






Fig. 5.11 Interaction energy as a function of NPG functionalization.

monovalent ions [62]. The presence of Na+ ions did not induce a strong association of the

NOM foulant onto the NPG-COO− membrane hence the reduced interaction. NOM inter-

action with NPG-COO− membrane is expected to be enhanced in the presence of divalent

ions which can potentially increase the fouling propensity of NPG-COO− membranes.

A favorable membrane-foulant interaction translates to increased adsorption of NOM

molecules onto the surface of the membranes as demonstrated in previous studies [55].

The preferential sorption of NOM onto NPG membranes ultimately leads to the buildup of

NOM foulants and a reduction in water flux. The simulated effect of NOM foulant on water

flux is presented in Fig. 5.12. The observed decline in water flux is due to the reduction

in the available pore area which results in an increased resistance to water flow. It must be

emphasized that, the observed decline in water flux results from the effect of a foulant layer

with a fixed thickness. With the expected high NOM buildup, the influence of fouling on

NPG membrane performance could be greater within the course of the filtration process.
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Fig. 5.12 Influence of NOM foulant on water flux.

5.4 Conclusions

MD simulations were performed to study the influence of surface functionalization on wa-

ter flux, salt rejection, and NOM fouling in NPG membranes. Water flux and salt rejection

were computed using data from pressure-induced flux simulations. NOM interactions with

different functionalized NPG membranes were investigated using umbrella sampling sim-

ulations.

The results of the simulations indicated that pore diameter and surface functionaliza-

tion have significant impact on the performance of NPG membranes. The results further

established that surface functionalization can increase water flux and salt rejection and

improve antifouling performance of NPG membranes. OH functionalization of the mem-

branes resulted in a higher water flux as a result of the hydrophilic nature of OH pores

which facilitate water transport. NPG-COO− functionalized membrane exhibited a better

salt rejection and antifouling properties but at the expense of reduced water flux.
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NOM interaction with the NPG-COO− membrane was characterized with the least

binding energy due to electrostatic repulsion between the charged surfaces thus making

NPG-COO− functionalized membranes less prone to fouling. By simulating the interac-

tions between NOM and the membranes, it became evident that van der Waals and electro-

static interactions are the dominant mechanisms driving the association of NOM foulants

onto NPG membranes. The calculated free energies indicated favorable interactions be-

tween the NPG membranes and NOM in all cases. The favorable membrane-foulant inter-

actions translates to increased adsorption of NOM onto the membrane resulting in a decline

in water flux.

The interactions between organic foulants and NPG play a key role in assessing the

desalination performance of NPG membranes. It has been established that the fouling

propensity of functionalized NPG membranes is significantly influenced by surface func-

tionalization and water chemistry conditions. Thus strategic selection of NPG function-

alization could provide a means to control membrane-foulant interactions to potentially

minimize membrane fouling.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

A multiscale modeling framework connecting atomistic simulations to the process level is

presented to study water and salt transport in membranes. The framework analyzes MD

simulations data and extracts membrane parameters from the data to make full-scale pre-

dictions based on experimental conditions. Overall, the results highlight the importance

of MD simulations in understanding membrane-based transport mechanisms at the atomic-

scale. This work has generated new insight into water and salt transport mechanisms in

membranes at the molecular and process levels as well as membrane-foulant interactions,

and the influence of surface functionalization and water chemistry conditions on such in-

teractions.

A criterion for estimating pure water flux in pressure-driven membranes was estab-

lished by means of Bayesian inference and process level Monte Carlo simulations. The

results of the Bayesian analysis suggest that given prior information on membrane pro-

cesses, Bayesian updating can be performed using data from MD simulations to obtain

realistic estimates of membrane parameters. It was established that MD simulations must

be at least 5 ns long and must be based on unique structural configurations in order to cap-

ture realistic membrane properties at the molecular scale. The effectiveness of Bayesian

updating is dependent on the availability of information about the process. Considering

the vast information that can be generated from MD simulations, Bayesian inference can

provide a means to incorporate prior experimental knowledge in model updating and serve

as a useful tool for analyzing and interpreting MD simulations.

Membrane parameters obtained from MD simulations can be used to make predictions
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that are consistent with experiments and reflective of process level conditions. Based on the

consistency between the predictions and experimental data, it can be concluded that full-

scale predictions based on parameters from MD simulations provide an effective means to

scale up MD simulations. However, accurate predictions of full-scale observations require

detailed characterization of the membrane properties. This was evident in the sensitivity

of the membrane parameters on the full-scale predictions. At the full-scale, the flux scales

inversely with the mass transfer boundary layer and membrane thickness because of the

longer distance required for back diffusion of salt and the increased resistance to flow. For

the FO system considered in this study, the critical point of the mass transfer boundary layer

thickness was found to be within 1-10 µm based on a membrane thickness range of 5-15

µm. Moreover, the effects of several water quality parameters indicated significant impact

on FO process, in accordance with experiments. Divalent ions provide greater driving force

for water transport due to higher osmotic pressure and lower RSF compared to monovalent

ions. The presence of NOM foulant layer resulted in a decline in water flux across the

membrane suggesting that NOM fouling can significantly impact FO performance.

This work also highlights the potential application of ultrathin NPG membranes for wa-

ter desalination. The identification of an optimum pore diameter was found to be critical

in assessing water permeability and salt rejection performance of NPG membranes. OH

functionalized pores exhibited the highest water flux while the COO− functionalized NPG

recorded the highest salt rejection as a result of the electrostatic interactions between ions

and the negatively charged carboxyl rim. The results further indicate that surface function-

alization of NPG membranes can enhance their desalination performance in terms of devel-

oping higher water flux and better salt rejection and improving antifouling properties. The

pristine NPG membrane demonstrated greater NOM fouling propensity compared to the

functionalized membranes. NOM interaction with the NPG-COO− membrane was char-

acterized with the least binding energy due to electrostatic repulsion between the charged

surfaces thus making COO− functionalized membranes less prone to fouling. The calcu-
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lated free energies however indicated favorable interactions between the NPG membranes

and NOM in all cases. The favorable membrane-foulant interactions translate to increased

adsorption of NOM onto the membrane which decreased the water flux across the mem-

brane because of the increased resistance to flow. The results suggest that depending on

treatment conditions, strategic selection of NPG functionalization could provide a means

to control membrane-foulant interactions to potentially minimize membrane fouling.

The presented framework can potentially serve as a useful tool for analyzing and in-

terpreting MD simulations to elucidate water and salt transport mechanisms in membrane

processes. The implementation of such a framework will provide an avenue for integrating

simulation results into full-scale models which can expedite the development of strategic

treatment conditions to optimize water flux and minimize membrane fouling.

Future work will focus on incorporating a full-scale material balance within the process

model in order to accurately simulate bench-scale experimental conditions. A multiscale

approach will also be adopted to evaluate the desalination performance of NPG membranes

at the full-scale.
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