸ ︷︷ ︸

(1)

T∏
j=1

p
(
zj|β(sj),Σ(sj)

)
︸ ︷︷ ︸

(2)

N∏
k=1

[
p
(
β(k),Σ(k)|b,M ,S−1

)
︸ ︷︷ ︸

(3)

]

T∏
j=1

p
(
sj|V

)
︸ ︷︷ ︸

(4)

N−1∏
k=1

p(Vk)︸ ︷︷ ︸
(5)

p(b,M )︸ ︷︷ ︸
(6)

p(S−1)︸ ︷︷ ︸
(7)
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for j = 1, 2, . . . , T ; i = 1, 2, . . . ,m; k = 1, 2, . . . , N .

j is the index for individuals. i is the index for dimensions. k is the index for

components in the mixture of normals.

(1) p
(
yj|zj

)
= ∏m

i=1 I
{
αi,yij−1 < zij < αi,yij

}
,

where αi,r = r−1
ci−2 , r = 1, . . . , ci − 1, are the fixed cutoffs.

(2) p
(
zj|β(sj),Σ(sj)

)
= ϕm

(
zj|β(sj),Σ(sj)

)
(3) p

(
β(k),Σ(k)|b,M ,S−1

)
= ϕp+

(
β(k)|b,M

)
Wish−1

(
Σ(k)|S−1, ν

)
,

where p+ = ∑m
i=1 pi

(4) p
(
sj = k|V

)
= wk = Vk

∏
l<k(1 − Vl), where V = (V1, V2, . . . , VN)

(5) p(Vk) ∝ (1 − Vk)1−α, since Vk ∼ Beta(1, α)

(6) p(b,M) = Wish−1
p+ (M |Ψ−1

1 , ν1)

(7) p(S−1) = Wishm(S−1|Ψ2, ν2)
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Full Conditionals

Vk|else

Let nk be the number of observations that fall in the kth component, i.e.

nk =
T∑

j=1
I{sj = k}

Then,

p(Vk|else) ∝
T∏

j=1
p(sj|V1, V2, . . . , VN)p(Vk)

∝
∏

j:sj⩾k

p(sj|V1, V2, . . . , VN)p(Vk)

∝
∏

j:sj⩾k

{
Vsj

∏
l<sj

(1 − Vl)
}
p(Vk)

∝
∏

j:sj=k

Vk

∏
j:sj>k

(1 − Vk)p(Vk)

∝ V nk
k (1 − Vk)

∑
l>k

nl(1 − Vk)α−1

∝ V
(nk+1)−1

k (1 − Vk)(
∑

l>k
nl+α)−1

So,

Vk|else ∼ Beta(nk + 1,
∑
l>k

nl + α)

.
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sj |else

p(sj = k|else)

∝ p
(
zj|β(k),Σ(k)

)
p(sj = k|V )

∝ ϕm

(
zj|xjβ(k),Σ(k)

){
Vk

∏
l<k

(1 − Vl)
}

Define

oj =
N∑

k=1
p(sj = k|else) ≜

N∑
k=1

pj,k,

πj =
(
pj,1

oj

,
pj,2

oj

, . . . ,
pj,N

oj

)

then,

sj|else ∼ Multinomial(1,πj)
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Σ−1(k)|else

p(Σ(k)|else)

∝
∏

j:sj=k

p(zj|β(k),Σ(k))p(Σ(k)|S−1, ν)

∝
∏

j:sj=k

ϕm(zj|xjβ(k),Σ(k))Wish(Σ−1(k)|S, ν)

∝
∏

j:sj=k

1√
|Σ(k)|

exp
{

− 1
2

(zj − xjβ(k))′Σ−1(k)(zj − xjβ(k))
}

×
[

1√
|Σ(k)|

]ν+m+1

exp
{

− 1
2

tr(S−1Σ−1(k))
}

∝
[

1√
|Σ(k)|

](nk+ν)+m+1

× exp
{

− 1
2

[ ∑
j:sj=k

(zj − xjβ(k))′Σ−1(k)(zj − xjβ(k)) + tr(S−1Σ−1(k))
]}

∝
[

1√
|Σ(k)|

](nk+ν)+m+1

× exp
{

− 1
2

tr
[ ∑

j:sj=k

(zj − xjβ(k))(zj − xjβ(k))′Σ−1(k) + S−1Σ−1(k)
]}

∝
[

1√
|Σ(k)|

](nk+ν)+m+1

× exp
{

− 1
2

tr
[( ∑

j:sj=k

(zj − xjβ(k))(zj − xjβ(k))′

︸ ︷︷ ︸
∆2

+S−1
)

Σ−1(k)
]}

So,

Σ−1(k)|else ∼ Wish
([ ∑

j:sj=k

(zj − xjβ(k))(zj − xjβ(k))′ + S−1
]−1

, nk + ν

)

Please refer to Subsection 2.2.3 for calculation detail of ∆2.
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S−1|else

p(S−1|else)

∝
N∏

k=1
p(Σ(k)|S−1)p(S−1)

∝
[

N∏
k=1

|S−1|
ν
2 exp

{
− 1

2
tr
[
S−1Σ−1(k)

]}]
|S−1|

ν2−m−1
2 exp

{
− 1

2
tr
[
Ψ−1

1 S
−1
]}

∝ |S−1|
(Nν+ν2)−m−1

2 exp
{

− 1
2

N∑
k=1

tr
[
S−1Σ−1(k)

]
− 1

2
tr
[
Ψ−1

1 S
−1
]}

∝ |S−1|
(Nν+ν2)−m−1

2 exp
{

− 1
2

tr
[
S−1

( N∑
k=1

Σ−1(k) + Ψ−1
1

)]}

∝ |S−1|
(Nν+ν2)−m−1

2 exp
{

− 1
2

tr
[( N∑

k=1
Σ−1(k) + Ψ−1

1

)
S−1

]}

Thus,

S−1|else ∼ Wishm

([ N∑
k=1

Σ−1(k) + Ψ−1
1

]−1
, Nν + ν2

)
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β(k)|else

p(β(k)|else)

∝
∏

j:sj=k

p(zj|β(k),Σ(k))p(β(k)|b,M )

∝
∏

j:sj=k

ϕm(zj|xjβ(k),Σ(k))ϕp+(β(k)|b,M )

∝
∏

j:sj=k

1√
|Σ(k)|

exp
{

− 1
2

(zj − xjβ(k))′Σ−1(k)(zj − xjβ(k))
}

× exp
{

− 1
2
[
β(k) − b

]′

M−1
[
β(k) − b

]}
∝exp

{
− 1

2

[ ∑
j:sj=k

(
β

′(k)x′

jΣ−1(k)xjβ(k) − β′(k)x′

jΣ−1(k)zj

− z′

jΣ−1(k)xjβ(k)
)

+
(
β

′(k)M−1β(k) − β′(k)M−1b− b′
M−1β(k)

)]}

∝exp
{

− 1
2

[
β

′(k)
( ∑

j:sj=k

x
′

jΣ−1(k)xj︸ ︷︷ ︸
W (k)

+M−1
)
β(k)

−
( ∑

j:sj=k

z
′

jΣ−1(k)xj︸ ︷︷ ︸
∆′

3

+b′
M−1

)
β(k)

+ β′(k)
( ∑

j:sj=k

x
′

jΣ−1(k)zj︸ ︷︷ ︸
∆3

+M−1b
)]}

∝exp
{

− 1
2

[
β

′(k) (W (k) +M−1)︸ ︷︷ ︸
D−1

β(k)

− (∆′

3 + b′
M−1)︸ ︷︷ ︸

K

β(k) − β′(k)(∆3 +M−1b)
]}

∝exp
{

− 1
2
[(
β

′(k)D−1 −K
)
β(k) − β′(k)K ′]}

∝exp
{

− 1
2
[(
β(k) −DK ′)′

D−1
(
β(k) −DK ′)]}
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Thus,

β(k)|else ∼ Np+

(
DK

′
,D

)
where

D =
[
W (k) +M−1

]−1

K = ∆′

3 + b′
M−1

Please refer to Subsection 2.2.4 for calculation details of W (k) and ∆3.
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M−1|else

p(M−1|else)

∝
N∏

k=1
p(β(k)|b,M−1)p(b,M−1)

∝
N∏

k=1

1√
|M |

exp
{

− 1
2
[
b− β(k)

]′

M−1
[
b− β(k)

]}
|M−1|

ν1−p+−1
2

× exp
{

− 1
2

tr
[
Ψ−1

1 M
−1
]}

∝|M−1|
N
2 exp

{
− 1

2

N∑
k=1

[
b− β(k)

]′

M−1
[
b− β(k)

]}
|M−1|

ν1−p+−1
2

× exp
{

− 1
2

tr
[
Ψ−1

1 M
−1
]}

∝|M−1|
(N+ν1)−p+−1

2

× exp
{

− 1
2

tr
[ N∑

k=1

(
b− β(k)

)′

M−1
(
b− β(k)

)]
− 1

2
tr
[
Ψ−1

1 M
−1
]}

∝|M−1|
(N+ν1)−p+−1

2

× exp
{

− 1
2

tr
[ N∑

k=1

(
b− β(k)

)(
b− β(k)

)′

M−1
]

− 1
2

tr
[
Ψ−1

1 M
−1
}

∝|M−1|
(N+ν1)−p+−1

2

× exp
{

− 1
2

tr
[[ N∑

k=1

(
b− β(k)

)(
b− β(k)

)′

+ Ψ−1
1

]
M−1

]}

So,

M−1|else ∼ Wishp+

([ N∑
k=1

(
b− β(k)

)(
b− β(k)

)′

+ Ψ−1
1

]−1
, N + ν1

)

104



b|else

p(b|else)

∝
N∏

k=1
p(β(k)|b,M )p(b,M )

∝
N∏

k=1
exp

{
− 1

2
[
b− β(k)

]′

M−1
[
b− β(k)

]}

∝exp
{

− 1
2

N∑
k=1

[
b− β(k)

]′

M−1
[
b− β(k)

]}

∝exp
{

− 1
2

N∑
k=1

[
b

′
M−1b− β′(k)M−1b− b′

M−1β(k)
]}

∝exp
{

− 1
2

[
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Therefore,
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β(k), 1

N
M

)
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zij|else

Let xij = (xi,j,1, xi,j,2, . . . , xi,j,pi
), where pi is the number of covariates of the ith

dimension, and µij = xijβi(sj). Then,

p(zij|else)

∝p(yij|zij)p(zj|β(sj),Σ(sj))

∝
m∏

i=1
I
{
αi,yij−1 < zij < αi,yij

}
︸ ︷︷ ︸
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∝exp
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Therefore,

zij ∼ N
(
µij − 1

Σ−1
ii (sj)

∑
l ̸=i

Σ−1
il (sj)(zlj − µlj),

1
Σ−1

ii (sj)

)

truncated to (αi,yij−1, αi,yij
).
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A.4 Sample Fortran 90 code

We posted the code for the nonparametric model with drinking data here. Code

for the parametric model and simulation study can be obtained from the author by

request.

Main Program: the Nonparametric Model with Drinking

Data

!Bayesian Bivariate Ordinal Regression
!Nonparametric model
!Drinking data
!Reduced model: Y1= age gender abuse; Y2= gender abuse;
!Fixed cutoffs
!LPML is calculated for the thinned tail chain

program drinking_npr
use numerical_libraries
use module_1 !modules contain some functions/subroutines
use module_2

implicit none

integer,parameter::rd=100000 !Number of iterations in the Gibbs sampling
double precision,parameter::p0=0.5 !Proportion of burn-in

!***** Data Input *****
integer::count=0,i,j,k,l
double precision::it !iteration number
integer,parameter::d1=4,d2=3 !dimensions of covariates for Y1 and Y2.
integer,parameter::dd=d1+d2
integer,parameter::T=1964,m=2 !T=number of subjects, m=dimension of Y
integer,parameter::N=10 !total number of components
integer,parameter::alpha=1 !V~beta(1,alpha)

double precision,dimension(T,5)::W !Data matrix
double precision,dimension(T,2)::Y !bivariate responses
double precision,dimension(T,2)::Z !latent variables
double precision,dimension(T,d1)::X1 !design matrix for dimension 1
double precision,dimension(T,d2)::X2 !design matrix for dimension 2
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double precision,dimension(dd,1)::bb !prior mean for beta; beta~N(bb,MM)
double precision,dimension(dd,dd)::MM !prior covariance matrix of beta
double precision,dimension(dd,dd)::Minv !inverse matrix of MM

double precision,dimension(2,2):: Sigma0 !starting value of Sigma
double precision,dimension(2,2)::Prec0,SS,SS_inv
integer,parameter::s=2 !Sigma~IWish(SS,s)

double precision,parameter::a11=0.0,a12=0.5,a13=1.0,a21=0.0,a22=0.5,a23=1.0
integer,dimension(rd,N)::cs !component sizes
integer,dimension(N+1)::cc

!*** Define the chain of variables and statistics ***
double precision,dimension(rd*N,dd)::bbeta
double precision,dimension(rd*N,3)::Prec
double precision,dimension(rd,N)::rho

!*** Some media parameters in Gibbs ***
integer::nn,rr,pp
double precision::vv
double precision,dimension(N-1)::V !Vk~beta(1,alpha), k=1,...,N-1
double precision,dimension(N)::wt !weights of components
integer,dimension(T,N)::ccmi
double precision,dimension(T,N)::P
double precision::sp !sum(P(j,:))

double precision,dimension(2)::mu !mean of Z
double precision,dimension(2,2)::sigma,precision !Sigma and precision of Z
double precision,dimension(2,2)::D,Precision_i, Sigma_i

double precision,dimension(N,dd)::beta_it !beta vector at iteration "it"
double precision,dimension(3)::prec_it !precision for a component
double precision,dimension(d1,1)::beta_hat1 !starting value for beta1
double precision,dimension(d2,1)::beta_hat2 !starting value for beta2
double precision,dimension(dd,1)::beta_hat

double precision,dimension(dd,dd)::V_i,VM
double precision,dimension(dd,1)::mu_beta,beta_avg
double precision,dimension(5)::Q1,Q2
double precision::mu1,s1,lower1,upper1,mu2,s2,lower2,upper2,u1,u2
double precision,dimension(N)::ss1,ss2

double precision,dimension(T,dd+6)::allmat
double precision,dimension(dd+6)::media
integer,dimension(T)::ind

double precision,dimension(T*2,dd)::B !block-diagonal matrix
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double precision,dimension(T,d1)::zeo1 !block of zeros in B
double precision,dimension(T,d2)::zeo2 !block of zeros in B

double precision,dimension(dd,1)::XZ
double precision,dimension(4)::U !vector of uniform random variables

double precision,dimension(N)::a1,b1,a2,b2 !standardized cutoffs
double precision,dimension(T,N)::prob,m1,m2 !LPML calculation
double precision,dimension(T)::prob_wt,pinv !LPML calculation

double precision,dimension(2,5)::cutoff !cutoffs (including the end points)
double precision::bound !a large number

!*** Define some allocatable matrices for Gibbs sampling ***
double precision, dimension(:,:),allocatable::Bii,Bi_1,Bi_2,Yi,Zi
double precision, dimension(:,:),allocatable::zero1,zero2,X1i,X2i
double precision,dimension(:,:),allocatable::diagMat
double precision,dimension(:,:),allocatable::SD

double precision::time0,time1,time !system time

bb=reshape((/0.5,0.0,0.0,0.0,0.5,0.0,0.0/),(/dd,1/))
call diag_matrix(dd,MM)
Minv=inv(size(MM,dim=1),MM)
call diag_matrix(s,SS)
SS=SS*12.5
Sigma0=reshape((/1.0,0.0,0.0,1.0/),(/2,2/))
Prec0=inv(size(Sigma0,dim=1),Sigma0)

bound=10**9
cutoff(:,1)=(/-bound,-bound/)
cutoff(:,2)=(/dble(0),dble(0)/)
cutoff(:,3)=(/dble(0.5),dble(0.5)/)
cutoff(:,4)=(/dble(1),dble(1)/)
cutoff(:,5)=(/bound,bound/)

!Import drinking data
open(unit=1,file="C:\Ordinal Regression\drinking\data\drinking.txt")
do i=1,T
read(1,*)W(i,:)
end do
close(unit=1)

Y=W(1:T,1:2)

X1=colbind(VecConstant(T,dble(1)),W(:,3:5),T,1,T,3)

109



X2=colbind(VecConstant(T,dble(1)),W(:,4:5),T,1,T,2)

!Define the block data matrix B
zeo1=MatConstant(T,d1,dble(0))
zeo2=MatConstant(T,d2,dble(0))
B(1:T,1:d1)=X1
B(1:T,d1+1:dd)=zeo2
B(T+1:2*T,1:d1)=zeo1
B(T+1:2*T,d1+1:dd)=X2

!*** Set up the initial values of the chains ***

do j=1,T
do k=1,2

U=VecConstant(4,dble(0))
select case (int(Y(j,k)))

case(1)
call random_number(U(1))

Z(j,k)=-1.0+U(1)
case(2)
call random_number(U(2))
Z(j,k)=0.5*U(2)

case(3)
call random_number(U(3))
Z(j,k)=0.5+0.5*U(3)

case(4)
call random_number(U(4))
Z(j,k)=1.0+U(4)

end select
end do

end do

do i=1,N-1
cs(1,i)=int(T/N)

end do
cs(1,N)=T-sum(cs(1,1:N-1))

beta_hat1=reshape(matmul(inv(d1,matmul(transpose(X1),X1)),
matmul(transpose(X1),Z(:,1))),(/d1,1/))
beta_hat2=reshape(matmul(inv(d2,matmul(transpose(X2),X2)),
matmul(transpose(X2),Z(:,2))),(/d2,1/))
beta_hat=rowbind(beta_hat1,beta_hat2,d1,1,d2,1)

do i=1,N
Prec((i-1)*rd+1,:)=(/Prec0(1,1),Prec0(1,2),Prec0(2,2)/)
do k=1,dd

bbeta((i-1)*rd+1,k)=beta_hat(k,1)
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end do
end do

allmat(:,dd+6)=VecConstant(T,dble(0))

!Initial time;
time0=dble(0)

!*** Start Gibbs Sampling ***
do it=2,rd

10 vv=1.0
nn=0
V=VecConstant(N-1,dble(0))
wt=VecConstant(N,dble(0))

do i=1,N-1
nn=nn+cs(it-1,i)

call drnbet(1,dble(cs(it-1,i)+1),dble(alpha+(T-nn)),V(i))
wt(i)=V(i)*vv
vv=vv*(1-V(i))

end do
wt(N)=vv

do i=1,N-1
if (wt(i)<wt(i+1)) then
go to 10
end if

enddo

do j=1,T
do i=1,N
prec_it=Prec((i-1)*rd+(it-1),:)

precision=reshape((/prec_it(1),prec_it(2),prec_it(2),prec_it(3)/),(/2,2/))
sigma=inv(2,precision)
mu(1)=VecMulSum(dd,B(j,:),bbeta((i-1)*rd+(it-1),:))
mu(2)=VecMulSum(dd,B(j+T,:),bbeta((i-1)*rd+(it-1),:))
P(j,i)=wt(i)*pmvn(2,Z(j,1:2),mu,sigma)

end do

sp=sum(P(j,:))
P(j,:)=P(j,:)/sp
call mult(N,P(j,:),ccmi(j,:))

do i=1,N
if (ccmi(j,i)==1) then

ind(j)=i
end if
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end do
end do

do i=1,N
cs(it,i)=sum(ccmi(:,i))

end do

allmat(:,1)=ind
allmat(:,2:d1+1)=X1
allmat(:,d1+2:dd+1)=X2
allmat(:,dd+2:dd+3)=Z
allmat(:,dd+4:dd+5)=Y

cc=VecConstant(N+1,dble(0))
do i=1,N

cc(i+1)=cc(i)+cs(it,i)
end do

do j=1,T-1
do k=j+1,T

if (allmat(j,1)>allmat(k,1))then
media=allmat(k,:)

allmat(k,:)=allmat(j,:)
allmat(j,:)=media
end if

end do
end do

do i=1,N
pp=cs(it,i)
if (pp>0) then

allocate(Bii(2*pp,dd))
allocate(Bi_1(pp,dd))
allocate(Bi_2(pp,dd))
allocate(Yi(pp,2))
allocate(Zi(pp,2))
allocate(SD(pp,2))
allocate(zero1(pp,d1))
allocate(zero2(pp,d2))
allocate(X1i(pp,d1))
allocate(X2i(pp,d2))

X1i=allmat(cc(i)+1:cc(i+1),2:d1+1)
X2i=allmat(cc(i)+1:cc(i+1),d1+2:dd+1)
zero1=MatConstant(pp,d1,dble(0))
zero2=MatConstant(pp,d2,dble(0))
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Bi_1(:,1:d1)=X1i
Bi_1(:,d1+1:dd)=zero2
Bi_2(:,1:d1)=zero1
Bi_2(:,d1+1:dd)=X2i

Bii=rowbind(Bi_1,Bi_2,pp,dd,pp,dd)
Zi=allmat(cc(i)+1:cc(i+1),dd+2:dd+3)
Yi=allmat(cc(i)+1:cc(i+1),dd+4:dd+5)

SD=Zi-colbind(matmul(X1i,bbeta((i-1)*rd+it-1,1:d1)),
matmul(X2i,bbeta((i-1)*rd+it-1,d1+1:dd)),pp,1,pp,1)
D=matmul(transpose(SD),SD)

Precision_i=wishart(2,pp+s,inv(2,D+inv(2,SS)))
Prec((i-1)*rd+it,:)=(/Precision_i(1,1),Precision_i(1,2),Precision_i(2,2)/)
Precision(i) is updated

V_i(1:d1,1:d1)=matmul(transpose(X1i),X1i)*Precision_i(1,1)
V_i(1:d1,d1+1:dd)=matmul(transpose(X1i),X2i)*Precision_i(1,2)
V_i(d1+1:dd,1:d1)=matmul(transpose(X2i),X1i)*Precision_i(2,1)
V_i(d1+1:dd,d1+1:dd)=matmul(transpose(X2i),X2i)*Precision_i(2,2)

VM=inv(dd,V_i+Minv)
XZ(1:d1,1)=matmul(transpose(X1i),Zi(:,1))*Precision_i(1,1)
+matmul(transpose(X1i),Zi(:,2))*Precision_i(1,2)
XZ(d1+1:dd,1)=matmul(transpose(X2i),Zi(:,1))*Precision_i(1,2)
+matmul(transpose(X2i),Zi(:,2))*Precision_i(2,2)

mu_beta=matmul(VM,XZ+matmul(Minv,reshape(bb,(/dd,1/))))
bbeta((i-1)*rd+it,:)=rmvn(dd,mu_beta,VM) !Beta(i) is updated

s1=dsqrt(1/Prec((i-1)*rd+it,1))
s2=dsqrt(1/Prec((i-1)*rd+it,3))

Sigma_i=inv(2,Precision_i)
ss1(i)=dsqrt(Sigma_i(1,1))
ss2(i)=dsqrt(Sigma_i(2,2))
rho(it,i)=Sigma_i(1,2)/(ss1(i)*ss2(i))

do rr=1,pp
Q1=(/0.0,0.0,0.0,0.0,1.0/)
Q2=(/0.0,0.0,0.0,0.0,1.0/)

mu1=VecMulSum(dd,Bi_1(rr,:),bbeta((i-1)*rd+it,:))
-Prec((i-1)*rd+it,2)/Prec((i-1)*rd+it,1)*(Zi(rr,2)
-VecMulSum(dd,Bi_2(rr,:),bbeta((i-1)*rd+it,:)))
Q1(2)=dnordf((a11-mu1)/s1);
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Q1(3)=dnordf((a12-mu1)/s1);’
Q1(4)=dnordf((a13-mu1)/s1)
lower1=Q1(Yi(rr,1));upper1=Q1(Yi(rr,1)+1)
call random_number(u1)
u1=u1*(upper1-lower1)+lower1
Zi(rr,1)=dnorin(u1)*s1+mu1

mu2=VecMulSum(dd,Bi_2(rr,:),bbeta((i-1)*rd+it,:))
-Prec((i-1)*rd+it,2)/Prec((i-1)*rd+it,3)*(Zi(rr,1)
-VecMulSum(dd,Bi_1(rr,:),bbeta((i-1)*rd+it,:)))
Q2(2)=dnordf((a21-mu2)/s2);
Q2(3)=dnordf((a22-mu2)/s2);
Q2(4)=dnordf((a23-mu2)/s2)
lower2=Q2(Yi(rr,2));upper2=Q2(Yi(rr,2)+1)
call random_number(u2)
u2=u2*(upper2-lower2)+lower2
Zi(rr,2)=dnorin(u2)*s2+mu2

end do

allmat(cc(i)+1:cc(i+1),dd+2:dd+3)=Zi !Z is updated

deallocate(Bii)
deallocate(Bi_1)
deallocate(Bi_2)
deallocate(Yi)
deallocate(Zi)
deallocate(SD)
deallocate(zero1)
deallocate(X1i)
deallocate(zero2)
deallocate(X2i)

else
Precision_i=wishart(2,s,SS)
Prec((i-1)*rd+it,:)

=(/Precision_i(1,1),Precision_i(1,2),Precision_i(2,2)/)
bbeta((i-1)*rd+it,:)=rmvn(dd,bb,MM)

end if
end do

X1=allmat(:,2:d1+1);
X2=allmat(:,d1+2:dd+1)
Z=allmat(:,dd+2:dd+3)
Y=allmat(:,dd+4:dd+5)
B(1:T,1:d1)=X1
B(1:T,d1+1:dd)=zeo2
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B(T+1:2*T,d1+1:dd)=X2
B(T+1:2*T,1:d1)=zeo1

!Start to calculate CPO for the thinned tail chain
if (it>rd*p0 .and. it/50==int(it/50)) then

do i=1,N
beta_it(i,:)=bbeta((i-1)*rd+it,:)
end do

m1=matmul(X1,transpose(beta_it(:,1:d1)))
m2=matmul(X2,transpose(beta_it(:,d1+1:dd)))

do j=1,T
do i=1,N
a1(i)=(cutoff(1,Y(j,1))-m1(j,i))/ss1(i)
b1(i)=(cutoff(1,Y(j,1)+1)-m1(j,i))/ss1(i)
a2(i)=(cutoff(2,Y(j,2))-m2(j,i))/ss2(i)
b2(i)=(cutoff(2,Y(j,2)+1)-m2(j,i))/ss2(i)
prob(j,i)=DBNRDF(b1(i),b2(i),rho(it,i))-DBNRDF(a1(i),b2(i),rho(it,i))
-DBNRDF(b1(i),a2(i),rho(it,i))+DBNRDF(a1(i),a2(i),rho(it,i))
enddo
prob_wt(j)=VecMulSum(N,prob(j,:),wt)
pinv(j)=1/prob_wt(j)
enddo
allmat(:,dd+6)=allmat(:,dd+6)+pinv

endif

call cpu_time(time1)
time=time1-time0
time0=time1
print*,it,time,time1

end do

!Write the results to text files

open(unit=11,file="C:\Ordinal Regression\MCMC\drinknpr\beta_12.txt")
do it=1,N*rd
write(11,*)bbeta(it,1:2)
end do
close(unit=11)

open(unit=12,file="C:\Ordinal Regression\MCMC\drinknpr\beta_34.txt")
do it=1,N*rd
write(12,*)bbeta(it,3:4)
end do
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close(unit=12)

open(unit=13,file="C:\Ordinal Regression\MCMC\drinknpr\beta_567.txt")
do it=1,N*rd
write(13,*)bbeta(it,5:7)
end do
close(unit=13)

open(unit=20,file="C:\Ordinal Regression\MCMC\drinknpr\precision.txt")
do it=1,N*rd
write(20,*)Prec(it,1:3)
end do
close(unit=20)

open(unit=30,file="C:\Ordinal Regression\MCMC\drinknpr\size1.txt")
do it=1,rd
write(30,*)cs(it,1:N/2)
end do
close(unit=30)

open(unit=31,file="C:\Ordinal Regression\MCMC\drinknpr\size2.txt")
do it=1,rd
write(31,*)cs(it,N/2+1:N)
end do
close(unit=31)

open(unit=40,file="C:\Ordinal Regression\MCMC\drinknpr\rho.txt")
do k=1,N

do it=1,rd
write(40,*)rho(it,k)
end do

enddo
close(unit=40)

open(unit=100,file="C:\Ordinal Regression\MCMC\drinknpr\X.txt")
do i=1,T

write(100,*)X1(i,2:4)
end do

close(unit=100)

open(unit=110,file="C:\Ordinal Regression\MCMC\drinknpr\Y.txt")
do i=1,T

write(110,*)Y(i,1:2)
end do

close(unit=110)

open(unit=111,file="C:\Ordinal Regression\MCMC\drinknpr\Z.txt")
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do i=1,T
write(111,*)Z(i,1:2)

end do
close(unit=111)

open(unit=120,file="C:\Ordinal Regression\MCMC\drinknpr\sump.txt")
do i=1,T

write(120,*)allmat(i,dd+6)
end do

close(unit=120)

end program drinking_npr

Modules

MODULE module_1
use numerical_libraries
IMPLICIT NONE

double precision, parameter :: pi=dble(3.14159265358979)
!*************************************************************************
contains
!*************************************************************************

!*************************************************************************
! pdf of MVN_p(mu,Sigma), p(y|mu,Sigma)
!*************************************************************************
function pmvn(p,y,mu,Sigma)
integer, intent(in) :: p; integer :: j
double precision :: pmvn; double precision :: det1, det2
integer, dimension(p) :: ipvt
double precision, intent(in), dimension(p) :: mu, y
double precision, intent(in), dimension(p,p) :: Sigma
double precision, dimension(p) :: rj
double precision, dimension(p,p) :: factor, Sinv

! Sigma=U*D*U’ (real symmetric)
rj=dble(0); call dlftsf(p,Sigma,p,factor,p,ipvt)

! first compute inverse Sinv
do j=1, p;

rj(j)=dble(1);
call dlfssf(p,factor,p,ipvt,rj,Sinv(1:p,j));
rj(j)=dble(0);

end do
call dlfdsf(p,factor,p,ipvt,det1,det2) ! then get determinant

! print *, det1," ",det2
pmvn=exp(-0.5*dot_product(y-mu,matmul(Sinv,y-mu)))
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/dsqrt(dble(2*Pi)**dble(p)
*det1*dble(10)**det2)
end function pmvn

!*************************************************************************
! pdf of N(mu,1/tau), p(y|mu,1/tau)
!*************************************************************************
function pn(y,mu,tau)
double precision :: pn; double precision, intent(in) :: y,mu,tau
pn=dsqrt(tau)*exp(-0.5*tau*(y-mu)**2)/dsqrt(2*Pi)

end function pn

!*************************************************************************
! sample y ~ MVN_p(mu,Sigma)
!*************************************************************************
function rmvn(p,mu,Sigma)
integer, intent(in) :: p; integer :: i, j
double precision, dimension(1:p) :: rmvn
integer, dimension(p) :: ipvt
double precision, intent(in), dimension(p) :: mu
double precision, intent(in), dimension(p,p) :: Sigma
double precision, dimension(p) :: r
double precision, dimension(p,p) :: cd ! Cholesky decomposition
call dlchrg(p,Sigma,p,.False.,ipvt,cd,p); call drnnoa(p,r)
do i=2, p; do j=1,i-1; cd(i,j)=0; end do; end do
rmvn=mu+matmul(r,cd)

end function rmvn

!*************************************************************************
! sample M~wish_dimen(df, Sigma)
!*************************************************************************
function wishart(p,df,Sigma)
integer, intent(in) :: p, df
double precision, intent(in), dimension(p,p) :: Sigma
double precision, dimension(p,p) :: Ssq, m, E, L
double precision, dimension(1:p,1:p) :: wishart
double precision, dimension(p) :: la
integer :: i, j
m=dble(0); do i=1, p;

m(i,i)=dsqrt(rgamma(dble(df-i+1)/dble(2),dble(0.5)));
end do
do i=2, p; do j=1, i-1; m(j,i)=rnnof(); end do; end do
call devcsf(p,Sigma,p,la,E,p) ! need symmetric square root of Sigma
L=0; do i=1, p; L(i,i)=sqrt(la(i)); end do;

Ssq=matmul(E,matmul(L,transpose(E)))
wishart=matmul(transpose(matmul(m,Ssq)),matmul(m,Ssq))

end function wishart
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!*************************************************************************
! random draw from discrete distribution
! with probabilities prob(1),...prob(length)
!*************************************************************************
integer function disran(length,probs)
integer, intent(in) :: length
double precision, intent(in), dimension(length) :: probs
integer, dimension(1) :: ir
integer, dimension(length) :: iwk
double precision, dimension(length) :: wk
integer :: i
wk(1)=probs(1)
do i=2, length; wk(i)=wk(i-1)+probs(i); end do
wk=wk/wk(length)
call drngdt(1,1,length,wk,ir)
disran=ir(1)

end function disran

!*************************************************************************
! y ~ gamma(a,b)
!*************************************************************************
function rgamma(a,b)
double precision :: rgamma; double precision :: u
double precision, intent(in) :: a, b; double precision, dimension(1) :: r
call drngam(1,a,r); u=r(1)/b; if(u<1.0E-045) then; rgamma=1.0E-045; else;
rgamma=u; end if

end function rgamma

!*************************************************************************
! y ~ N(mu,sigma) ! note sigma is standard deviation not variance
!*************************************************************************
function rn(mu,sigma)
double precision :: rn; double precision, intent(in) :: mu, sigma
double precision, dimension(1) :: r
call drnnoa(1,r)
rn=mu+r(1)*sigma

end function rn

END MODULE module_1

module module_2
implicit none
contains

!*************************************************************************
! simple program-specific functions...
!*************************************************************************
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!*************************************************************************
! Computes matrix x*x’ where x is p by 1 vector
!*************************************************************************
function xxt(p,x)
integer, intent(in) :: p; double precision, dimension(p), intent(in) :: x
double precision, dimension(1:p,1:p) :: xxt; integer :: i, j
do i=1,p; do j=1,p; xxt(i,j)=x(i)*x(j); end do; end do

end function xxt

!*************************************************************************
! Inverse of real, symmetric matrix
!*************************************************************************
function inv(p,Sigma)
integer, intent(in) :: p;

double precision, dimension(p,p), intent(in) :: Sigma
double precision, dimension(1:p,1:p) :: inv;
integer, dimension(p) :: ipvt
double precision, dimension(p) :: rj; integer :: j
double precision, dimension(p,p) :: factor ! Sigma=U*D*U’ (real symmetric)
rj=dble(0); call dlftsf(p,Sigma,p,factor,p,ipvt)
do j=1, p; rj(j)=dble(1);
call dlfssf(p,factor,p,ipvt,rj,inv(1:p,j)); rj(j)=dble(0);
end do
end function inv

!*************************************************************************
! Vector Multiplication(form a matrix)
!*************************************************************************
function VecMul(p1,p2,a,b)

integer,intent(in)::p1,p2
double precision,dimension(p1),intent(in)::a
double precision,dimension(p2),intent(in)::b
double precision,dimension(1:p1,1:p2)::VecMul
integer::i,j
do i=1,p1

do j=1,p2
VecMul(i,j)=a(i)*b(j)

end do
end do

end function VecMul

!*************************************************************************
! Vector Multiplication(form a scalor)
!*************************************************************************
function VecMulSum(p,a,b)

integer,intent(in)::p
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double precision,dimension(p),intent(in)::a
double precision,dimension(p),intent(in)::b
double precision::VecMulSum
integer::i
VecMulSum=0.0
do i=1,p

VecMulSum=VecMulsum+a(i)*b(i)
end do

end function VecMulSum

!*************************************************************************
! Matrix Multiplication(A*B)
!*************************************************************************
function MatMulSelf(r1,m,c2,A,B)

integer,intent(in)::r1,m,c2
double precision,dimension(r1,m),intent(in)::A
double precision,dimension(m,c2),intent(in)::B
double precision,dimension(r1,c2)::MatMulSelf
integer::i,j
do i=1,r1

do j=1,c2
MatMulSelf(i,j)=VecMulSum(m,A(i,:),B(:,j))

end do
end do

end function MatMulSelf

!*************************************************************************
! Create a matrix of constants
!*************************************************************************
function MatConstant(p1,p2,c)

integer, intent(in)::p1,p2
double precision,intent(in)::c
double precision,dimension(1:p1,1:p2)::MatConstant
integer::i,j
do i=1,p1

do j=1,p2
MatConstant(i,j)=c

end do
end do

end function MatConstant

!*************************************************************************
! Create a vector of constants
!*************************************************************************
function VecConstant(p,c)

integer, intent(in)::p
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double precision,intent(in)::c
double precision,dimension(p)::VecConstant
integer::i
do i=1,p

VecConstant(i)=c
end do

end function VecConstant

!*************************************************************************
! row-bind two matrices
!*************************************************************************
function rowbind(A,B,r1,c1,r2,c2)

integer,intent(in)::r1,c1,r2,c2
double precision,dimension(r1,c1),intent(in)::A
double precision,dimension(r2,c2),intent(in)::B
double precision,dimension(r1+r2,c1)::rowbind
if (c1==c2) then

rowbind(1:r1,1:c1)=A
rowbind(r1+1:r1+r2,1:c1)=B

else
print *,"Cannot rowbind"

end if
end function rowbind

!*************************************************************************
! column-bind two matrices
!*************************************************************************
function colbind(A,B,r1,c1,r2,c2)

integer,intent(in)::r1,c1,r2,c2
double precision,dimension(r1,c1),intent(in)::A
double precision,dimension(r2,c2),intent(in)::B
double precision,dimension(r1,c1+c2)::colbind
if (r1==r2) then

colbind(1:r1,1:c1)=A
colbind(1:r1,c1+1:c1+c2)=B

else
print *,"Cannot colbind"

end if
end function colbind

!*************************************************************************
! Kronecker product of two matrices
!*************************************************************************

subroutine Kron_Prod(A1,A2,r1,c1,r2,c2,B)
implicit none
integer, intent(in)::r1,c1,r2,c2
double precision, dimension(r1,c1),intent(in) :: A1
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double precision, dimension(r2,c2),intent(in) :: A2
double precision, dimension(r1*r2,c1*c2),intent(out)::B
integer::ii,jj

do ii=1,r1
do jj=1,c1

B(((ii-1)*r2+1):ii*r2,((jj-1)*c2+1):jj*c2)=A1(ii,jj)*A2
end do

end do
end subroutine Kron_Prod

!*************************************************************************
! Identity matrix
!*************************************************************************
subroutine diag_matrix(p,M)
implicit none
integer,intent(in)::p
double precision,dimension(p,p),intent(out)::M
integer::i,j

do i=1,p
do j=1,p

if (i==j) then
M(i,j)=dble(1)

else
M(i,j)=dble(0)

end if
end do

end do
end subroutine diag_matrix

!*************************************************************************
! Generate a multinomial random variable
!*************************************************************************
subroutine mult(K,p,y)

integer,intent(in)::K
double precision,dimension(K),intent(in)::p
integer,dimension(K),intent(out)::y
integer::m,i
double precision::u
double precision,dimension(K)::pstar
call random_number(u)
m=1;y=0
do i=1,K

pstar(i)=sum(p(1:i))
if(u>pstar(i))then

m=m+1
end if

end do
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y(m)=1
end subroutine
end module module_2
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Appendix B

Supplement to Chapter 3

B.1 Supplementary Table and Figures

Table B.1 Number of measurements by f2 Primary

f2 Primary Total Measurement
1453 321
1734 341
2063 346
2531 352
3000 353
3563 354
4219 354
5016 356
6000 355
7031 352
8391 337
10031 327
total 4148
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Figure B.1 Followup time (months).
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Figure B.2 Individual DP-grams (IDs 1 to 10).
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Figure B.3 Individual DP-grams (IDs 11 to 20).
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Figure B.4 Individual DP-grams (IDs 21 to 30).
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Figure B.5 Individual DP-grams (IDs 31 to 38).
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Figure B.6 Posterior means of b0, b1, log(σ2), log(θt), log(θe)
versus age.
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Figure B.7 Extreme test-retest DP-gram differences with
contour probabilities; Case 1: oscillatory.
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Figure B.8 Extreme test-retest DP-gram differences with
contour probabilities; Case 2: overall vertical shift.
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Figure B.9 Extreme test-retest DP-gram differences with
contour probabilities; Case 3: monotone.
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Figure B.10 Test-retest differences in DP-grams from
baseline.
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B.2 Hierarchical Model

The Model

yijkl = µ(fj) + bi0 + bi1fj + eijkl

where

i =1, 2, . . . , n (Subject index)

j =1, 2, . . . , F (F2 frequency levels)

k =1, 2, . . . , Ti (Time index for Subject i)

l =1, 2; l = 1 if left ear and l = 2 if right ear.

Define the total number of observations for subject i and frequency fij as

nij =
Ti∑

k=1
Lijk

Where

Lijk =1 if only left or right ear was tested

Lijk =2 if both ears were tested

The Response Variable

yijk =


(yijk1, yijkLijk

)′, if Lijk = 2

(yijk1), if Lijk = 1

yij = (y′
ij1,y

′
ij2, . . . ,y

′
ijTi

)′

The Covariates

f = (f1, f2, . . . , fF )′

134



The Overall Mean

µ(fj) =
S∑

s=1
γsϕs(fj)

with constraints γ1 = γS = 0.

The Error Term

eijk =


(eijk1, eijkLijk

)′, if Lijk = 2

(eijk1), if Lijk = 1

eij = (e′
ij1, e

′
ij2, . . . , e

′
ijTi

)′

and

eij ∼ Nnij
(0,Σij)

where Σij is the covariance matrix of eij and

cov(eijk1l1 , eijk2l2) =σ2
ije

−θit|tik1 −tik2 |2−θie|l1−l2|2

A Concise Version of the Model

Define

Xijk =



(ϕ2(fj), ϕ3(fj), . . . , ϕS−1(fj)), if Lijk = 1ϕ2(fj), ϕ3(fj), . . . , ϕS−1(fj)

ϕ2(fj), ϕ3(fj), . . . , ϕS−1(fj)

 , if Lijk = 2
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Let

Xij =



Xij1

Xij2

...

XijTi


Also define

Zijk =



(1, fj), if Lijk = 11 fj

1 fj

 , if Lijk = 2

Zij =



Zij1

Zij2

...

ZijTi


Then, the model can be expressed in a more concise form:

yij = Xijγ + Zijbi + eij

for i = 1, 2, . . . , n; j = 1, 2, . . . , F.
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The Priors on Linear Mean and Covariance Parameters

For subject i,

ri =

bi

vi

 , where bi =

bi0

bi1

 and vi =


log(σ2

i )

log(θit)

log(θie)


r1, . . . , rn ∼ N5(µr,Σr) where

µr =

β
τ

 , Σr =

Σb Σbv

Σ′
bv Σv


Further assume

µr ∼ N5(m0,M0)

Σ−1
r ∼ Wish5(Q, q), q = 5
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The Prior of Penalized B-spline Parameters

γ =(γ2, . . . , γS−1)′ ∼ NS−2(µγ,Σγ)

µγ =0S−2 and Σ−1
γ = λD′D, where

D =



−2 1 0 0 0 . . . 0 0 0

1 −2 1 0 0 . . . 0 0 0

0 1 −2 1 0 . . . 0 0 0
... ... ... ... ... . . . ... ... ...

0 0 0 0 0 . . . −2 1 0

0 0 0 0 0 . . . 1 −2 1

0 0 0 0 0 . . . 0 1 −2


(S−2)×(S−2)

The penalizing parameter λ follows Gamma distribution:

λ ∼ Gamma(α1, α2), α1 = 1 and α2 = 0.005 or 0.0005.

Full Conditionals

The joint posterior distribution is

p(r,µr,Σ−1
r ,γ, λ|y,X,Z, t)

∝ p(y|X,Z,γ, r, λ)p(r|µr,Σ−1
r )p(µr|m,M )p(Σ−1

r |Q, q)p(γ|µγ ,Σγ)p(λ|α, β).
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µr | else

p(µr|else) ∝ p(r|µr,Σ−1
r )p(µr|m,M )

∝
n∏

i=1
exp{−1

2
(ri − µr)′Σ−1

r (ri − µr)}exp{−1
2

(µr −m)′M−1(µr −m)}

∝ exp{−1
2

(µr −K)′v−1(µr −K)}

where

v =
[
M−1 + nΣ−1

r

]−1

K = M−1m+ Σ−1
r

[ n∑
i=1
ri

]
So,

µr|else ∼ N5(V K,v)

Σ−1
r |else

p(Σ−1
r |else) ∝p(r|µr,Σ−1

r )p(Σ−1
r |Q, q)

∝
n∏

i=1
|Σ−1

r |
1
2 exp

{
− 1

2
(ri − µr)′Σ−1

r (ri − µr)
}
|Σ−1

r |
q−5−1

2

× exp
{

− 1
2

tr(Q−1Σ−1
r )

}
∝|Σ−1

r |
(n+q)−5−1

2 exp
{

− 1
2

tr
[( n∑

i=1
(ri − µr)(ri − µr)′ +Q−1

)
Σ−1

r

]}

Thus,

Σ−1
r |else ∼ Wish5

([ n∑
i=1

(ri − µr)(ri − µr)′ +Q−1
]−1

, n+ q
)

Note that, if we let

e =
(
r1 − µr, . . . , rn − µr

)
5×n

.

Then,
n∑

i=1
(ri − µr)(ri − µr)′ = EE′

139



bi |else

First, we need to derive the form of Σ−1
r in terms of Σb, Σv, and Σbv. Recall

Σr =

Σb Σbv

Σ′
bv Σv


then,

Σ−1
r =

 (Σb − ΣbvΣ−1
v Σ′

bv)−1 −(Σb − ΣbvΣ−1
v Σ′

bv)−1ΣbvΣ−1
v

−(Σv − Σ′
bvΣ−1

b Σbv)−1Σ′
bvΣ−1

b (Σv − Σ′
bvΣ−1

b Σbv)−1



=

 (Σ∗
b)−1 −(Σ∗

b)−1ΣbvΣ−1
v

−(Σ∗
v)−1Σ′

bvΣ−1
b (Σ∗

v)−1


where

Σ∗
b = Σb − ΣbvΣ−1

v Σ′
bv

Σ∗
v = Σv − Σ′

bvΣ−1
b Σbv

Second, we will find the posterior distribution of bi given vi. Recall that

ri =

bi

vi

 bi =

bi0

bi1

 vi =


log(σ2

i )

log(θit)

log(θie)

 and µr =

β
τ


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So,

p(bi|vi,µr,Σ−1
r ) ∝ p(bi,vi|µr,Σ−1

r )

∝ exp
{

− 1
2

(ri − µr)′Σ−1
r (ri − µr)

}

= exp
{

− 1
2

bi − β

vi − τ


′

Σ−1
r

bi − β

vi − τ


}

= exp
{

− 1
2

b∗
i

v∗
i


′  (Σ∗

b)−1 −(Σ∗
b)−1ΣbvΣ−1

v

−(Σ∗
v)−1Σ′

bvΣ−1
b (Σ∗

v)−1


b∗

i

v∗
i


}

∝ (b∗
i − Σ∗

bW )′(Σ∗
b)−1(b∗

i − Σ∗
bW )

where

W = (Σ∗
b)−1ΣbvΣ−1

v v
∗

Therefore,

b∗
i |v∗

i ∼ N2
(
Σ∗

bW ,Σ∗
b

)
and,

bi|vi ∼ N2
(
µbi|vi

,Σbi|vi

)
where

µbi|vi
= β + Σ∗

bW = β + ΣbvΣ−1
v (vi − τ )

Σbi|vi
= Σ∗

b = Σb − ΣbvΣ−1
v Σ′

bv

Now we are ready to find the posterior of bi:

p(bi|else) ∝ p(yi|bi,vi,µr,Σr)p(bi|vi,µr,Σr)

∝ exp
{

− 1
2

[yi − (Xiγ + Zibi)]′Σ−1
i [yi − (Xiγ + Zibi)]

}
exp

{
− 1

2
(bi − µbi|vi

)′Σ−1
bi|vi

(bi − µbi|vi
)
}

∝ exp
{

− 1
2

(bi −GH)′G−1(bi −GH)
}
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where

G =
[
Z′

iΣ−1
i Zi + Σ−1

bi|vi

]−1

H = Z′
iΣ−1

i (yi − Xiγ) + Σ−1
bi|vi
µbi|vi

Thus,

bi|else ∼ N2(GH ,G)

vi | else

Following similar arguments of bi, we conclude that

vi|bi ∼ N3
(
µvi|bi

,Σvi|bi

)

where

µvi|bi
= τ + Σ′

bvΣ−1
b (bi − β)

Σvi|bi
= Σv − Σ′

bvΣ−1
b Σbv

The posterior distribution of vi can be derived as follows:

p(vi|else) ∝ p(yi|bi,vi,µr,Σr)p(vi|bi,µr,Σr)

∝ |Σi|−
1
2 exp

{
− 1

2
[
yi − (Xiγ + Zibi)

]′
Σ−1

i

[
yi − (Xiγ + Zibi)

]}
× exp

{
− 1

2
(
vi − µvi|bi

)′
Σ−1

vi|bi

(
vi − µvi|bi

)}

where Σi is a function of vi. There is no closed form for this posterior distribution.

We adopted adaptive Metropolis algorithm to generate samples.
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γ | else

p(γ|else) ∝ p(y|γ)p(γ)

∝
n∏

i=1
exp

{
− 1

2
[yi − (Xiγ + Zibi)]′Σ−1

i [yi − (Xiγ + Zibi)]
}

× exp
{

− 1
2

(γ − µγ)′Σ−1
γ (γ − µγ)

}
∝ exp

{
− 1

2
(γ − LJ)′l−1(γ − LJ)

}

where

l =
[ n∑

i=1
X′

iΣ−1
i Xi + Σ−1

γ

]−1

J =
n∑

i=1
X′

iΣ−1
i (yi − Zibi) + Σ−1

γ µγ

Thus,

γ|else ∼ NS−2(LJ, l)

λ | else

p(λ|else) ∝ p(γ|λ)p(λ|α1, α2)

∝ 1√
|Σγ|

exp
{

− 1
2

(γ − µγ)′Σ−1
γ (γ − µγ)

}
λα1−1exp{−α2λ}

∝
√

|λD′D|exp
{

− 1
2

(γ − µγ)′(λD′D)(γ − µγ)
}
λα1−1exp{−α2λ}

∝ λ( S−2
2 +α1)−1exp

{
−
[1
2

(γ − µγ)′(D′D)(γ − µγ) + α2
]
λ
}

Therefore,

λ|else ∼ Gamma
(
S − 2

2
+ α1,

1
2

(γ − µγ)′(D′D)(γ − µγ) + α2

)
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B.3 Age-Gender Model

Instead of assuming

r1, . . . , rn ∼ N5(µr,Σr), where µr =

β
τ

 ,
we can let µr be dependent on age and gender of the patient. In particular, let

Mr =

B′

T ′

 and µri = MrAi =

B′Ai

T ′Ai


where

B′ =

β10 β11 β12

β20 β21 β22

 =

β′
1

β′
2

 T ′ =


τ10 τ11 τ12

τ20 τ21 τ22

τ30 τ31 τ32

 =


τ ′

1

τ ′
2

τ ′
3

 Ai =


1

ai

gi


The joint posterior distribution of this age-gender-specific model becomes:

p(r,β1,β2, τ1, τ2, τ3,Σ−1
r ,γ, λ|y,X,Z, t)

∝ p(y|X,Z,γ, r, λ)p(r|β1,β2, τ1, τ2, τ3,Σ−1
r )

2∏
k=1

p(βk|µβk
,Σβk

)
3∏

k=1
p(τk|µτk

,Στk
)

p(Σ−1
r |Q, q)p(γ|µγ,Σγ)p(λ|α, β).

β1 | else

p(β1|else)

∝p(r|β1,β2, τ1, τ2, τ3,Σ−1
r )p(β1|µβ1 ,Σβ1)

∝
n∏

i=1
p(ri|µri,Σr)p(β1|µβ1 ,Σβ1)

∝
n∏

i=1
exp

{
− 1

2
[
ri − MrAi

]′
Σ−1

r

[
ri − MrAi

]}

× exp
{

− 1
2
[
β1 − µβ1

]′
Σ−1

β1

[
β1 − µβ1

]}

144



Note that
[
ri − MrAi

]′
Σ−1

r

[
ri − MrAi

]

=



bi0 − β′
1Ai

bi1 − β′
2Ai

vi1 − τ ′
1Ai

vi2 − τ ′
2Ai

vi3 − τ ′
3Ai



′


σ−1

11 · · · σ−1
15

... . . . ...

σ−1
51 · · · σ−1

55





bi0 − β′
1Ai

bi1 − β′
2Ai

vi1 − τ ′
1Ai

vi2 − τ ′
2Ai

vi3 − τ ′
3Ai


∝σ−1

11 (bi0 − β′
1Ai)2

+ 2
{
σ−1

12 (bi0 − β′
1Ai)(bi1 − β′

2Ai) +
3∑

k=1
σ−1

1,k+2(bi0 − β′
1Ai)(vik − τ ′

kAi)
}

∝β′
1 [σ−1

11 AiA
′
i]︸ ︷︷ ︸

Vi

β1 −
{[
σ−1

11 bi0 + σ−1
12 (bi1 − β′

2Ai) +
3∑

k=1
σ−1

1,k+2(vik − τ ′
kAi)

]
A′

i

}
︸ ︷︷ ︸

Wi

β1

− β′
1

{
Ai

[
σ−1

11 bi0 + σ−1
12 (bi1 − β′

2Ai) +
3∑

k=1
σ−1

1,k+2(vik − τ ′
kAi)

]}
︸ ︷︷ ︸

W ′
i

.

Then,
n∑

i=1

[
ri − MrAi

]′
Σ−1

r

[
ri − MrAi

]
∝ β′

1

[ n∑
i=1

Vi

]
β1 −

[ n∑
i=1

Wi

]
β1 − β′

1

[ n∑
i=1

W ′
i

]

p(β1|else) ∝ exp
{

− 1
2

[
β1 −

( n∑
i=1

Vi + Σ−1
β1

)−1 ( n∑
i=1

W ′
i + µ′

β1Σ−1
β1

)
︸ ︷︷ ︸

W

]′ ( n∑
i=1

Vi + Σ−1
β1

)
︸ ︷︷ ︸

V −1

×
[
β1 −

( n∑
i=1

Vi + Σ−1
β1

)−1( n∑
i=1

W ′
i + µ′

β1Σ−1
β1

)]}
Thus,

β1|else ∼ N2

(
VW, V

)

where

W =
n∑

i=1
W ′

i + µ′
β1Σ−1

β1
and V =

( n∑
i=1

Vi + Σ−1
β1

)−1
.

β2, τ1, . . . , τ3 can be derived in a similar way.
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Σ−1
r | else

The derivation of the posterior distribution of Σ−1
r is the same as that in Section 2

except that µri replaces µr in the expression, i.e.

Σ−1
r |else ∼ Wish5

([ n∑
i=1

(ri − µri)(ri − µri)′ +Q−1
]−1

, n+ q
)

where, recall that

µri =

B′Ai

T ′Ai

 =
[
β′

1Ai β′
2Ai τ ′

1Ai τ ′
2Ai τ ′

3Ai

]′

bi | else

The conditional distribution of bi given vi is slightly different.

bi|vi ∼ N2
(
µ∗

bi|vi
,Σbi|vi

)
,

where

µ∗
bi|vi

= B′Ai + ΣbvΣ−1
v (vi − T ′Ai)

Σbi|vi
= Σb − ΣbvΣ−1

v Σ′
bv

It follows that

bi|else ∼ N2(GH∗,G)

where

G =
[
Z′

iΣ−1
i Zi + Σ−1

bi|vi

]−1

H∗ = Z′
iΣ−1

i (yi − Xiγ) + Σ−1
bi|vi
µ∗

bi|vi
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vi | else

Following similar arguments of bi, we conclude that

vi|bi ∼ N3
(
µ∗

vi|bi
,Σvi|bi

)

where

µ∗
vi|bi

= T ′Ai + Σ′
bvΣ−1

b (bi − B′Ai)

Σvi|bi
= Σv − Σ′

bvΣ−1
b Σbv

The posterior distribution of vi can be derived as follows:

p(vi|else) ∝ p(yi|bi,vi,µri,Σr)p(vi|bi,µri,Σr)

∝ |Σi|−
1
2 exp

{
− 1

2
[
yi − (Xiγ + Zibi)

]′
Σ−1

i

[
yi − (Xiγ + Zibi)

]}
× exp

{
− 1

2
(
vi − µ∗

vi|bi

)′
Σ−1

vi|bi

(
vi − µ∗

vi|bi

)}

where Σi is a function of vi. Since there is no closed form for this posterior distribu-

tion, we adopted adaptive Metropolis algorithm to generate posterior samples.

The posterior distributions of γ and λ are the same as those in Section 2.
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B.4 Linear Mixed Model with Individual Variances

The Model

yijkl = µ(fijk) + bi0 + bi1fijk + eijkl

where

µ(fijk) =
S−1∑
s=2

γsϕs(fijk)

eijkl
iid∼N(0, σ2

i )

i =1, 2, . . . , n. (Subject index)

j =1, 2, . . . , Ti. (Time index for Subject i)

k =1, 2, . . . , Fij. (Frequency index for Subject i at Time j)

l =1, 2. l = 1 if left ear, and l = 2 if right ear.

Define

Xijkl =(ϕ2(fijk), ϕ3(fijk), . . . , ϕS−1(fijk))

Zijkl =(1, fijk), if Lijk = 1

γ =(γ2, . . . , γS−1)′

bi =(bi0, bi1)′

Then,

yijkl = Xijklγ + Zijklbi + eijkl

Define the total number of observations for subject i as

ni =
Ti∑

j=1

Fij∑
k=1

Lijk
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Where

Lijk =1 if only left or right ear was tested

Lijk =2 if both ears were tested

The Priors

The Prior of bi

bi =

bi0

bi1

 ∼ N2(β,Σb)

Further assume

β ∼ N2(m,M )

Σ−1
b ∼ Wish2(Q, q), q = 2

The Prior of σ−2
i

σ−2
i

iid∼ Gamma(aσ, bσ)

The Prior of Penalized B-spline Parameters

Same as Section 2.1.7.

Full Conditionals

The joint posterior distribution is

p(b,βr,Σ−1
b , σ2,γ, λ|y,X,Z, t)

∝ p(y|X,Z,γ, b, σ2, λ)p(b|β,Σ−1
b )p(β)p(Σ−1

b )p(γ)p(σ2)p(λ).
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β | else

p(β|else) ∝ p(b|β,Σ−1
b )p(β|m,M )

∝
n∏

i=1
exp{−1

2
(bi − β)′Σ−1

b (bi − β)}exp{−1
2

(β −m)′M−1(β −m)}

∝ exp{−1
2

(β −K)′V −1(β −K)}

where

V =
[
M−1 + nΣ−1

b

]−1

K = M−1m+ Σ−1
b

[ n∑
i=1
bi

]
So,

β|else ∼ N2(V K,V )

Σ−1
b | else

p(Σ−1
b |else)

∝ p(b|β,Σ−1
b )p(Σ−1

b |Q, q)

∝
n∏

i=1
|Σ−1

b |
1
2 exp

{
− 1

2
(bi − β)′Σ−1

b (bi − β)
}
|Σ−1

b |
q−2−1

2 exp
{

− 1
2

tr(Q−1Σ−1
b )

}
∝ |Σ−1

b |
(n+q)−2−1

2 exp
{

− 1
2

tr
[( n∑

i=1
(bi − β)(bi − β)′ +Q−1

)
Σ−1

b

]}

Thus,

Σ−1
b |else ∼ Wish2

([ n∑
i=1

(bi − β)(bi − β)′ +Q−1
]−1

, n+ q
)

Note that, if we let

E =
(
b1 − β, . . . , bn − β

)
2×n

then
n∑

i=1
(bi − β)(bi − β)′ = EE′
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bi | else

Let

yi = (y′
i1, . . . ,y

′
iTi

)′

where yij = (y′
ij1, . . . ,y

′
ijFij

)′ and yijk = (yijk1, yijk2)′ if Lijk = 2 and yijk = (yijk1)

otherwise. Define

Xijk =Xijkl, if Lijk = 1

Xijk =

ϕ2(fijk1), ϕ3(fijk1), . . . , ϕS−1(fijk1)

ϕ2(fijk2), ϕ3(fijk2), . . . , ϕS−1(fijk2)

 , if Lijk = 2

Let

Xij =



Xij1

Xij2

...

XijFij


, Xi =



Xi1

Xi2

...

XiTi


Also define

Zijk =(1, fijkl), if Lijk = 1

Zijk =

1 fijk1

1 fijk2

 , if Lijk = 2

Zij =



Zij1

Zij2

...

ZijFij


, Zi =



Zi1

Zi2

...

ZiTi


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Then,

p(bi|else) ∝ p(yi|bi)p(bi|β,Σb)

∝ exp
{

− 1
2

[yi − (Xiγ + Zibi)]′Σ−1
i [yi − (Xiγ + Zibi)]

}
exp

{
− 1

2
(bi − β)′Σ−1

b (bi − β)
}

∝ exp
{

− 1
2

(bi −GH)′G−1(bi −GH)
}

where

Σi = σ2
i Ini

, ni =
Ti∑

j=1

Fij∑
k=1

Lijk

G =
[
Z′

iΣ−1
i Zi + Σ−1

b

]−1

H = Z′
iΣ−1

i (yi − Xiγ) + Σ−1
b β

Thus,

bi|else ∼ N2(GH ,G)

σ−2
i | else

p(σ−2
i |else) ∝ p(yi|σ−2

i )p(σ−2
i )

∝ |Σi|−
1
2 exp

{
− 1

2
[
yi − (Xiγ + Zibi)

]′
Σ−1

i

[
yi − (Xiγ + Zibi)

]}
× (σ−2

i )aσ−1exp(−bσσ
−2
i )

∝ (σ−2
i )

ni
2 +aσ−1exp

{
−
[1
2

[yi − (Xiγ +Zibi)]′[yi − (Xiγ +Zibi)] + bσ

]
σ−2

i

}

Therefore,

σ−2
i ∼ Gamma

(
aσ + ni

2
, bσ + 1

2
[yi − (Xiγ +Zibi)]′[yi − (Xiγ +Zibi)]

)

The posterior distributions of γ and λ are the same as those in Section 2.
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B.5 Linear Mixed Model with Overall Common Variance

This model is almost the same to the previous model except that the variance of the

error term is the same for all measurements, i.e.

eijkl
iid∼ N(0, σ2)

Consequently, the Prior of σ2 becomes

σ−2 iid∼ Gamma(aσ, bσ)

The posterior distribution of σ2 can be derived as follows:

p(σ−2|else)

∝
n∏

i=1
p(yi|σ−2)p(σ−2)

∝
n∏

i=1
|Σi|−

1
2 exp

{
− 1

2
[
yi − (Xiγ + Zibi)

]′
Σ−1

i

[
yi − (Xiγ + Zibi)

]}

× (σ−2)aσ−1exp(−bσσ
−2)

∝(σ−2)
∑n

i=1 ni

2 +aσ−1exp
{

−
[

1
2

n∑
i=1

[yi − (Xiγ +Zibi)]′[yi − (Xiγ +Zibi)] + bσ

]
σ−2

}

Therefore,

σ−2 ∼ Gamma
(
aσ + 1

2

n∑
i=1

ni, bσ + 1
2

n∑
i=1

[yi − (Xiγ +Zibi)]′[yi − (Xiγ +Zibi)]
)

B.6 Hierarchical Model with Correlation Among f2

In this model, we assume there is correlation among frequency levels. So, θif > 0 but

it does not tend to infinity. We use the same index system as the previous two linear

mixed models. i.e.

yijkl = µ(fijkl) + bi0 + bi1fijkl + eijkl
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where

i =1, 2, . . . , n. (Subject index)

j =1, 2, . . . , Ti. (Time index)

k =1, 2, . . . , Fij. (Frequency level index)

l =1, 2. l = 1 if left ear, and l = 2 if right ear.

The r vector is 6-dimensional, with log(θif ) in it, i.e.

ri =

bi

vi

 where bi =

bi0

bi1

 and vi =



log(σ2
i )

log(θit)

log(θif )

log(θie)


r1, . . . , rn ∼ N6(µr,Σr) where

µr =

β
τ

 , Σr =

Σb Σbv

Σ′
bv Σv



The posterior density p(r,µr,Σ−1
r ,γ, λ|y) augmented with r = [r1 . . . rn] is propor-

tional to p(y|γ, r, λ)p(r|µr,Σ−1
r )p(µr|m,M )p(Σ−1

r |Q, q)p(γ|µγ,Σγ)p(λ|α, β).

µr|else

p(µr|else) ∝ p(r|µr,Σ−1
r )p(µr|m,M )

∝
n∏

i=1
exp{−1

2
(ri − µr)′Σ−1

r (ri − µr)}exp{−1
2

(µr −m)′M−1(µr −m)}

∝ exp{−1
2

(µr −KV )′v−1(µr −KV )}
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where

v =
[
M−1 + nΣ−1

r

]−1

K = M−1m+ Σ−1
r

[ n∑
i=1
ri

]
So,

µr|else ∼ N6(V K,v)

Σ−1
r |else

p(Σ−1
r |else)

∝ p(r|µr,Σ−1
r )p(Σ−1

r |Q, q)

∝
n∏

i=1
|Σ−1

r |
1
2 exp

{
− 1

2
(ri − µr)′Σ−1

r (ri − µr)
}
|Σ−1

r |
q−6−1

2 exp
{

− 1
2

tr(Q−1Σ−1
r )

}
∝ |Σ−1

r |
(n+q)−6−1

2 exp
{

− 1
2

tr
[( n∑

i=1
(ri − µr)(ri − µr)′ +Q−1

)
Σ−1

r

]}

Thus,

Σ−1
r |else ∼ Wish6

([ n∑
i=1

(ri − µr)(ri − µr)′ +Q−1
]−1

, n+ q
)

Note that, if we let

e =
(
r1 − µr, . . . , rn − µr

)
6×n

.

Then,

n∑
i=1

(ri − µr)(ri − µr)′ = EE′

bi|else

First, we need to derive the form of Σ−1
r in terms of Σb, Σv, and Σbv. Recall

Σr =

Σb Σbv

Σ′
bv Σv


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then,

Σ−1
r =

 (Σb − ΣbvΣ−1
v Σ′

bv)−1 −(Σb − ΣbvΣ−1
v Σ′

bv)−1ΣbvΣ−1
v

−(Σv − Σ′
bvΣ−1

b Σbv)−1Σ′
bvΣ−1

b (Σv − Σ′
bvΣ−1

b Σbv)−1



=

 (Σ∗
b)−1 −(Σ∗

b)−1ΣbvΣ−1
v

−(Σ∗
v)−1Σ′

bvΣ−1
b (Σ∗

v)−1


where

Σ∗
b = Σb − ΣbvΣ−1

v Σ′
bv

Σ∗
v = Σv − Σ′

bvΣ−1
b Σbv

Second, we will find the posterior distribution of bi given vi. Recall that

ri =

bi

vi

 bi =

bi0

bi1

 vi =



log(σ2
i )

log(θit)

log(θif )

log(θie)


and µr =

β
τ



So,

p(bi|vi,µr,Σ−1
r ) ∝ p(bi,vi|µr,Σ−1

r )

∝ exp
{

− 1
2

(ri − µr)′Σ−1
r (ri − µr)

}

= exp
{

− 1
2

bi − β

vi − τ


′

Σ−1
r

bi − β

vi − τ


}

= exp
{

− 1
2

b∗
i

v∗
i


′  (Σ∗

b)−1 −(Σ∗
b)−1ΣbvΣ−1

v

−(Σ∗
v)−1Σ′

bvΣ−1
b (Σ∗

v)−1


b∗

i

v∗
i


}

∝ (b∗
i − Σ∗

rW )′(Σ∗
b)−1(b∗

i − Σ∗
rW )
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where

W = (Σ∗
b)−1ΣbvΣ−1

v v
∗

Therefore,

b∗
i |v∗

i ∼ N2
(
Σ∗

bW ,Σ∗
b

)

and,

bi|vi ∼ N2
(
µbi|vi

,Σbi|vi

)

where

µbi|vi
= β + Σ∗

bW = β + ΣbvΣ−1
v (vi − τ )

Σbi|vi
= Σ∗

b = Σb − ΣbvΣ−1
v Σ′

bv

Now we are ready to find the posterior of bi:

p(bi|else) ∝ p(yi|bi,vi,µr,Σr)p(bi|vi,µr,Σr)

∝ exp
{

− 1
2

[yi − (Xiγ +Zibi)]′Σ−1
i [yi − (Xiγ +Zibi)]

}
exp

{
− 1

2
(bi − µbi|vi

)′Σ−1
bi|vi

(bi − µbi|vi
)
}

∝ exp
{

− 1
2

(bi −GH)′G−1(bi −GH)
}

where

G =
[
Z ′

iΣ−1
i Zi + Σ−1

bi|vi

]−1

H = Z ′
iΣ−1

i (yi −Xiγ) + Σ−1
bi|vi
µbi|vi

Thus,

bi|else ∼ N2(GH ,G)
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vi|else

Following similar arguments of bi, we conclude that

vi|bi ∼ N4
(
µvi|bi

,Σvi|bi

)
where

µvi|bi
= τ + Σ′

bvΣ−1
b (bi − β)

Σvi|bi
= Σr − Σ′

bvΣ−1
b Σbv

The posterior distribution of vi can be derived as follows:

p(vi|else) ∝ p(yi|bi,vi,µr,Σr)p(vi|bi,µr,Σr)

∝ |Σi|−
1
2 exp

{
− 1

2
[yi − (Xiγ +Zibi)]′Σ−1

i [yi − (Xiγ +Zibi)]
}

× exp
{

− 1
2

(vi − µvi|bi
)′Σ−1

vi|bi
(vi − µvi|bi

)
}

where Σi is a function of vi.

There is no close form for this posterior distribution. We adopt adaptive M-H algo-

rithm to generate samples.

The posterior distributions of γ and λ are the same as those in Section 2.

B.7 Age-gender Model with Correlation Among f2

Instead of assuming

r1, . . . , rn ∼ N6(µr,Σr), where µr =

β
τ

 ,
we can let µr be dependent on age and gender of the patient. In particular, let

Mr =

B′

T ′

 and µri = MrAi =

B′Ai

T ′Ai


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where

B′ =

β10 β11 β12

β20 β21 β22

 =

β′
1

β′
2

 T ′ =



τ10 τ11 τ12

τ20 τ21 τ22

τ30 τ31 τ32

τ40 τ41 τ42


=



τ ′
1

τ ′
2

τ ′
3

τ ′
4


Ai =


1

ai

gi



The joint posterior distribution of this age-gender specific model becomes:

p(r,β1,β2, τ1, τ2, τ3, τ4,Σ−1
r ,γ, λ|y,X,Z, t)

∝ p(y|X,Z,γ, r, λ)p(r|β1,β2, τ1, τ2, τ3, τ4,Σ−1
r )

2∏
k=1

p(βk|µβk
,Σβk

)
4∏

k=1
p(τk|µτk

,Στk
)

p(Σ−1
r |Q, q)p(γ|µγ,Σγ)p(λ|α, β).
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β1 | else

p(β1|else)

∝p(r|β1,β2, τ1, τ2, τ3, τ4,Σ−1
r )p(β1|µβ1 ,Σβ1)

∝
n∏

i=1
p(ri|µri,Σr)p(β1|µβ1 ,Σβ1)

∝
n∏

i=1
exp

{
− 1

2
[
ri − MrAi

]′
Σ−1

r

[
ri − MrAi

]}

× exp
{

− 1
2
[
β1 − µβ1

]′
Σ−1

β1

[
β1 − µβ1

]}
[
ri − MrAi

]′
Σ−1

r

[
ri − MrAi

]

=



bi0 − β′
1Ai

bi1 − β′
2Ai

vi1 − τ ′
1Ai

vi2 − τ ′
2Ai

vi3 − τ ′
3Ai

vi4 − τ ′
4Ai



′


σ−1

11 · · · σ−1
16

... . . . ...

σ−1
61 · · · σ−1

66





bi0 − β′
1Ai

bi1 − β′
2Ai

vi1 − τ ′
1Ai

vi2 − τ ′
2Ai

vi3 − τ ′
3Ai

vi4 − τ ′
4Ai



∝ σ−1
11 (bi0 − β′

1Ai)2

+ 2
{
σ−1

12 (bi0 − β′
1Ai)(bi1 − β′

2Ai) +
4∑

k=1
σ−1

1,k+2(bi0 − β′
1Ai)(vik − τ ′

kAi)
}

∝ β′
1 [σ−1

11 AiA
′
i]︸ ︷︷ ︸

Vi

β1 −
{[
σ−1

11 bi0 + σ−1
12 (bi1 − β′

2Ai) +
4∑

k=1
σ−1

1,k+2(vik − τ ′
kAi)

]
A′

i

}
︸ ︷︷ ︸

Wi

β1

− β′
1

{
Ai

[
σ−1

11 bi0 + σ−1
12 (bi1 − β′

2Ai) +
4∑

k=1
σ−1

1,k+2(vik − τ ′
kAi)

]}
︸ ︷︷ ︸

W ′
i

.
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Then,

n∑
i=1

[
ri − MrAi

]′
Σ−1

r

[
ri − MrAi

]
∝ β′

1

[ n∑
i=1

Vi

]
β1 −

[ n∑
i=1

Wi

]
β1 − β′

1

[ n∑
i=1

W ′
i

]
p(β1|else) ∝ exp

{
− 1

2

[
β1 −

( n∑
i=1

Vi + Σ−1
β1

)−1 ( n∑
i=1

W ′
i + µ′

β1Σ−1
β1

)
︸ ︷︷ ︸

W

]′ ( n∑
i=1

Vi + Σ−1
β1

)
︸ ︷︷ ︸

V −1[
β1 −

( n∑
i=1

Vi + Σ−1
β1

)−1( n∑
i=1

W ′
i + µ′

β1Σ−1
β1

)]}

Thus,

β1|else ∼ N2

(
VW, V

)

where

W =
n∑

i=1
W ′

i + µ′
β1Σ−1

β1
and V =

( n∑
i=1

Vi + Σ−1
β1

)−1

β2, τ1, . . . , τ4 can be derived in a similar way.

Σ−1
r | else

The derivation of the posterior distribution of Σ−1
r is the same as that in Section 2

except that µri replaces µr in the expression, i.e.

Σ−1
r |else ∼ Wish6

([ n∑
i=1

(ri − µri)(ri − µri)′ +Q−1
]−1

, n+ q
)

where, recall that

µri =

B′Ai

T ′Ai

 =
[
β′

1Ai β′
2Ai τ ′

1Ai τ ′
2Ai τ ′

3Ai τ ′
4Ai

]′

bi | else

The conditional distribution of bi given vi is slightly different.

bi|vi ∼ N2
(
µ∗

bi|vi
,Σbi|vi

)
,
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where

µ∗
bi|vi

= B′Ai + ΣbvΣ−1
v (vi − T ′Ai)

Σbi|vi
= Σb − ΣbvΣ−1

v Σ′
bv

It follows that

bi|else ∼ N2(GH∗,G)

where

G =
[
Z ′

iΣ−1
i Zi + Σ−1

bi|vi

]−1

H∗ = Z ′
iΣ−1

i (yi −Xiγ) + Σ−1
bi|vi
µ∗

bi|vi

vi | else

Following similar arguments of bi, we conclude that

vi|bi ∼ N4
(
µ∗

vi|bi
,Σvi|bi

)
where

µ∗
vi|bi

= T ′Ai + Σ′
bvΣ−1

b (bi − B′Ai)

Σvi|bi
= Σv − Σ′

bvΣ−1
b Σbv

The posterior distribution of vi can be derived as follows:

p(vi|else) ∝ p(yi|bi,vi,µri,Σr)p(vi|bi,µri,Σr)

∝ |Σi|−
1
2 exp

{
− 1

2
[
yi − (Xiγ +Zibi)

]′
Σ−1

i

[
yi − (Xiγ +Zibi)

]}
× exp

{
− 1

2
(
vi − µ∗

vi|bi

)′
Σ−1

vi|bi

(
vi − µ∗

vi|bi

)}

where Σi is a function of vi.

Since there is no closed form for this posterior distribution, we adopted adaptive

Metropolis algorithm to generate samples. The posterior distributions of γ and λ are

the same as those in Section 2.
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B.8 Sample FORTRAN 90 Code

!Growth curve model, hearing data (both ears)
!Hierarchical model
program gcb2

use numerical_libraries
use module_1
use module_2
implicit none

integer,parameter::rd=20000 ! number of iterates
integer,parameter::thin=1
integer,parameter::rd0=rd*0.1 ! number of iterates before burn in
integer,parameter::rd1=rd*0.2 ! number of iterates before adaption
integer,parameter::size=4148 ! number of observations in data set
integer,parameter::n=38 ! number of subjects
integer,parameter::nn=456 ! number of subject*f2 combinations
integer,parameter::S=20 ! number of knots in b-spline
double precision,parameter::c1=dble(1),c2=dble(0.0005)
! lambda~Gamma(c1,c2), Lambda is the penalty coefficient
double precision,parameter::eps=0.0000001,eps2=0.001
double precision,dimension(S-2,S-2)::D2
double precision,dimension(S-2,S-2)::DD

double precision,parameter::p=0.5 !proportion of tail chains
!*******************************************************************

integer,parameter::ss=5
double precision,dimension(ss,1)::m0 !mean of mu_r
double precision,dimension(ss,ss)::MM0 !covariance matrix of mu_r
double precision,dimension(ss,ss)::Q !sig_r~Iwish(Q^(-1), q)
integer::qq=ss
double precision,dimension(S-2,1)::mu_g !mean of gamma
double precision,dimension(S-2,S-2)::sig_g !covariance matrix of gamma
double precision,dimension(S-2,S-2)::prec_g !precision matrix of gamma

double precision,dimension(ss,1)::r0 !mean of r
double precision,dimension(ss,ss)::sig_r0 !covariance of r
double precision,dimension(ss+1,1)::r00 !mean of r
double precision,dimension(ss+1,ss+1)::sig_r00 !covariance of r
!*******************************************************************
double precision,dimension(ss*rd,1)::mu_r !mean vector of r
double precision,dimension(ss*rd,ss)::prec_r !precision of r
double precision,dimension(ss,ss)::sig_r !covariance of r
double precision,dimension(2,1)::mu_b !mean of b, b=(b0,b1)
double precision,dimension(3,1)::mu_v !mean of v
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!*******************************************************************
double precision,dimension(rd*2,n)::b
double precision,dimension(rd*2*n,1)::b_chain
double precision,dimension(rd*3,n)::v
double precision,dimension(rd*3*n,1)::v_chain
double precision,dimension(rd*ss,n)::r
double precision,dimension(rd*ss*n,1)::r_chain
double precision,dimension((S-2)*rd,1)::gam
double precision,dimension(rd)::lamb

!*******************************************************************
integer,parameter::m=31 !number of distinct frequencies for prediction
integer,parameter::m1=6
double precision,dimension(m,S-1)::XXp
double precision,dimension(m,S-2)::Xp !Design matrix of spline part
double precision,dimension(m,2)::Zp !Design matrix of linear part
double precision,dimension(m)::fp !Distinct values of f2
double precision,dimension(rd*p/thin*m,1)::Yp
double precision,dimension(rd*p/thin*m,m1)::delta_p
double precision,dimension(m,1)::mu_yp,mu_dp
double precision,dimension(m,m)::sig_yp,sig_dp
double precision,dimension(m1)::delta_t !followup time

!***** counting integers *****
integer::it,i,jj,j1,j2,k1,k2,l,k,ii

!*******************************************************************
double precision,dimension(ss,ss)::VV,Minv
double precision,dimension(ss,n)::E
double precision,dimension(ss,1)::D,D0

double precision,dimension(3)::vi,vip,vii

double precision,dimension(:,:),allocatable::prec_i
double precision,dimension(:,:),allocatable::sig_i
double precision,dimension(:,:),allocatable::sig_ii
double precision,dimension(S-2,1)::J
double precision,dimension(2,1)::bb
double precision,dimension(S-2,S-2)::W

double precision,dimension(2,2)::sig_b
double precision,dimension(3,3)::sig_v
double precision,dimension(2,3)::sig_bv
double precision,dimension(3,2)::sig_vb
double precision,dimension(2,1)::m_bv
double precision,dimension(2,2)::s_bv
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double precision,dimension(3,1)::m_vb
double precision,dimension(3,3)::s_vb

double precision,dimension(2,2)::G
double precision,dimension(2,1)::H
double precision,dimension(ss,1)::sum_r
double precision::u,a
double precision,dimension(:,:),allocatable::mu_y,mu_y0

double precision,dimension(n)::ct
double precision,dimension(3,3*n)::vmat
double precision,dimension(3,n)::vsum
double precision,dimension(3,3)::sv

double precision,dimension(S-2,1)::gam_it
double precision::GDG
double precision,dimension(S-2,1)::DG
integer,dimension(nn)::obs_ij
integer,dimension(nn+1)::cobs_ij
integer,dimension(n)::obs
integer,dimension(n+1)::cobs
integer,dimension(n,13)::cobs_mat
double precision,dimension(S-2,S-2)::XPX
double precision,dimension(S-2,1)::XPY
!*******************************************************************
!***** data *****
double precision,dimension(size,11)::both
double precision,dimension(size,S-2)::X
double precision,dimension(size,1)::Y
double precision,dimension(size,2)::Z
double precision,dimension(:,:),allocatable::Xi,Yi,Zi
double precision,dimension(size)::dt,df,de
double precision,dimension(:),allocatable::dti,eari

!*******************************************************************
double precision,dimension(size,1)::mu_spl
double precision::mu,tau

double precision,dimension(size)::sump
double precision::pinv
!*******************************************************************
open(unit=1,file="C:\Growth Curve Hearing\data\both_new.txt")

do i=1,size
read(1,*)both(i,:)

end do
close(unit=1)

open(unit=2,file="C:\Growth Curve Hearing\data\X_both.txt")
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do i=1,size
read(2,*)X(i,:)

end do
close(unit=2)

open(unit=4,file="C:\Growth Curve Hearing\data\D2.txt")
do i=1,S-2

read(4,*)D2(i,:)
end do

close(unit=4)

open(unit=5,file="C:\Growth Curve Hearing\data\obs_both.txt")
do i=1,n

read(5,*)obs(i)
end do

close(unit=5)

open(unit=6,file="C:\Growth Curve Hearing\data\cobs_both.txt")
do i=1,n+1

read(6,*)cobs(i)
end do

close(unit=6)

open(unit=7,file="C:\Growth Curve Hearing\data\cobs_ij.txt")
do i=1,nn+1

read(7,*)cobs_ij(i)
end do

close(unit=7)

open(unit=8,file="C:\Growth Curve Hearing\data\cobs_mat.txt")
do i=1,n

read(8,*)cobs_mat(i,:)
end do

close(unit=8)

open(unit=9,file="C:\Growth Curve Hearing\data\XXp_both.txt")
do i=1,m

read(9,*)XXp(i,:)
end do

close(unit=9)

open(unit=10,file="C:\Growth Curve Hearing\data\r0_both.txt")
do i=1,ss+1

read(10,*)r00(i,:)
end do

close(unit=10)
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open(unit=11,file="C:\Growth Curve Hearing\data\sig_r0_both.txt")
do i=1,ss+1

read(11,*)sig_r00(i,:)
end do

close(unit=11)
!*******************************************************************
fp=XXp(:,1);Xp=XXp(:,2:(S-1));
Zp(:,1)=VecConstant(m,dble(1));Zp(:,2)=XXp(:,1)

r0(1:4,1)=r00(1:4,1)
r0(5,1)=r00(6,1)
sig_r0(1:4,1:4)=sig_r00(1:4,1:4)
sig_r0(5,1:4)=sig_r00(6,1:4)
sig_r0(1:4,5)=sig_r00(1:4,6)
sig_r0(5,5)=sig_r00(6,6)

m0=r0
MM0=sig_r0/n

Q=inv(ss,sig_r0)/qq
mu_g=MatConstant(S-2,1,dble(0))

do i=1,S-2
gam(i,1)=mu_g(i,1)

enddo

Minv=inv(ss,MM0)

do i=1,ss
do jj=1,n

r(i,jj)=r0(i,1)
enddo

enddo

b(1:2,:)=r(1:2,:)
v(1:2,:)=r(3:4,:)
v(3,:)=r(6,:)

do i=1,ss
mu_r(i,1)=r0(i,1)

enddo

prec_r(1:ss,:)=Q*qq
ct=VecConstant(n,dble(0))
vsum=MatConstant(3,n,dble(0))
vmat=MatConstant(3,3*n,dble(0))
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DD=matmul(transpose(D2),D2)

de=both(:,6);dt=both(:,7)

Y=reshape(both(:,9),(/size,1/))
Z(:,1)=dble(1);Z(:,2)=both(:,11)
lamb(1)=rgamma(c1,c2)

ii=0 !counting index for the predicted responses
D0=MatMul(Minv,m0)
sump=VecConstant(size,dble(0))

mu_dp=reshape(VecConstant(m,dble(0)),(/m,1/))
delta_t=(/0.5,1.0,1.5,2.0,3.0,4.0/)
!*******************************************************************
!***** Start sampling *****
do it=1,rd-1

print*,it

sum_r=MatConstant(ss,1,dble(0))
do i=1,n

sum_r=sum_r+reshape(r((it-1)*ss+1:it*ss,i),(/ss,1/))
enddo

VV=inv(ss,Minv+n*prec_r((it-1)*ss+1:it*ss,:))
D=D0+MatMul(prec_r((it-1)*ss+1:it*ss,:),sum_r)

mu_r(it*ss+1:it*ss+ss,1)=rmvn(ss,MatMul(VV,D),VV)
do i=1,n

do jj=1,ss
E(jj,i)=r((it-1)*ss+jj,i)-mu_r(it*ss+jj,1)

enddo
enddo

prec_r(it*ss+1:it*ss+ss,:)
=wishart(ss,qq+n,inv(ss,inv(ss,Q)+MatMul(E,transpose(E))))

sig_r=inv(ss,prec_r(it*ss+1:it*ss+ss,:))
mu_b=reshape(mu_r(it*ss+1:it*ss+2,1),(/2,1/))
mu_v=reshape(mu_r(it*ss+3:it*ss+ss,1),(/3,1/))

sig_b=sig_r(1:2,1:2)
sig_v=sig_r(3:ss,3:ss)
sig_bv=sig_r(1:2,3:ss)
sig_vb=sig_r(3:ss,1:2)

XPX=MatConstant(S-2,S-2,dble(0));XPY=MatConstant(S-2,1,dble(0));
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do i=1,n
vi=v((it-1)*3+1:it*3,i)
allocate(sig_i(obs(i),obs(i)))
allocate(sig_ii(obs(i),obs(i)))
allocate(prec_i(obs(i),obs(i)))
allocate(Xi(obs(i),S-2))
allocate(Yi(obs(i),1))
allocate(Zi(obs(i),2))
allocate(mu_y(obs(i),1))
allocate(dti(obs(i)))
allocate(eari(obs(i)))

Xi=X(cobs(i)+1:cobs(i+1),:)
Yi=Y(cobs(i)+1:cobs(i+1),:)
Zi=Z(cobs(i)+1:cobs(i+1),:)
dti=dt(cobs(i)+1:cobs(i+1))
eari=de(cobs(i)+1:cobs(i+1))

sig_i=dble(0)
do k=1,12

do j1=cobs_mat(i,k)+1,cobs_mat(i,k+1)
do j2=cobs_mat(i,k)+1,cobs_mat(i,k+1)

sig_i(j1,j2)=exp(-exp(vi(2))*(dti(j1)-dti(j2))**2
-exp(vi(3))*(eari(j1)-eari(j2))**2)

enddo
enddo

enddo

sig_i=sig_i*exp(vi(1))
prec_i=inv(obs(i),sig_i)

m_bv=mu_b
+matmul(sig_bv,matmul(inv(3,sig_v),reshape(vi,(/3,1/))-mu_v))

s_bv=sig_b-matmul(sig_bv,matmul(inv(3,sig_v),sig_vb))

G=inv(2,matmul(transpose(Zi),matmul(prec_i,Zi))+inv(2,s_bv))
H=matmul(transpose(Zi),matmul(prec_i,Yi

-matmul(Xi,reshape(gam((it-1)*(S-2)+1:it*(S-2),1),
(/S-2,1/)))))+matmul(inv(2,s_bv),m_bv)

b(it*2+1:it*2+2,i)=rmvn(2,matmul(G,H),G)

m_vb=mu_v+matmul(sig_vb,matmul(inv(2,sig_b),
reshape(b(it*2+1:(it+1)*2,i),(/2,1/))-mu_b))

s_vb=sig_v-matmul(sig_vb,matmul(inv(2,sig_b),sig_bv))

sv=s_vb
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if (it>rd0) then
vsum(:,i)=vsum(:,i)+vi
vmat(:,(i-1)*3+1:i*3)=vmat(:,(i-1)*3+1:i*3)+xxt(3,vi)

endif

if (it>rd1) then
sv=vmat(:,(i-1)*3+1:i*3)/dble(it-rd0-1)-xxt(3,vsum(:,i))
/(dble(it-rd0)*dble(it-rd0-1))
do l=1,3

sv(l,l)=sv(l,l)+eps
enddo
sv=dble(2.4**2)*sv/dble(3)

endif

sig_ii=dble(0)
vip=rmvn(3,vi,sv)

do k=1,12
do j1=cobs_mat(i,k)+1,cobs_mat(i,k+1)

do j2=cobs_mat(i,k)+1,cobs_mat(i,k+1)
sig_ii(j1,j2)=exp(-exp(vip(2))*(dti(j1)-dti(j2))**2

-exp(vip(3))*(eari(j1)-eari(j2))**2)
enddo

enddo
enddo

sig_ii=sig_ii*exp(vip(1))

mu_y=MatMul(Xi,reshape(gam((it-1)*(S-2)+1:it*(S-2),1),(/S-2,1/)))
+MatMul(Zi,reshape(b(it*2+1:it*2+2,i),(/2,1/)))

a=pmvn(obs(i),Yi,mu_y,sig_ii)*pmvn(3,vip,m_vb,s_vb)/
(pmvn(obs(i),Yi,mu_y,sig_i)*pmvn(3,vi,m_vb,s_vb))

call random_number(u)
if(u<a) then

v(it*3+1:it*3+3,i)=vip
ct(i)=ct(i)+1

else
v(it*3+1:it*3+3,i)=vi ! v_i is updated

end if

vi=v((it)*3+1:(it+1)*3,i)
sig_i=dble(0)

do k=1,12
do j1=cobs_mat(i,k)+1,cobs_mat(i,k+1)
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do j2=cobs_mat(i,k)+1,cobs_mat(i,k+1)
sig_i(j1,j2)=exp(-exp(vi(2))*(dti(j1)-dti(j2))**2

-exp(vi(3))*(eari(j1)-eari(j2))**2)
enddo

enddo
enddo

sig_i=sig_i*exp(vi(1))
prec_i=inv(obs(i),sig_i)

XPX=XPX+reshape(matmul(transpose(Xi),matmul(prec_i,Xi)),(/S-2,S-2/))
XPY=XPY+reshape(matmul(transpose(Xi),matmul(prec_i,(Yi-matmul(Zi,
reshape(b(it*2+1:(it+1)*2,i),(/2,1/)))))),(/S-2,1/))

deallocate(sig_i)
deallocate(sig_ii)
deallocate(prec_i)
deallocate(Xi)
deallocate(Yi)
deallocate(Zi)
deallocate(mu_y)
deallocate(dti)
deallocate(eari)

end do

prec_g=lamb(it)*DD
J=reshape(XPY+matmulself(S-2,S-2,1,prec_g,mu_g),(/S-2,1/))
W=inv(S-2,XPX+prec_g)
gam(it*(S-2)+1:(it+1)*(S-2),1)=rmvn(S-2,matmul(W,J),W)
gam_it=reshape(gam(it*(S-2)+1:(it+1)*(S-2),1),(/S-2,1/))

DG=matmul(D2,gam_it-mu_g)
GDG=VecMulSum(S-2,DG,DG)
lamb(it+1)=rgamma(c1+(S-dble(2))/dble(2),c2+0.5*GDG)

r(it*ss+1:it*ss+2,:)=b(it*2+1:it*2+2,:)
r(it*ss+3:it*ss+ss,:)=v(it*3+1:it*3+3,:)

!Prediction of new observations

if (it>rd*p-1 .and. it/thin==int(it/thin)) then
ii=ii+1
mu_yp=matmul(Xp,reshape(gam(it*(S-2)+1:(it+1)*(S-2),1),(/S-2,1/)))
+matmul(Zp,reshape(mu_r(it*ss+1:it*ss+2,1),(/2,1/)))

sig_yp=diag_matrix(m)
sig_yp=sig_yp*exp(mu_r(it*ss+3,1))
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Yp(((ii-1)*m+1):(ii*m),1)=rmvn(m,mu_yp,sig_yp)

do k=1,m1
sig_dp=2*(1-exp(-exp(mu_r(it*ss+4,1))*delta_t(k)**2))*sig_yp
delta_p(((ii-1)*m+1):(ii*m),k)=rmvn(m,mu_dp,sig_dp)

enddo

!Calculate CPO
mu_spl=matmul(X, gam_it)

do i=1,n
do k=cobs(i)+1,cobs(i+1)

mu=b(it*2+1,i)+b(it*2+2,i)*both(k,11)+mu_spl(k,1)!
tau=1/exp(v(it*3+1,i))
pinv=1/pn(Y(k,1),mu,tau)
sump(k)=sump(k)+pinv

enddo
enddo

endif
enddo

b_chain=reshape(b,(/2*n*rd,1/))
v_chain=reshape(v,(/3*n*rd,1/))
r_chain=reshape(r,(/ss*n*rd,1/))

!******************************************************************
open(unit=11,file="C:\Growth Curve Hearing\MCMC\NoGA_simple\beta.txt")

do i=1,2*n*rd
write(11,*)b_chain(i,:)

end do
close(unit=11)

open(unit=12,file="C:\Growth Curve Hearing\MCMC\NoGA_simple\vchain.txt")
do i=1,3*n*rd

write(12,*)v_chain(i,:)
end do

close(unit=12)

open(unit=13,file="C:\Growth Curve Hearing\MCMC\NoGA_simple
\mu_r_chain.txt")

do i=1,ss*rd
write(13,*)mu_r(i,:)

end do
close(unit=13)
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open(unit=14,file="C:\Growth Curve Hearing\MCMC\NoGA_simple
\gamma_chain.txt")

do i=1,(S-2)*rd
write(14,*)gam(i,:)

end do
close(unit=14)

open(unit=15,file="C:\Growth Curve Hearing\MCMC\NoGA_simple\lamb.txt")
do i=1,rd

write(15,*)lamb(i)
end do

close(unit=15)

open(unit=16,file="C:\Growth Curve Hearing\MCMC\NoGA_simple
\rchain.txt")

do i=1,ss*n*rd
write(16,*)r_chain(i,:)

end do
close(unit=16)

open(unit=17,file="C:\Growth Curve Hearing\MCMC\NoGA_simple
\prec_r_1.txt")

do i=1,ss*rd
write(17,*)prec_r(i,1:3)

end do
close(unit=17)

open(unit=18,file="C:\Growth Curve Hearing\MCMC\NoGA_simple
\prec_r_2.txt")

do i=1,ss*rd
write(18,*)prec_r(i,4:ss)

end do
close(unit=18)

open(unit=19,file="C:\Growth Curve Hearing\MCMC\NoGA_simple\Yp.txt")
do i=1,rd*p/thin*m

write(19,*)Yp(i,:)
end do

close(unit=19)

open(unit=20,file="C:\Growth Curve Hearing\MCMC\NoGA_simple\dp.txt")
do i=1,rd*p/thin*m

do jj=1,m1
write(20,*)delta_p(i,jj)

enddo
end do

close(unit=20)
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open(unit=100,file="C:\Growth Curve Hearing\MCMC\NoGA_simple\sump.txt")
do i=1,size

write(100,*)sump(i)
end do

close(unit=100)
end program
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