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ABSTRACT 

 Heterodyne displacement measuring interferometry provides important metrology 

for applications requiring high resolution and accuracy. Heterodyne Michelson 

interferometers use a two-frequency laser source and separate the two optical frequencies 

into one fixed length and one variable length path via polarization. Ideally these two 

beams are linearly polarized and orthogonal so that only one frequency is directed toward 

each path. An interference signal is obtained by recombining the light from the two paths; 

this results in a measurement signal at the heterodyne (split) frequency of the laser 

source. This measurement signal is compared to the optical reference signal. Motion in 

the measurement arm causes a Doppler shift of the heterodyne frequency which is 

measured as a continuous phase shift that is proportional to displacement. In practice, due 

to component imperfections, undesirable frequency mixing occurs which yields periodic 

errors. Ultimately, this error can limit the accuracy to approximately the nanometer level. 

Periodic error is typically quantified using a Fourier transform-based analysis of constant 

velocity motions. However, non-constant velocity profiles lead to non-stationary signals 

that require alternate analysis techniques for real-time compensation. 

The objective of this study is to design a new discrete time continuous wavelet 

transform (DTCWT)-based algorithm, which can be implemented in real time to quantify 

and compensate periodic error for constant and non-constant velocity motion in 

heterodyne interferometer. It identifies the periodic error by measuring the phase and 

amplitude information at different orders (the periodic error is modeled as a summation
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of pure sine signals), reconstructs the periodic error by combining the magnitudes for all 

orders, and compensates the periodic error by subtracting the reconstructed error from the 

displacement signal measured by the interferometer. The algorithm is validated by 

comparing the compensated results with a traditional frequency domain approach for 

constant velocity motion. For a linear displacement signal where first and second order 

periodic errors (amplitudes 4 nm and 2.5 nm, respectively) are superimposed during a 

constant velocity (50 mm/min) displacement, the wavelet-based algorithm demonstrates 

successful reduction of the first order periodic error amplitude to 0.24 nm (a 94% 

decrease) and a reduction of the second order periodic error to 0.3 nm (an 88% decrease).
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CHAPTER 1 

INTRODUCTION 

 

Since first introduced in the early 1960s, the displacement measuring interferometer has 

provided high accuracy, long range and high resolution for dimensional metrology. The 

interferometer is used in a number of non-contact displacement measurement applications 

including: 1) position feedback of lithographic stages for semiconductor fabrication; 2) 

transducer calibration; and 3) position feedback/calibration for other metrology systems. 

In these situations, Heterodyne (two-frequency) Michelson-type interferometers with 

single, double, or multiple passes of optical paths is a common configuration choice. 

These systems infer changes in the selected optical path length difference by monitoring 

the optically induced variation in the photodetector, where current is generated 

proportional to the optical interference signal. The current is processed and converted to 

voltage and the phase is determined by phase-measuring electronics. The measured phase 

change is nominally linearly proportional to the displacement of the measurement target, 

based on ideal performance of the optic elements. 

 There are many well-known error sources that can degrade the accuracy of the 

system [1-5]. These include cosine error, Abbe error, refractive index uncertainty, 

thermal drift and deadpath. These errors can be compensated by setup changes or 

additional metrology approaches. Other errors, such as electronics error and source 

vacuum wavelength uncertainty, are usually small. Frequency mixing in heterodyne 
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interferometer resulting from non-ideal performance of the optical system causes periodic 

errors which are superimposed on the measured displacement signal. For heterodyne 

interferometers, both first and second order periodic errors occur, which correspond to 

one and two periods per displacement fringe. Periodic error is an intrinsic error in the 

heterodyne interferometer that can limit the accuracy to the nanometer level (or higher) 

depending on the optical setup. This is true when the interferometer is operated in 

vacuum to minimize the error associated with refractive index uncertainty due to 

uncompensated fluctuations in temperature, pressure, and humidity. While any of these 

error sources may dominate in a given situation, the focus of this study is periodic error. 

 To compensate this error, real-time digital error measurement may be applied, as 

it requires no change to the optical system, which allows convenient implementation for 

existing systems. Previous research has demonstrated a frequency domain approach to 

periodic error identification [6-8], where the periodic error is measured by calculating the 

Fourier transform of the time domain data collected during constant velocity target 

motion. The periodic errors are then determined from the relative amplitudes of the peaks 

in the frequency spectrum. For an accelerating or decelerating motion, however, the 

Doppler frequency varies with velocity. In this case, the frequency domain approach is 

not well-suited because the Fourier transform assumes stationary signals. To overcome 

this limitation, a wavelet-based analysis is applied here to measure and compensate 

periodic error. 

 The wavelet analysis has been widely used as an analytical tool for numerical 

analysis, mathematical modeling, and signal processing. The transform is computed at 

various locations of the signal and for various scales of the wavelet, thus filling up the 
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transform plane. This is done in a smooth continuous fashion for the continuous wavelet 

transform (CWT). A CWT of a time domain signal provides information in both the 

temporal and frequency domains [9]. For example, calculating the Morlet CWT enables 

the frequency content of a signal to be observed at different times. The CWT can be more 

informative than the Fourier transform because the CWT shows the relationship between 

frequency content and signal based on the wavelet scale and the time period. This enables 

the frequency and time information of the signal to be determined simultaneously by 

applying an appropriate wavelet. When applied to non-stationary signals, the CWT can 

supply frequency information at any time.  

A wavelet-based analysis is a novel approach in the study of periodic error 

measurement and compensation and enables the analysis of non-constant velocity 

motions. This research introduces a new wavelet analysis algorithm to measure and 

compensate periodic error for constant velocity target motions. In the following sections 

of this chapter, foundations in interferometer, and periodic error and its traditional 

compensation approaches are introduced. This chapter concludes with outline of this 

thesis. 

 

1.1 BACKGROUND 

 To use monochromatic light as a standard for displacement measurement was first 

introduced in 1892. Interferometry was used for the measurement of the standard meter 

by Albert Michelson and Rene Benoit. A schematic of the Michelson interferometer is 

shown in Figure 1.1. Beam 1 is from an extended light source, and split by a beam splitter 

with semi-reflective coating on the surface. Two separated beams travel to and reflect 
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back from two mirrors, M1 and M2 (M2 can move to generate an optical path difference), 

and then recombine at the same beam splitter. The interference pattern of the recombined 

beam is imaged on the screen. 

 

Figure 1.1 Schematic of the Michelson interferometer. 

 

After the development of the He-Ne laser in the 1960s, interferometry has been 

widely used for precision length and displacement measurement in many demanding 

applications requiring high resolution and accuracy. In past five decades, the basic 

configuration of the interferometer, developed by Michelson, remains the same. The 

modern interferometer has been developed with the improvement in laser source, optics, 

and signal processing. The extended light source is replaced by the laser, generating 

monochromatic light, and the screen is replaced by a photodetector, with an added digital 
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electronics behind to interpret the measurement signal (irradiance variation or phase 

change) and to convert fringe to displacement. 

Currently, polarization encoded heterodyne interferometers have become a 

standard instrument for displacement measurement. Its difference from a homodyne 

(single frequency) interferometer is that the laser source in a heterodyne interferometer 

emits two slightly different frequencies. This difference introduces a number of 

advantages and results in improved accuracy. 

 

1.2 INTERFERENCE 

 Light can be treated as a transverse electromagnetic wave propagating through 

space. Usually only the electric field at any point is considered, since the electric and 

magnetic fields are orthogonal to each other [10]. 

 The electric field can be described as a time-varying vector perpendicular to the 

direction of propagation of the wave. Due to a light wave propagating along the z 

direction, the electric field at any point can be expressed as 

 0 cos 2
z

E E ft


  
   

  
, (1.1) 

where 0E  is the light wave amplitude, f  is the frequency, and   is the wavelength. 

 2 ft z   is the phase of the wave, varying with time and location at z-axis. In a 

vacuum, the light speed is 

 vc f  , (1.2) 

where v  is the light wavelength in the vacuum. In one medium, the light speed is 
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c

v
n

 , (1.3) 

where n  is the refractive index of this medium. The light wavelength can be determined 

by 

 

v

v

f

v n

f f n




    . (1.4) 

Eq. 2.1 can be rewritten as 

  0 0cos 2 cos
v

nz
E E ft E t kz 



  
     

  

, (1.5) 

where 2 f   is the angular frequency, and 2 vk n   is the propagation constant. 

 To be convenient for mathematical operations, complex exponential 

representation is usually used,  

  
0

i t
E E e

  
 , (1.6) 

where kz   . 

 Consider two light waves propagating in the same direction at a given point in 

space. They are both linearly polarized, and have different amplitudes but the same 

frequency. They are represented by 

 

 

 

1

2

1 01

2 02

i t

i t

E E e

E E e

 

 

 

 




, (1.7) 

where  0 1,2iE i   are the amplitudes of the light waves, and  1,2i i   is the phase. 

The Principle of Superposition is that the electric field intensity at one point in space 

resulting from two or more electromagnetic waves is the vector sum of these electric 

fields. In fact, the interference is a consequence of this principle. According to the 
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Principle of Superposition, the resultant electric field, E , is given by the addition of the 

two light waves, 
1E  and 2E , 

    1 2

1 2 01 02

i t i t
E E E E e E e

      
    , (1.8) 

The resultant irradiance, I , is proportional to the square of the wave amplitude, 

 

   

         
  

 

1 2

1 2 1 2

1 2

22

01 02

* *

01 02 01 02

2 2 *

01 02 01 02

1 2 1 2 1 2

2Re

2 cos

i t i t

i t i t i t i t

i

I E E e E e

E e E e E e E e

E E E E e

I I I I

   

       

 

 

   

       

 

  

  

  

   

, (1.9) 

where *  indicates the complex conjugate, and Re  represents the real part of a complex 

number. 

 The resultant irradiance shows a periodic characteristic depending on 1 2  . The 

two light waves constructively interfere when  1 2cos    reaches its maximum value 

and the two waves reinforce each other. Destructive interference occurs if  1 2cos    

reaches its minimum and the two waves counteract each other. If the amplitude of the two 

light waves are equal ( 1 2 0I I I  ), the resultant irradiance is four times the individual 

irradiance in constructive inference, and attains zero value in destructive inference. The 

transition from one maximum to the next maximum through a minimum corresponds to a 

2  phase change, which is also an optical path length change of one wave length, 

referred to as one “fringe”. 
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1.3 TWO DISPLACEMENT MEASURING INTERFEROMETER TYPES 

For displacement measurement, two types of the Michelson interferometer are 

commonly used. One is the homodyne interferometer, which uses a single frequency laser 

head and converts the intensity variation induced by interferences into displacement. On 

the other hand, a heterodyne interferometer uses a two-frequency laser source and 

measures displacement by identifying the phase shift between the reference and 

measurement signals. Two approaches are introduced in the next two sections. 

 A Michelson-type interferometer is implemented with a certain configuration 

(signal, double, or multiple passes of the optical path). The single pass configuration prior 

to the introduction of two interferometer types will be described. In a single pass 

configuration (shown in Figure 1.2), a beam with both vertical and horizontal polarization 

components splits at a polarizing beam splitter (PBS). The horizontally polarized beam is 

transmitted while the vertically polarized beam is reflected. The transmitted beam 

(measurement beam) propagates forward to the moving retroreflector and then backward 

to the polarizing beam; the reflected beam (reference beam) is reflected at the fixed 

retroreflector. The two measurement and reference beams are recombined at the PBS and 

brought into interference after passing through a linear polarizer (LP). The phase change 

of the measurement beam, 
single , is proportional to double displacement of the moving 

retroreflector, 

 2single d  , (1.10) 

where d  is the displacement of the target. 
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Figure 1.2 Schematic of a single pass interferometer. 

 

The optical resolution of the signal pass system (i.e. the fringe introduced in 

Section 1.2) is half of the laser wavelength. Thus, in the single pass interferometer, the 

target displacement can be determined by 

 
2

fringed N


 , (1.11) 

where 
fringeN  is the number of fringes. 

 

1.3.1 HOMODYNE INTERFEROMETER 

The basic homodyne interferometer consists of a laser source (single-frequency 

beam), a polarizing beam splitter, retroreflectors, and a photodetector, as shown in Figure 

1.3. 
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Figure 1.3 Schematic of homodyne interferometer setup. 

 

A single-frequency, linearly polarized beam is typically from a Helium-Neon 

laser head and oriented at 45° to the horizontal axis. The beam splitter equally splits this 

incoming beam into two beams. One beam travels to the fixed retroreflector and reflects 

back, while another one travels to the moving retroreflector and back. The two beams 

recombine at the PBS and interfere. The interference signal is finally received at the 

photodetector. Change in the relative path lengths of the two beams causes a relative 

phase change in the interference signal. Therefore, the detected irradiance can be 

expressed in Equation 1.9. 

Basic homodyne interferometer advantages: 

 System is simple and easy to align. 

 It can be used for multi-axis systems. 

 Single-point detector used in the system enables faster processing than a 

CCD array. 



11 

Basic homodyne interferometer advantages: 

 System is sensitive to laser power fluctuations and stray light. 

 System is sensitive to tilting. 

 It cannot detect the direction sense of the target. 

 

 1.3.2 HETERODYNE INTERFEROMETER 

 Heterodyne interferometer is generally similar to homodyne counterparts, except 

that a two-frequency laser source is used instead of a single-frequency one. A schematic 

of a single pass heterodyne interferometer is shown in Figure 1.4. The laser source 

typically contains two slightly distinct optical frequencies with a known split frequency. 

They are generated by either placing a magnetic field around the laser tube to obtain two 

frequencies, or combining a single frequency laser with an acousto-optic modulator, 

which produces another beam with a modulated frequency [11]. The two optical  

 

Figure 1.4 Schematic of heterodyne interferometer setup. Optical components include: 

retroreflectors (RR), polarizing beam splitter (PBS), polarizers, half wave plate (HWP), 

and photodetectors. 
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frequencies are orthogonally polarized and do not interfere, so they can be separated. One 

frequency is used in the reference arm, while another one is used in the measurement arm. 

 

 An initial beam splitter splits part of the laser output, and a polarizer causes 

interference between the two beams. This interference is detected at the reference 

detector, generating an optical reference. The main beam travels to PBS, where the 

frequency 
1f   reference beam is reflected and then travels to the fixed retroreflector and 

back, while the frequency 2f   measurement beam transmits through the beam splitter and 

then travels to the moving retroreflector and back. The two beams are combined again 

within the PBS, where interference is created by passing these two collinear, orthogonal 

beams through this polarizer aligned at 45°. The irradiance can be then observed at the 

measurement photodetector. 

Heterodyne interferometer advantages: 

 System has directional sensitivity. 

 One optical reference can be used for multiple interferometers. 

 System is insensitive to laser power fluctuations and stray light. 

 System can measure fast-moving targets. 

 System is adaptable to multipass configurations. 

Heterodyne interferometer disadvantages: 

 Two-frequency source with a split frequency is needed, increasing 

hardware costs. 

 High speed signal processing is required. 
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 Polarization manipulation leads a more complex alignment procedure and 

costly components. 

The two light waves are both linearly polarized, and have different amplitudes 

and frequencies. They are described by 

 

 

 

1 1

2 2

1 01

2 02

i t

i t

E E e

E E e

 

 

 

 




, (1.12) 

where  2 1,2i if i    are the different angular frequencies of the light waves. When 

they interfere, the resultant wave, E , is given by the sum of the two light waves, 1E  and 

2E , 

    1 1 2 2

1 2 01 02

i t i t
E E E E e E e

      
    , (1.13) 

The resultant irradiance, I , is proportional to the square of the amplitude, 

 

   

         
  

 

1 1 2 2

1 1 2 2 1 1 2 2

22

01 02

* *

01 02 01 02

2 2 *

01 02 01 02

1 2 1 2

2Re

2 cos

i t i t

i t i t i t i t

i t

I E E e E e

E e E e E e E e

E E E E e

I I I I t

   

       

 

 

   

       

  

  

  

  

     

, (1.14) 

where 1 2     . Comparing Equation 2.9 with Equation 2.14, now there is an 

additional term, frequency difference  , referred as to split or beat frequency, which 

results from two slightly different optical frequencies. In the heterodyne interferometer, 

the irradiance is measured by the fluctuation at the split frequency. The displacement of 

the moving target causes phase change,  . Measurement of this phase change is 

proportional to the displacement. The output of the heterodyne interferometer occurs at 
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some frequency around the split frequency. Therefore, the sign of the frequency shift can 

describe the direction of the motion.  

 

1.4 ERRORS AND UNCERTAITY IN HETERODYNE INTERFEROMETRY 

 This section introduces typical errors and uncertainty in a heterodyne 

interferometer system. Their source and correction or compensation methods are 

discussed. Measurement uncertainty can be attributed to several sources, and the four 

primary categories are displacement-dependent sources, alignment and setup sources, 

environmental sources, and bandwidth sources. Each uncertainty source can be present in 

more than one category. 

 

1.4.1 REFRACTIVE INDEX UNCERTAINTY 

 The uncertainty in the refractive index is typically the dominant uncertainty in 

displacement measurements in air. The refractive index of a medium is a function of its 

density. It is necessary to identify the local refractive index since most interferometer 

applications operate in air. 

For interferometry in air, the uncertainty in the refractive index occur due to 

changes in temperature, pressure, humidity, and gas composition, which degrade 

measurement accuracy. The refractive index uncertainty in air can be determined by 

        2 2 2 2 2 2

air T P Hu n K u T K u P K u H   , (1.15) 

where  u T ,  u P ,  u H , and TK , PK , HK , are uncertainties and sensitivities of 

temperature, pressure, and humidity, respectively. The atmospheric error, which is caused 

by refractive index uncertainty, can be expressed as 
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  atm aire u n d  , (1.16) 

where  airu n  is the refractive index uncertainty in air, and d  is the moving target 

displacement. The error is often the largest component in the error budget, so it must be 

compensated, based on the measurement of air pressure, temperature, and relative 

humidity [12]. 

 

1.4.2 COSINE ERROR 

 An angular misalignment between the beam direction and the average line of 

motion of the target results in cosine error in an interferometer with a cube corner target. 

Because the magnitude of this error is proportional to the cosine of the misalignment 

angle it is called “cosine error” [1]. Cosine error with an angle   between the beam and 

motion direction is shown in Figure 1.5. It is described as 

  
2

cos 1
2

A me l l l l


      , (1.17) 

where l  is the actual displacement, and ml  is the measured displacement. Cosine error 

can be minimized by aligning the beam direction parallel to the axis of motion as close as 

possible. 
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Figure 1.5 Cosine error. 

 

1.4.3 ABBÉ ERROR 

 The Abbé principle includes arranging the measurement system to be collinear 

with the measured line. An offset error (Abbé error) is caused by the unintended angular 

error of the linear motion as the measurement axis and the motion line are not ideally 

collinear, as shown in Figure 1.6. Larger Abbé offset, Ad , leads to larger error between 

the measurement axis and the actual line of interest. Abbé error can be expressed as 

 tanA m A A A Ae l l d d     , (1.18) 

where A  is the angular misalignment. A  is typically assumed small enough to simplify 

Abbé error to A Ad  . Measurement axis should coincide with line of interest to eliminate 

Abbé error. 
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Figure 1.6 Abbé error. 

 

1.4.4 PHASE CHANGE UNCERTAINTY 

 Uncertainty in the measured phase change is a direct contributor to the measured 

displacement uncertainty. Manufacturers typically provide static and dynamic accuracy 

instead of the phase change uncertainty. Static accuracy is generally based on the 

electronic noise floor. Dynamic accuracy is related to the phase meter performance at the 

specified target velocity. Dynamic accuracy is usually larger since nonlinearity from filter 

is frequency-dependent. The nonlinearity results from phase lag in the electronics and 

shows as an interferometric phase change. Phase delay compensation method can be 

applied to reduce this uncertainty [13]. 

 

1.4.5 INTERFEROMETER THERMAL DRIFT 

 Thermal changes within the interferometer optics can cause error when measuring 

displacement, even when the target is stationary. When temperature changes, the physical 



18 

size of the optical components will also change, which leads to an apparent displacement. 

The thermal drift error can be described as 

 TD Te C T  , (1.19) 

where T  is the temperature change, and 
TC  is the thermal drift coefficient. 

Interferometer thermal drift can be reduced by either choosing a temperature-insensitive 

optical configuration or keeping the environment temperature consistent during 

experiment. 

 

1.4.6 MATERIAL THERMAL EXPANSION ERROR 

 Due to thermal expansion or contraction, mechanical component dimension varies 

as the change in temperature. It needs to correct based on the temperature information of 

the part and coefficient of linear thermal expansion. 

 

1.4.7 DEADPATH ERROR 

 The interferometer deadpath is the difference in length between the reference and 

measurement arms when the interferometer electronics are initialized. Figure 1.7 shows a 

traditional linear interferometer with imbalanced arm lengths. The path of the 

measurement beam is larger than that of the reference beam by the deadpath length, DPd . 

Any uncompensated refractive index change over the deadpath causes an apparent 

displacement even when the target is not moving. Deadpath error can be expressed as 

  DP air DPe u n d  . (1.20) 
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Figure 1.7 Deadpath error. 

 

1.4.8 ELECTRONICS ERROR 

 The phase change between measurement and reference arms is measured for 

displacement in a heterodyne interferometer. The optical measurement resolution, i.e. one 

fringe, can be electrically or optically extended. The electronics measurement resolution 

is determined by the number of points in one full cycle of the phase. The electronics error 

is equal to the electronics measurement resolution. However, amplifier nonlinearity may 

also be considered [14]. 

 

1.4.9 PERIODIC ERROR 

 Periodic error is a noncumulative error in the measured displacement from 

spurious interference signal arising from source mixing and beam leakage. Imperfect 

separation of two frequencies into the measurement and reference beam produce periodic 

error, or errors of some cycles per wavelength of optical path change. From another 

perspective, the measured moving target displacement within superimposed periodic 
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error can be treated as cyclically oscillating about the nominal displacement, typically 

with amplitude of several nanometers [15]. 

 Ideally, the phase-to-displacement relationship is assumed to be linear, but due to 

the spurious interference signal, in practice, there exists a cyclic deviation and this 

assumption becomes incorrect since the relationship is nonlinear. 

Periodic error occurs at predictable interval. First order periodic error has one 

harmonic per full cycle of phase change, second periodic error has two harmonics per full 

cycle of phase change, etc. 

Periodic error characteristics can be described as: 

 Periodic error does not scale with measured displacement. Source mixing 

and frequency leakage cause periodic error superimposed in the true 

displacement to be predictable. 

 Periodic error is a function of interferometer geometry and the source 

wavelength, detectable as first, second, and higher spatial harmonics as the 

target moves. 

 Each order of periodic error is caused by different mixing errors and 

alignment. 

 Sources of frequency mixing and leakage include non-orthogonality between the 

linear beam polarization, elliptical polarization of one beam, imperfect optical 

components, parasitic reflections from the surface, and mechanical misalignment in the 

interferometer [16]. For a motion of a moving retroreflector in a single pass 

interferometer, for example, Figure 1.8 displays a simulated displacement of this motion 

from 25 µm to 30 µm with a velocity of 50 mm/min in 0.006 s, and superimposed 
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periodic error with a first order magnitude of 4 nm and second order magnitude of 2.5 nm. 

The nominal constant velocity motion is extracted to reveal only the remaining periodic 

error component. 

 

Figure 1.8 (a) Simulated linear displacement at 50 mm/min and periodic error with 

magnitudes of 4 nm and 2.5 nm for first and second order, respectively. (b) Periodic error 

amplitudes in the frequency domain. 

 

1.5 PERIODIC ERROR REVIEW 

 Periodic error is a fundamental accuracy limitation for the heterodyne Michelson-

type interferometer. It can limit the interferometer accuracy to the nanometer or 

subnanometer level. The measurement and reference beams are linearly polarized and 

mutually orthogonal, separated and recombined perfectly at polarizing beam splitter. 

Errors and defects in the optical system components cause source mixing and frequency 

leakage between the two beams. This frequency mixing causes periodic error 

(a) 

(b) 



22 

superimposed on the measured displacement signal, which is extensively explored in the 

literature. 

 Fedotova [17], Quenelle [18], and Sutton [19] first investigated periodic error in 

heterodyne Michelson-type interferometers. Subsequent studies of periodic error in 

displacement measuring interferometry and its reduction have been reported in many 

publications [1-7, 11, 14, 16, 20-90]. They are divided into the following categories: 1) 

error sources [1-3, 11, 20-22]; 2) refractive index in air [23-29]; 3) periodic error 

description and modeling [14, 30-47]; 4) periodic error measurement under various 

conditions [7, 48-55]; 5) periodic error correction and compensation [6, 16, 38, 56-85]; 6) 

uncertainty evaluation of interferometric displacement measurement [4, 5]; 7) 

measurement applications [86-90]. 

 Optical mixing is a major source causing periodic error in heterodyne Michelson-

type interferometers that rely on polarization coding. Optical mixing refers to part of one 

arm frequency leakage into the other of the interferometer. This includes imperfect 

optical components, mechanical misalignment between interferometer elements, non-

orthogonality of linear beam polarizations, ellipticity in the nominally linear polarization 

of the individual beam, deviation of the optics from ideal behaviors, and parasitic 

reflections from individual surface. 

 Further, optical mixing can be subdivided into two kinds based upon the 

mechanism of mixing, polarization mixing and frequency mixing [1]. For polarization 

mixing, it is due to the imperfect separation of the beams on their polarization (due to 

leakage in the beam splitter). On the other hand, frequency mixing is due to 

contamination by correct polarization but incorrect frequency for light. It can be caused 
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by imperfect angular alignment of the polarization states of the beam relative to the beam 

splitter direction, or ellipticity in polarization states for the individual beam. Each passage 

through the polarizing beam splitter attenuates the leakage term for polarization mixing, 

while in frequency mixing, repeated passage through the beam splitter does not affect the 

mixing. In both kinds of mixing, the consequence is always contamination from one 

beam in the interferometer into another. 

 In spite of the source of the optical mixing, its effect can be described in Figure 

1.9. The interaction of the two beams with the PBS in a practical interferometer result in 

an imperfect separation of the two frequencies. Beam 1 with frequency 1f  and amplitude 

01E  is contaminated by a small component with frequency 2f  and amplitude 21 , while 

beam 2 with 2f  and 02E is contaminated by a component with 1f  and 12 . Compared to 

Equations 2.8-9, now the resultant output beam has four components instead of two in the 

ideal interferometer. The resultant irradiance can be expressed by 

 

       
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. (1.21) 

Four components combine and produce eight terms. The DC terms are the irradiance of 

four beams, which are self-interference. The quasi-DC terms are low-frequency 

irradiance variations, which originate from interference between the main component in 
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one beam and the contamination component in the other beam with the same frequency. 

It is identical to the case in homodyne interferometer, and shows a small variation close 

to DC. In most cases they can be considered as DC terms unless   is close to  . The 

remaining three terms,  
 *

01 02

i t
E E e

   
,    * *

01 21 02 12

i t
E E e


 

 
 , and 

 *

21 12

i t
e

 
 

  
, are 

around the split frequency. The nominal signal results from the interference between two 

beams, and it is the desired signal. The first harmonic term arises from the interference of 

the desired beam and the mixing term in a given arm. The interference result is at the split 

frequency since they are at different frequencies 1f  and 2f . This term can be 

distinguished from the nominal signal by its independence of phase. The second 

harmonic term arises from the interference between two mixing terms, 2

21

i te    and 

1

12

i te   . This result shows a negative phase dependence. Its amplitude is much smaller 

than that of the nominal signal. The first and second order periodic errors, which are 

derived from the first and second harmonic terms, can be approximately given by 

 sin   as a simplified model of a pure sine wave [7]. When the heterodyne 

interferometer system is under high-speed displacement and amplifier nonlinearity is 

considered, high order periodic errors will emerge as Doppler shifted terms; these errors 

can also be modeled as pure sine waves [14]. For convenience, each order of periodic 

error is expressed in terms of  sinA t  in the following discussions, where t  is the time, 

and   is the phase. 
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Figure 1.9 Interferometer showing optical mixing. 

 

1.6 TRADITIONAL PERIODIC ERROR COMPENSATION APPROACH 

 As discussed in Section 1.5, the nominal, first harmonic, and second harmonic 

terms are 
 *

01 02

i t
E E e

   
,    * *

01 21 02 12

i t
E E e


 

 
 , and 

 *

21 12

i t
e

 
 

  
. If the measured 

moving retroreflector is at a constant velocity, v , then   can be described as 
2 Nv

t



, 

where N  is the number of passes in the interferometer. In this case, 
2 Nv


 is a constant. 

Therefore, these three terms are at constant frequencies of 
2 Nv




  ,  , and 

2 Nv



  . The traditional frequency domain approach [6-8] can be applied here since 

they are all stationary signals. The periodic error amplitudes are determined by 

computing the Fourier transform of the time domain displacement data.  
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 But, the limitation of this method is also apparent. For non-constant velocity 

motion, the Doppler frequency is varying with velocity. The frequency domain approach 

cannot be applied since the method inherently assumes stationary Fourier signals. 

Therefore, an alternative tool, for example, wavelet analysis used in this work, is needed 

to overcome this issue. 

 

1.7 OUTLINE OF THE STUDY 

 In this study, Chapter 2 introduces the advanced signal processing tool, wavelet 

analysis. Different wavelet families are given and emphasis is on the complex Morlet 

wavelet, which is used as the main choice in the periodic error compensation algorithm 

design. The wavelet transform in its general form, and its relative terms and properties, 

are also provided. In Chapter 3, the entire compensation algorithm design process is 

introduced in detail. Based on the periodic error model, the periodic error information is 

identified by using the continuous wavelet transform. The use of wavelets allows periodic 

error to be reconstructed and compensated from original displacement data. Chapter 4 

provides detailed simulation and experiment results using the novel compensation 

algorithm. Identification of separate periodic error information and overall compensation 

performance are both given. The effectiveness of the wavelet-based approach to detecting 

and compensating periodic error is compared to the traditional Fourier-based approach 

for constant velocity motion. Chapter 5 summarizes the results using the novel wavelet-

based approach and indicates directions for future investigations. 
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CHAPTER 2 

WAVELET ANALYSIS 

 

Wavelet analysis began in the mid-1980s where it was first used to examine seismic 

signals. At the beginning of 1990s, wavelet analysis was recognized as a useful tool in 

science and engineering, and began rapidly developing during that decade. The wavelet 

transform has been found to be particularly useful for analyzing aperiodic, noisy, 

intermittent, and transient signals. It can examine a signal in both time and frequency 

domain, which is distinctly different from the traditional Fourier transform. A number of 

wavelet-based methods have been created to identify signals based on this advantage. 

Wavelet analysis has been applied to many research areas, including condition 

monitoring of machinery, video image compression, seismic signal denoising, 

characterization of turbulent intermittency, analysis of financial indices, etc. 

 

2.1 INTRODUCTION 

 Wavelet analysis has been developed to be an analytical tool for signal processing, 

mathematical modeling, and numerical analysis. Early work was in the 1980’s by Morlet, 

Grossmann, Meyer, Mallat, and others, and the paper by Ingrid Daubechies in 1988 first 

directed the attention of the larger applied mathematics communities in signal processing 

and statistics to wavelet analysis [91-96]. Early work was related to a specific application, 

and now the theory is abstracted from applications and developed on its own. One 
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modern wavelet research goal is to create a set of basic functions and transforms 

describing a function or signal. Work done by Donoho, Johnstone, Coifman, and others 

explained why wavelet analysis is versatile and powerful and showed wavelet system is 

optimal for numbers of problems [97]. Multiresolution is another important idea. 

Wavelets are called “The Mathematical Microscope” since discrete wavelet transform 

can decompose a signal at independent scales and conduct this in a quite flexible way 

which is superior to other methods for processing, denoising, and compression [98, 99]. 

Because of this advantage, signal processing in wavelet domain provides many new 

methods for signal detection, compression, and filtering [97, 100-104]. 

 The wavelet transform includes the discrete wavelet transform (DWT) and the 

continuous wavelet transform (CWT). DWT is usually used for compression, filtering, 

and denoising, while the CWT is preferred to provide interpretable multi-scale 

information of signals. The next two sections introduce these two transforms separately. 

 

2.2 DISCRETE WAVELET TRANSFORM 

 A signal  f t  can be better analyzed if expressed as a linear decomposition 

    l l

l

f t a t , (2.2) 

where l  is an integer index for the finite or infinite sum, la  is the real-valued expansion 

coefficient, and  t  is a set of the real-valued functions of t  (expansion set). An unique 

expansion set is called a “basis”. If the basis is orthogonal, i.e. 

        , 0k l k lt t t t dt k l      , (2.2) 

Then the coefficient la  can be calculated by 
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        ,l k ka f t t f t t dt    . (2.3) 

For the wavelet expansion, a two-parameter system is constructed as 

    , ,j k j k

k j

f t a t . (2.4) 

where 
,j ka  is a set of expansion coefficients. Two-dimensional families of scaling and 

wavelet functions are generated from the basic scaling function and mother wavelet, 

 t  and  t , by scaling and translation, 

 
   

   

/2

,

/2

,

2 2

2 2

j j

j k

j j

j k

t t k

t t k

 

 

 

 
, (2.5) 

 where j  is the scale, and k  is the time or space location. Further,  t  and  t  can be 

expressed as 

 

     

     1

2 2

2 2

n

n

t h n t n

t h n t n

 

 

 

 




, (2.6) 

where  h n  and  1h n  are low-pass filter and high-pass filter in the decomposition 

filters, respectively. Therefore, as a series expansion in terms of the scaling functions and 

wavelets, any function  g t  can be given by 

          0 0

0

0

/2 /22 2 2 2
j j j j

j j

k k j j

g t c k t k d k t k 




     , (2.7) 

where 0j  is the basis scale, and  c k  and  d k  are some sets of coefficients. These 

coefficients are called the discrete wavelet transform of the signal  g t  , and Equation 

2.7 is the inverse discrete wavelet transform (IDWT). If the wavelet system is orthogonal, 

the coefficients can be calculated by 



30 

 
         
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,

,

j j k j k

j j k j k

c k g t t g t t dt

d k g t t g t t dt

 

 

 

 




. (2.8) 

 The DWT applies a pair of decomposition filters to the original time domain 

signal repeatedly. The low-pass filter and high-pass filter are designed to avoid any loss 

of information during transform process. Figure 2.1 shows a typical structure of the DWT 

process. For a decomposition at a single scale, the wavelet decomposition filters are 

applied to a signal  x t  in time domain, and the output coefficients are down sampled 

into low-pass band (approximation band) 1A  and high-pass band (detail band) 1D . The 

bands are time domain signals, and they have half of samples compared to the original 

signal. At the next stage, the low-pass band 1A  is decimated into quarters, 2A  and 2D , 

and so on. The final output of DWT is the approximation subband of the final scale ( 2A  

in this example), and the detail subband of all the scales ( 1D , 2D  and 3D  in the same 

example). 

 

Figure 2.1 Structure of a discrete wavelet transform (DWT) computation. 
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 However, after transforming a signal, the DWT wavelet coefficients are difficult 

to interpret and need an IDWT for comparison with the original signal. For CWT, in 

contrast, the wavelet coefficient directly provides substantial information at any 

particular time instance for a time domain signal. The final goal of this research is to 

compensate periodic error in heterodyne interferometry in real-time. Therefore, CWT is 

used in a real-time algorithm design to examine the spectral information of periodic error. 

 

2.3 CONTINUOUS WAVELET TRANSFORM 

 A continuous wavelet transform is used to construct a time-frequency 

representation of a signal  x t  which provides sufficient time and frequency localization.  

To perform a CWT, a wavelet is needed. It is a function  t  which satisfies certain 

mathematical criteria. This function is operated to transform the time domain signal into 

another form via translation and dilation. 

 

2.3.1 REQUIREMENTS FOR THE WAVELET 

 A wavelet function of time,  t , must have finite energy 

  
2

E t dt



   . (2.9) 

 A wavelet must have an average of zero, 

     0t t dt 



  . (2.10) 

 Additionally, a wavelet is usually normalized to a unit value [105], 

    
2

1t t dt 



  . (2.11) 
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2.3.2 WAVELET MANIPULATIONS 

 In order to transfer a chosen “mother” wavelet to be a more flexible form, two 

basic manipulations can be performed. The wavelet function can be stretched and 

squeezed (dilation), or moved (translatin). 

A wavelet family can be generated from the mother wavelet by translating it via 

the shift parmeter, u ,  and dilating the wavelet via the scale parameter, 0s  . This 

series of wavelets can be denoted as 

  ,u s

t u
t

s
 

 
  

 
. (2.12) 

The movement of the wavelet along the time axis is governed by the shift parameter. 

Figure 2.2(a) displays the movement of the real part of the Morlet wavelet from 0u   via 

1u   to 2u   along the time axis. The dilation and contraction of the wavelet is 

governed by the scale parameter, which is the distance between the center of the wavelet 

and the origin of time axis. Figure 2.2(b) shows the real Morlet wavelet stretched and 

squeezed to half and double of its original width, respectively. 

 

2.3.3 WAVELET TRANSFORM 

 In the form of Equation 2.12, the wavelet transform of a continuous signal,  x t , 

with respect to a wavelet function is defined as 

            * *

,, u s

t u
Wx u s w a x t t dt w a x t dt

s
 

 

 

 
   

 
  , (2.13) 
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Figure 2.2 (a) Translation of the mother wavelet (the real Morlet wavelet). (b) Stretching 

and squeezing the real Morlet wavelet at three dilations, 1,2,3s  . 

 

where  w a  is a weighting function, and the asterisk indicates the complex conjugate of 

the wavelet function used in the transform, which is needed when complex wavelets are 

used. Typically  w a  is chosen as 1 a  for energy conservation, which ensures the 

wavelet at each scale has the same energy. Sometimes 1 a  is also adopted in some 

special applications. 

In the following discussion,   1w a a  is used as the weighting function. Thus 

the wavelet transform is written as 

     *1
,

t u
Wx u s x t dt

sa






 
  

 
 . (2.14) 

(a) 

(b) 
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This is the continuous wavelet transform. The signal  x t  could be a gearbox vibration 

signal, audio signal, or even a crack profile in the spatial domain. The normalized 

wavelet function can be written as 

  * *

,

1
u s

t u
t

sa
 

 
  

 
. (2.15) 

Equation 2.14 shows the integration in the product of the signal and the normalized 

wavelet. In mathematics, this is called the convolution integral. Therefore, the CWT can 

be described in a compact form as 

      *

,, u sWx u s x t t dt



  . (2.16) 

 

2.3.4 TYPICAL WAVELETS 

 The Haar wavelet is a sequence of rescaled square functions [106]. It is the 

simplest example of an orthonormal wavelet. The Haar wavelet is also known as 

Daubechies 1 tap wavelet. The mother wavelet of the Haar wavelet (shown in Figure 2.3) 

can be described as 

  

1
1 0

2

1
1 1

2
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t

t t

otherwise




 



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




. (2.17) 

Based on the characteristics of the Haar wavelet, it can be useful in discontinuity 

detection. 
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Figure 2.3 The Haar wavelet. 

 

Hermitian wavelets are a family of continuous wavelet, which can also be used in 

the CWT [107]. The n
th

 Hermitian wavelet is defined as the n
th

 derivative of a Gaussian 

function, 

    
21

222
n t

n
n n n

t
t n c H e

n


  
  

 
, (2.18) 

where  nH x  denotes the n
th

 Hermite polynomial, and the normalization coefficient is 

given by 

  

1
1 2
2 2 2 1 !!

n
n

nc n n n




 
   
 

. (2.19) 
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Figure 2.4 shows an example of Hermitian wavelets, which is the negative normalized 

first derivative of a Gaussian function, 

  
21

4 2
1 2

t

t te 
 

 . (2.20) 

Figure 2.5 displays another example of Hermitian wavelets, which is sometimes called 

“Mexican hat wavelet” and is the negative normalized second derivative of a Gaussian 

function [108], 

    
21

24 2
2

2
3 1

3

t

t t e 
 

  . (2.21) 

Depending on the application, all derivatives of the Gaussian function may be employed 

as a wavelet. 

 

Figure 2.4 One Hermitian wavelet (first derivative of a Gaussian function). 
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Figure 2.5 The Mexican hat wavelet. 

 

 The complex Morlet wavelet is composed of a complex exponential multiplied by 

a Gaussian window (shown in Figure 2.6), 

  
2

0

1 1
2* 4 2

t
i f t

t e e
 

 

 . (2.22) 

where 0f   is the central frequency of the mother wavelet. It is closely related to human 

hearing and vision, and has been applied into many research fields, such as the 

electrocardiogram (ECG), medicine, and music transcription. More detailed introduction 

and analysis to the complex Morlet wavelet is given in next section. 
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Figure 2.6 The complex Morlet wavelet. 

 

2.3.5 COMPLEX MORLET WAVELET 

 In 1946, the use of Gaussian-windowed sinusoids for time-frequency 

decomposition was introduced from ideas in quantum physics. It provides the best trade-

off between spatial and frequency resolution. In 1984, it was modified to keep the same 

wavelet shape over octave intervals, offering the first formalization of the continuous 

wavelet transform [109]. 

The shift parameter, u , and the scale parameter, s , can be included within the 

definition of the complex Morlet wavelet given by Equation 2.22. The shifted and dilated 

version of the mother wavelet can be given by 
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As the wavelet is squeezed and stretched to half and double of its original width (shown 

in Figure 2.2b), its frequency increases and decreases to double and half of its original 

value. 

 

2.3.6 LINEARITY PROPERTY 

 One property of the continuous wavelet transform is its linearity. Given a multi-

component signal 
1

N

i i

i

x x


 , where  1ix i N  are signal components, and 

 1i i N   are scalar weightings, the linearity states that the CWT coefficients for the 

signal x  are equivalent to the sum of the CWT coefficients for each component of x . In 

fact, the CWT is a convolution of a signal with a set of wavelets. Therefore, the 

foundation of this property is actually the linearity of integration. The property can be 

derived from 

 

     

   

   

 

*

,

*

,

1

*

,

1

1

,

,

u s

N

i i u s

i

N

i i u s

i

N

i i

i

Wx u s x t t dt

x t t dt

x t t dt

Wx u s



 

 

























   





 



. (2.24) 

Based on Equation 2.24, the CWT linearity property can be expressed as 

    
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40 

It can be used to analyze the multi-component signal. The linearity is used in the periodic 

error compensation algorithm to obtain periodic error amplitudes (or weightings). 
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CHAPTER 3 

WAVELET-BASED ALGORITHM DESIGN 

 

In this chapter, the periodic error compensation algorithm, which is based on the 

continuous wavelet transform, is described by introducing all the aspects during design. 

In the CWT, the complex Morlet wavelet is chosen as the mother wavelet. The 

mathematical model of periodic error is provided, as mentioned in the Chapter 1. The 

CWT is discretized before using in the periodic error compensation. The important 

concepts in the CWT using the Morlet wavelet are also introduced. The identification 

methods for periodic error information (frequency, phase, and amplitude) are offered in 

sequence. Then all the information can be combined, aiming at compensating the periodic 

error in a certain constant or non-constant velocity motion profile. 

 

3.1 PERIODIC ERROR MODEL 

 According to the discussion about periodic error in the Section 1.5, each order of 

the periodic error can be described as a simplified mathematical model, a pure sine wave 

 sinA t , where t  is the time, A  is the amplitude, and   is the phase. For example, for 

a periodic error, which consists of only first and second order periodic errors, can be 

expressed as    1 1 2 2sin sinA t A t  . Figure 3.1 shows first and second order periodic 

errors in both the time and spatial (polar coordinate) domains. The frequency, 1f , of the
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 first order periodic error is half of the second order error frequency, 
2f . Thus, the phase, 

1 , of first order periodic error is half of the second order phase, 
2 . 

 Higher order periodic error holds the similar relationship to the first order periodic 

error. In general, for k
th

 order periodic error  sink kA t , the frequency, 1kf kf , and the 

phase 1k k  . 

 

 

Figure 3.1. First and second order periodic error in time and spatial domain. 

 

3.2 DISCRETE TIME CONTINUOUS WAVELET TRANSFORM 

 The data collected from real world is always digital signal. Measured 

displacement data by a heterodyne interferometer, for instance, is collected at a very high 

sampling rate (typically 50 – 100 kHz), but it is still discrete signal. For a discrete signal, 

the continuous wavelet transform shown in Equation 2.14 cannot be directly applied. 

Instead, it must be transformed to a discretized form. For a digital signal  1x M  which 
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has M  data points, the discrete time continuous wavelet transform (DTCWT) can be 

described as 

    
 *

' 1

'
, '

M

n

n n t
Wx n s x n s t

s




   
    

  
 , (3.1) 

where  x n  is the n
th

 discrete data point, *  is the mother wavelet, M  is the number of 

total data points in the signal, and t  is the sampling time.  

 

3.3 EDGE EFFECT IN THE REAL-TIME ALGORITHM 

 When the algorithm is implemented to post-process a measured displacement 

signal, the entire signal can be directly analyzed with the DTCWT since it is already 

known. However, when applying the algorithm in real-time (that is, a new displacement 

data point is received at each sampling time), only the present and previous data points 

are known. The DTCWT coefficient of one data point is calculated with its neighboring 

points. When calculating the DTCWT at the last point of the signal, half of the wavelet is 

outside the signal as shown in Figure 3.2. Therefore, the DTCWT at the edges of the 

signal is not proportional to the DTCWT when the wavelet is almost entirely in the 

signal, resulting in an “edge effect”. 

There is no known method to eliminate this effect. However, many methods have 

been developed to partially resolve the issue on the edge of signals of finite extent: 1) 

adding a line of zero values (zero padding), a line of constant values equal to the last 
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Figure 3.2. The edge effect is depicted at the end of the signal. 

 

value of the signal (value padding), or some form of decay to zero for the last value 

(decay padding), at the end of the signal; 2) reflecting the signal at the edge (reflection); 

3) continuing the signal on from the last point back to the first point (periodization); 4) 

using a polynomial extrapolation of the signal at the end (polynomial fitting). Zero 

padding is used in the real-time DTCWT-based periodic error compensation algorithm 

proposed here. 

 This edge effect is one main error source in the compensation algorithm. Its effect 

to the accuracy of periodic error information identification is discussed in the next 

chapter. The real-time processing algorithm is described in the next section. 
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3.4 PERIODIC ERROR COMPENSATION ALGORITHM DESCRIPTION 

 This section describes a detailed real-time periodic error compensation algorithm 

design based on DTCWT, where the complex Morlet wavelet is used as the mother 

wavelet. It includes periodic error identification and reconstruction. 

 

3.4.1 DETREND OF THE SIGNAL 

The algorithm starts with storing the latest N data points in a memory array, 

 1X N , which is used as the signal to conduct the DTCWT. First, detrending  

 1X N  is required to eliminate the main displacement component (subtracting the line 

connecting the beginning and ending points of the signal). This step is required because 

the magnitude of the periodic error is typically on the nanometer level while the overall 

displacement is usually on the micrometer level or larger. A new array  1X N  is 

obtained after detrending the measured data  1X N . 

 

3.4.2 APPLICATION OF THE WAVELET TRANSFORM 

 The DTCWT (Equation 3.1) is applied to the signal  1X N  using the 

following five steps:  

1) substitute the data points in  1X N for x in Equation 3.1; 

2) select the mother wavelet to be the complex Morlet wavelet to produce 

child wavelets at various scales; 

3) set the shift parameter n to N (for the last point of the array); 
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4) build a scale array  1s M  to produce the child wavelets where M is the 

total integer number of scales used in the DTCWT calculation; 

5) using Equation 3.1 calculate the wavelet coefficient of the N
th 

data point in 

the array. 

Because the complex Morlet wavelet has complex values the resulting 

coefficients from the DTCWT calculation in Equation 3.1 will also be complex. 

Therefore, after applying the complex Morlet wavelet to the signal, the resulting wavelet 

transform is a complex array along the scale direction (see Figure 3.3).  

 

Figure 3.3. DTCWT coefficients calculation at n N  and scale  1s M . 

 

3.4.3 IDENTIFICATION OF THE RIDGE AND PHASE 

 The modulus and the phase for each complex coefficient can be calculated as: 
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    , ,abs n s Wx n s  and (3.2) 

  
  
  

Im ,
, arctan

Re ,

Wx n s
n s

Wx n s
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 
 

, (3.3) 

where Im and Re represent the imaginary and real parts of the DTCWT coefficient, 

respectively. For the modulus  ,abs N s  at  'X N  along the scale array, the maximum 

value of the DTCWT coefficient or “ridge” can be extracted. The ridge is defined as the 

location where the modulus reaches its local maximum at scale 
ridges  [110]. When the 

modulus is maximal at the ridge, the frequency of the wavelet scaled by 
ridges  shows the 

greatest match with the convolved periodic error signal [111]. 

 This 
ridges  equals 

1s , which corresponds to the frequency of first order periodic 

error. Therefore, the phase  , ridgeN s  is the first order periodic error phase at  'X N . A 

phase array  1 N  is used to store this phase. A new point is added by completing two 

steps: 1) remove  1  and shift  2 N  forward to  1 1N   and 2) set 

   , ridgeN N s  . Subsequently, the array  1 N  has the first order periodic error 

phase information for the latest N data points. Based on the periodic error model defined 

in Section 3.1, with the phase array  1 N  and an assumed unit amplitude, the k
th

 

order periodic error is    sin sink kA k  . It is located at the scale 1 /ks s k  since its 

frequency is 1kf kf  and the scale is inversely related to the frequency. The k
th

 order 

periodic error for the latest N points is 

            1 sin 1 ,sin 2 , ,sinkr N k k k N   , (3.4) 
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which is called the “reference periodic error”. 

 

3.4.4 IDENTIFICATION OF THE AMPLITUDE 

 The next step is to determine the amplitude of different periodic error orders. The 

entire periodic error  1e N  is a linear combination of m order periodic errors, which 

can be expressed as 

    
1

1 1
m

j j

j

e N A r N


 , (3.5) 

where  1jA j m  is the periodic error amplitude on the j
th

 order, which is to be 

quantified. 

Assuming that the detrended array,  1X N , is exactly the periodic error
1
, the 

assumed sinusoidal combination of periodic errors  1e N  can be said to be equivalent 

to  1X N  according to Equation 3.5 to obtain 

    
1

1 1
m

j j

j

X N A r N


  . (3.6) 

 The discrete form of the CWT in Eq. 3.1 can then be used on both sides of Eq. 

3.6. Equation 3.6 is effectively substituting the actual periodic error for x on one side of 

the equation and substituting the periodic error model on the other side of the equation. 

Once the values are substituted the complex Morlet wavelet can be used to calculate the 

coefficients by setting the location to be n N , and using scales  1s M . The linearity 

                                                           
1
 If there is a difference between the detrended signal and the actual periodic error due to imperfect 

detrending, this causes an error in the algorithm results. 
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property of the CWT introduced in Eq. 2.5 can then be used to construct the following 

result: 

          
1

' 1 , 1 1 , 1
m

j j

j

WX N N s M A Wr N N s M


    , (3.7) 

where     ' 1 , 1WX N N s M  has already been calculated. For m order reference 

periodic errors, another m DTCWT calculations about     1 , 1jWr N N s j m  are 

required. Amplitudes  1jA j m  include m unknowns, which require at least m 

equations to be solved. Recall that the frequency of j
th

 order periodic error is related to 

the scale 1 /js s j , so the DTCWT results   ' 1 , iWX N N s  and   1 ,j iWr N N s at 

scale is  are extracted for use  , 1i j m . Let   ' 1 ,i ic WX N N s , 

  1 ,ij j id Wr N N s , , 1i j m . The following set of equations can then be obtained 

from Equation 3.7: 
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. (3.8) 

The amplitudes  1jA j m  can therefore be determined. 

 

3.4.5 RECONSTRUCTION OF PERIODIC ERROR 

The magnitude M  of the periodic error at the latest sampling time is calculated 

using 

   
1

sin
m

i

i

M A i N


 , (3.9) 
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where   siniA i N  is i
th

  order reconstructed periodic error at n N . Finally, the 

magnitude M is subtracted from the original displacement data to determine the 

compensated displacement data point. 

 Figure 3.4 displays the sequence of calculations required for compensating one 

displacement data point in the DTCWT algorithm. 

 

Figure 3.4. Calculations to implement the periodic error compensation algorithm. 
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CHAPTER 4 

SIMULATION RESULTS 

 

In this chapter, simulated displacement data with superimposed periodic error are used to 

assess the validity of the wavelet-based compensation algorithm. The simulated data is 

first introduced. Then identifications of periodic error ridge, phase and amplitude are 

provided in sequence. For the results, the influence caused by the edge effect in the 

algorithm, the Morlet wavelet central frequency, and the size of the memory array used in 

the DTCWT, is also discussed. Finally, overall periodic error compensation performance 

of the wavelet-based algorithm is shown. In order to demonstrate the capability of the 

wavelet-based approach to compensate periodic error, it is compared to the traditional 

Fourier-based approach. 

 

4.1 SIMULATED DISPLACEMENT DATA 

The simulated displacement is designed to coincide with the collected data in a 

real heterodyne interferometer. But more ideally, only the first and second order periodic 

errors are considered in the simulated data. The interferometer parameters used in the 

simulation are: 

1) He-Ne laser wavelength of   = 633 nm; 

2) a fold factor of FF = 2, which describes the number of light passes 

through the interferometer (the first order error completes a full cycle in
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3)  633/2 = 316.5 nm, while the second order error requires 633/4 = 158.3 

nm); 

4) a sampling frequency was 62.5 kHz. 

A typical simulated signal used in the simulations is a linear displacement signal where 

first and second order periodic errors (amplitudes 4 nm and 2.5 nm, respectively) are 

superimposed during a constant velocity (50 mm/min) displacement as shown in Figure 

4.1. 

 

Figure 4.1 Simulated linear displacement at 50 mm/min and periodic error with 

magnitudes of 4 nm and 2.5 nm for first and second order. 
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The following sections discuss the results of ridge detection, phase detection, 

amplitude detection, and a comparison between the DTCWT and frequency domain 

approaches. 

 

4.2 RIDGE DETECTION 

 Identifying periodic error frequency components first requires ridge detection 

using Equation 3.2. The performance of the ridge detection portion of the algorithm is 

evaluated using the simulated displacement signal shown in Figure 4.1. 

 The algorithm is designed to apply in the real-time displacement measuring 

experiment. Therefore, the edge effect always occurs as introduced in Chapter 3. 

Inevitably, this leads to an error. In order to illustrate this error, the same algorithm is 

implemented offline for comparison. In this case, the entire displacement profile is 

known before the algorithm runs, which means the edge effect does not exist since at 

each point both previous and future data points can be used in the calculation. For both 

algorithms (real-time and offline), the comparison results of the measured DTCWT ridge 

for the simulated signal is displayed in Figure 4.2. The ridge detected from the real-time 

algorithm is at the integer scale 190 1 , while that from the off-line algorithm is 

consistently at scale 190. This demonstrates that periodic uncertainty in the real-time 

algorithm caused by the edge effect can cause the calculated scale to differ from the 

actual value. 
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Figure 4.2 The measured DTCWT ridge for the error signal. 

 

To ensure the calculation result is accurate enough for real-time error 

compensation, some parameters in the algorithm may be adjusted, such as the central 

frequency of the Morlet wavelet and the size of the memory array used in the DTCWT. 

For the same displacement data in Figure 4.1, Figure 4.3 shows the ridge 

identification result when the central frequency 0 1f  . The detected ridge is at the scale 

25 2 . The scale is inversely related to the frequency. For two scales which have 

uncertainties in the same level, the smaller scale leads to a larger uncertainty of the 

frequency. Ridge is the location where the frequency of the Morlet wavelet is identical to 

that of the signal, and the Morlet wavelet frequency decreases when the scale increases as 
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discussed in Section 2.3.5. Therefore, to increase the measured ridge for one signal, the 

central frequency of the Morlet mother wavelet can be increased. Figure 4.4 shows the 

identified ridge when 
0 8f  . In this case, the measured ridge is at the scale 190 1 . The 

base scale increases from 25 to 190 while its uncertainty does not change much, but this 

dramatically reduces the frequency uncertainty. However, the central frequency cannot be 

raised too high because it requires higher sampling rate and this is restricted by the 

hardware resources. Thus, 
0 8f  is used in the rest of simulations in this work. 

 

Figure 4.3 The measured DTCWT ridge ( 0 1f  ). 
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Figure 4.4 The measured DTCWT ridge ( 0 8f  ). 

 

 The size of the array used in the DTCWT, i.e. the memory array  1X N , can 

also be justified. The choice of this size is based on the sampling rate and the frequency 

of periodic error, because the array needs to include several cycles of periodic error (at 

least 8 – 10 cycles), in order to identify the error with high accuracy. If the sampling 

frequency is too high or the frequency of periodic error is too low, the array needs to be 

enlarged to accommodate enough periodic error cycles for calculation to achieve high 

accuracy in periodic error compensation. For example, when 100N  , the ridge 

identification result is shown in Figure 4.5a. It can be clearly seen from Figure 4.5b that 

the detected ridge is no longer related to the first order periodic error but the second 
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order, which means that in this situation, the size of the memory array is not enough to 

identify the first order periodic error frequency. Figures 4.6 and 4.7 display the cases at 

200N   and 400N  , respectively, where both results are 190 1  for the ridge. 

Therefore, 200N   is used in the following simulations, also based on the consideration 

for saving hardware resource. 

 

4.3 AMPLITUDE DETECTION 

 For the simulations in this section, a simulated constant velocity motion (50 

mm/min) with first order periodic error amplitude of 4 nm and second order periodic 

error amplitude of 2.5 nm is used just as in Section 4.2. To identify the periodic error 

amplitudes under this constant velocity condition, two methods are compared at every 

sampling instant. The first method is a fast Fourier transform (FFT) method similar to [6-

8]. The FFT of the error is computed after detrending the nominal displacement stored in 

the displacement array  1X N  and applying a Hanning window. The second method 

is the DTCWT-based algorithm. This algorithm is applied to calculate first and second 

order periodic error amplitudes (Equation 3.8, where m = 2 because only first and second 

order periodic errors exist) after obtaining the modulus and phase information (Equations 

3.2 and 3.3) and determining the reference periodic errors (Equation 3.4). The measured 

amplitudes are displayed in Figure 4.8. The frequency domain approach result is 

smoother since windowing reduces the spectral leakage. The FFT assumes that the data is 

point each sampling interval. It actually measures the average amplitude over the signal. 

For first order periodic error, the true value of its amplitude is 4 nm. The average value 
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Figure 4.5 The measured DTCWT ridge ( 100N  ). 

 

(a) 

(b) 
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Figure 4.6 The measured DTCWT ridge ( 200N  ). 

 

Figure 4.7 The measured DTCWT ridge ( 400N  ). 
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from the FFT approach is 3.92 nm; the amplitude measured by the DTCWT approach is 

4.25 nm. For second order periodic error, the true value is 2.5 nm. The amplitudes 

measured by the FFT and DTCWT approaches are 2.34 nm and 2.31 nm, respectively. 

The two approaches show good agreement for amplitude measurement. 

 

Figure 4.8 The measured amplitudes for the FFT and DTCWT approaches. 

 

4.4 PERIODIC ERROR COMPENSATION 

 In these tests, the performance of the entire DTCWT algorithm (from receiving a 

new data point to providing a compensated data point) is examined. Again, the simulated 

50 mm/min constant velocity motion with superimposed periodic errors is used. The time 

domain periodic error compensation result is displayed in Figure 4.9. The root-mean-
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square error is reduced from 3.32 nm to 0.49 nm for both two methods. Figure 4.10 

displays the compensation result in the frequency domain. After compensation, the 

amplitudes of the first and second order periodic errors are reduced from 4 nm to 0.24 nm 

(0.27 nm for the FFT method) and from 2.5 nm to 0.30 nm (0.27 nm for the FFT 

method), respectively. These similar results indicate that the DTCWT algorithm has the 

capability to accurately compensate the periodic error. 

 

Figure 4.9 The result of periodic error compensation (both DTCWT and FFT approaches) 

in the time domain is displayed. 
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Figure 4.10 (a) The result of periodic error compensation in the frequency domain is 

presented. (b) Zoomed view of the compensation result for first order periodic error. 

(a) 

(b) 
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Figure 4.10 (continued) (c) Zoomed view of the compensation result for second order 

periodic error. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 

This chapter includes an overall conclusion to this work, from Chapter 1 to 4, and 

outlines directions for future research. 

 

5.1 CONCLUSIONS 

 This thesis introduces a novel wavelet-based periodic error measurement and 

compensation method that can be used to compensate periodic errors for both constant 

and non-constant velocity profiles in real-time. 

 Chapter 1 provides background of interferometry. Two types of interferometers 

are introduced. Error sources in heterodyne interferometry are analyzed, and the focus is 

on periodic error. The traditional frequency domain compensation approach for periodic 

error and its limitation are also given. 

 Chapter 2 introduces wavelet analysis, including DWT and CWT. For CWT, 

related equations, typical wavelets that could be used, and the linearity property are given. 

The complex Morlet wavelet is described in detail since it is used in the algorithm. The 

complex Morlet wavelet is suitable because it enables localization in both the time and 

frequency domains. The frequency of the periodic error signal is located at the scale with 

the maximum wavelet coefficient and the phase information can be extracted based on 

the real and imaginary parts of this coefficient.
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  Chapter 3 describes the entire algorithm design process. It starts from the 

simplified periodic error model, shows the discrete form of the CWT, and explains the 

edge effect and its reduction methods. The implementation of the algorithm consists of 

detrending the signal, applying the wavelet transform, identifying the ridge, phase and 

amplitude, and finally reconstructing and compensating periodic error. 

 Chapter 4 shows the simulation results using the wavelet-based algorithm. A 

linear displacement profile is used in the simulations. Identifications of ridge and 

amplitude, and the overall periodic error compensation result, are given. Factors which 

influence the compensation result are also discussed.  

The performance of this approach was compared to the traditional frequency 

domain approach under constant velocity conditions and demonstrated accurate 

compensation results, showing its capability to compensate periodic error accurately. 

 

5.2 FUTURE WORK 

 The algorithm presented in this work is designed to be executed on parallel 

hardware offering the potential application for real-time compensation of periodic error 

in heterodyne interferometers. In the future, the algorithm will be transplanted on the 

hardware, for instance, an FPGA board, to collect data and compensate the periodic error 

within the displacement. 

 Another investigation direction will be on high order periodic error compensation 

and compensation of periodic error with varying amplitudes at different orders. 

 

 



 

66 

REFERENCES 

[1] Bobroff N. Residual errors in laser interferometry from air turbulence and 

nonlinearity. Applied optics 1987;26(13):2676-82. 

[2] Bobroff N. Recent advances in displacement measuring interferometry. Measurement 

Science and Technology 1993;4(9):907. 

[3] Estler W. High-accuracy displacement interferometry refin air. Applied optics 

1985;24(6):808-15. 

[4] Schmitz T, Evans C, Davies A, Estler WT. Displacement uncertainty in 

interferometric radius measurements. CIRP Annals-Manufacturing Technology 

2002;51(1):451-4. 

[5] Schmitz T, Kim HS. Monte Carlo evaluation of periodic error uncertainty. Precision 

engineering 2007;31(3):251-9. 

[6] Patterson S, Beckwith J. Reduction of systematic errors in heterodyne interferometric 

displacement measurement. In: Proceedings of the 8th International Precision 

Engineering Seminar (IPES). 1995. p. 101-4. 

[7] Badami V, Patterson S. A frequency domain method for the measurement of 

nonlinearity in heterodyne interferometry. Precision engineering 2000;24(1):41-9. 

[8] Badami V, Patterson S. Investigation of nonlinearity in high-accuracy heterodyne 

laser interferometry. In: Proceedings of the 12th annual American Society for Precision 

Engineering (ASPE) conference. 1997. p. 153-6. 

[9] Daubechies I. The wavelet transform, time-frequency localization and signal analysis. 

IEEE Transactions on Information Theory 1990;36(5):961-1005. 

[10] Pedrotti F, Pedrotti M, Pedrotti L. Introduction to Optics 3rd edition. New Jersey: 

Prentice Education; 2007. 

[11] Peggs G, Yacoot A. A review of recent work in sub-nanometre displacement 

measurement using optical and X–ray interferometry. Philosophical Transactions of the 

Royal Society of London A: Mathematical, Physical and Engineering Sciences 

2002;360(1794):953-68. 

[12] Agilent Technologies. Achieving maximum accuracy and repeatability. Santa Clara, 

CA 2001.



 

67 

[13] Wang C, Ellis JD. Dynamic Doppler Frequency Shift Errors: Measurement, 

Characterization, and Compensation. Ieee Transactions on Instrumentation and 

Measurement 2015;64(7):1994-2004. 

[14] Schmitz T, Beckwith J. An investigation of two unexplored periodic error sources in 

differential-path interferometry. Precision engineering 2003;27(3):311-22. 

[15] Kim H, Schmitz T, Beckwith J. Periodic error in heterodyne interferometry: 

Examination and Elimination. In: Halsey D, Raynor W, ed, editors. Handbook of 

Interferometers: Research, Technology and Applications. Hauppauge, NY: Nova 

Science; 2009. 

[16] Schmitz TL, Houck L, Chu D, Kalem L. Bench-top setup for validation of real time, 

digital periodic error correction. Precision engineering 2006;30(3):306-13. 

[17] Fedotova G. Analysis of the measurement error of the parameters of mechanical 

vibrations. Measurement Techniques 1980;23(7):577-80. 

[18] Quenelle R. Nonlinearity in interferometric measurements. Hewlett-Packard Journal 

1983;34(4):10. 

[19] Sutton C. Nonlinearity in length measurements using heterodyne laser Michelson 

interferometry. Journal of Physics E: Scientific Instrumentation 1987;20:1290-2. 

[20] Steinmetz C. Sub-micron position measurement and control on precision machine 

tools with laser interferometry. Precision engineering 1990;12(1):12-24. 

[21] Oldham N, Kramar J, Hetrick P, Teague E. Electronic limitations in phase meters for 

heterodyne interferometry. Precision engineering 1993;15(3):173-9. 

[22] Demarest FC. High-resolution, high-speed, low data age uncertainty, heterodyne 

displacement measuring interferometer electronics. Measurement Science and 

Technology 1998;9(7):1024. 

[23] Edlén B. The refractive index of air. Metrologia 1966;2(2):71. 

[24] Popela B. The Influence of the Atmosphere on the Wavelength of the He-Ne Laser 

and the Solution of Corrections of the Laser Interferometer. Journal of modern optics 

1972;19(7):605-12. 

[25] Jones FE. Simplified equation for calculating the refractivity of air. Applied optics 

1980;19(24):4129-30. 

[26] Jones FE. The refractivity of air. Journal of Research 1981;86:27-32. 

[27] Schellekens P, Wilkening G, Reinboth F, Downs M, Birch K, Spronck J. 

Measurements of the refractive index of air using interference refractometers. Metrologia 

1986;22(4):279. 



 

68 

[28] Birch K, Reinboth F, Ward R, Wilkening G. The effect of variations in the refractive 

index of industrial air upon the uncertainty of precision length measurement. Metrologia 

1993;30(1):7. 

[29] Číp O, Petrů F, Matoušek V, Lazar J. Direct measurement of index of refraction of 

air by means of high-resolution laser interferometry. Physica Scripta 

2005;2005(T118):48. 

[30] Cosijns S, Haitjema H, Schellekens P. Modeling and verifying non-linearities in 

heterodyne displacement interferometry. Precision engineering 2002;26(4):448-55. 

[31] Rosenbluth A, Bobroff N. Optical sources of non-linearity in heterodyne 

interferometers. Precision engineering 1990;12(1):7-11. 

[32] Augustyn W, Davis P. An analysis of polarization mixing errors in distance 

measuring interferometers. Journal of Vacuum Science & Technology B 1990;8(6):2032-

6. 

[33] Xie Y, Wu Y-z. Zeeman laser interferometer errors for high-precision 

measurements. Applied optics 1992;31(7):881-4. 

[34] De Freitas J, Player M. Importance of rotational beam alignment in the generation of 

second harmonic errors in laser heterodyne interferometry. Measurement Science and 

Technology 1993;4(10):1173. 

[35] Hou W, Zhao X. Drift of nonlinearity in the heterodyne interferometer. Precision 

engineering 1994;16(1):25-35. 

[36] De Freitas J, Player M. Polarization effects in heterodyne interferometry. Journal of 

modern optics 1995;42(9):1875-99. 

[37] Howard L, Stone J. Computer modeling of heterodyne interferometer errors. 

Precision engineering 1995;12(1):143-6. 

[38] Wu C-m, Su C-s. Nonlinearity in measurements of length by optical interferometry. 

Measurement Science and Technology 1996;7(1):62. 

[39] Park B, Eom T, Chung M. Polarization properties of cube-corner retroreflectors and 

their effects on signal strength and nonlinearity in heterodyne interferometers. Applied 

optics 1996;35(22):4372-80. 

[40] De Freitas JM. Analysis of laser source birefringence and dichroism on nonlinearity 

in heterodyne interferometry. Measurement Science and Technology 1997;8(11):1356. 

[41] Li B, Liang J-w. Effects of polarization mixing on the dual-wavelength heterodyne 

interferometer. Applied optics 1997;36(16):3668-72. 



 

69 

[42] Wu C-M, Deslattes RD. Analytical modeling of the periodic nonlinearity in 

heterodyne interferometry. Applied optics 1998;37(28):6696-700. 

[43] Petrů F, Čı́p O. Problems regarding linearity of data of a laser interferometer with a 

single-frequency laser. Precision engineering 1999;23(1):39-50. 

[44] Dubovitsky S, Lay OP, Seidel DJ. Elimination of heterodyne interferometer 

nonlinearity by carrier phase modulation. Optics letters 2002;27(8):619-21. 

[45] Zhao H, Zhang G. Nonlinear error by orientation and elliptic polarization in a two-

beam interferometer. Optical Engineering 2002;41(12):3204-8. 

[46] Hou W. Subdivision of Nonlinearity in Heterodyne Interferometers.  Fringe 2005: 

Springer; 2006. p. 327-33. 

[47] Hou W. Optical parts and the nonlinearity in heterodyne interferometers. Precision 

engineering 2006;30(3):337-46. 

[48] Stone JA, Howard LP. A simple technique for observing periodic nonlinearities in 

Michelson interferometers. Precision engineering 1998;22(4):220-32. 

[49] Yin C, Dai G, Chao Z, Xu Y, Xu J. Determining the residual nonlinearity of a high-

precision heterodyne interferometer. Optical Engineering 1999;38(8):1361-5. 

[50] Loner D, Knarren B, Cosijns S, Haitjema H, Schallakans P. Laser polarization state 

measurement in heterodyne interferometry. CIRP Annals-Manufacturing Technology 

2003;52(1):439-42. 

[51] Knarren BA, Cosijns SJ, Haitjema H, Schellekens PH. Fiber characterization for 

application in heterodyne laser interferometry with nanometer uncertainty, part I: 

polarization state measurements. Optical Engineering 2005;44(2):025002--9. 

[52] Knarren BA, Cosijns SJ, Haitjema H, Schellekens PH. Fiber characterization for 

application in heterodyne laser interferometry, part II: modeling and analysis. Optical 

Engineering 2005;44(2):025003--9. 

[53] Topcu S, Chassagne L, Alayli Y, Juncar P. Improving the accuracy of homodyne 

Michelson interferometers using polarisation state measurement techniques. Optics 

communications 2005;247(1):133-9. 

[54] Kim HS, Schmitz TL. Periodic error calculation from spectrum analyzer data. 

Precision engineering 2010;34(2):218-30. 

[55] Ganguly V, Kim NH, Kim HS, Schmitz T. Sensitivity analysis of periodic errors in 

heterodyne interferometry. Measurement Science and Technology 2011;22(3):035305. 

[56] Eom T, Kim J, Jeong K. The dynamic compensation of nonlinearity in a homodyne 

laser interferometer. Measurement Science and Technology 2001;12(10):1734. 



 

70 

[57] Tanaka M, Yamagami T, Nakayama K. Linear interpolation of periodic error in a 

heterodyne laser interferometer at subnanometer levels [dimension measurement]. Ieee 

Transactions on Instrumentation and Measurement 1989;38(2):552-4. 

[58] Hou W, Wilkening G. Investigation and compensation of the non-linearity of 

heterodyne interferometers. Precision engineering 1992;14(2):91-8. 

[59] Wu C-m, Su C-s, Peng G-S. Correction of nonlinearity in one-frequency optical 

interferometry. Measurement Science and Technology 1996;7(4):520. 

[60] Wu C-m, Lawall J, Deslattes RD. Heterodyne interferometer with subatomic 

periodic nonlinearity. Applied optics 1999;38(19):4089-94. 

[61] Nakatani N. Heterodyne interferometers using orthogonally polarized and two-

frequency shifted light sources with super-high extinction ratio. Optical Review 

1999;6(5):443-8. 

[62] Lawall J, Kessler E. Michelson interferometry with 10 pm accuracy. Review of 

Scientific Instruments 2000;71(7):2669-76. 

[63] Guo J, Zhang Y, Shen S. Compensation of nonlinearity in a new optical heterodyne 

interferometer with doubled measurement resolution. Optics communications 

2000;184(1):49-55. 

[64] Wang C, Augousti A, Mason J. Real time evaluation and correction of nonlinear 

errors in single frequency interferometers. Transactions of the Institute of Measurement 

and Control 2000;22(5):405-12. 

[65] Schmitz T, Beckwith J. Acousto-optic displacement-measuring interferometer: a 

new heterodyne interferometer with Ångstrom-level periodic error. Journal of modern 

optics 2002;49(13):2105-14. 

[66] Wu C-M, Lin S-T, Fu J. Heterodyne interferometer with two spatial-separated 

polarization beams for nanometrology. Optical and quantum electronics 

2002;34(12):1267-76. 

[67] Eom T, Choi T, Lee K, Choi H, Lee S. A simple method for the compensation of the 

nonlinearity in the heterodyne interferometer. Measurement Science and Technology 

2002;13(2):222-5. 

[68] Yeh H-C, Ni W-T, Pan S-S. Real-time motion control with subnanometer 

heterodyne interferometry. International Journal of Modern Physics D 2002;11(07):1087-

99. 

[69] Halverson PG, Spero RE. Signal processing and testing of displacement metrology 

gauges with picometre-scale cyclic nonlinearity. Journal of Optics A: Pure and Applied 

Optics 2002;4(6):S304. 



 

71 

[70] Bitou Y. Polarization mixing error reduction in a two-beam interferometer. Optical 

Review 2002;9(5):227-9. 

[71] Lay OP, Dubovitsky S. Polarization compensation: a passive approach to a reducing 

heterodyne interferometer nonlinearity. Optics letters 2002;27(10):797-9. 

[72] Wu C-m. Periodic nonlinearity resulting from ghost reflections in heterodyne 

interferometry. Optics communications 2003;215(1):17-23. 

[73] Li Z, Herrmann K, Pohlenz F. A neural network approach to correcting nonlinearity 

in optical interferometers. Measurement Science and Technology 2003;14(3):376. 

[74] Dai G, Pohlenz F, Danzebrink H-U, Hasche K, Wilkening G. Improving the 

performance of interferometers in metrological scanning probe microscopes. 

Measurement Science and Technology 2004;15(2):444. 

[75] Keem T, Gonda S, Misumi I, Huang Q, Kurosawa T. Removing nonlinearity of a 

homodyne interferometer by adjusting the gains of its quadrature detector systems. 

Applied optics 2004;43(12):2443-8. 

[76] Keem T, Gonda S, Misumi I, Huang Q, Kurosawa T. Simple, real-time method for 

removing the cyclic error of a homodyne interferometer with a quadrature detector 

system. Applied optics 2005;44(17):3492-8. 

[77] Schmitz T, Chu D, Houck III L. First-order periodic error correction: validation for 

constant and non-constant velocities with variable error magnitudes. Measurement 

Science and Technology 2006;17(12):3195. 

[78] Hong M, Jeon J, Park K, You K. Adaptive nonlinearity compensation of heterodyne 

laser interferometer. In: Knowledge-Based Intelligent Information and Engineering 

Systems. 2006. p. 545-52. 

[79] Buchta Z, Lazar J. Small displacement measurements with subatomic resolution by 

beat frequency measurements. Measurement Science and Technology 2007;18(7):2005. 

[80] Olyaee S, Nejad MS. Nonlinearity and frequency-path modelling of three-

longitudinal-mode nanometric displacement measurement system. Optoelectronics, IET 

2007;1(5):211-20. 

[81] Teng H-K, Lang K-C. Heterodyne interferometer for displacement measurement 

with amplitude quadrature and noise suppression. Optics communications 

2007;280(1):16-22. 

[82] Schmitz T, Chu DC, Kim HS. First and second order periodic error measurement for 

non-constant velocity motions. Precision engineering 2009;33(4):353-61. 

[83] Schluchter C, Ganguly V, Chu D, Schmitz TL. Low velocity compensation for first 

order periodic error caused by beam shear. Precision engineering 2011;35(2):241-7. 



 

72 

[84] Schmitz T, Adhia C, Kim HS. Periodic error quantification for non-constant velocity 

motion. Precision engineering 2012;36(1):153-7. 

[85] Ellis JD, Baas M, Joo K-N, Spronck JW. Theoretical analysis of errors in correction 

algorithms for periodic nonlinearity in displacement measuring interferometers. Precision 

engineering 2012;36(2):261-9. 

[86] Wu C, Su C, Peng G, Huang Y. Polarimetric, nonlinearity-free, homodyne 

interferometer for vibration measurement. Metrologia 1996;33(6):533. 

[87] Köning R, Dixson R, Fu J, Vorburger T. The role of periodic interferometer errors in 

the calibration of capacitance displacement sensors for nanometrology applications. 

Measurement Science and Technology 2001;12(11):2002. 

[88] Wu C-m. Heterodyne interferometric system with subnanometer accuracy for 

measurement of straightness. Applied optics 2004;43(19):3812-6. 

[89] Evans C, Holmes M, Demarest F, Newton D, Stein A. Metrology and calibration of 

a long travel stage. CIRP Annals-Manufacturing Technology 2005;54(1):495-8. 

[90] Deng Y-l, Li X-j, Wu Y-b, Hu J-g, Yao J-q. Analysis of frequency mixing error on 

heterodyne interferometric ellipsometry. Measurement Science and Technology 

2007;18(11):3339. 

[91] Daubechies I. Orthonormal bases of compactly supported wavelets. 

Communications on pure and applied mathematics 1988;41(7):909-96. 

[92] Daubechies I. Ten lectures on wavelets: SIAM; 1992. 

[93] Combes J, Grossmann A, Tchamitchian P, Pierce AD. Wavelets: Time-frequency 

methods and phase space. The Journal of the Acoustical Society of America 

1991;89(5):2477-8. 

[94] Rioul O, Vetterli M. Wavelets and signal processing. IEEE signal processing 

magazine 1991;8(LCAV-ARTICLE-1991-005):14-38. 

[95] Meyer Y. Wavelets and applications: Paris [etc.]: Masson; Berlin [etc.]: Springer-

Verlag; 1992. 

[96] Ruskai MB, Beylkin G, Coifman R. Wavelets and their Applications. Jones and 

Bartlett Books in Mathematics, Boston: Jones and Bartlett, 1992, edited by Ruskai, Mary 

B; Beylkin, Gregory; Coifman, Ronald 1992;1. 

[97] Donoho DL. Unconditional bases are optimal bases for data compression and for 

statistical estimation. Applied and computational harmonic analysis 1993;1(1):100-15. 

[98] Burke B. The mathematical Microscope: waves, wavelets and beyond. A Positron 

Named Priscilla, Scientific Discovery at the Frontier 1994:196-235. 



 

73 

[99] Hubbard BB. The World According the Wavelet: The Story of a Mathematical 

Technique in the Making. Ak Peters 1996:227-9. 

[100] Donoho DL. Nonlinear wavelet methods for recovery of signals, densities, and 

spectra from indirect and noisy data. In: Proceedings of symposia in Applied 

Mathematics. 1993. p. 173-205. 

[101] Donoho DL. De-noising by soft-thresholding. Information Theory, IEEE 

Transactions on 1995;41(3):613-27. 

[102] Saito N. Simultaneous noise suppression and signal compression using a library of 

orthonormal bases and the minimum-description-length criterion. In: SPIE's International 

Symposium on Optical Engineering and Photonics in Aerospace Sensing. 1994. p. 224-

35. 

[103] Wei D, Tian J, Wells Jr RO, Burrus CS. A new class of biorthogonal wavelet 

systems for image transform coding. Image Processing, IEEE Transactions on 

1998;7(7):1000-13. 

[104] Guo H. Wavelets for approximate Fourier Transformand data compression: PhD 

thesis, Rice University; 1997. 

[105] Farge M. Wavelet transforms and their applications to turbulence. Annual Review 

of Fluid Mechanics 1992;24(1):395-458. 

[106] Haar A. Zur theorie der orthogonalen funktionensysteme. Mathematische Annalen 

1910;69(3):331-71. 

[107] Szu H, Hsu C, Sa LD, Li W. Hermitian Hat wavelet design for singularity detection 

in the PARAGUAY river level data analysis. Proceeding of SPIE The International 

Socity for Optical Engineering 1997;3078:96-115. 

[108] Ormsby RRH, Klauder B. A choice of wavelets. CSEG Recorder 1994;19:8-9. 

[109] Taner M. Joint Time/Frequency Analysis, Q Quality Factor and Dispersion 

Computation Using Gabor-Morlet Wavelets or the Gabor-Morlet Transform. RSI 

Technical Report. 2001. 

[110] Liu H, Cartwright AN, Basaran C. Moire interferogram phase extraction: a ridge 

detection algorithm for continuous wavelet transforms. Applied optics 2004;43(4):850-7. 

[111] Cherbuliez M, Jacquot P. Phase computation through wavelet analysis: yesterday 

and nowadays. Fringe. 2001. p. 154-62. 

 


	Wavelet Analysis of Periodic Error in Heterodyne Interferometry
	Recommended Citation

	tmp.1460565766.pdf.rABne

