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ABSTRACT 

 

Blood stains, which are among the traces encountered most frequently at crime 

scenes, are important for potential extraction and amplification of DNA for suspect 

identification, as well for spatter pattern analysis to reveal a sequence of events.  

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 

was used in detection of blood stains and age estimation because of signature 

absorbances in the mid-infrared region at 3300 cm-1 (Amide A), 2800-3000 cm-1 (Amide 

B), ~1650 cm-1 (Amide I), ~1540 cm-1 (Amide II) ,and 1200-1350 cm-1 (Amide III).  

Position and intensity shifts for amide peaks were observed due to aging changes 

occurring as a result of the denaturation of blood proteins and water 

absorption/desorption. Partial least square (PLS) regression was used in this work to 

combine these changes in a multivariate calibration for blood age estimation. Calibration 

experiments over several months at 30°C under a variety of humidity and substrates 

enable prediction of blood stain age under different environmental conditions. 

Amide peak intensity changes in the spectrum can be related to blood 

concentration. Multivariate calibrations of IR spectra of blood dilutions on four types of 

fabric (acrylic, nylon, polyester, and cotton) were built using PLS. Gap derivatives (GDs) 

were applied as a preprocessing technique to optimize the performance of calibration 

models. Detection limits of 0.028 µg/cm2 for acrylic, 0.020 µg/cm2 for nylon, 0.017 

µg/cm2 for polyester, and 0.0027 µg/cm2 for cotton were found.
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As a popular technique for rapid infrared spectra collection, ATR-FTIR requires 

samples to be compressed against an internal reflection element. However, depending on 

the accessory design, the pressure applied to the sample is not always well controlled. 

While collecting data from fabrics with heterogeneous coatings, we have observed 

systematic pressure-dependent changes in spectra that can be eliminated by reproducible 

pressure control. We describe a pressure sensor adapted to work with an ATR pressure 

tower to enable more rigorous control of pressure during ATR sampling. 



vii 

TABLE OF CONTENTS 

DEDICATION ................................................................................................................... iii 

ACKNOWLEDGEMENTS .................................................................................................... iv 

ABSTRACT ....................................................................................................................... v 

LIST OF TABLES .............................................................................................................. ix 

LIST OF FIGURES .............................................................................................................. x 

CHAPTER ONE: USING FOURIER TRANSFORM INFRARED SPECTROSCOPY TO ESTIMATE 

BLOOD AGE UNDER DIFFERENT ENVIRONMENTAL CONDITIONS ........................................ 1 

 

ABSTRACT ............................................................................................................ 2 

 

INTRODUCTION ..................................................................................................... 2 

 

METHOD ............................................................................................................... 7 

 

RESULTS AND DISCUSSION ................................................................................... 10 

 

CONCLUSIONS .................................................................................................... 13 

 

ACKNOWLEDGEMENTS ........................................................................................ 13 

 

REFERENCES ....................................................................................................... 15 

 

CHAPTER TWO: DETECTION LIMITS FOR BLOOD ON FABRICS USING ATTENUATED TOTAL 

REFLECTANCE INFRARED SPECTROSCOPY AND DERIVATIVE PROCESSING .......................... 33 

 

ABSTRACT .......................................................................................................... 34 

 

INTRODUCTION ................................................................................................... 34 

 

METHOD ............................................................................................................. 36 

 

DISCUSSION ........................................................................................................ 40 

 

CONCLUSIONS .................................................................................................... 44



viii 

ACKNOWLEDGEMENTS ........................................................................................ 44 

 

REFERENCES ....................................................................................................... 45 

 

CHAPTER THREE: ATTENUATED TOTAL REFLECTANCE SAMPLING IN INFRARED 

SPECTROSCOPY OF HETEROGENEOUS MATERIALS REQUIRES REPRODUCIBLE PRESSURE 

CONTROL ....................................................................................................................... 60 

 

ABSTRACT .......................................................................................................... 61 

 

INTRODUCTION ................................................................................................... 61 

 

METHOD ............................................................................................................. 63 

 

RESULTS AND DISCUSSION ................................................................................... 65 

 

CONCLUSIONS .................................................................................................... 67 

 

ACKNOWLEDGEMENTS ........................................................................................ 68 

 

REFERENCES ....................................................................................................... 69 

 



ix 

LIST OF TABLES 

Table 1.1. Correlation between proteins structure and amide I frequency ....................... 19 

 

Table 1.2. PLS calibration statistics for age of bloodstains on acrylic, up to 20 days with 

different dilutions at different relative humidity ............................................................. 20 

 

Table 1.3. PLS calibration statistics for age of bloodstains on cotton, up to 21 days with 

different dilutions at different relative humidity ............................................................. 21 

 

Table 1.4. PLS calibration statistics for age of bloodstains on (A) acrylic and (B) cotton, 

up to 83 days with different dilutions at different relative humidity ............................... 22 

 

Table 2.1. Penetration depth for fabrics ......................................................................... 48 

 

Table 2.2. Conversion factors of 1/dilution factor to blood solid coverage (mg/cm2) for 

different fabric types ..................................................................................................... 49 

 

Table 2.3. Average thickness of different fabric types. ................................................... 50 

 

Table 3.1. Conversion of electrical resistance of the pressure sensor to the force 

applied .......................................................................................................................... 73 

 

  



x 

LIST OF FIGURES 

Figure 1.1. Geometry of the peptide backbone ............................................................... 23 

 

Figure 1.2. Secondary structure of protein: (A) α-helix. (B) β-sheet. .............................. 24 

 

Figure 1.3. A spectrum of blood collected using attenuated total reflectance Fourier 

transform infrared spectroscopy..................................................................................... 25 

 

Figure 1.4. (Right) Three replicate acrylic samples, and (left) three replicate cotton 

samples doped with blood at varying dilution factors ..................................................... 26 

 

Figure 1.5. Artificial aging environment created with glass tanks (side and top views) .. 27 

 

Figure 1.6. Principal component projections of spectra taken from acrylic samples coated 

with blood and held at 65% relative humidity after the third day of artificial aging ........ 28 

 

Figure 1.7. Principal component projections of spectra taken from cotton samples coated 

with blood and held at 65% relative humidity after the third day of artificial aging ........ 29 

 

Figure 1.8. PLS calibration for age of bloodstains, based on ATR-FTIR spectra from 10× 

diluted bloodstains on acrylic at 75% relative humidity for 20 days. .............................. 30 

 

Figure 1.9. PLS prediction based on ATR-FTIR spectra from 10× diluted bloodstains on 

cotton at 75% relative humidity for 21 days ................................................................... 31 

 

Figure 1.10. PLS calibration based on ATR-FTIR spectra from 10× diluted bloodstains 

on acrylic at 75% relative humidity for 83 days. The coefficient of variation was 0.957 

and RMSEC was 5.443 days.......................................................................................... 32 

 

Figure 2.1. Schematic for measuring fabric thickness .................................................... 51 

 

Figure 2.2. Summary of the best PLSR models for acrylic. ............................................ 52 

 

Figure 2.3. Summary of the best PLSR models for nylon ............................................... 53 

 

Figure 2.4. Summary of the best PLSR models for polyester ......................................... 54 

 

Figure 2.5. Summary of the best PLSR models for cotton .............................................. 55



xi 

Figure 2.6. PLSR prediction of dilution factor for blood on acrylic based on the amide I-

II region using fourth gap derivatives (gap sizes: 10, 12, 32, 34). Light dots represent 

calibration set (400 spectra), and dark dots represent test set (100 spectra) data ............. 56 

 

Figure 2.7. PLSR prediction of dilution factor for blood on nylon based on the amide I-II 

region using fourth gap derivatives (gap size:14, 26, 36, 46). Light dots represent 

calibration set (400 spectra), and dark dots represent test set (100 spectra) data ............. 57 

 

Figure 2.8. PLSR prediction of dilution factor for blood on polyester based on the amide 

A-B region using fourth gap derivatives (gap size: 22, 36, 40, 42). Light dots represent 

calibration set (400 spectra), and dark dots represent test set (100 spectra) data ............. 58 

 

Figure 2.9. PLSR prediction of dilution factor for blood on cotton based on the amide I-II 

region using fourth gap derivatives (gap size:12, 20, 22, 44). Light dots represent 

calibration set (400 spectra), and dark dots represent test set (100 spectra) data ............. 59 

 

Figure 3.1. (A) ATR pressure measurement setup; (B) Close-up of pressure sensor 

between glass slides and circuit connection to multimeter probes .................................. 74 

 

Figure 3.2. Calibration of the force applied vs. one over the electrical resistance of the 

pressure sensor .............................................................................................................. 75 

 

Figure 3.3. Spectra of cotton samples with heterogeneous blood coating collected under 

different ATR pressures (pressure increases from up to bottom) .................................... 76 

 

Figure 3.4. Spectra (after smoothing and preprocessing) acquired at varying ATR 

pressures: (A) standard normal variate; (B) extended multiplicative signal correction .... 77 

 

Figure 3.5: Principal component projections analysis of smoothed spectra: (A) after SNV 

preprocessing; (B) after EMSC preprocessing. Color indicates applied ATR pressure ... 78 

 

Figure 3.6. Loading plots for spectra preprocessed by: (A) SNV (second PC); (B) EMSC 

(first PC) ....................................................................................................................... 79 

 

Figure 3.7. Principal component scores vs. electrical capacity of the pressure sensor, 

which indicates the different pressures applied: (A) SNV transformed data; (B) EMSC 

transformed data ............................................................................................................ 80 

 



1 

CHAPTER ONE 

 

USING FOURIER TRANSFORM INFRARED SPECTROSCOPY TO 

ESTIMATE BLOOD AGE UNDER DIFFERENT ENVIRONMENTAL 

CONDITIONS 
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ABSTRACT 

 

Estimating the age of blood stains with good accuracy and precision has been an 

elusive goal for forensic investigations. Estimates of blood stain age can contribute to 

verify witness’ statements, limit the number of suspects and confirm alibis. Fourier 

transform infrared spectroscopy (FTIR) can be used in forensic detection of blood stains 

and age estimation because of signature absorbance in the mid-infrared region at 3300 

cm-1 (Amide A), 2800 cm-1 to 3000 cm-1 (Amide B), ~1650 cm-1 (Amide I), ~1540 cm-1 

(Amide II) ,and 1200 cm-1 to 1350 cm-1 (Amide III). We have observed position and 

intensity shifts for these peaks due to age changes occurring as a result of the 

denaturation of blood proteins and water absorption/desorption. Partial least square 

regression (PLS) was used in this work to combine these changes in a multivariate 

calibration that reveals correlations between the amide peak changes and blood age. 

Calibration experiments over 83 days at 30°C under a variety of humidity and substrate 

conditions enable prediction of blood stain age under different environmental conditions. 

This research contributes to the understanding of mechanisms of blood aging and 

provides a nondestructive and simple approach for predicting blood age under a variety 

of environmental conditions. 

 

INTRODUCTION 

 

Blood stains, which are among the traces encountered most frequently at crime 

scenes, are important for potential extraction and amplification of DNA for suspect 
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identification, as well for spatter pattern analysis to reveal a sequence of events.1-6 

Reconstruction of blood stain patterns at a crime scene can reveal a sequence of events.4-6 

The extraction and amplification of DNA can help identify possible suspects.3,4 The 

estimation of the age of blood stains can also provide with probative forensic information 

regarding the time a crime was committed.1,7 

In 1907, Tomellini developed a color chart to record the changing colors of blood 

over a period of a year.7 Leers, in 1910, found that blood stains change from 

oxyhemoglobin (HbO2) to methemoglobin (met-Hb), or a combination of the two 

products after drying and that their presence could be used to estimate blood age.7 In the 

1930s, Schwarzacher correlated the solubility of blood in water with its age. He also 

found that the intensity of catalase and peroxidase activity with hemoglobin was 

inversely related to the age of blood stains.8 Hanson and Ballantyne found that a blue 

spectral shift of the hemoglobin Soret band at 414 nm in the UV/visible spectrum of 

blood is correlated with age of dried bloodstains.9 In 2011, Bo Li, et al. reported the use 

of micro-spectrophotometry (MSP) to collect UV visible spectra of blood stains on white 

tile at wavelengths between 442 nm and 585 nm. After Fourier transformation of spectra, 

linear discriminant analysis was used to create a calibration model to predict blood 

aging.10 

Inoue, et al. used high performance liquid chromatography (HPLC) to separate, 

identify and quantify the individual components in a blood stain, related the ratio of peak 

areas of hemoglobin α-chain and heme protein to blood aging. An unidentified peak at 

220 nm, which not present in fresh blood, but related to blood age, was used to predict 

blood age out to 52 weeks.11,12 HPLC was also used by Andrasko to estimate the age of 
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dried blood stains on cotton. The height of an unlabeled peak relative to a heme-related 

peak was employed for calibration, and the influence of humidity and temperature on 

prediction accuracy was discussed.13 

Reflectance spectroscopy has also used in blood age estimation.14,15 In the 1960s, 

Patterson recorded reflectance spectra of blood stains and determined that color changes 

of blood stains are related to environmental conditions.14 The ratio of reflectance at 540 

nm to that at 576 nm was employed by Kind, et al.15 Near Infrared water peaks at 1359 

nm and 1500 nm were reported to be able to estimate blood age within the first hour, 

while peaks at 1459 nm and 1900 nm due to the formation of met-Hb can be used for 

further predicting.16 

Other techniques have been used to predict blood aging include oxygen electrodes 

to estimate the amount of HbO2
17, electron paramagnetic resonance to measure a spin 

state change of iron ion in hemoglobin molecule18, and atomic force microscopy(AFM) 

to measure Young’s modulus of red blood cells.19 However, despite these efforts, reliable 

estimation of blood age has been an elusive goal. 

 

Blood Composition 

Blood is composed of red blood cells, white blood cells, platelets and blood 

plasma. Protein comprises approximately 90% of red blood cells and 80% of plasma by 

weight. Oxygen-carrying protein hemoglobin makes up 97% of the blood’s dry content.20 

In healthy blood, hemoglobin exists in two forms: deoxyhemoglobin (Hb), which is 

without oxygen, and oxyhemoglobin (HbO2), which is saturated with oxygen. When 

blood is exposed to air, Hb is completely saturated with oxygen and converts to HbO2. 
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HbO2 will irreversibly oxidize to methemoglobin (met-Hb). After oxidization complete, 

met-Hb will denature to hemichrome (HC). These processes all cause changes in the 

secondary structure of the heme-related species.7, 21 

 

Protein and its Secondary Structure 

Protein is synthesized naturally from over 50 trans-amino acids. Amino acids are 

generally made up of carbon, oxygen, nitrogen, and hydrogen which are situated on a 

planar backbone (Figure 1.1). The sequence in which amino acids are linked is referred to 

as the primary structure of the protein.18 

The secondary structure, or the conformation, of a protein refers to the 3-D 

folding of its peptide chain in space. A typical secondary structure of protein is the α-

helix. About 80% proteins in hemoglobin are α-helix type. α-helix type of protein has 3.6 

residues per turn. Due to the fact that every three to four amino acids apart in the 

backbone sequence are spatially closed, hydrogen bonds as well as van der Waals 

interactions will form between two closest amino acids as shown in Figure 1.2(A). 

Another regular conformation is β-sheet, which was displayed in Figure 1.2(B). Different 

form α-helix, β-sheet type protein has two residues per turn, and every two amino acids 

apart will form strong inter- and intra-molecular hydrogen bonds. Proteins that cannot fit 

in α-helix and β-sheet secondary structure will form random coil and loops.22, 23 

 

Infrared Absorbance of Proteins 

Mid-infrared spectroscopy is particularly well-suited for estimation of bloodstain 

age because fundamental absorption bands of blood protein are in this region.20 As shown 
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in Figure 1.3, protein molecules have characteristic bands at 3300 cm-1(amide A), 2800 

cm-1-3000 cm-1(amide B), ~1650 cm-1(amide I), ~1540 cm-1(amide II) and 1200 cm-1-

1350 cm-1(amide III).24-27 Amide A and amide B vibrations originate from a Fermi 

resonance between the first overtone of amide II and the N-H stretching vibration.24-27 

These vibrational modes only depend on the backbone conformation, which are sensitive 

to the strength of hydrogen bonds or primary structure. The amide I peak is due to C=O 

stretching, which is directly related to the backbone conformation. The frequency of the 

C=O stretching band decreases as more hydrogen bonds are formed. The amide II peak is 

due to a combination of N-H bending (40%-60%), and C-N stretching (18%-40%). The 

amide III peak results from an in-phase combination of N-H in-plane bending and C-N 

stretching, and is usually a very weak resonance.27 

The characteristic protein peaks, the amide I and amide II peaks, are sensitive to 

the secondary structures of a protein.22,27,28 Amide I peaks in α-helix proteins are located 

at higher wavenumbers than either β-sheet proteins or random coil proteins (Table 1.1). 

As blood is exposed to air, the major proteins will unfold, and the secondary structure of 

proteins in blood will change from α-helix to β-sheet and form random coils. During this 

process, the IR absorbance at ~1650 cm-1 (amide I) and ~1540 cm-1 (amide II) will shift, 

accompanied by changes in intensities and peak shapes.28 
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METHOD 

 

Sample Preparation 

Three 4” × 11” acrylic and three 4” × 11” cotton samples were used as substrates. 

A 75% PVC/acetone mixture was used to create rings on fabric to limit the sampling area 

of blood. Mouse blood was received in a BD Vacutainer® vial (K2 EDTA, REF 367862, 

Franklin Lakes, NJ) from the Department of Animal Resources (University of South 

Carolina, Columbia, SC).  The blood was deposited on fabric samples within 1 hr. of 

mouse expiration and blood extraction. Volumes of 200 μL of 100× and 10× diluted 

blood in distilled water, and of whole mouse blood were dispensed on the substrate 

fabrics using a micropipette within the containment rings (Figure 1.4). Three 6” × 12” 

glass tanks were used to create the artificial environment conditions for each sample. 

Saturated salt solutions in open beakers were used to create three levels of relative 

humidity of 65% (NaNO2), 75% (NaCl), and 85% (BaCl2∙2H2O) at which aging 

experiments were conducted (Figure 1.5). Temperature and humidity were recorded using 

a Track-it® data logger (Amherst, NH). 

 

IR Spectra Collection 

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 

spectra were taken of all sets of samples every few days over 83 a day period. A Thermo 

Nicolet Nexus 670 Fourier transform infrared spectrometer (FT-IR) with a 

SmartDuraSamplIR (Thermo Scientific, Waltham, MA) attenuated total reflectance 

(ATR) accessory was employed. Three replicate spectra were collected for each ring 



8 

using 128 scans per collection at 4 cm-1 resolution over the wavenumber range of 400 cm-

1 to 4000 cm-1. 

 

Data Processing 

The Unscrambler X (CAMO software, AS) was used for data analysis. Savitzky-

Golay smoothing was applied to all spectra by fitting a fourth polynomial with a window 

size 15 to reduce noise.29 Smoothed spectra then were normalized by the standard normal 

variate transform (SNV). This requires each spectrum to be mean centered by subtracting 

the mean intensity of each spectrum from all elements. Each element of each spectrum is 

then divided by the standard deviation within the spectrum to normalize to unit length.30 

SNV preprocessing removes systematic variation due to different optical path-lengths 

between samples. Spectra from each set of environmental conditions and blood dilutions 

were mean centered before principal component analysis (PCA) and partial least squares 

regression (PLS) were applied to look at the discriminating ability for different blood 

dilutions, and to create prediction models for aging of bloodstains. 

Partial least squares regression (PLS) finds a linear regression model by 

projecting predicted variables and observable variables to a new space, then find the 

fundamental relations between two matrices, construct a model explain the maximum 

covariance between two matrices.31 Instead of using full spectra of proteins with different 

secondary structures, PLS uses “loading” vectors or “loading” spectra to reduce noises by 

distributing the noise through all “loading” vectors. The PLS model calibration is based 

on an X-block matrix containing the measured spectra, and a Y-block matrix containing 

corresponding information of X-block. X and Y-block were regressed using: 
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X = TPT+E          (1) 

Y = UQT+F          (2) 

where X is an m×n data matrix of the spectra of the m calibration samples with n 

variables, PT is an h×n matrix in which the rows comprise h PLS components with n 

variables each, called “loading” vectors generated by the PLS algorithm, T is a m×h 

matrix represent the intensities or scores of the h loading vectors in the new calibration 

system. E is an m×n matrix of spectral residuals not fit by the PLS model. Equation (2) 

shows that a similar analysis is performed for Y, producing a matrix of scores, U, 

loadings, Q, and residuals, F. The loading vectors in PLS models are composed of linear 

combinations of the original calibration spectra. The X matrix is reduced by only 

retaining those eigenvectors explaining a sufficiently large amount of covariance between 

X and Y. 

PLS combines information from both X and Y matrices, an inner relationship, W, 

is built to relate scores of X to scores of Y 

U = TW          (3) 

The fit of the model is optimized by exchanging the scores, T and U, in an 

iterative calculation, resulting in a PLS vector that maximizes covariance between the X 

and Y matrices. Once the model is calculated, a regression vector is calculated to predict 

the Y response (blood age): 

B = P(PTP)-1WQT          (4) 

Y = XB          (5) 

We assessed the accuracy of PLS modelling using leave-three-out cross 

validation, in which three spectra is left out, in turn, and the remaining spectra in the data 
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matrix are used to re-construct the PLS regression model and to predict the spectra left 

out. The cross validated root mean square error of cross validation (RMSECV) 

RMSECV = [∑ (yk − yk̂)2

k
/k]

1/2

          (6) 

is a measure of prediction accuracy, where 𝑦𝑘  and 𝑦�̂�  are the kth calibration data for 

actual and predicted age, respectively. The coefficient of determination, R2, evaluates the 

proportion of total variation in Y explained by the calibration model, 

R2 =
∑ (yk̂ − y)n

k=1
2

∑ (yk − y)n
k=1

2           (7) 

where,  𝑦�̂�  are the predicted values of blood age, 𝑦 is the mean of Y, 𝑦𝑘  is the measured 

value of y.31,32 

 

RESULTS AND DISCUSSION 

 

For bloodstains on acrylic fabric subjected to 3 days of aging at different humidity 

levels, the projections of the principal component (PC) scores from the first two principal 

components are shown in Figure 1.6. The groups of replicate spectra taken from blood 

samples are separated in order of dilution level along the direction of the first PC. The 

first and second PCs account for 51% and 21% of the variance about the mean, 

respectively. Figure 1.7 shows a similar outcome for the corresponding PCA of spectra 

taken from blood samples on cotton fabric. However, variations of spectra due to age 

difference are not shown in PCA score plot, which indicates the necessity of calculating 

age related calibrations for spectra of varying dilutions separately. 
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Partial least squares regression was applied to spectra from different 

environmental conditions and dilutions on different substrates at different time periods to 

create calibration models for assessing the ability to predict age of a dried bloodstain. 

Figure 1.8 depicts a PLS prediction based on spectra taken from 10× diluted bloodstains 

spectra on acrylic samples over a 20 day aging timeframe at 75% relative humidity. Each 

point on the figure represents a spectrum collected at the age corresponding to x axis 

value (day). Three replicate spectra were collected on each of the three replicate rings (9 

spectra total) for each age. Three spectra from the same ring were left out for calculation 

of RMSECV. A good prediction with little variation was demonstrated in Figure 1.8. The 

coefficient of determination (R2) for the fit of this model was 0.990, with a root-mean-

square error of cross validation (RMSECV) of 0.654 day. 

Table 1.2 summarizes R2 and RMSECV values for PLS aging calibrations at 

different dilutions of blood stains on acrylic samples at different relative humidity 

conditions. Over a 20 day period, prediction uncertainties were limited within one to two 

days. 

Figure 1.9 depicts the corresponding PLS calibration for age of 10× diluted blood 

stains on cotton with 75% relative humidity for 21 days. R2 of 0.961and RMSECV of 

1.132 were achieved for this condition. Calibration statistics for PLS aging at different 

dilutions of blood stains on cotton samples at different relative humidity conditions are 

shown in Table 1.3. The R2 values are slightly higher and RMSEC values lower than 

measured for bloodstains on acrylic. 

PLS prediction for bloodstain age using IR spectra taken of bloodstains on acrylic 

up to 83 days are shown in Figure 1.10. At higher aging times, the replicate data increase 
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in variability, and the calibration statistics show a decrease in variation explaining (R2), 

and increase in the RMSEC uncertainty estimates, which can lead to a possible 

assumption that blood aging process is a high order reaction, thus a nonlinear reaction 

behavior will challenge the prediction ability of PLS calibration (a linear calibration) as 

age increases. 

Table 1.4 summarizes R2 and RMSEC values for PLS aging calibrations up to 83 

days at different dilutions of blood stains on (A) acrylic and (B) cotton samples at 

different relative humidity conditions. As bloodstains age longer, natural variability in the 

chemical changes that occur with time produces increased age calibration uncertainty. 

The coefficients of determination for the fitted models range from 0.825 to 0.964 for 

acrylic, 0.927 to 0.975 for cotton, with RMSEC values between 5 and 10 days for acrylic 

and 4 to 9 days for cotton. 

Partial least squares regression prediction for age of blood on cotton achieved 

better results at both short and long time periods. Because cotton is a hydrophilic fabric, 

blood coating on cotton will be more homogeneous than on acrylic, which is 

hydrophobic. The resulting coating of blood will be more homogeneous on cotton 

samples, thus leading to a reduced variation of blood spectra collected on cotton samples. 

It is possible that the hydrophobic/hydrophilic nature of the substrate could also influence 

the mechanism if aging by promoting a different variety of interaction between blood and 

substrate. 
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CONCLUSIONS 

 

ATR-FTIR was applied for estimation of bloodstain age over 83 days at different 

humidity levels on acrylic and cotton substrates. Partial least squares calibration was 

constructed to model systematic changes in peak intensity and position in the IR region 

associated with amide-related absorbance frequencies. Calibrations were calculated to 

predict blood stain age up to 20 days on acrylic samples with an error of 1-2 days, and an 

error of less than 2 day on cotton. For samples aged up to 83 days, age predictions 

produced uncertainties of 5-10 days for acrylic and 4-9 days for cotton.  

An increased uncertainty was observed between short term prediction and long 

term prediction models, which suggests that blood aging process is possible a high order 

reaction. A nonlinear calibration is preferred in future work. 

Differences in the chemical nature of the substrate surface, and they potential 

interactions of the substrate with blood, for acrylic compared to cotton may lead to 

variations of coating homogeneity that could alter the progress of blood aging. , which 

causes prediction of blood age on cotton demonstrated better performance than on 

acrylic. 
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Table 1.1. Correlation between proteins structure and amide I frequency.28 

Structural element Amide I frequency [cm-1] 

α- helix 1648- 1660 

β- sheet 1624- 1640 

unordered 1640- 1648 

Aggregated strands 1610- 1628 
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Table 1.2. PLS calibration statistics for age of bloodstains on acrylic, up to 20 days with 

different dilutions at different relative humidity. 

R2 
65% 75% 85% 

RMSECV 

100X 
0.967 0.972 0.992 

1.196 1.102 0.586 

10X 
0.968 0.990 0.990 

1.184 0.654 0.649 

Whole 
0.971 0.974 0.982 

1.115 1.061 0.889 
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Table 1.3. PLS calibration statistics for age of bloodstains on cotton, up to 21 days with 

different dilutions at different relative humidity. 

R2 
65% 75% 85% 

RMSECV 

100X 
0.975 0.977 0.983 

0.911 0.863 0.744 

10X 
0.970 0.961 0.989 

1.033 1.132 0.605 

Whole 
0.971 0.980 0.980 

0.986 0.814 0.803 
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Table 1.4. PLS calibration statistics for age of bloodstains on (A) acrylic and (B) cotton, 

up to 83 days with different dilutions at different relative humidity. 

R2 
65% 75% 85% 

RMSECV 

100X 
0.937 0.947 0.917 

6.589 6.027 7.560 

10X 
0.964 0.957 0.955 

4.954 5.443 5.547 

Whole 
0.955 0.921 0.879 

5.545 7.339 9.096 

(A) 

R2 
65% 75% 85% 

RMSECV 

100X 
0.946 0.940 0.927 

6.437 6.963 7.534 

10X 
0.975 0.959 0.943 

3.784 5.592 6.947 

Whole 
0.941 0.932 0.909 

7.145 7.439 8.304 

(B) 
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Figure 1.1. Geometry of the peptide backbone. 
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(A) 

 

(B) 

Figure 1.2. Secondary structure of protein: (A) α-helix. (B) β-sheet. 
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Figure 1.3. A spectrum of blood collected using attenuated total reflectance Fourier 

transform infrared spectroscopy. 
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Figure 1.4. (Right) Three replicate acrylic samples, and (left) three replicate cotton 

samples doped with blood at varying dilution factors. 
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Figure 1.5. Artificial aging environment created with glass tanks (side and top views). 
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Figure 1.6. Principal component projections of spectra taken from acrylic samples coated 

with blood and held at 65% relative humidity after the third day of artificial aging. 
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Figure 1.7. Principal component projections of spectra taken from cotton samples coated 

with blood and held at 65% relative humidity after the third day of artificial aging. 
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Figure 1.8. PLS calibration for age of bloodstains, based on ATR-FTIR spectra from 10× 

diluted bloodstains on acrylic at 75% relative humidity for 20 days. 
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Figure 1.9. PLS prediction based on ATR-FTIR spectra from 10× diluted bloodstains on 

cotton at 75% relative humidity for 21 days. 
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Figure 1.10. PLS calibration based on ATR-FTIR spectra from 10× diluted bloodstains 

on acrylic at 75% relative humidity for 83 days. The coefficient of variation was 0.957 

and RMSEC was 5.443 days. 

.
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CHAPTER TWO 

 

DETECTION LIMITS FOR BLOOD ON FABRICS USING 

ATTENUATED TOTAL REFLEC-TANCE INFRARED 

SPECTROSCOPY AND DERIVATIVE PROCESSING 
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ABSTRACT 

 

Blood stains, one of the most common types of trace evidence found at crime 

scenes, are important for DNA analysis, which might identify suspects, and for blood 

spatter analysis, which might reveal event sequence. Attenuated total reflectance Fourier 

transform infrared spectroscopy (ATR-FTIR) was used to detect blood stains based on 

signature protein absorption in the mid-infrared region, where intensity changes in the 

spectrum can be related to blood concentration. Partial least squares regression (PLSR) 

was applied for multivariate calibrations of IR spectra of blood dilutions on four types of 

fabric (acrylic, nylon, polyester, and cotton). Gap derivatives (GDs) were applied as a 

preprocessing technique to optimize the performance of calibration models. Detection 

limits of 0.028 µg/cm2 for acrylic, 0.020 µg/cm2 for nylon, 0.017 µg/cm2 for polyester, 

and 0.0027 µg/cm2 for cotton were found. 

 

INTRODUCTION 

 

Blood stain detection at crime scenes has great forensic value.1-4 Identification of 

blood stains allows verification of witness statements, identification of potential 

suspectsand information about the nature of the crime.5 This information is obtained by 

DNA analysis of blood stains and by blood spatter analysis.3,4,5 

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) 

has been used to identify and study blood stains by examining signature protein 

absorbances in the mid-infrared region at 3300 cm-1 (Amide A), 2800 cm-1 to 3000 cm-1 

(Amide B), ~1650 cm-1 (Amide I), ~1540 cm-1 (Amide II), and 1200 cm-1 to 1350 cm-1 
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(Amide III)6,7,8 Intensities of these amide peaks vary with blood concentration, enabling 

calibration for blood concentration and estimation of a detection limit (DL) for blood 

using ATR-FTIR spectroscopy.  

Previous work done by DeJong, et al. used gap derivative (GD) processing 

combined with partial least squares regression (PLSR) to build multivariate calibrations 

for diffuse reflectance infrared spectra of blood collected on different fabric types 

(acrylic, nylon, polyester, and cotton).9,10 While diffuse reflectance spectroscopy 

produced good DLs (~1000× dilute blood on acrylic, polyester, and cotton fabrics), ATR-

FTIR might be better suited for detection of blood on surfaces of samples due to its 

inherent surface sensitivity.6 ATR shares the advantages of diffuse reflection, including 

the small sampling area, little-to-no sample preparation, and being non-destructive. 

Further, ATR-FTIR offers a small penetration depth less than 10 microns compared to 

greater than 1.5 mm for diffuse reflection.11 A shortened penetration depth enables 

detection of even small amounts of blood on surfaces of highly absorbing substrates, such 

as fabric.  

The present research replicates the statistical methods of our previous work 

performed on ATR-FTIR spectra collected from the same samples.10 To facilitate 

comparisons between the two techniques, we report the DL in units of mass per area 

(µg/cm2), as well as the more commonly employed units of dilution factor. 
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METHOD 

 

Fabric Samples 

Five replicate samples with a size of 2″ × 2″ were prepared for each of the four 

fabric samples (acrylic, cotton, nylon and polyester) at one blood dilution level. Five 

dilution levels (25×, 50×, 100×, 200×, and blank) were applied. All fabric samples were 

sonicated for 60 min in deionized water and suspended to dry for 24 h before dip coating 

in diluted rat blood. All samples were allowed hang at room conditions until dry before 

spectral collection.9,10 

 

IR Spectra Collection 

A Thermo Nicolet IS5 Fourier transform infrared spectrometer (FT-IR) with an 

ID3 ATR accessory (Thermo Scientific, Waltham, MA) was employed. A 7 mm diameter 

germanium crystal with a 45° incident angle was used as the totally reflective element. 

Twenty replicate spectra were collected of each fabric using 64 scans at 4 cm-1 resolution 

over the wavenumber range of 600 cm-1 to 4000 cm-1. Spectra were collected over five 

consecutive days, with one sample square of each dilution measured each day. 

 

Data Processing 

Gap derivative processing was performed using in-house code developed in 

Matlab® (The MathWorks, Inc., Natick, MA). Calibrations were developed using PLSR 

using the PLS Toolbox 6.7.1 (Eigenvector Research, Wenatchee, WA). 
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First gap derivative (First GD), second gap derivative (Second GD) and fourth 

gap derivative (Fourth GD) processing were applied on all spectra. Gap sizes between 1-

50 points (1.93-96.4 cm-1) were selected for this work as previously done. Derivative 

spectra were trimmed to three different wavelength regions: full spectra (600 cm-1 to 

4000 cm-1), Amide I-II region (1400 cm-1 to 1900 cm-1), and Amide A-B region (2688 

cm-1 to 3614 cm-1) for calibration modeling. 

The standard normal variate transform (SNV) was applied to all spectra. Eighty 

spectra of each fabric type of each dilution (taken over a 4-day period) were selected as a 

calibration set (400 calibration spectra). The remaining 20 spectra (taken over 1 day) 

were selected as a validation set (100 validation spectra). Because of non-linear effects in 

the calibration models at higher concentrations, detection limits were calculated from the 

slope of the validation set across the blank, 200× dilute, and 100× dilute samples of the 

validation set.10 Detection limits were estimated by Equation 1. 

      DL =
1

3 × σŷ
my,ŷ

⁄
          (1) 

where 𝜎ŷ is the standard deviation of the predicted values of the blank samples, and 𝑚𝑦,ŷ 

is the slope of the linear fit between the model reference and predicted values.12,13 The 

3𝜎ŷ detection limit multiplier corresponds to a 0.14% false positive rate assuming 

normally distributed measurement errors. 

 

Fabric Thickness 

To convert the DLs for ATR calibrations from units of dilution factor to coverage 

of blood solids, it is necessary to know the effective thicknesses of different fabrics. 
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Fabric effective thickness was evaluated by pressing the fabric between two glass slides 

by the ATR pressure tower as shown in Figure 2.1. Total thickness of the two glass 

slides, pressure sensor, and fabric was measured using calipers. The effective fabric 

thickness was obtained by subtracting the thickness of glass slides and pressure sensor 

under the same pressure. The pressure sensor ensured that the pressure applied to the 

fabric was consistent across spectral collection.  

 

Model Selection 

One inconvenient point of using GDs as a preprocessing method is that, due to the 

possibility of using different gap size combinations, a large number of models are 

generated, which have to be evaluated. For example, 1-50 points were selected as 

possible gap sizes in this work, which resulted in 25 models for First GD, 350 models for 

Second GD, and 13925 models for Fourth GD.9 

Due to the large number of potential models, a screening method is necessary to 

evaluate the models for optimal performance based on user-defined calibration metrics. 

The RPD, or the ratio of the standard deviation of the reference value to the root mean 

square error of prediction (RMSEP), is a convenient metric to evaluate model predictive 

ability. The RPD was first introduced by Williams, et al., who suggested RPD greater 

than 3 is an acceptable screening limit to judge model quality.14 However, RPDs greater 

than 2 have also been used as an acceptable performance criterion.15,16 For this work, 

RPD values were used to describe models as excellent (RPD ≥ 3), fair (3 > RPD ≥ 2.5), 

or poor (RPD < 2.5).  
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For models exhibiting excellent performance, the reported DL for each fabric is 

that having the lowest detection limit (i.e., higest dilution). If no models show an RPD ≥ 

3, the reported DL for each fabric is that having the lowest detection limit (i.e., higest 

dilution) within the fair performance range. If all models for a fabric demonstrate poor 

performance, DLs are not reported. 

 

Detection Limit Unit Conversion 

As mentioned previously, an advantage of ATR-FTIR in blood detection over 

diffuse reflection spectroscopy is that ATR-FTIR is more surface sensitive. DLs reported 

in units of dilution factor or mass percentage will not fairly compare the two techniques, 

particularly in cases where blood is concentrated on the surface of fabric rather than 

spread throughout the bulk fabric. We have chosen to use units of coverage (µg/cm2) to 

compare the two techniques so as to better account for the fact that ATR measures 

absorbance at lower penetration depth. The penetration depth (dp) of the ATR sampling 

area is calculated as 

dp =
λ

2π(𝜂1
2sin2θ − 𝜂2

2)1/2
          (2) 

where λ is wavelength of light (an averaged wavelength over the selected wavelength 

region), θ is the angle of incidence (45°), η1 is the refractive index of the ATR crystal 

(4.00, for germanium), and η2 is the refractive index of the sample.11 Table 2.1 list 

refractive indices and calculated penetration depths in several IR regions for fabrics used 

in this work.17 
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Our previous work suggests that, regardless of fabric thickness, there is a linear 

relationship between blood solid coverage (mg/cm2) and the 1/dilution factor (Table 2.2). 

The average thickness of each fabric is summarized in Table 2.3. 

When the effective film thickness is taken into account, Equation 3 can be used to 

estimate coverage units from the dilution factor: 

𝐵𝑆𝐶 =
𝑆 × 𝑑𝑝

𝐷𝐹 × 𝑇𝑓
× 1000          (3) 

where S is the slope of the linear relationship shown in Table 2.2, DF is the DL in unit of 

dilution factors, and Tf is fabric thickness. 

 

DISCUSSION 

 

Calibration Results 

Figures 2.2-2.5 summarize best models for the four fabrics in units of dilution 

factor (left axis) and blood solid coverage (right axis, µg/cm2). In each figure, the bar 

graph values are shown on the left axis, are separated into three groups, corresponding to 

the models selected on first, second, and fourth gap derivatives. Light grey, medium grey, 

and dark grey bars represent the respective models based on the full IR spectra region 

(600 cm-1 to 4000 cm-1), Amide I-II region (1400 cm-1 to 1900 cm-1), and Amide A-B 

region (2688 cm-1 to 3614 cm-1). Numbers above each bar provide the RPD and gap sizes 

employed for each model, and the bar representing the model having the lowest DL is 

outlined in black. Data connected by the black line corresponding dilution factor 

converted to the units of blood solid coverage (shown on the right axis). The detection 

limits, in dilution factor units, for blood on the four fabrics were 268 for acrylic, 249 for 
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nylon, 282 for polyester, and 2707 for cotton. Converted to blood solid coverage units, 

these values correspond to 0.028 µg/cm2 for acrylic, 0.020 µg/cm2 for nylon, 0.017 

µg/cm2 for polyester, and 0.0027 µg/cm2 for cotton. These results are further discussed 

separately for each fabric in the following sections. 

Acrylic. Calibration models for blood concentration on acrylic in all cases were 

“excellent” or “fair” models. According to the model selection rules stated above, the 

best model for acrylic was found in the amide I-II region using fourth GD processing 

with a detection limit of 0.028 µg/cm2 (268×). This spectral region is where amide peaks 

show strong absorbance, while interference from acrylic bands is small.  

Models for blood on acrylic using fourth GDs are better than those using first 

GDs and second GDs, probably because ATR-FTIR spectra of blood-coated acrylic 

fabrics exhibit narrow features accompanied by high frequency noise. Thus, narrow gap 

sizes that would normally highlight relevant spectral features also increase noise. 

Conversely, broad gaps that usually smooth the high-frequency noise also suppress the 

analyte signal. As a result, it is difficult to find a single gap size (first GD), or a simple 

combination of gaps (second GD), to improve the calibration. 

Figure 2.6 shows a plot of predicted vs. actual dilution factors for the selected 

PLSR model based on three latent variables over the amide I-II region using fourth gap 

derivatives with gap sizes of 10, 12, 32, 34. At blood concentration on the fabric 

increases, the variability of the predictions also increase. 

One explanation for this phenomenon could be that dip-coating fabrics from more 

concentrated blood solutions results in a more heterogeneous coating because of the 

hydrophobicity of acrylic fabric.17 ATR-FTIR is very sensitive to coating effects on 
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substrates, and the increased variability of spectra at higher blood concentrations may be 

due to fabric/coating variability. Because RPD values are influenced by the general 

prediction error, RPD will suffer from poor predictions of the most concentrated samples, 

even if prediction of the more dilute samples is accurate. One way to account for this 

phenomenon might be to estimate DLs as multivariate limits of detection rather than by 

pseudounivariate estimates.18 Multivariate DL estimators might be able to compensate for 

variability in actual values of dilution which might be caused by fabric/coating 

inhomogeneity. 

Nylon. In previous work, valid calibrations could not be found for blood on nylon 

fabric.10 Because of the large sampling depth of diffuse reflectance, the similarity of IR 

spectra of blood and nylon is hard to overcome even with the increased sensitivity offered 

by fourth GD processing. As shown in Figure 2.3, the present calibration models 

(calculated based on ATR-FTIR spectra of the previous set of nylon samples) suffer from 

the same problem. However, due to the increased surface sensitivity offered by the small 

penetration depth of ATR-FTIR, this technique has the potential to identify less intense 

amide peaks on the fabric surface. Our current results produce fair models for blood on 

nylon in the Amide I-II region, with a DL of 0.020 µg/cm2 (249×). As shown in Figure 

2.7, the selected model is able to predict test spectra accurately at all levels of blood 

dilution. This case demonstrates the advantage of using ATR-FTIR in the situation where 

the substrate spectrum heavily interferes with the spectrum on the analyte coated on the 

surface. 

Polyester. Models of blood on polyester with excellent detection limits were 

found in the previous work, with the best results occurring in the amide A-B region.10 
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Our present best DL for blood on polyester of 0.017 µg/cm2 (282×) is also found in the 

amide A-B region (Figure 2.4). However, as before, the model RPD are only ‘fair’ for 

polyester. The behavior of the predicted values of these calibrations is different than that 

of acrylic, though difficulties in developing good calibrations is likely rooted in similar 

sources of sample variability. While acrylic predictions were worse at higher 

concentrations, the predictions for blood on polyester are worse at low blood 

concentrations (Figure 2.8). Polyester is more hydrophobic than acrylic fabric17, so dip-

coating is less effective in creating a uniform coating; a greater amount of blood must be 

present in the solution before the blood will evenly adsorb to the fabric. Thus, even 

though spectra of polyester do not interfere with that of blood, the calibrations are once 

again only ‘fair.’ In this case, the advantages of ATR-FTIR become disadvantages: 

techniques with larger sampling area and depth are needed to detect blood on the non-

uniformly coated polyester samples. 

Cotton. Blood on cotton produced models with the best limits of detection 

(0.0026 µg/cm2, 2707×) in this work. Cotton does not suffer the same problems in sample 

preparation as polyester and acrylic stated above (Figure 2.9). This enables the 

development of excellent calibration models and correspondingly excellent estimates for 

the DL. Models built on the amide I-II region are better in comparison to those built on 

the amide A-B region. Averaged spectra show that amide A-B peaks are obscured by 

hydroxyl peaks from cotton fabrics, while cotton shows minimal interference with the 

amide I-II bands. 
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CONCLUSIONS 

 

This work, based on detection of blood on fabrics using ATR-FTIR, offers a 

contrast to our previously reported results on detection of blood using diffuse reflectance 

measurements. The smaller penetration depth and sample area associated with ATR-

FTIR has demonstrated the difficulty of creating a uniform coating on hydrophobic 

fabrics, which complicates the development of high-quality PLSR models. These 

complications might be mitigated using multivariate-based limit of detection estimators, 

rather than the pseudounivariate approach used here. Detection limits were found at 

dilution factor of 268 for acrylic, 249 for nylon, 282 for polyester, and 2707 for cotton in 

this work. When converted  to blood solid coverage unit, limits of detection was found to 

be 0.028 µg/cm2 for acrylic, 0.020 µg/cm2 for nylon, 0.017 µg/cm2 for polyester, and 

0.0027 µg/cm2 for cotton. These numbers are several magnitudes smaller than previously 

reported in the literature. 
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Table 2.1. Penetration depth for fabrics. 

Fabric η1
 

dp, full 

spectrum 

(µm) 

dp for amide I-II 
(µm) 

dp for amide 
A-B (µm) 

Acrylic 1.500 0.289 0.402 0.211 

Nylon 1.551 0.293 0.408 0.214 

Polyester 1.631 0.300 0.417 0.219 

Cotton 1.555 0.293 0.408 0.214 
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Table 2.2. Conversion factors of 1/dilution factor to blood solid coverage (mg/cm2) for 

different fabric types 

Fabric 
Conversion Factor of 1/Dilution Factor to 

Blood Solid Coverage (mg/cm2) 

Acrylic 43.5 

Nylon 33 

Polyester 26 

Cotton 30 
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Table 2.3. Average thickness of different fabric types. 

Fabric 
Effective fabric thickness 

(mm) 

Acryic 0.716 

Nylon 0.738 

Polyester 0.171 

Cotton 0.468 
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Figure 2.1. Schematic for measuring fabric thickness. 
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Figure 2.2. Summary of the best PLSR models for acrylic. 
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Figure 2.3. Summary of the best PLSR models for nylon. 
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Figure 2.4. Summary of the best PLSR models for polyester. 
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Figure 2.5. Summary of the best PLSR models for cotton. 
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Figure 2.6. PLSR prediction of dilution factor for blood on acrylic based on the amide I-

II region using fourth gap derivatives (gap sizes: 10, 12, 32, 34). Light dots represent 

calibration set (400 spectra), and dark dots represent test set (100 spectra) data. 
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Figure 2.7. PLSR prediction of dilution factor for blood on nylon based on the amide I-II 

region using fourth gap derivatives (gap size:14, 26, 36, 46). Light dots represent 

calibration set (400 spectra), and dark dots represent test set (100 spectra) data. 
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Figure 2.8. PLSR prediction of dilution factor for blood on polyester based on the amide 

A-B region using fourth gap derivatives (gap size: 22, 36, 40, 42). Light dots represent 

calibration set (400 spectra), and dark dots represent test set (100 spectra) data. 
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Figure 2.9. PLSR prediction of dilution factor for blood on cotton based on the amide I-

II region using fourth gap derivatives (gap size:12, 20, 22, 44). Light dots represent 

calibration set (400 spectra), and dark dots represent test set (100 spectra) data. 
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CHAPTER THREE 

 

ATTENUATED TOTAL REFLECTANCE SAMPLING IN 

INFRARED SPECTROSCOPY OF HETEROGENEOUS MATERIALS 

REQUIRES REPRODUCIBLE PRESSURE CONTROL 
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ABSTRACT 

 

Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), 

in which the sample is compressed against an internal reflection element, is a popular 

technique for rapid infrared spectra collection. However, depending on the accessory 

design, the pressure applied to the sample is not always well controlled. While collecting 

data from fabrics with heterogeneous coatings, we have observed systematic pressure-

dependent changes in spectra that can be eliminated by reproducible pressure control. We 

describe a pressure sensor adapted to work with an ATR tower to enable more rigorous 

control of pressure during ATR sampling. 

 

INTRODUCTION 

 

Attenuated total reflectance Fourier transform infrared spectroscopy is a popular 

technique for qualitative identification of polymeric materials due to its rapid and 

nondestructive sampling, and sensitivity to chemical and structural variations.1-4 Forensic 

research in our research groups have focused on the IR spectroscopy of surfaces of 

fabrics coated with polymer substrates and blood.5-12 More generally in forensic 

applications, ATR-IR has been used to confirm trace fiber identifications, and to detect, 

identify, and measure amounts of illicit drugs and other trace evidence.13-15 

In ATR, the sample is compressed against the internal reflective element using a 

pressure tower. ATR accessories typically have either a lock mechanism to define preset 

pressures, or a graduated scale indicating qualitative levels of applied pressure, but actual 
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measurement of the pressure is absent in most designs, and repeatability is not 

guaranteed. However, ATR spectra are sensitive to pressure applied on samples.2, 16-19 In 

some cases, the influence of variations in applied pressure cab be eliminated by 

preprocessing after data collection. Specifically, transforms (such as standard normal 

variate, SNV, or multiplicative signal correction, MSC) that average and standardize each 

spectrum in a data set effectively remove variations in spectral baseline and normalize 

spectra to commensurate scales.20, 21 However, when polymeric materials have multiple 

thin layers of different geometries and compositions, pressure differences may change the 

surface orientation or, by compression, change the effective sampling depth.2, 22 Pressure 

may also deform a polymeric material to change its crystallinity, which may alter its 

spectrum by diminishing or enhancing affected vibrational modes.16 For fabrics with 

heterogeneous coatings, variations in applied pressure will directly influence sampling 

composition and such changes in the spectra cannot be eliminated using preprocessing. 

Calibration models built on spectra collected without adequate control of pressure, may 

be biased.  

In the present work, we have examined cotton samples with heterogeneous blood 

coatings to illustrate spectral differences that arises from variations in applied pressures. 

Our approach in inexpensive and direct: a commercially available pressure sensor is 

inserted between the sample and pressure tower to monitor pressure during ATR 

sampling to enable more reproducible data acquisition. 
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METHOD 

 

Cotton Samples 

One 2″ × 2″ red cotton swatch was sonicated for 60 min. in deionized water and 

suspended to dry for 24 h. After placing the fabric swatch over a small box to suspend the 

target area, the fabric was lightly coated with 10× dilute rat blood from the upper side 

using a brush and hung again to dry for 24 h. 

 

Pressure Sensor 

A Flexiforce pressure sensor (Sparkfun Electronics, Niwot, CO) was employed to 

monitor pressure during ATR sampling as shown in Figure 3.1. Glass slides were placed 

on both sides of the pressure sensor to ensure even distribution of pressure. Electrical 

resistance of the sensor (inversely proportional to pressure) was measured using a digital 

multimeter (Goldstar DM9183, Seoul). 

 

Pressure Sensor Calibration 

Objects with different weight (5 lbs, 8 lbs, 11 lbs, 15 lbs, 20 lbs, 30 lbs) were 

measured using a scale. Weighted objects were placed over the tip on the ATR pressure 

tower. Three replicate readings from the multimeter were recorded for each weight level 

for calibration. 
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IR spectra collection 

A Thermo Nicolet IS5 Fourier transform infrared (FT-IR) spectrometer with an 

ID3 attenuated total reflectance (ATR) accessory (Thermo Scientific, Waltham, MA) was 

employed. A germanium crystal of 7 mm diameter with a 45° incident angle was used as 

the internal reflective element. Samples were placed upside-down (blood-coated side up) 

on the ATR crystal. The pressure sensor, sandwiched between the glass slides was placed 

between the fabric sample and the pressure tower. Six pressure levels at electrical 

resistance values of 150 kΩ, 100 kΩ, 70 kΩ, 30 kΩ, 15 kΩ, 9 kΩ (higher the pressure, 

lower the electrical resistance) were applied. Three replicate spectra were collected at 

each pressure setting using 32 scans per collection at 4 cm-1 resolution over the 

wavenumber range of 700 cm-1 to 4000 cm-1. 

 

Data Analysis 

Spectra collected were imported into The Unscrambler X (CAMO Software AS, 

Oslo, Norway) for statistical analysis. An 11–point fourth-order Savitzky-Golay 

polynomial was used to smooth all spectra.23 Spectra were copied into two identical data 

sets, each of which was preprocessed with one of two transforms to investigate their 

efficacy at removing pressure effects. For each spectrum, the standard normal variate 

(SNV) transform subtracts the mean of the spectral intensities from the spectral intensity 

at each wavenumber, then divides each centered intensity by the standard deviation of 

those values. SNV removes multiplicative interferences due to scatter and particle size.20 

The second preprocessing transform tested was the extended multiplicative signal 

correction, which regresses each spectrum in the data matrix on the mean spectrum of the 
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entire data, then uses the slope and intercept to adjust each spectrum.24 These steps 

attempt to correct for additive baseline effects, multiplicative scaling effects, and 

interference effects.21  

After preprocessing, the spectra in each data set were mean centered for principal 

component analysis (PCA) by eigenanalysis of the respective covariance matrices, for 

comparison of the data sets in a reduced-dimensional space. 

 

RESULTS AND DISCUSSION 

 

A calibration was built to estimate the force applied in the spectra collection. 

(Figure 3.2) A linear relationship is demonstrated between the force applied and the 

inverse electrical resistance of the pressure sensor. ATR pressure levels in this work were 

calculated using the calibration to the unit of the force applied (lbs). Results were shown 

in Table 3.1. 

Smoothed spectra of cotton samples with heterogeneous blood coatings acquired 

at different ATR pressures are shown in Figure 3.3. Consistency is achieved between 

replicate spectra at the same pressure level. However, as applied pressure increases 

(indicated by lower resistance values), the baseline of each spectrum decreases and peak 

intensities increase. This phenomenon is partially due to the fact that increased pressure 

compresses the fabric and coating, effectively increasing sampling volume. 

Figure 3.4 depicts average spectra collected at different pressures, after smoothing 

and applying either SNV or EMSC. Comparing Figure 3.4(A) to 3.4(B), EMSC 

preprocessed spectra exhibit a flatter and more consistent base line than spectra after 
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SNV processing, for which the slope of the baselines for each spectrum are much more 

inconsistent. In both cases, peak intensity variations due to different sampling volume 

and baseline offset of spectra were eliminated. However, pressure effects remain in the 

spectra, seen as intensity differences for peaks appearing in amide A (3300 cm-1), amide 

B (2800 cm-1 to 3000 cm-1), amide I (~1650 cm-1), amide II (~1540 cm-1), and amide III 

(1200 cm-1 to 1350 cm-1) regions.25-27 These perturbations are due to the pressure-induced 

effects as a consequence of the heterogeneous blood coating, and cannot be eliminated 

using either SNV or EMSC preprocessing. 

Projections into the space of the first two principal components (PC) are shown in 

Figure 3.5 for the smoothed spectra preprocessed by SNV or EMSC, and collected at 

different ATR pressures. In the case of SNV preprocessing (Figure 3.5A), data points 

representing spectra at different applied pressures are correlated with increasingly 

positive values with respect to the axis representing the second PC. For EMSC 

preprocessing, spectra at increasingly higher pressures are ordered, and thus correlated 

with, increasing pressure from low to high projections along the direction of the first PC. 

As stated above, base line tilting still exists in the spectra after SNV, which can leads to 

the fact that instead of the first PC, the second PC contains the variations separates data 

in Figure 3.5(A). 

PC loadings, for spectra preprocessed by SNV and EMSC are shown in Figure 

3.6. Loadings express the eigenvector components as correlations with the original 

spectral variables. Thus, spectral regions correlated with pressure changes include the 

amide A (3300 cm-1), amide B (2800 cm-1-3000 cm-1), amide I (~1650 cm-1), amide II 

(~1540 cm-1) regions, as well as the CO2 peak (2400 cm-1).25-27 Due to the heterogeneous 
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blood coating, as pressure increases, fabric with a more concentrated coating is 

compressed in the ATR sampling area, increasing the sampled blood amount. The 

changes are most prominent in regions of high absorbance, which occur or blood samples 

at amide peak regions. Similar effects will occur when samples have multiple thin layers 

of different compositions. 

Cotton fabric is porous, and air is trapped within interstitial volumes in the fabric. 

As sampling pressure increases the air content will squished out. As a result the intensity 

of the CO2 peaks decrease as shown in Figure 3.4. The CO2 peak presence is also seen in 

the PC loadings (Figure 3.6) as a noticeable spectral variable. This phenomenon indicates 

that consistency of pressure applied is essential when collecting ATR-FTIR spectra on 

porous samples. 

Score plots for the corresponding second PC (for SNV processed spectra) and the 

first PC (for EMSC processed spectra), plotted against pressure sensor resistance are 

shown in Figure 3.7. The variability of the PC scores decreases as applied ATR pressure 

increases. This observation suggests that higher pressure is preferred for ATR sampling, 

because it improves spectral reproducibility. However, the hardness of various internal 

reflective elements (e.g., diamond vs. germanium), as well as the physical nature of the 

sample should be considered when selecting the pressure to be applied. 

 

CONCLUSIONS 

 

Preprocessing methods like SNV and EMSC can reduce or eliminate the spectral 

variation due to path length changes caused by different applied pressures on samples 
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using ATR-FTIR. However, the spectra of cotton sample with heterogeneous blood 

coating in this work indicates that different pressure levels applied will vary the effective 

sampling volume thus composition of sampling content will change. As a result, 

variations occur at CO2 and amide peak regions remain noticeable in the spectra after 

preprocessing. Therefore, pressure control is necessary for more reproducible data 

acquisition using ATR. 

A pressure sensor was introduced in this work to monitor and control pressure 

applied on samples. Principal component analysis of heterogeneous blood coated cotton 

samples with different applied pressure demonstrated the accuracy, reproducibility of this 

technique.  

Variation changes of spectra, collected using varied ATR pressures, demonstrated 

using corresponding PC scores suggests that using a higher possible pressure without 

damaging the internal reflective elements or deform the sample nature is preferred in real 

world application. 
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Table 3.1. Conversion of electrical resistance of the pressure sensor to the force applied. 

Electrical Resistance (kΩ) Force Applied (lbs) 

150 6.02 

100 8.81 

70 12.39 

30 29.29 

15 56.15 

9 93.28 

 

  



 

74 

         

(A)                                                                        (B) 

Figure 3.1. (A) ATR pressure measurement setup; (B) Close-up of pressure sensor 

between glass slides and circuit connection to multimeter probes. 
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Figure 3.2. Calibration of the force applied vs. one over the electrical resistance of the 

pressure sensor. 
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Figure 3.3. Spectra of cotton samples with heterogeneous blood coating collected under 

different ATR pressures (pressure increases from up to bottom). 
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(A) 

 

(B) 

Figure 3.4. Spectra (after smoothing and preprocessing) acquired at varying ATR 

pressures: (A) standard normal variate; (B) extended multiplicative signal correction. 
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(A) 

 

(B) 

Figure 3.5. Principal component projections analysis of smoothed spectra: (A) after SNV 

preprocessing; (B) after EMSC preprocessing. Color indicates applied ATR pressure.  
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(A) 

 

(B) 

Figure 3.6. Loading plots for spectra preprocessed by: (A) SNV (second PC); (B) EMSC 

(first PC). 
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(A) 

 

(B) 

Figure 3.7. Principal component scores vs. electrical capacity of the pressure sensor, 

which indicates the different pressures applied: (A) SNV transformed data; (B) EMSC 

transformed data.  
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