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ABSTRACT

 

Kainate receptors (KARs) are glutamate-gated ion channels that mediate synaptic 

transmission, modulate transmitter release, and mediate excitation in the brain. 

Potentiation in their function predisposes the hippocampus to hyperexcitability and 

seizures. These receptors are widely expressed throughout the central nervous system as 

tetramers composed of various combinations of GluK1-5 subunits. In the hippocampus (a 

brain region commonly associated with seizure initiation), GluK2-, GluK4-, and GluK5-

containing receptors are highly expressed in the CA3 pyramidal cell layer, whereas 

GluK1 is barely detectable. The lack of pharmacological tools hinders identifying the 

functional contribution of each kainate receptor subtype in normal CA3 synaptic 

transmission. To address this critical obstacle, we used whole cell patch clamp 

electrophysiology on HEK-T 293 cells transfected with GluK2 homomers, GluK2/K4 or 

GluK2/K5 heteromers. We found that the drug ACET selectively inhibits GluK5 and 

GluK4 subunits, whereas the drug kynurenate is an antagonist at all kainate subunits but 

was more potent at GluK2 subunits. Furthermore, we were able to discover that binding 

of glutamate to either the two GluK2 subunits or two GluK4/K5 subunits in the 

heteromeric tetramer was sufficient to open the kainate receptor, albeit to a non-

desensitizing current. However, glutamate binding to three or more subunits in the 

tetramer was sufficient to enable kainate receptor desensitization. Lastly, using field 
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potential electrophysiology to stimulate and record KAR-mediated synaptic transmission 

(fEPSPs) at the mossy fiber – CA3 synapse, we found that perfusion of ACET was 

sufficient to entirely block KAR-mediate fEPSPs at the mossy fiber – CA3 synapse. 

These results suggest that 1) drugs ACET and kynurenate can be used as pharmacological 

tools to delineate the functional contribution of specific receptor subtypes, 2) kainate 

receptor activation and desensitization depends on the number of subunits bound to an 

agonist, and 3) KAR-mediated synaptic transmission at the mossy fiber – CA3 is 

conducted through heteromeric GluK4- or GluK5-containing KARs.  

 Metabotropic receptors, such as muscarinic acetylcholine receptors (mAChRs) 

and dopamine receptors (DARs), can also alter the function of glutamate receptors and 

have been implicated in epilepsy. Muscarinic acetylcholine receptors also play a critical 

role in synaptic plasticity and neuronal excitability. There are five types of mAChR, M1-

M5, all of which, except m5 mAChRs, are found at different levels of expression in area 

CA3 of the hippocampus where they are co-expressed with kainate receptors. Muscarinic 

receptors regulated the function of other glutamate receptors, but it is unknown whether 

they can interact with KARs. Dysfunctional interactions between KARs and muscarinic 

acetylcholine receptors (mAChRs) have been implied in neurological diseases, including 

temporal lobe epilepsy. For example, injection of a mAChR agonist (pilocarpine) in 

rodents induces prolonged seizures and epilepsy, which can be blocked by a KAR 

antagonist. Understanding how KARs and mAChRs interact may unlock novel therapies 

for epilepsy. Using field potential electrophysiology, we discovered that mAChR 

activation selectively depresses KAR-mediated fEPSPs at the mossy fiber – CA3 

synapse. This mAChR depression of KAR fEPSPs is mediated through M1 mAChRs, but 
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cannot be totally explained through PKC phosphorylation. Interestingly, M1 mAChR 

depression of KAR fEPSP goes away with aging, suggesting this phenomenon is 

developmentally regulated.  

 Lastly, we investigated whether the dopaminergic system is altered in a chronic 

model of temporal lobe epilepsy. Similarly to mAChRs, DARs, specifically D1-like 

DARs, play a critical role in synaptic plasticity, neuronal excitability, and have been 

associated with seizure propagation. We demonstrated that D5 DARs, but not D1 DARs, 

expression is significantly depressed in the epileptic hippocampus. Furthermore, we 

found that dopamine clearance is reduced, while total dopamine content is unchanged in 

the epileptic brain compared to sham-treated controls.  

Taken together, we demonstrate the first steps toward discovering a novel 

interaction between KARs and mAChRs in the brain. Furthermore, we identified 

compensatory changes that occur in the dopaminergic system as a result of chronic 

temporal lobe epilepsy. These findings will provide potential targets for therapeutic 

interventions for patients with epilepsy.  
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CHAPTER 1 

GENERAL INTRODUCTION

 

1.1 SIGNIFICANCE 

Glutamate receptors mediate fast excitatory transmission in the brain. Particularly, 

in the hippocampus they are required for synaptic plasticity that underlies learning and 

memory. There are three types of ionotropic glutamate receptors: α-amino-3-hydroxy-5-

methyl-4-isoxazole propionic acid (AMPA), N-methyl-D-aspartate (NMDA), and kainate 

receptors. Of these three types, kainate receptors are the least understood, although the 

most interesting of the bunch. Unlike the other receptors, kainate receptors are located at 

both presynaptic and postsynaptic sites, where they mediate synaptic transmission and 

neurotransmitter release through not only the classical ionotropic mechanism but also 

through a metabotropic G-protein mechanism. Additionally, kainate receptors have slow 

excitatory postsynaptic potentials (EPSPs), which allows for temporal summation. 

Furthermore, kainate receptor subtypes have unique pharmacology based upon the 

subunits that compose them, and can undergo posttranslational modification (i.e. 

phosphorylation), which allows kainate receptors to have diverse responses to the same 

ligand. Overactivation of kainate receptions have been linked to neurological diseases, 

such as epilepsy. 
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 Neurotransmitters, likes acetylcholine and dopamine, can modulate glutamate 

receptor function. In the hippocampus, dysfunctional interactions between these 

neurotransmitters and glutamate receptors have been linked to several neurological 

diseases, including epilepsy. For example, administering a muscarinic acetylcholine 

agonist reliably produces seizures in an animal model that remarkably resembles human 

temporal lobe epilepsy. These seizures no longer occur when animals are pretreated with 

a kainate receptor antagonist. Additionally, administering a dopamine receptor agonist 

can precipitate seizures, which can also be blocked by a kainate receptor antagonist. 

Interestingly, alternative therapies known to improve brain health and learning and 

memory, such as routine physical exercise, have been shown to modulate acetylcholine 

and dopamine content in the brain. This demonstrates a dynamic interaction between the 

glutamatergic system and other monoamines that are required for optional brain health.  

 Our goal is to understand the interaction between the glutamatergic system and 

monoamines in the brain. Furthermore, we want to understand how disruption in these 

interactions could lead to neurological disease, such as in epilepsy, and how alternative 

therapies, such as physical exercise, can counteract this disruption. Several studies have 

observed how AMPA and NMDA ionotropic glutamate receptors are modulated by 

muscarinic and dopamine receptors. However, it is not known whether kainate receptors 

are altered by these metabotropic receptors. In this collection of studies we seek to 1) 

discover a pharmacological tool that will help us identify KAR subunits involved in 

synaptic transmission, 2) determine whether KAR-mediated synaptic transmission is 

modulated by muscarinic and/or dopamine receptors, and 3) determine how neurological 
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diseases, such as epilepsy, can alter monoamine content and infer how these changes can 

impact the hippocampal glutamatergic system. 

 

1.2 THE HIPPOCAMPUS 

 

1.2.1 HIPPOCAMPAL FUNCTION 

The hippocampus is a group of millions of cells buried deep within the medial 

temporal lobe of the human and other mammalian brain. This structure resembles a 

seahorse, and was thus named after the Latin translation “hippocampus” by the 

Bolognese anatomist Giulio Cesare Aranzi (circa 1564). Since its discovery, the 

functional role of the hippocampus remained heavily debated until the late 1950’s when 

scientists William Scoville and Brenda Milner began excising the mesial temporal lobe 

from patients with brain damage. The most notable patient, known as H.M., suffered 

severely from uncontrollable seizures. He underwent surgery to remove the ‘epileptic 

core’, which included removing both hippocampi, in an effort to reduce his seizure 

frequency. The studies and observations of H.M. by William Scoville and Brenda Milner 

in 1957 (Scoville and Milner, 2000) concluded that while the surgery was successful in 

reducing the seizures, the patient was left incapable of developing new memories 

(anterograde amnesia) nor had he retained memory of events that occurred immediately 

before surgery. This was the first definitive link between memory and the hippocampus.  
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Since that initial clinical observation, decades of behavioral research have 

accumulated a large body of evidence confirming the hippocampus’s role in acquiring, 

maintaining, and recalling memories. However, the hippocampus is not involved in every 

type of memory. It is generally accepted that the hippocampus is critical for both 

declarative memory and spatial memory (Burgess et al., 2002). Declarative memory 

refers to memories that can be consciously recalled, such as facts and verbal knowledge. 

These memories can be categorized into two subclasses: sematic memory, which is the 

capacity to remember factual knowledge, and episodic memory, which stores 

observational memories attached to specific personal experiences. In contrast, spatial 

memory is the ability to encode information regarding one’s environment and spatial 

orientation, which is necessary for navigation. The hippocampus achieves this with 

“place cells”. Place cells are neurons located in the hippocampus that activate in 

correspondence to a specific location independent of orientation (O’Keefe, 1976; Wilson 

and McNaughton, 1993; Muller et al., 1994). In addition to acquiring and storing 

memories, the hippocampus is also involved in memory retrieval. Although this 

hippocampal function is still heavily debated due to the complicated nature of 

experimental procedures and interpretation, it is believed that the hippocampus is 

required for retrieval of detailed contextual memories (generally recent memories) 

(Wiltgen et al., 2010). However, memories that lose precision (memories of our distant 

past) can be retrieved independently of the hippocampus (Wiltgen et al., 2010). This 

theory is also corroborates with clinical observations of patient H.M. and others with 

damaged hippocampi, whom found it difficult to recall events just prior to the surgery 
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removing their hippocampi, but did not experience deficits in recalling distant memories 

(Squire, 1992; Hodges, 1994; Squire and Alvarez, 1995). 

In accordance to the hippocampus’s central role in learning and memory, aging 

(Scahill et al., 2003; Raz et al., 2004; Rodrigue and Raz, 2004; Du et al., 2006) and 

diseases associated with learning and memory impairment, including Alzheimer’s (Wang 

et al., 2006), epilepsy (Chang and Lowenstein, 2003) and schizophrenia (Heckers, 2001), 

are strongly associated with hippocampal atrophy and sclerosis. Additionally, therapies 

that are known to improve learning and memory performance, such as physical exercise, 

can reverse and/or delay hippocampal atrophy (Erickson et al., 2011). The ability to 

understand diseases that impair learning and memory and develop more effective 

treatments for these diseases likely lies within our understanding of the hippocampus. 

Fortunately, the anatomical structure and circuitry of this region in the healthy brain has 

been well characterized.  

 

1.2.2 HIPPOCAMPAL ANATOMY   

 Humans and other mammals have two hippocampi, one located on either side of 

the brain – deep within the medial temporal lobe. The hippocampus is shaped like a 

curved tube, resembling a cashew nut. The hippocampus is intimately connected and 

function in coordination with other regions (dentate gyrus (DG), subiculum, 

presubiculum, parasubiculum, and entorhinal cortex (EC)), known collectively as the 

hippocampal formation. These accessory regions are required for funneling information 

from various brain regions into the hippocampus and redistributing information exiting 
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the hippocampus. Particularly, the hippocampus proper itself consists of three Cornu 

Ammonis fields (CA): CA1, CA2, and CA3. However, throughout this document and 

most commonly in peer reviewed literature, the hippocampus refers to regions CA1, 

CA2, CA3 and the DG.  

 Unlike discovering the function of the hippocampus, early investigations by 

neuroanatomists were remarkably accurate in their depictions of the structure and cellular 

organization of the hippocampus. In fact, illustrations of the hippocampus produced by 

Ramon y Cajal in his book Histologie due Systeme Nerveux (1911) are still widely used 

today. This ease in defining the hippocampal neuroanatomy was probably due to the 

unique laminar organization of the hippocampus. Principal cells are tightly packed into a 

single layer within each hippocampus region. This organization produces a highly 

organized unidirectional flow of information known as the ‘trisynaptic circuit’ (See 

Figure 1.1 for illustration). Briefly, the first synapse (perforant path) consists of axons 

from principal cells in the EC synapsing onto principal cells dendrites in the DG. The 

second synapse (mossy fiber pathway) consists of axons from the principal cells in the 

DG synapsing onto principal cells in CA3. Finally, the third synapse (Schaffer collateral 

path) consists of axons from CA3 principal cells (Schaffer collaterals) synapse onto CA1 

principal cell dendrites. Information received by CA1 principal cells is then exited from 

the hippocampus proper to the subiculum. Although the ‘trisynaptic circuit’ accounts for 

general information flow through principal cells, diversions from this circuit and the 

inclusion of non-principal cells makes the hippocampus circuitry more complex and will 

be discussed in modest detail in the upcoming sections.   
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Figure 1.1 Illustration of the trisynaptic circuit: 1) perforant path axons synapse onto 

dentate granule cell dendrites, 2) dentate granule cell axons (mossy fibers) synapse onto 

CA3 pyramidal cell dendrites, and 3) CA3 pyramidal cell axons synapse onto CA1 

pyramidal cell dendrites.  

 

DG 

CA3 

CA1 

1. 
2. 

3. 
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 1.2.3 DENTATE GYRUS ANATOMY AND CIRCUITRY 

 The dentate gyrus (DG) is the first step in the hippocampus structure to receive 

information leading towards the processing and production of memories. The entorhinal 

cortex (EC), which accumulates cortical sensory information, projects unidirectionally 

mainly to the dentate gyrus through axons called the perforant path. The DG does not 

reciprocate axonal projections to the EC.  

 The DG has three distinct layers. The most superficial layer is called the 

molecular layer or stratum moleculare. This layer is relatively cell-free (albeit a small 

number of interneurons) and contains predominately dendrites from DG principal cells, 

called dentate granule cells (DGCs). The other major occupant of the molecular layer are 

the axon fibers projecting from the EC, which make up the perforant path. The layer in 

which the principal DGCs are tightly packed and aligned is called the granule cells layer 

or stratum granulosum. The cell body of interneurons, called pyramidal basket cells, are 

also located on the inner boundary of the granule cells layer and the third layer of the DG, 

called the polymorphic layer. The polymorphic layer, also called the hilus, is the most 

inner layer of the DG. Numerous cell types are located in the hilus, but the most 

prominent are the mossy cells. Mossy cell bodies and dendrites reside in the DG hilus, 

and their axons extend into the inner third of the molecular layer 

(associational/commissural projection) where they synapse onto both granule cells and 

GABAergic interneurons. Additionally, the hilus consists of axons from DGCs, called 

mossy fibers, projecting towards CA3.  
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 1.2.4 CA3 ANATOMY AND CIRCUITRY 

 The CA3 region contains the second synapse in the trisynaptic pathway. This 

region can be subdivided into four distinct layers: stratum oriens, stratum pyramidale, 

stratum lucidum, and stratum radiatum. The most superficial region is the stratum oriens. 

This region contains the basal (downward extending) dendrites of CA3 pyramidal 

neurons. Additionally, this region contains axons projecting from CA3 pyramidal neurons 

and synapsing onto adjacent CA3 pyramidal neurons (recurrent collaterals), as well as 

CA3 pyramidal axons (Schaffer collateral) projecting to CA1 pyramidal neurons. Lastly, 

this region contains a plethora of inhibitory interneurons. Just deep of the SO layer, is the 

stratum pyramidale (SP), which contains the very densely packed pyramidal cell bodies. 

The stratum lucidum is located deep to SP and contains mossy fibers originating from the 

DG. Lastly, the stratum radiatum (SR) is the deepest layer and contains CA3 pyramidal 

neuron dendrites, EC axons projecting onto CA3 pyramidal dendrites (perforant path), 

and various interneuron subtypes. 

 

 1.2.5 CA1 & CA2 ANATOMY AND CIRCUITRY  

 The anatomical organization and nomenclature for regions CA1 and CA2 are 

identical. Densely packed pyramidal cells align to form a layer known as the stratum 

pyramidale. Superficial to this layer is the stratum oriens, which similarly to area CA3, 

contains both the apical dendrites of CA1/CA2 pyramidal cells and axons projecting from 

CA1/CA2 pyramidal neurons into mainly the subiculum. Deep to the stratum pyramidale 

is the stratum radiatum, which contains basal CA1/CA2 pyramidal neuron dendrites. 
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Additionally, this layer contains Schaffer collateral fibers synapsing onto CA1/CA2 

pyramidal dendrites. Various types of interneurons are distributing throughout the 

stratum oriens and stratum radiatum and sparsely throughout the stratum pyramidale. 

Unlike the CA3 region, the CA1 contains very few recurrent connections, making it less 

likely to undergo feed-forward bursting.  

 

1.3 SYNAPTIC PLASTICITY 

 

 1.3.1 GLUTAMATE RECEPTORS 

Glutamate is the main excitatory neurotransmitter in the brain. At synapses, 

glutamate is stored in vesicles, where it is released from presynaptic neurons in response 

to nerve impulses. Released glutamate binds to glutamate receptors and produces 

neuronal activation, which is essential for brain function. Glutamate receptors come in 

two subclasses: ionotropic and metabotropic. Ionotropic receptors contain a channel pore 

that opens in response to bound glutamate, allowing the flow of ions and mediating fast 

synaptic transmission. Alternatively, metabotropic glutamate receptors couple to a G-

protein and elicit a second-messenger signaling cascade when bound to glutamate. There 

are three primary categories of ionotropic glutamate receptors: N-methyl-D-aspartate 

receptor (NMDAR), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor 

(AMPAR), and kainate receptor (KAR). Each receptor subtype was identified based on 

their relative affinity for agonists N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-
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methyl-4-isoxazolepropionic acid (AMPA), kainate (KA) respectively. However, recent 

pharmacology studies have identified promiscuity among ionotropic glutamate receptors 

in their affinity for these agonists. 

Ionotropic glutamate receptors are distributed throughout the hippocampus on 

principal and non-principal neurons, where they mediate the cellular form of learning and 

memory. It is believed that the cellular basis for learning and memory is intimately 

related to the ability of a synapse to strengthen or weaken. This phenomenon is called 

synaptic plasticity. There are several forms of synaptic plasticity that vary based on their 

persistence over time and the mechanisms by which they occur. Generally, synaptic 

plasticity is put into two categories: short-term plasticity, in which change in synaptic 

strength lasts seconds to minutes, and long-term plasticity, in which the change in 

synaptic strength lasts for an hour or more.  

 

1.3.2 LONG-TERM POTENTIATION 

Much experimental work has been performed on long-term plasticity, and 

specifically investigating mechanisms leading to persistent activity-dependent 

enhancement in synaptic strength, long-term potentiation (LTP). Long-term potentiation 

can be induced either by strongly stimulating the presynaptic neuron with a non-

physiological relevant high frequency (100Hz, 1sec) train, stimulating the presynaptic 

neuron with an activation pattern that closely resembles learning in the awake brain (theta 

burst patterns), briefly pairing presynaptic and postsynaptic stimulation, or chemically 
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with pharmaceutical agents mimicking other neurotransmitters. All of these protocols for 

induction of LTP elicit a similar cascade of events.  

Although similar mechanisms of LTP have been identified in several synapses 

throughout the brain, much of the studies have been conducted on Schaffer collaterals 

projecting to CA1 pyramidal neurons. Electrical stimulation of Schaffer collateral axons 

causes a release of stored glutamate from presynaptic vesicle. This released glutamate 

binds to various glutamate receptor subtypes located postsynaptically on CA1 pyramidal 

neurons. Specifically, AMPA receptors open when bound to glutamate allowing a net 

positive flow of Na
+
 ions into the CA1 pyramidal cells. This causes the cell to become 

more depolarized (excitatory postsynaptic potential (EPSP)) and more likely to fire an 

action potential. NMDA receptors are also located on postsynaptic CA1 pyramidal 

neurons, where they can bind glutamate. However, the NMDAR channel pore is blocked 

by Mg
2+

 ions when the cell is near resting membrane potentials. Thus, if the Schaffer 

collaterals are stimulated at low frequencies, the EPSP amplitude will remain constant or 

slightly increase. However, if high frequency stimulation is applied to Schaffer 

collaterals, more glutamate is released from the presynaptic neuron and repeatedly 

activates AMPA receptors. The sustained AMPA receptor activation causes the CA1 

pyramidal neuron to become highly depolarized. The Mg
2+ 

block will then withdraw from 

the NMDA receptor and allow a high influx of Ca
2+

 and Na
2+

 into the CA1 pyramidal 

neuron. This increase in Ca
2+

 elicits signaling cascades with downstream effects of PKC 

and PKA phosphorylation of AMPA receptors to facilitate more AMPA receptor 

trafficking and insertion in the postsynaptic CA1 synapse. Now, the same stimulus will 
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elicit EPSP amplitudes that are increased and remain elevated for several hours. Thus, the 

CA1 pyramidal neuron is more likely to fire an action potential.  

LTP at the perforant path to dentate gyrus granule cells and Schaffer collaterals to 

CA1 pyramidal neurons are NMDAR dependent. Also, LTP at the perforant path 

projected onto CA3 pyramidal neurons, and recurrent collaterals interconnecting CA3 

pyramidal neurons are also NMDAR dependent. However, the mossy fiber pathway that 

synapses onto CA3 pyramidal neurons is not NMDAR dependent. Interestingly, KARs 

are highly expressed pre- and post-synaptic at this synapse, and is one of few regions in 

the hippocampus where there is a measurable KAR field potential.  

 

1.3.3 MOSSY FIBER LONG-TERM POTENTIATION 

Mossy fiber synapses show an unusual form of LTP. Unlike conventional 

synapses where LTP is NMDAR dependent, mossy fiber LTP can occur and persists even 

when NMDAR function is blocked (Harris and Cotman, 1986; Zalutsky and Nicoll, 

1990). Thus, the mechanism by which the mossy fiber – CA3 synapse undergoes 

plasticity is fundamentally different than those at most synapses. Similar to classical 

(Hebbian) LTP, LTP of the mossy fiber – CA3 synapse can be evoked by various high 

frequency stimulation protocols (Zalutsky and Nicoll, 1990; Hirata et al., 1991; Castillo 

et al., 1994; Nicoll and Schmitz, 2005) or stimulation patterns that mimic natural granule 

cell firing patterns (Mistry et al., 2011). The mechanism contributing to MF-LTP is 

thought to occur predominantly presynaptic, by an increase in presynaptic calcium 

current causing enhanced glutamate release. Others have suggested that activation of 
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presynaptic KARs and/or an increase release of calcium from internal stores also 

contribute to MF-LTP. However, the involvement of postsynaptic mechanisms cannot be 

ruled out as other studies have demonstrated that a postsynaptic rise in Ca
2+

 (Kapur et al., 

1998; Yeckel et al., 1999; Wang et al., 2004) and ephrin-mediated kinases (Contractor et 

al., 2002; Armstrong et al., 2006) are required for MF-LTP.  

 

1.3.4 LONG TERM DEPRESSION 

Long-term depression (LTD) is a persistent weakening in synaptic strength lasting 

for at least one hour. This form of plasticity ensures that the postsynaptic neuron is less 

likely to fire an action potential (depressed EPSPs). LTD occurs in several brain regions, 

including the hippocampus. The discovery of long-term depression (LTD) occurred much 

later (1980’s) than LTP (1973) (Bliss and Gardner-Medwin, 1973; Bliss and Lomo, 1973; 

Ito and Kano, 1982), which may account for why slightly less is known about the 

mechanism of LTD. However, we do know that LTD can be induced by very low 

frequency stimulation patterns (1 to 5 Hz) given for prolonged periods of time 

(Braunewell and Manahan-Vaughan, 2001). This low stimulation intensity causes only a 

modest increase in NMDAR-mediated postsynaptic calcium concentrations, which 

subsequently activates calcium-dependent phosphatases (as opposed to protein kinases in 

LTP) to remove AMPAR from the postsynaptic cell surface (Lisman, 1989; Mulkey and 

Malenka, 1992; Mulkey et al., 1993, 1994). The threshold for determining whether Ca
2+

 

levels will undergo LTD or LTP is dynamic and depends on the previous history of the 

synapse.  
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1.3.5 MOSSY FIBER LONG-TERM DEPRESSION 

Low frequency stimulation of mossy fiber axons evokes long-term depression 

(LTD) at mossy fiber – CA3 synapses. This form of LTD is NMDAR-independent 

(Kobayashi et al., 1996) and involves activation of presynaptic metabotropic glutamate 

receptors (Manzoni et al., 1995; Yoshino et al., 1996), causing a reduction in cAMP and 

subsequent protein kinase A (PKA) activity (Tzounopoulos et al., 1998). The end result is 

a lower glutamate release probability. Interestingly, the mechanism of MF-LTD is age 

and developmentally dependent. Rats 2 – 3 weeks postnatal transiently express calcium-

permeable AMPAR (CP-AMPAR) (Pellegrini-Giampietro et al., 1992; Pickard et al., 

2000). As the name suggests, activation of these receptors allows Ca
2+

 ions to flow into 

the cell. At MF synapses expressing CP-AMPAR, the locus of LTD is postsynaptic, 

involving selective trafficking of CP-AMPAR away from the CA3 pyramidal cell surface 

(Ho et al., 2007). Alternatively, rats older than 3 weeks postnatal express predominantly 

calcium-impermeable AMPAR (CI-AMPAR) postsynaptically at mossy fiber – CA3 

synapses, and do not undergo MF-LTD after low frequency depolarization of mossy fiber 

axons.  

 

1.3.6 SHORT-TERM PLASTICITY 

Changes in synaptic strengthening or weakening that lasts for less than 1 hour is 

considered short-term potentiation or short-term depression, respectively. Short-term 

plasticity is considered to occur predominantly presynaptic, by a change in the release 



 
 

16 

probability of glutamate from presynaptic terminals. An increase in glutamate release 

probability corresponds to short-term potentiation, whereas a decrease in glutamate 

release probability corresponds to short-term depression. The mechanism by which short-

term potentiation occurs is coined the “residual Ca
2+

 hypothesis”. This theory states that 

enhanced transmitter release (facilitation) during a second stimulus is caused by 

remaining Ca
2+

 in the nerve terminal after the initial stimulus (Katz and Miledi, 1968; 

Rosenthal, 1969; Erulkar and Rahamimoff, 1978; Kretz et al., 1982).  

There are several possible mechanisms for short-term depression. The most 

widespread mechanism is use-dependent depletion of release-ready neurotransmitter 

(glutamate) in the presynaptic terminal (Liley and North, 1953; Betz, 1970). In detail, 

when the presynaptic neuron is depolarized it releases glutamate from vesicles that are 

docked and ready to be released into the synapse. With low frequency stimulation, the 

released glutamate is re-uptaken back into the nerve terminal where it can be recycled 

and/or replaced with other glutamate-containing vesicles waiting “on deck”. However, 

with high frequency stimulation, this release-ready pool is not provided enough time to 

recycle (Simons-Weidenmaier et al., 2006). The result is less glutamate released and 

lower EPSPs recorded from the postsynaptic neuron. Another mechanism for short-term 

depression is the reduction of glutamate release mediated by autoreceptors located 

presynaptically. Each of the ionotropic and metabotropic glutamate receptors have been 

shown to be localized on presynaptic terminals were they regulate glutamate release after 

depolarization of the presynaptic neuron (Kerchner et al., 2001; Lee et al., 2002a; 

Bardoni et al., 2004). Alternatively, short-term depression can also occur through a 

postsynaptic mechanism. Exposure of ionotropic glutamate receptors to glutamate opens 
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the receptors and can also put some channels into a nonresponsive (desensitized) state. 

Desensitization of glutamate receptors located postsynaptically can make the target 

neuron less sensitive to glutamate (Mennerick and Zorumski, 1996; Larkman et al., 

1997). The end result is transiently lower EPSPs.  

 

1.3.7 SYNAPTIC PLASTICITY IN LEARNING AND MEMORY 

 Virtually every synapse in the brain is dynamically regulated. Mechanisms to 

either enhance or depress synaptic transmission can either be short-lived or long lasting. 

We previously described that the hippocampus is necessary for acquiring, retaining, and 

retrieving new memories. Furthermore, we described how ionotropic glutamate receptors 

are the key players in mediating several forms of synaptic plasticity, both long-term and 

short-term, in the hippocampus. However, the question prevails whether synaptic 

plasticity translates to learning and memory. 

 It is generally accepted that synaptic plasticity, especially LTP, is a cellular model 

for learning and memory. The first studies linking synaptic plasticity with learning and 

memory were correlational. Barnes (1979) and Barnes & McNaughton (1985) found that 

persistent LTP was statistically correlated with the rate of learning and/or memory 

retention (Barnes, 1979; Barnes and McNaughton, 1985). Subsequent studies 

accumulated over 20 years have found similar results. This correlation also occurs in the 

diseased brain. For example, in the murine model of Alzheimer’s disease overexpressing 

mutant amyloid precursor protein, the decline in memory performance was also 
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statistically correlated with a decline in LTP, both in vivo and in vitro (Chapman et al., 

1999). 

 In addition to correlation studies, pharmacological blockage of NMDA receptors 

impairs hippocampus-dependent learning. As described above, NMDAR are necessary 

for LTP and LTD to occur at most synapses, with the mossy fiber – CA3 synapse being 

an exception. Studies have shown that administering a potent NMDAR antagonist 

prevents LTP, and impairs hippocampal-dependent spatial memory, but not hippocampal-

independent forms of memory (visual discrimination) (Morris et al., 1986). Several 

learning paradigm have been used to replicate these findings (Tonkiss et al., 1988; 

Danysz et al., 1988; Staubli et al., 1989; Tonkiss and Rawlins, 1991; Bolhuis and Reid, 

1992; Shapiro and O’Connor, 1992; Cole et al., 1993; Lyford et al., 1993; Caramanos and 

Shapiro, 1994; Fanselow et al., 1994; Li et al., 1997). The impairment in learning 

performance is dose dependent and occurs at comparable drug concentrations that impair 

LTP in vivo and in vitro (Davis et al., 1992). Interestingly, blocking NDMA receptors 

with an antagonist prevents the development of new memories, but does not affect the 

retention of memories (Morris, 1989; Staubli et al., 1989; Morris et al., 1990). This 

suggests that the ability of a synapse to undergo LTP is necessary for the formation of 

new memories, as opposed to retaining or retrieving older memories. Also, drugs that 

activate ionotropic glutamate receptors can enhance both LTP and memory. One such 

class of drugs are the ampakines, which decrease the speed of AMPAR desensitization 

and activation (Arai et al., 1994, 1996). Interesting, this drug shifts the AMPAR kinetics 

to those mimicking NMDA and KARs. Ampakines increase both the probability of LTP 

and enhance memory encoding (Stäubli et al., 1994; Lynch, 1998).  
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 Synaptic plasticity also occurs naturally during learning. Spatial exploration 

causes a short-term modulation in perforant path EPSPs (Moser et al., 1993). This 

increase occurs rapidly at the onset of exploration and gradually declines to baseline over 

time (15 min).  These observations present two interesting points. One, synaptic plasticity 

occurred in the time scale when learning is most likely taking place, and two, short-term 

plasticity also has important implications for learning and memory. Indeed, mice with 

genetically compromised presynaptic proteins (alpha CaMKII, synapsin II, and both 

synapsin I and synapsin II) but normal LTP, demonstrate impaired short-term plasticity 

and profound learning difficulties (Silva et al., 1996). However, there have been studies 

that also demonstrate natural occurring LTP during learning. For example, Ishihara et al. 

(1997) found a positive correlation between CA3 population spikes caused by mossy 

fiber stimulation and learning performance in radial arm maze (Ishihara et al., 1997). 

Furthermore, studies have proven post-hoc that adult animals raised in an enriched 

environment have enhanced perforant path – dentate EPSP compared to adult animals 

raised in normal cages (Green and Greenough, 1986). In conclusion, these results 

demonstrate that both short-term and long-term forms of synaptic plasticity are critical 

for the acquisition of new memories. Thus, any neuromodulator that would impact either 

form of synaptic plasticity would have profound effects on our ability to learning and 

form memories. 
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1.4 MUSCARINIC ACETYLCHOLINE RECEPTOR MODULATION OF GLUTAMATE 

RECEPTORS 

 

1.4.1 ACETYLCHOLINE 

Glutamate receptors, and consequently synaptic transmission, can be dynamically 

regulated by other neurotransmitters and their metabotropic receptors. One example is 

acetylcholine (ACh). Acetylcholine was the first neurotransmitter to be synthesized. Its 

discovery by Sir Henry Hallett Dole and Otto Loewi awarded them the Noble Prize in 

1936. Its name is derived from its chemical structure, an ester of acetic acid and choline. 

Acetylcholine has many functions throughout the body. In the brain, acetylcholine is used 

as a neurotransmitter and plays important roles in learning and memory, arousal, 

attention, and motivation. Aside from its effects in the brain, ACh is also a primary 

neurotransmitter at the neuromuscular junction where ACh activates muscles and is a 

major neurotransmitter in the autonomic nervous system. 

The hippocampus receives acetylcholine from cholinergic fibers projecting from 

the medial septum of the basal forebrain (Dutar et al., 1995). In fact, the human 

hippocampus contains one of the highest densities of cholinergic fibers (Mesulam et al., 

1992). Acetylcholine is synthesized from choline and acetyl coenzyme A by the enzyme 

choline acetyltransferase and becomes packaged into membrane bound vesicles in the 

axons of cholinergic fibers. After an action potential propagates down the cholinergic 

terminal, acetylcholine is released into the synaptic cleft.  Released acetylcholine can 

then bind to acetylcholine receptors located postsynaptically. Alternatively, acetylcholine 
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is rapidly degraded by acetylcholinesterase into choline and acetate. The choline product 

can be re-uptaken into the presynaptic terminal and recycled into acetylcholine. 

 

1.4.2 ACETYLCHOLINE RECEPTORS 

Like other neurotransmitters ACh exerts its effects by binding to receptors. There 

are two categories of ACh receptors: nicotinic acetylcholine receptor (nAChR) and 

muscarinic acetylcholine receptor (mAChR). Similarly to glutamate, they were identified 

and named after their affinity for the selective agonists: nicotine and muscarine. The 

nicotinic receptors act as ligand-gated ionotropic receptors, meaning they undergo a 

conformation change and open a channel pore to allow the flow of ions (Na
+
, K

+
, and 

Ca
2+

) when ACh is bound. Alternatively, mAChRs are G-protein coupled (metabotropic) 

receptors and have a slower response when activated. mAChRs can have either an 

inhibitory or excitatory effect based upon the mAChR activated and the G-protein in 

which the mAChR couples.   

 

1.4.3 MUSCARINIC RECEPTORS 

As stated earlier, mAChRs are metabotropic receptors that couple to G-proteins 

and elicit a second-messenger signaling cascade. mAChRs have seven transmembrane 

regions. There are five types of mAChRs (M1 – M5), each encoded by the gene with 

corresponding names (m1 – m5). M1, M3, and M5 couple to Gq proteins and stimulate a 

phospholipase C/ inositol trisphosphate/ intracelluclar calcium-signaling pathway 
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(Caulfield and Birdsall, 1998; Lanzafame et al., 2003). The M2 and M4 mAChRs couple 

Gi/o protein and inhibits cAMP activity by downregulating adenylate cyclase. However, 

mAChRs occasionally vary in the G-protein in which they are bound. 

Each of the mAChRs have distinct subcellular localization in the hippocampus 

(Levey et al., 1995). M1 mAChRs are the most abundantly expressed mAChRs in the 

human and rodent hippocampus (Cortes et al., 1984; Cortés et al., 1986; Rodríguez-

Puertas et al., 1997; Scarr et al., 2007), where it is expressed widely in the cell body and 

dendrites of principal neurons (CA1, CA2 and CA3 pyramidal neuron and dentate 

granule neurons). M2 is expressed predominantly in non-principal neurons and discrete 

bands and puncta surrounding pyramidal neuron soma in CA3 more than CA1, but not 

expressed in the pyramidal neurons (Rouse et al., 1997). M3 is expressed in pyramidal 

neurons, neuropil in stratum lacunosum-moleculare, and the outer third of the molecular 

layer of dentate gyrus. M4 is enriched in non-principal neurons and the inner third of the 

molecular layer. Additionally, a subset of M2 and M4 mAChRs were localized 

presynaptically. In conclusion, only the M1 and M3 receptors are predominantly located 

on postsynaptic principal neurons, where they can modulate synaptic plasticity by 

directly interacting with postsynaptic ionotropic glutamate receptors, while M2 and M4 

mAChRs are predominately located on interneurons. The M5 receptor is the least 

abundant of the muscarinic receptors and is expressed at low levels throughout brain. At 

the mossy fiber – CA3 synapse, mAChRs are located both pre- and postsynpatically 

where they alter synaptic neurotransmission. 
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1.4.3 FUNCTION OF MUSCARINIC RECEPTORS IN THE HIPPOCAMPUS  

The cholinergic system is crucial for learning and memory. Perhaps the best 

behavioral illustration is in Alzheimer’s disease, where degeneration of these cholinergic 

projections in the hippocampus is the hallmark symptom for deficits in learning and 

memory, working memory, and attention (Bartus et al., 1982). Additionally, 

scopolamine, a mAChR antagonist, induces memory deficits (delirium and amnesia) in 

healthy volunteer (Drachman and Leavitt, 1974). Still today, several pharmaceutical 

therapies for AD are aimed at inhibiting cholinesterase activity or enhancing cholinergic 

signaling (Lane et al., 2006). Indeed, enhanced cholinergic signaling has shown to 

improve LTP and memory deficits in vivo and in vitro (Caccamo et al., 2006; Chen et al., 

2006). Furthermore, ablation or inhibition of M1 mAChRs impairs spatial memory 

encoding, demonstrating a critical role for mAChRs in hippocampal-dependent learning.  

Muscarinic acetylcholine receptors are located at both presynaptic and 

postsynaptic sites where they modulate synaptic plasticity. Presynaptic mAChRs on 

principal neurons suppress glutamate release, and thereby reducing hippocampal activity 

(a form of short-term depression) (Valentino and Dingledine, 1981). Meanwhile, 

postsynaptic mAChR inhibit K
+
 conductance, which enhances hippocampus activity (a 

form of short-term potentiation) (Cole and Nicoll, 1983). Thus, the same muscarinic 

agonist can have bidirectional affects on short-term synaptic plasticity. Additionally, 

presynaptic muscarinic receptors have been shown to suppress GABA release onto CA3 

hippocampal pyramidal neurons, which is mediated predominantly through M2 mAChRs 

(Szabó et al., 2010).  
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Cholinergic activity can also facilitate LTP in various brain regions, including the 

hippocampus. Application of a cholinergic agonist (Blitzer et al., 1990; Auerbach and 

Segal, 1996) or stimulation of the medial septum in vivo can induce hippocampal LTP 

(Galey et al., 1994; Markevich et al., 1997). Indeed, when a muscarinic agonist is 

perfused onto a brain slice prior to a high frequency stimulus, it can enhance LTP in CA1 

without affecting baseline EPSPs (Blitzer et al., 1990; Auerbach and Segal, 1994; 

Sokolov and Kleschevnikov, 1995; Adams et al., 2004; Shinoe et al., 2005). This 

phenomenon also occurs in the dentate gyrus and shown to be mediated through M1 

mAChRs at both synapses. A recent study using newly developed M1 mAChR selective 

agonist and congenital knockout mice elegantly corroborates previous literature by 

demonstrating that M1 mAChR activation produces a robust potentiation of 

glutamatergic synaptic transmission onto CA1 pyramidal neurons and NMDA-dependent 

LTP (Dennis et al., 2015). However, M1 mAChRs seem not to be necessary for LTP to 

occur, since congenital M1 knockout mice demonstrates only mild deficits in CA1 LTP. 

Interestingly, these mice did experience significant memory deficits in tasks requiring 

both the cortex and hippocampus to interact (Anagnostaras et al., 2003). In conclusion, 

significant evidence supports that M1 mAChRs activation enhances synaptic plasticity at 

CA1 and the dentate gyrus and facilitates the ability to learn.  

In contrast to its effects on tetanus-induced LTP (LTP induced by a high stimulus 

train), mAChR activation by itself can induce LTP (Auerbach and Segal, 1994, 1996) or 

LTD (McCutchen et al., 2006). Interestingly, the expression mAChR-induced LTP or 

LTD is dependent on the mAChR agonist concentration. A low dose of mAChR agonist 

induces mAChR-induced LTP. The mechanism mimics LTP induced by a high frequency 
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stimulus train, with postsynaptic increase in intracellular calcium and initiation of protein 

kinases activity is required (Auerbach and Segal, 1994, 1996). Whether mAChR LTP is 

NMDA-dependent is controversial. However, at higher concentrations muscarinic 

agonists can induce synaptic depression and LTD following prolonged exposure 

(Auerbach and Segal, 1996; McCutchen et al., 2006; Dickinson et al., 2009). The 

mechanism by which this effect is thought to occur is predominantly mediated through 

M1 and M3 receptors and involves the loss of surface AMPA receptors (NMDAR 

independent) via a calcium-independent signaling cascade involving dephosphorylation 

by protein tyrosine phosphatases (Dickinson et al., 2009).  

Although significant studies have found that M1 mAChR play a major role in 

synaptic plasticity and learning and memory, M2/M4 mAChRs also have an important 

role in synaptic plasticity and learning and memory. An M2 receptor knockout 

demonstrates significant impairments in working memory, behavioral flexibility, and 

LTP (Seeger et al., 2004). Moreover, an M2/M4 specific antagonist can induce LTP in 

CA1 in vivo, albeit requires coactivation of M1/M3 receptors. These studies suggest that 

presynaptic and postsynaptic mAChRs, including specific mAChR subtypes, work in 

conjunction to modulate learning and synaptic plasticity.  

 

1.4.4 MUSCARINIC MODULATION OF GLUTAMATE RECEPTORS 

NMDA receptors 

 As described in the previous sections, neuronal excitability and synaptic 

transmission can be altered by interactions between the glutamatergic and cholinergic 
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systems. The mechanism for this interaction requires crosstalk between the two receptors. 

For example, NMDARs (specifically the NMDARs containing the GluN1 subunit) co-

localize with M1 mAChRs on CA1 pyramidal neurons (Marino et al., 1998). Activation 

of M1 mAChRs elicits a protein kinase C (PKC) signaling cascade, which proceeds to 

phosphorylate PYK2 and in turn phosphorylates and activates Src kinase (Lu et al., 

1999). Phosphorylation of ionotropic glutamate receptors is subunit and amino acid site 

specific. For example, the molecular targets of Src are postulated to be three tyrosines on 

the C-terminus of the NMDA subunit, GluN2A (Zheng et al., 1998). Phosphorylation of 

this subunit by the Src kinase increases NMDAR trafficking to the cell surface and 

thereby increased NMDA responses at CA1 synapses. In contrast to M1 receptor 

activation enhancing NMDAR responses at hippocampal CA1 synapse, M1 receptor 

activation depresses NMDAR responses at the mossy fiber – CA3 synapse (Grishin et al., 

2005). The mechanism proposed involves calmodulin-activated tyrosine phosphatases. 

These findings demonstrate that GPCR, specifically mAChRs, can interact with 

NMDARs through second messenger signaling cascades and that phosphorylation of 

glutamate receptors are subunit and amino acid site specific. 

  AMPA Receptors 

 Muscarinic acetylcholine receptors have also been shown to modulate AMPAR 

activity. Muscarinic receptors (mainly M1) induce long-term depression (LTD) at CA1 in 

the hippocampus and cerebellum mainly through changes in AMPA receptor trafficking 

(Dickinson et al., 2009; Nomura et al., 2012). Interestingly, the mechanism eliciting M1 

facilitation of NMDAR activity and M1 LTD of AMPAR activity require similar 

signaling cascades. mACh receptor-induced LTD at CA1 pyramidal neurons is mediated 
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by PKC activation leading to phosphorylation of the AMPAR specific GluA2 subunit 

(Dickinson et al., 2009). PKC phosphorylation of this subunit causes it to dissociate from 

glutamate receptor-interacting protein 1 (GRIP1), which is a protein involved in the 

regulation of glutamate receptor trafficking. Dissociation from GRIP1 allows the GluA2-

containing AMPAR to diffuse laterally out of the synapse, and undergo endocytosis 

mediated by an AMPAR receptor auxiliary protein. These results show that mAChRs can 

also interact with AMPARs through phosphorylation cascades to alter their function at 

the synapse.  

 Alternatively, a study by Grishin et al. (2005) demonstrated that activation of M1 

mAChRs had no affect on AMPAR current at CA3 pyramidal neurons, but reliably 

depressed NMDA receptor current at the same synapse (Grishin et al., 2005). This 

muscarine-induced depression of NMDA receptors was found to be mediated through a 

signaling cascade involving tyrosine phosphatase. 

  Kainate Receptors 

 While previous studies have demonstrated that mAChRs crosstalk with NMDAR 

and AMPAR, little is known about whether mAChRs can crosstalk with KARs. To date 

there has been one study directly investigating this interaction. Benveniste et al. (2010) 

demonstrated that activation of M1 and M3 mAChRs with pilocarpine potentiated 

GluK2-containing (GluK2/K4 and GluK2/K5) KAR heteromers, but not homomeric 

GluK2 KARs (Benveniste et al., 2010). This suggests that the subunits, GluK4 and 

GluK5, are necessary for mAChR potentiation of KARs. Benveniste et al. (2010) 

furthermore demonstrated that mAChR activation with pilocarpine increased kainate-
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induced mossy fiber axon excitability. The mechanism responsible this interaction was 

not investigated.  

 This study presents a successful initial step in identifying that crosstalk between 

the mAChRs and KARs can potentially occur. However, it misses in demonstrating 

physiological relevance for this interaction. First, the experiments demonstrating 

mAChRs potentiating heteromeric KARs were performed in Xenopus oocytes. Although 

this model is ideal in deciphering the pharmacology of ligand-gated and voltage-gated 

ionotropic receptors, the relevance of this model diminishes when used to compare 

intracellular signaling mechanisms in oocytes to those in humans. Additionally, their 

experiments in brain slices that showed pilocarpine, a mAChR agonist, enhanced KAR-

induced mossy fiber excitability were performed measuring antidromic spikes. An 

antidromic spike in an electrical impulse that originates in the axon and travels toward the 

cell body (soma), opposite the conventional action potential direction. Thus, the 

physiological relevance of these results is also left to be determined. More research is 

required to determine whether mAChRs can induce physiological relevant changes to 

KARs and to elucidate the corresponding signaling mechanism by which this interaction 

occurs. 
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1.5 DOPAMINERGIC MODULATION OF GLUTAMATE RECEPTORS 

 

1.5.1 DOPAMINE 

 Dopamine (DA) in the central nervous system acts as a neurotransmitter and 

belongs to the catecholamine family (Carlsson et al., 1962). Its name is derived from its 

chemical structure, an amine formed by removing a carboxyl group from a molecule of 

L-DOPA. Dopamine is produced in several areas in the brain, including the substantia 

nigra and ventral tegmental area. DA neurons project to many areas throughout the brain 

through pathways categorized based upon the territories they innervate: mesolimbic, 

mesocortical, nigrostriatal, and tuberoinfundibular (Vallone et al., 2000). The 

hippocampus receives dopaminergic innervation from the mesolimbic pathway projecting 

from the VTA (Gasbarri et al., 1994a, 1994b, 1997). Some fibers from the substantia 

nigra also innervate the temporal (ventral and caudal) hippocampus. 

 DA neurons synthesize dopamine through a specific metabolic pathway. Briefly, 

phenylalanine is converted into tyrosine by the enzyme phenylalanine hydroxylase. 

Tyrosine is then converted into L-DOPA by the enzyme tyrosine hydroxylase (TH). In 

the final step, L-DOPA is converted into dopamine by the enzyme aromatic L-amino acid 

decarboxylase. Dopamine is then stored in vesicle in DA neurons terminals where it 

awaits release. When an action potential terminates at the axon terminal, dopamine is 

then released from the presynaptic vesicles into the synaptic cleft. Upon release, 

dopamine can either undergo 1) degradation by enzymes, such as catechol-O-methyl 

transferase (COMT), 2) reabsorbtion back into the presynaptic terminal by dopamine 



 
 

30 

transporter (DAT), or 3) binding to dopamine receptors (DAR) located on the 

postsynaptic neurons.  

 

1.5.2 DOPAMINE RECEPTORS 

Dopamine released from DA neuron terminals bind to receptors with a high 

affinity for dopamine. Dopamine receptors (DARs) are composed of seven 

transmembrane domains. They are metabotropic in function, meaning that they couple to 

G-proteins and elicit their action through second messenger signaling cascades. However, 

recent studies have demonstrated that dopamine receptors can directly bind (protein-

protein interaction) to several other types of metabotropic and ionotropic receptors and 

alter their function (Liu et al., 2000; Lee et al., 2002b). There are five distinct types of 

dopamine receptors: D1, D2, D3, D4, and D5. D1 and D5 dopamine receptors (D1-like 

dopamine receptors) couple to the Gs protein, which stimulates adenylyl cyclase activity 

and increases cyclic adenosine monophosphate (cAMP) concentration. The D2, D3, and 

D4 dopamine receptors (D2-like dopamine receptors) couple to the Gi protein, which 

inhibits adenylyl cyclase activity and subsequently reduces cAMP production.   

Increasing evidence suggests that dopamine, and specifically D1 and D5 DARs, 

play critical roles in learning and memory in the hippocampus. However, the anatomical 

data demonstrating the localization of specific dopamine subtypes are lacking. This gap 

in knowledge is due to the lack of antibodies that can convincingly distinguish between 

D1 and D5 DARs. In an effort to solve this problem, an elegant study performed by 

Gangarossa et al. (2012) used BAC transgenic mice expressing EGFP (a green 
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fluorescent protein) tagged under the promoter of either DRDI (D1 gene) or DRD2 (D2 

gene) (Gangarossa et al., 2012). D1 dopamine receptors were found scattered on 

interneurons in the CA1 and CA3 regions. In the DG, D1 DARs were highly expressed 

throughout the outer and medial molecular layer. In contrast, D2 DARs were expressed 

almost exclusively in hilar mossy cells (Gangarossa et al., 2012; Etter and Krezel, 2014). 

D5 dopamine mRNA is highly abundant in the rat hippocampus (Tiberi et al., 

1991), where they are located on principal cell (pyramidal and dentate granule cells) 

soma, spines, and apical dendrites (Ciliax et al., 2000; Khan et al., 2000; Medin et al., 

2011, 2013). Interesting, D5 dopamine receptors have a tenfold higher affinity for 

dopamine than the D1 dopamine receptor (Sunahara et al., 1991). Thus, older studies 

using radioligands to investigate D1 DAR expression may have inadvertently detected 

both D1 and D5 dopamine receptors (Boyson et al., 1986; Dawson et al., 1986; Dubois et 

al., 1986; Mansour et al., 1990). In conclusion, D1 and D5 dopamine receptors have 

strikingly different expression patterns in the hippocampus that do not appear to co-

localize.  

 

1.5.3 FUNCTION OF DOPAMINE RECEPTORS IN THE HIPPOCAMPUS 

 DA has many functions in the brain, including regulating memory, mood, 

motivation, and motor activity. Due to its diverse roles in brain function, dysregulation of 

dopamine has been link to several neurological disorders, including Parkinson’s disease 

(Ehringer and Hornykiewicz, 1960), drug addiction (Robinson and Berridge, 1993), 

schizophrenia (Goto and Grace, 2007; Lodge and Grace, 2011), and attention deficit 
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hyperactivity disorder (Del Campo et al., 2011). Specifically in the hippocampus, DA is 

released after novel (Ljungberg et al., 1992), salient (Ungless, 2004), aversive 

(Bromberg-Martin et al., 2010), or rewarding stimuli (Schultz et al., 1993), suggesting 

that dopamine is necessary for giving context to encoded information (Ihalainen et al., 

1999; Bethus et al., 2010). In contrast to the basal ganglia, there is relatively limited 

DAergic input into the hippocampus. Thus, it is thought that DA’s role in hippocampal 

signaling is more of a tonic nature (Shohamy and Adcock, 2010), although this has yet to 

be verified.  

 Both D1-like dopamine receptors and D2-like dopamine receptors mediate critical 

functions in the brain. However, D1-like dopamine receptors have gained increasing 

attention for their significant role in regulating both hippocampus-dependent memory and 

hippocampus-dependent synaptic plasticity (Huang and Kandel, 1995; Lemon and 

Manahan-Vaughan, 2006; Bethus et al., 2010; Clausen et al., 2011; da Silva et al., 2012). 

In the dentate gyrus, D1-like dopamine receptors are thought to regulate the threshold for 

LTP and consequently determine which encoded information becomes a lasting memory 

(Heinemann et al., 1992; Hamilton et al., 2010). Indeed, in freely moving animals, D1-

like dopamine receptors activate during a “novel” or “rewarding” signal, and 

consequentially increases DG excitability (Hamilton et al., 2010). Furthermore, inhibition 

of D1-like dopamine receptors also inhibits LTP in the DG (Yanagihashi and Ishikawa, 

1992; Kusuki et al., 1997; Swanson-Park et al., 1999). In the CA1 region, D1-like 

dopamine receptors have been shown to facilitate synaptic plasticity. Briefly, LTP at the 

Schaffer collateral – CA1 synapse is enhanced with D1-like receptor activation 

(Otmakhova and Lisman, 1996), while antagonizing D1-like receptors reduces or 
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prevents LTP both in vitro (Frey et al., 1991; Huang and Kandel, 1995; Otmakhova and 

Lisman, 1996; Swanson-Park et al., 1999) and in freely behaving rats (Lemon and 

Manahan-Vaughan, 2006). Interestingly, LTD is also facilitated by activation of D1-like 

dopamine receptors in CA1 (Chen et al., 1995; Liu et al., 2009) and hindered by D1-like 

dopamine receptor antagonism (Chen et al., 1995). These results are corroborated by an 

in vivo study (Lemon and Manahan-Vaughan, 2006). 

 Another form of synaptic plasticity in which D1-like dopamine has effects is 

depotentiation. Depotentiation occurs when a low frequency stimulation is delivered soon 

(maximum 30 minutes) after LTP has occurred, resulting in the ablation of LTP (Staubli 

and Lynch, 1990; Kulla et al., 1999). Depotentiation is suggested to be a mechanism for 

forgetting. Activation of D1-like dopamine receptors reduce depotentiation in the DG and 

CA1 (Otmakhova and Lisman, 1998; Kulla and Manahan-Vaughan, 2000), whereas 

antagonizing D1-like dopamine receptors prevented this effect (Kulla and Manahan-

Vaughan, 2000). 

 In contrast to the plethora of research done in the CA1 and DG, relatively few 

studies have investigated the effect of D1-like receptors on synaptic plasticity in the CA3 

region. More so than at any other hippocampal synapse, the mossy fiber – CA3 synapse 

is highly sensitive to intracellular cAMP concentrations (Weisskopf et al., 1994), and 

cAMP-dependent pathways have been implicated in its induction of LTP (Weisskopf et 

al., 1994) and LTD (Tzounopoulos et al., 1998). Also, as stated above, D1-like dopamine 

receptors are expressed on dentate granule cells and CA3 pyramidal neurons. Thus, it is 

conceivable that dopamine receptors, which modulate cAMP concentrations, would 

mediate plasticity at this synapse. Indeed, one study demonstrated that mossy fiber LTP 
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is reduced in guinea pigs in which dopamine is depleted (Ishihara et al., 1991). Also, 

another study by Kobayashi and Suzuki (2007) demonstrated that application of 

dopamine induced acute synaptic potentiation at the mossy fiber – CA3 synapse, which 

was mediated through a cAMP cascade by presynaptic D1-like receptors (Kobayashi and 

Suzuki, 2007). This potentiation was shown to affect AMPA and NMDA receptors. 

Although KARs play a critical role in synaptic plasticity at this synapse, KAR function 

was not investigated. Thus, more studies are required to elucidate the functional role of 

dopamine, specifically D1-like dopamine receptors, at the mossy fiber – CA3 synapse 

and corresponding KAR function. 

 

1.5.4 DOPAMINERGIC MODULATION OF GLUTAMATE RECEPTORS 

 D1-like dopamine receptors alter synaptic transmission and learning and memory 

by interacting with glutamate receptors. Several studies have investigated the effects of 

D1-like dopamine receptor activation on NMDAR and AMPAR function and trafficking. 

However, no study has investigated whether D1 dopamine receptors can affect KAR 

function or trafficking.  

 D1-like dopamine receptors interact with NMDAR through both phosphorylation 

cascades and direct protein-protein interactions. D1-like dopamine activation enhances 

NMDAR surface expression (Hallett et al., 2006; Paoletti et al., 2008) and localization in 

the synapse through stimulation of the tyrosine kinase Fyn (Dunah et al., 2004; Tang et 

al., 2007). Notably, several studies have demonstrated that D1-like dopamine receptors 

can also interact with NMDAR through direct protein-protein receptor binding (Lee et al., 
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2002b). Interestingly, this physical interaction is dynamic. Activation of D1 dopamine 

receptors reduces formation of this D1-like/NMDA receptor complex (Lee et al., 2002b; 

Luscher and Bellone, 2008). Interfering with the D1-like/NMDA receptor formation 

allows NMDAR to traffic (diffuse laterally) to the synapse, thereby increasing NMDAR 

mediated currents and facilitating long-term potentiation (Argilli et al., 2008; Ladepeche 

et al., 2013). Furthermore, formation of the D1/NMDAR receptor complex stabilizes D1-

like dopamine receptors to the synapse. In conclusion, activation of D1-like dopamine 

receptors predominately enhances NMDAR currents. 

 Surprisingly few studies have investigated whether D1-like receptors can interact 

with AMPARs. However, we do know that D1-like dopamine receptors can also 

modulate AMPAR activity and trafficking. Early studies demonstrated that D1-like 

dopamine receptor activation both increased AMPAR phosphorylation through a PKA 

signaling cascade and potentiated AMPAR current amplitude (Price et al., 1999). Indeed, 

application of a D1-like agonist increases AMPAR surface expression (Snyder et al., 

2000; Gao et al., 2006; Vastagh et al., 2012). These data suggests that D1-like dopamine 

receptors in general work to enhance AMPAR function.  

 No study to date has investigated whether D1 dopamine receptors can interact 

with KARs. Metabotropic receptors, such as muscarinic acetylcholine receptors and 

dopamine receptors have been shown to interact with both NMDA and AMPA receptors. 

However, KARs have been neglected. There are several reasons for why KARs should be 

investigated, including that they are unique to the other ionotropic receptors because not 

only do they mediate fast synaptic transmission, but they also modulate the amount of 

neurotransmitters released from presynaptic terminals, and alter neuronal excitability.  



 
 

36 

 

1.6 KAINATE RECEPTORS 

 

Kainate receptors were the last of the three ionotropic glutamate receptors to be 

discovered. Like other ionotropic glutamate receptors, KARs are tetrameric, meaning that 

they are formed by the combination of four distinct subunits, and share a common 

subunit structure. Each subunit contains an extracellular N-terminus domain (NTD), 

followed by four membrane domains (M1, M2, M3, and M4) and a cytoplasmic C-

terminus domain (CTD). M1, M3, and M4 are transmembrane domains, named TMD 1, 

TMD 2 and TMD 3 respectively. The M2 domain is a re-entrant pore loop, which 

penetrates and exits the cell membrane intracellularly. The ligand-binding domain (LBD) 

is composed of a segment of the NTD (deemed S1) and a segment of the extracellular 

loop between TMD2 and TMD3. KARs assemble by two subunits (dimers) binding to an 

identical dimer, which is referred to as ‘dimer of dimers’. There are five kainate receptor 

subtypes: GluK1, GluK2, GluK3, GluK4, and GluK5 (formerly GluR5 – GluR7, KA1 

and KA2). Subunits GluK1, GluK2, and GluK3 can form functional homomers, meaning 

that each of the four subunits in the KAR can be entirely GluK1, GluK2, or GluK3. 

However, GluK4 and GluK5 subunits must combine with GluK1, GluK2, or GluK3 

subunits to form a functional KAR The structural repertoire of KAR subunits is further 

diversified by Q/R editing of the GluK1, GluK2, and GluK3 subunits, which alter the 

KAR permeability to Ca
2+

, and alternative splicing of GluK1 – GluK3 subunits. 
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Evidently, the GluK4 nor GluK5 subunits do no undergo such post-transcriptional 

modifications.  

 

1.6.1 LOCALIZATION 

Determining the subcellular localization of KARs have been particularly elusive 

due to the absence of KAR subunit-specific antibodies. Several in situ hybridization 

studies have revealed tissue specific localization, but this method does not have the 

resolution to distinguish subcellular level localization (Wisden and Seeburg, 1993; 

Bureau et al., 1999). Currently, GluK2/K3 and GluK5 specific antibodies are available, 

although their reliability in immunohistochemistry is debatable. Nevertheless, 

corroborating evidence can be extracted from these results. The GluK2 and GluK5 

subunits are the most robustly expressed subunits (Perrais et al., 2010). The GluK5 

subunit is expressed abundantly throughout the brain on principal cells and interneurons 

(Wisden and Seeburg, 1993). Meanwhile, GluK2 subunits are mostly expressed on 

principal neurons throughout the brain, including pyramidal neurons and dentate granule 

cell in the hippocampus (Paternain et al., 2003). In contrast, GluK1 subunits are 

predominantly expressed on interneurons (Paternain et al., 2003). The GluK3 subunit is 

expressed at few synapses in the brain, including the hippocampal dentate gyrus (Wisden 

and Seeburg, 1993). However, the GluK4 subunit has the most restricted expression, 

mainly express in CA3 pyramidal neurons (Bahn et al., 1994). 
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1.6.2 PHARMACOLOGY 

Each KAR subunit contains a binding site and contributes to the channel pore. 

The only known KAR agonist that is present in the brain is glutamate. Glutamate 

activates homomeric GluK1 and GluK2 receptors with a 50% effective concentration 

(EC50) value in the 100 and 200 micromole (μM) range (Alt et al., 2004; Fisher and 

Fisher, 2014). However, the EC50 value for GluK3 in in the 5mM range (Schiffer et al., 

1997; Perrais et al., 2009). Although GluK4 and GluK5 subunits are non-functional as 

homomers, when expressed in recombinant HEK-293 cells they bind to glutamate. In 

contrast, the EC50 glutamate concentrations for the GluK4 and GluK5 subunits are in the 

30μM and 10μM range respectively (Fisher and Mott, 2011; Fisher and Fisher, 2014). 

Thus, the GluK4 and GluK5 subunits are given the distinction as being “high-affinity” 

subunits.  

Kainate receptors were identified based upon their high binding affinity to the 

neurotoxin kainate acid, compared to the other ionotropic glutamate receptors (NMDA 

and AMPA receptors). Kainate acid (KA) is a naturally occurring analog of glutamate, 

which was isolated from the seaweed Digenea simplex (Nitta et al., 1958). Injection of 

kainate acid in the brain causes lesions in brain regions with abundant kainate receptors 

expression, such as the CA3 region. Similar to glutamate, KA activates the KARs 

subunits with diverse potency. The GluK1 – GluK3 subunits have a “lower” affinity for 

KA (KDs near 50nM) than the “high-affinity” subunits GluK4 and GluK5 (KDs 5 – 

15nM) (Werner et al., 1991; Herb et al., 1992; Sommer et al., 1992). 



 
 

39 

The heteromeric kainate receptors predominate in the central nervous system. The 

abundant co-expression of the GluK2 and GluK5 subunits throughout the brain suggests 

that the GluK2/K5 heteromeric KARs compose majority of the expressed functional 

KARs. Interestingly, incorporation of the high-affinity subunits into KAR assemblies 

alters the pharmacology of the KAR. GluK2/K5 and GluK2/K4 heteromeric KARs are 

more sensitive to glutamate than GluK2 homomers due to the incorporation of the high-

affinity subunits GluK5 and GluK4 (EC50: GluK2/K5 = 10 μM, GluK2/K4 = 50 μM, 

GluK2 = 200 μM) (Heckmann et al., 1996; Paternain et al., 1998; Barberis et al., 2008; 

Fisher and Mott, 2011, 2013). Additionally, the GluK4 and GluK5 subunits can also bind 

to ligands that the other KAR subunits cannot. For example, agonists AMPA, ATPA, and 

willardiine compounds do not activate GluK2 homomeric receptors, but can bind and 

activate heteromeric GluK2/K5 receptors (Alt et al., 2004).  As expected, these 

compounds also have an affinity for AMPA receptors, making interpretation from earlier 

studies misleading.  

The lack of KAR subunit specific antagonist has been the Achilles heel of the 

KAR field. The development and functional characterization of such compounds is 

essential in understanding the functional contribution of KARs subtypes. Recently, an 

intense effort was made to synthesize and characterize subunit-selective KAR antagonist 

against GluK1 (Dargan et al., 2009). They developed a series of KAR antagonist based 

upon the structure of the willardiine compound, which is thought to be a GluK1 specific 

agonist. Among this series of compounds were UBP310, UBP302, and UBP316 (also 

named ACET). However, recent evidence suggests that these compounds are not as 

specific as initially thought, as the drug UBP310 inhibits GluK2/K5 heteromeric receptor 
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current in recombinant cells and inhibits postsynaptic KAR transmission at mossy fiber – 

CA3 synapses where GluK1 and GluK3 expression is limited (Pinheiro et al., 2013).  

Another antagonist distinguished as being subunit selective is kynurenic acid. 

Kynurenic acid is a product of normal metabolism and has neuroprotective properties 

(Chmiel-Perzyńska et al., 2014). Recent studies have shown that kynurenic acid can 

discriminate between homomeric GluK2 and heteromeric GluK2/K5 receptors. 

Kynurenic acid antagonizes the glutamate-induced current through GluK2 homomers at 

low concentrations (IC50 = 0.3mM), but virtually has no effect on GluK2/K5 heteromer 

current at concentrations up to 3mM (Alt et al., 2004; Fisher and Mott, 2011). 

 

1.6.3 ACTIVATION AND DESENSITIZATION 

 When a ligand binds to an ionotropic receptor, it can either elicit a conformation 

change in the receptor that allows the receptor to open its channel pore (activation), or it 

can have no effect. A ligand that binds to the receptor and has an effect is an agonist, and 

a ligand that binds to a receptor but has no effect is called an antagonist. Once the ligand 

leaves the binding site, the receptor will undergo another conformational change to close 

the channel pore (deactivation). Alternatively, some receptors (including KARs) will 

decrease its response to the agonist even while the agonist is still bound (desensitization).  

Each KAR subunit contains a binding site and contributes to the channel pore. 

Thus, there are four possible ligand-binding sites on each functional KAR. Previous 

studies demonstrate that, in heteromeric KARs receptors, glutamate binding to the higher 

affinity GluK4 or GluK5 subunits is sufficient to activate the channel, albeit to a non-
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desensitizing current. Desensitization occurred when the glutamate concentration 

increased to allow binding to the lower affinity GluK2 subunit (Mott et al., 2010; Fisher 

and Mott, 2011). These papers concluded that the high-affinity subunits had the 

distinguished role in opening the KAR, while the low affinity subunit’s role was to 

desensitize the receptor. However, these papers did not test whether binding to only the 

GluK2 subunit is sufficient to open the receptor, and does subsequent binding to the high 

affinity subunits ensue desensitization. More recent work with subunit-selective agonists 

or antagonist (Swanson et al., 2002; Fisher and Mott, 2011; Pinheiro et al., 2013; Fisher 

and Fisher, 2014) and tethered ligands (Reiner and Isacoff, 2014), suggest that partial 

occupancy of the KAR binding sites is sufficient to activate the receptor, and the onset of 

desensitization in heteromeric receptors is determined more by the number of subunits 

bound to the agonist than by the identity of those subunits.  

 

1.6.4 INTERACTING PROTEINS 

Kainate receptors interact with proteins on the plasma membrane that transiently 

regulate their location and function. For example, KARs can interact with PDZ motif-

containing proteins such as postsynaptic density protein 95(PSD-95), protein interacting 

with C kinase-1 (PICK-1), and glutamate receptor interacting protein (GRIP), which 

regulate trafficking of KARs to the cell surface and stabilizing KARs to the synapse 

(Hirbec et al., 2003). It is important to note that these interacting proteins are not specific 

to KARs and also regulate the function of AMPARs. Interestingly, the apparent 
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regulation differs between KARs and AMPARs, as these proteins prevent AMPAR 

internalization, but facilitate KAR internalization (Hirbec et al., 2003). 

Two proteins have been identified as true auxiliary proteins to KARs: neuropilin 

tolloid-like 1 and neuropilin tolloid-like 2 (Neto1 and Neto2) (Zhang et al., 2009; Straub 

et al., 2011a, 2011c; Tang et al., 2011). Neto1 and Neto2 are single transmembrane 

proteins that co-localize and associate with KAR in the brain. Neto1 is predominantly 

located in the hippocampus and is almost completely absent in the cerebellum, whereas 

Neto2 is almost completely absent in the hippocampus, but is abundantly expressed 

throughout the cerebellum (Straub et al., 2011b). Neto1 was initially discovered as an 

auxiliary protein to NMDA (Ng et al., 2009), although it arguably has a more pronounced 

effect on KAR function. Neither Neto1 nor Neto2 appear to associate with AMPA 

receptors. Co-expression of Neto1 or Neto2 with KARs in recombinant cells radically 

alters KAR gating. The most pronounced effect is the reduction in KAR receptor 

deactivation and desensitization, while recovery from desensitization accelerates (Copits 

et al., 2011; Straub et al., 2011a; Fisher and Mott, 2013). Thus, the glutamate-induced 

KAR current persists for longer periods in the presence of Neto. Indeed, this effect is 

conserved for all KAR subtypes (Fisher and Mott, 2013). Most importantly, the discovery 

of the Neto-KAR complex corroborates recombinant cell data with brain slice data 

demonstrating slow deactivation kinetics of KARs. 

Current results are conflicting about whether Neto affects KAR trafficking to the 

synapse (Ng et al., 2009; Zhang et al., 2009; Copits et al., 2011; Straub et al., 2011a; 

Tang et al., 2011, 2012; Wyeth et al., 2014). Neto knockout mice demonstrate 

dramatically reduced localization of GluK2 and GluK5 subunits in the synapse (Tang et 
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al., 2011; Wyeth et al., 2014). Indeed, genetic ablation of Neto1 (but not Neto2) has 

effects on KAR EPSCs (Straub et al., 2011a; Tang et al., 2011) by showing faster decay 

and reduced amplitudes. However, KAR EPSCs can still occur. Thus, Neto1 may 

function more as a regulator of KAR kinetic properties in addition to targeting KARs to 

the synapse.  

-  

1.6.5 PHOSPHORYLATION 

Although relatively few studies have investigated whether KARs can be 

modulated by GPCRs mACh and dopamine receptors, several studies have shown that 

KARs can undergo protein kinase C (PKC), CaMKII, and PKA phosphorylation. 

Activation of PKC inhibits KAR currents in recombinant cells (Dildymayfield and 

Harris, 1994) and brain slices (Selak et al., 2009). Also in the perirhinal cortex, PKC and 

PICK1 interacts with KARs to cause KAR-EPSC LTD (Park et al., 2006). These studies 

suggest that the mechanism for this KAR LTD is that activation of KARs causes an 

increase in postsynaptic Ca
2+

, which encourages the uncoupling of the PKC-PICK1-

mediated maintenance of KAR EPSC (Staudinger et al., 1997; Park et al., 2006). In the 

hippocampus, PKC was also shown to induce KAR-EPSC LTD, albeit through a 

interacting with SNAP-25, PICK1, GRIP, and the KAR subunit GluK5 co-localized 

postsynaptically (Selak et al., 2009). Furthermore, blocking SNAP-25 activity causes a 

GluK5-dependent increase in KAR-EPSCs, suggesting a role for SNAP-25 in the PKC-

dependent internalization of GluK5. However, these results are not without controversy, 
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as other studies demonstrate an PKC-dependent increase in KAR EPSCs (Cho et al., 

2003).  

In contrast to PKC, PKA phosphorylation potentiates kainate-evoked currents in 

recombinant cells (Raymond et al., 1993; Wang et al., 1993; Kornreich et al., 2007). 

Furthermore, the phosphatase calcineurin reverses PKA phosphorylation of GluK2 

receptors (Traynelis and Wahl, 1997; Coussen et al., 2005), and causes an NMDA 

receptor and voltage-sensitive Ca2+ channel-dependent depression of KAR current 

(Ghetti and Heinemann, 2000; Rebola et al., 2007). 

KARs activity can also be modulated by CaMKII phosphorylation. A stimulation 

protocol known to induce AMPAR LTP also induces CaMKII phosphorylation of 

GluK5-containing receptors and depression in KAR-mediated synaptic transmission at 

the mossy fiber – CA3 synapse (Caporale and Dan, 2008; Carta et al., 2013). However, 

instead of internalizing the KAR, CaMKII phosphorylation causes the GluK5-containing 

receptor to uncouple from PSD-95 and laterally diffuse out of the synapse (Carta et al., 

2013). 

 

1.6.6 KAINATE RECEPTOR FUNCTION 

  Postsynaptic  

Unlike NMDA and AMPA receptors, KAR-mediated postsynaptic current is 

found at only few synapses in the hippocampus, including the mossy fiber – CA3 synapse 

(Castillo et al., 1997; Vignes and Collingridge, 1997) and the Schaffer collateral – CA1 
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hippocampal interneurons (Cossart et al., 1998; Frerking et al., 1998). At these synapses, 

KARs EPSCs are small in amplitude (Castillo et al., 1997) and have slow deactivation 

kinetics when compared to NMDA and AMPA receptors (Frerking and Ohliger-Frerking, 

2002; Pinheiro et al., 2013). The slow deactivation kinetics allows the synaptic response 

to temporally summate and increase spike transmission, thereby facilitating LTP 

induction (Sachidhanandam et al., 2009).  

Also unlike NMDA and AMPA receptors, KARs can influence neuronal 

excitability of postsynaptic neurons through metabotropic signaling by affecting the slow 

hyperpolarization (IsAHP) of postsynaptic neurons (Melyan et al., 2002, 2004). The IsAHP is 

activated in response to an action potential. Voltage sensitive-Ca
2+

 dependent K
+
 

channels open to hyperpolarize the neuron and prevent further bursting. Thus, the IsAHP is 

instrumental in spike timing adaptation. Activation of kainate receptors suppresses the 

IsAHP, thus increasing spike-firing frequency and neuron excitability. Evidence suggests 

that the mechanism for KAR inhibition of the IsAHP is mediated through KARs directly 

coupling the Gi/o protein, activating PKC (Melyan et al., 2002) and probably PKA, and 

downstream activation of MAP kinases (Grabauskas et al., 2007). Interestingly, KARs 

can simultaneously elicit both ionotropic and metabotropic actions at the mossy fiber – 

CA3 synapse (Fisahn et al., 2005; Ruiz et al., 2005).  

Presynaptic  

Kainate receptors are also localized both postsynaptic and presynaptic. Kainate 

receptors can act presynaptically to regulate neurotransmitter release at both inhibitory 

and excitatory synapses (Lerma, 2003). Presynaptic kainate receptors have been 
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extensively studied at the mossy fiber – CA3 synapse, where they have been implicated 

in the large paired-pulse facilitation characteristic of this synapse (Contractor et al., 2001; 

Lauri et al., 2001; Schmitz et al., 2001; Pinheiro et al., 2007). Indeed, a blocker of Ca
2+

 

permeable KARs reduces this synaptic facilitation at the mossy fiber – CA3 synapse 

(Lauri et al., 2003; Scott et al., 2008). Interestingly, activation of presynaptic kainate 

receptors can have a bidirectional effect on transmitter release, either enhancing or 

inhibiting release, dependent upon the concentration of kainate receptor agonist used. 

Exogenous application of a low concentration of KAR agonist facilitates glutamate 

release (Kamiya and Ozawa, 2000; Schmitz et al., 2000), while a high dose of KAR 

agonist produces a depression in glutamate release at mossy fiber – CA3 synapse and 

Schaffer collateral – C1 pyramidal synapse (Chittajallu et al., 1996; Kamiya and Ozawa, 

1998; Vignes et al., 1998; Frerking et al., 2001). Depression of glutamate release by a 

KAR agonist is sensitive to G proteins blockers, and is thus thought to be through a novel 

metabotropic function (Frerking et al., 2001; Negrete-Díaz et al., 2006; Salmen et al., 

2012). Thus, these data suggest that KAR facilitation of glutamate release is mediated 

through ionotropic actions, whereas KAR depression of glutamate release is mediated 

through metabotropic G-protein actions.  
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1.7 IMPLICATIONS FOR EPILEPSY 

 

1.7.1 KAR IN EPILEPSY 

The disease most prominently associated with KARs is epilepsy. Overactivation 

of kainate receptors can cause seizures. In fact, intraperitoneal injection of kainate acid 

has served as a reliable animal model of temporal lobe epilepsy (TLE) that mimics 

several behavior and anatomical changes that occur in human epilepsy. Both human and 

rodent models of temporal lobe epilepsy demonstrate recurrent mossy fiber synapses onto 

dentate granule cells (Artinian et al., 2011). These synapses have aberrant kainate 

receptor EPSCs and thereby alter the activity pattern of dentate granule cells (Epsztein et 

al., 2005). It is thought that this positive feedback loop could be the epicenter for seizure 

generation in TLE patients. Indeed, Human tissue from patients with pharmacoresistant 

TLE demonstrated an upregulation of GluK1 subunit expression, potentially contributed 

by the mossy fiber sprouting (Li et al., 2010). Additionally, genetic ablation of the GluK2 

subunit prevents the development of seizures (Mulle et al., 1998). Conversely, 

overexpressing GluK2-containing KARs exhibit spontaneous seizures (Telfeian et al., 

2000). As a result of the previous data demonstrating an association between KARs and 

epilepsy, significant effort have been attributed to demonstrating the therapeutic benefits 

of GluK1 antagonist to prevent the development of epileptiform bursting in the 

hippocampal CA3 region in vitro and in vivo (Khalilov et al., 2002; Smolders et al., 

2002).  
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 1.7.2 MUSCARINE AND EPILEPSY 

 Several lines of evidence support a role for mAChRs in epilepsy. For example, 

pirenzepine, a mAChR antagonist, significantly retards the development of kindled 

seizures (Eşkazan et al., 1999). Alternatively, in hippocampal slices, when inhibition is 

removed, the anitcholinesterase, eserine, evokes spontaneous epileptiform discharges that 

are blocked by pirenzepine (Gruslin et al., 1999; Potier and Psarropoulou, 2004). Perhaps 

the strongest evidence for an association between epilepsy and mAChRs is the 

epileptogenic effect of the muscarinic agonist, pilocarpine (Cavalheiro et al., 1991). 

Pilocarpine produces sustained seizures (status epilepticus, SE) by acting on M1 

mAChRs (Maslanski et al., 1994; Hamilton et al., 1997; Bymaster et al., 2003). However, 

the role played by the M1 mAChRs in producing SE in the pilocarpine model, the 

subsequent neurodegeneration and the development of spontaneous seizures, is not 

known.  

 Interestingly, the role played by M1 mAChRs in the induction of SE appears to be 

critical but limited. Thus, the muscarinic antagonist, atropine suppresses the induction of 

lithium-pilocarpine-induced SE in rats if injected before pilocarpine, but will not block 

ongoing lithium-pilocarpine-induced SE (Jope et al., 1986; Morrisett et al., 1987). Given 

the role of KARs in this model, this observation suggests that mAChR activation induced 

a KAR-dependent process required for the induction and maintenance of SE. It is further 

suggested that M1 mAChR activation stimulates KARs by both directly depolarizing 

pyramidal cells causing glutamate release and by directly potentiating KAR function.  
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 Several studies have demonstrated a synergistic effect of subconvulsant doses of 

pilocarpine and kainate on the induction of seizures. For example, Millan et al. (1988) 

reported that a subconvulsant dose of kainate induces motor limbic seizures only when 

injected into the prepiriform cortex after a subconvulsant dose of pilocarpine (Millan et 

al., 1988). Similar results were found by De Sarro et al. (1992) in the lateral habenula and 

pedunculopontine nucleus and by Patel et al. (1988) in the entopeduncular nucleus and 

doral striatum (Patel et al., 1988; De Sarro et al., 1992). These epilepsy models are 

thought to be predictive of partial complex seizures, suggesting that the interaction 

between muscarinic and KARs may contribute to the evolution of seizures of this type. In 

contrast, KARs do not appear to be involved in models of more generalized seizures such 

as picrotoxin or bicuculline, since KAR antagonists do not block epileptiform activity in 

these models. 

 

 1.7.3 DOPAMINE AND EPILEPSY 

The dopaminergic system has been associated with epilepsy and seizures for over 

a century. The basal ganglia (primary source of dopamine in the brain) are significantly 

involved in seizure initiation and determining seizure threshold (Trimble, 1977; Toone, 

1991). Forty years ago, epilepsy was thought to be a disease of dopaminergic 

hypoactivity (Lamprecht, 1977; Starr, 1996). This theory was conceived as a result of 

studies demonstrating that application of a general dopamine receptor agonist reduces 

seizure susceptibility (Lamprecht, 1977; Lal, 1988), whereas blockage of dopamine 

receptors induced seizures (Laird et al., 1984; Jann et al., 1993). Indeed, it was 
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discovered that a class of antipsychotic drugs that were known to precipitate seizures 

were general dopamine receptor antagonist (Seeman, 1981). We now known that there 

are two subtypes of dopamine receptors: D1-like and D2-like. These dopamine receptors 

have opposite effects on seizure susceptibility. D1-like dopamine receptor activation 

precipitates seizures (Starr et al., 1987; al-Tajir et al., 1990a, 1990b), while D2-like 

dopamine receptors reduce seizure susceptibility (al-Tajir et al., 1990a; Al-Tajir and 

Starr, 1991).  

 These studies demonstrate a long withstanding association between the 

dopaminergic system and epilepsy. Although we have now identified two subclasses of 

dopamine receptors and their opposing roles in seizure generation, the mechanism for 

how the interaction occurs is not known, nor is it known how the dopaminergic system is 

altered in chronic models of temporal lobe epilepsy. Further studies are needed to 

elucidate these mechanisms.  

 

1.8 IMPLICATIONS FOR EXERCISE 

 

 1.8.1 EPILEPSY AND PHYSICAL EXERCISE  

 Over the past decade, physical activity has been noted as a powerful tool in the 

battle against cognitive impairment. In healthy adults, physical activity has been shown to 

improve performance on memory test and counterbalance the age-related decline in 

hippocampal volume and learning and memory performance tasks (Erickson et al., 2011). 
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These results are indiscriminant on the type of physical activity, but are predicated on the 

intensity of the exercise, with greater cognitive benefits occurring following acute or 

repetitive (chronic) moderate to vigorous physical activity.  

 Exercise has also been shown to prevent the development and reduce the 

progression of neurological diseases. Several reviews exist outlining the beneficial effects 

of exercise on Alzheimer’s disease and Parkinson’s disease (Paillard et al., 2015). 

However, in this document we will focus our attention on exercise’s benefits on epilepsy. 

 The stigma of exercise being harmful for people with epilepsy was prevalent until 

recent years. It was recommended by the American Medical Association in 1968, that 

people with uncontrolled epilepsy should not be allowed to participate in physical activity 

for the fear of inducing seizure and increased risk of injury for the person with seizures 

and others within the vicinity (American Medical Association Committee on the Medical 

Aspects of Sports, 1968). Due to much controversy, this recommendation was relaxed six 

years later to allow the participation of exercise when it was deemed beneficial for social 

integration (Corbitt et al., 1974). 

 Recent evidence in human and animal models demonstrates that physical activity 

can prevent the development in seizures. In animal models, prior exposure to exercise can 

reduce brain cell loss and neuronal damage secondary to brain insults (Arida et al., 2013). 

One study investigating the effects of physical exercise during post-natal development 

showed that when submitted to daily exercise for forty days, rats presented delayed onset 

and reduced intensity of pilocarpine-induced seizure during midlife (Gomes da Silva et 

al., 2011). Additionally, another study demonstrated that animals exposed to acute and 
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chronic physical exercise required more electrical stimulus to the limbic brain region 

(kindling) to provoke seizures than controls (Arida et al., 2008). Although there are 

several studies in animal models demonstrating physical activity can prevent seizures and 

the development of epilepsy, the possible preventative effects of exercise on epilepsy in 

humans are still uncertain. There is only one study that has tested this question directly. 

According to a Swedish population-based cohort of 6,796 individuals examined for 40 

years, participants who presented low cardiovascular fitness at the age of 18 had an 

increased risk of developing epilepsy later in life (Nyberg et al., 2013). Thus, this study 

suggests that engaging in physical activity early in life has protective effects on the 

development of epilepsy later in life. Although more studies in humans are needed to 

answer the question whether physical activity can protect the brain from developing 

epilepsy, the consensus among several animal studies and one human study suggest that 

physical exercise can be used as a powerful tool to protect the brain against the 

development of repetitive seizures.  

 As opposed to the development of epilepsy, more human studies have sought to 

answer the question whether exercise can reduce seizure frequency in individuals who 

have already been diagnosed with epilepsy. People who practice regular physical exercise 

report fewer seizures than inactive individuals (Roth et al., 1994). However, human 

intervention studies have rendered mixed results. One study examining fifteen women 

with pharmacologically intractable epilepsy were administered aerobic activity for fifteen 

weeks and presented a decrease in seizure frequency (Eriksen et al., 1994). However, 

another study including twenty-one patients with uncontrolled epilepsy experienced no 

change is seizure frequency two weeks before, during, or after a four-week exercise 
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program (Nakken et al., 1990). Although these studies provide contradictory results about 

whether exercise reduces seizure frequency in people with epilepsy, they both support the 

notion that engaging in physical exercise is not a seizure precipitant. Furthermore, other 

studies examining acute bouts of maximal and sub-maximal physical exercise in people 

diagnosed with epilepsy demonstrated reduced epileptiform discharges after physical 

exertion compared to before the exercise bout (Camilo et al., 2009; Vancini et al., 2010; 

de Lima et al., 2011). Animal studies demonstrate a more definitive role of epilepsy 

reducing seizure frequency. Rats with pilocarpine-induced epilepsy who submitted to a 

physical training program presented a lower frequency of spontaneous seizures than 

controls (Westerberg et al., 1984; Arida et al., 1999, 2004, 2009a, 2013). Other animal 

models of epilepsy have demonstrated similar results (Rambo et al., 2009; Reiss et al., 

2009; Tutkun et al., 2010).  

 Lastly, physical activity can also reduce the comorbid mental disorders associated 

with epilepsy. As stated earlier, people with epilepsy are more like to suffer from other 

mental and psychosocial disorders, such as mood and personality disorders and 

behavioral problems. Depression, deficits in learning and memory, stress and anxiety are 

among the most common. In physically healthy adults, engaging in regular physical 

exercise has shown to consistently improve emotional well-being (Roth et al., 1994). 

Similarly, people with epilepsy who practice physical exercise present lower levels of 

depression independently of other factors like age, gender, seizure frequency or stressful 

life experience (Eriksen et al., 1994; Roth et al., 1994; de Lima et al., 2013). Other 

studies have reported positive effects of physical exercise training on mental state, self-

esteem, social integration, several anxiety scales, fatigue, sleep problems, and overall 
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quality of life (Nakken et al., 1990; Eriksen et al., 1994; McAuley et al., 2001; Arida et 

al., 2009b). Thus, physical exercise can improve overall mental health and emotional 

wellbeing in people with epilepsy. In individuals with managed epilepsy, physical 

activity’s benefits of improving mental health may prove more beneficial than the 

possible reduction of seizure frequency.  

 Mental health disorders in people with epilepsy may result from the complicated 

interactions between the antiepileptic medications, epilepsy surgery, and social 

interventions (such as restricted license to drive and fear of seizure in public). 

Interestingly, epilepsy and mood disorders share dysfunctions in neurotransmitter 

systems (dopamine, acetylcholine, glutamate, GABA, etc.), which might contribute to 

their coexistence and bidirectional relationship (Kanner, 2007; Thapar et al., 2009; Arida 

et al., 2012).  

 Several theories for how exercise mediates benefits on cognition in the healthy 

and diseased brain exist. The most prevalent theory is that an increase in cardiovascular 

blood flow that occurs during physical activity initiates the synthesis of several growth 

neurotrophic factors and neurotransmitters, which ultimately results in increased 

neurogenesis, angiogenesis, and synaptogenesis. The alteration of the human brain 

caused by acute and chronic exercise leads to a change in the fundamental network and 

structure in the brain compared to the sedentary brain. Thus, this new brain is efficient at 

preventing the development of seizure, reducing seizure frequency, and ameliorating 

psychosocial comorbidities associated with epilepsy (such as depression, learning and 

memory deficits, anxiety, stress, and schizophrenia).  
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 1.8.2 ACETYLCHOLINE AND EXERCISE  

 The cholinergic system and exercise have a close interconnected relationship. 

First, exercise alters the cholinergic system in the brain. Particularly in the hippocampus, 

acetylcholine release increases 2-fold during moderate intensity walking in young 

(Nakajima et al., 2003) and aged adult rats (Uchida et al., 2006). Because depletion of 

acetylcholine is causal for memory impairment, this increase can be beneficial when 

applied to diseased brains. In addition to an increase in acetylcholine release, exercise can 

also reduce degradation of released acetylcholine. One study demonstrated that 

acetylcholinesterase was inhibited in the whole brain by 30 – 50% 2hr to 5hr post forced 

swimming exercise (Tsakiris et al., 2006). Thus, these studies show that exercise can 

modulate the amount of acetylcholine in the extrasynaptic space by both increasing the 

amount of acetylcholine release and inhibiting the amount of acetylcholine degraded, 

which seems to have beneficial effects in the diseased brain.  

A theoretical mechanism for how exercise mediates its beneficial effects in the 

brain is thought to be triggered by an increase in cerebral blood flow. Several studies 

have shown that acetylcholine is necessary for the exercise-induced increase in cerebral 

blood flow. For example, acetylcholine released in the cerebral cortex and hippocampus 

can increase regional blood flow in the cerebral cortex and hippocampus in anesthetized 

rats (Biesold et al., 1989; Cao et al., 1989; Kurosawa et al., 1989; Adachi et al., 1992; 

Sato and Sato, 1992, 1995; Sato et al., 2004). Thus, independent of periphery stimulation, 

an increase in acetylcholine can increase cerebral blood flow. Furthermore, walking at 
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moderate speed can increase cerebral blood flow in the hippocampus and cerebral cortex 

independent of systemic arterial pressure via activation of intracranial cholinergic fibers 

and release of ACh from these nerves. Thus, physical exercise stimulates the central 

cholinergic system to increase cerebral blood flow independent of periphery stimulation. 

Lastly, the cholinergic system is involved in the regulation of adult hippocampus 

neurogenesis. Selective lesioning of the medial septum system negatively affects the 

proliferation of neural stem cells (NSCs) and neuronal progenitor cells (Cooper-Kuhn et 

al., 2004; Mohapel et al., 2005; Van Der Borght et al., 2005), whereas the administration 

of acetylcholine esterase (AChE) inhibitor promotes NSC/neuronal progenitor cell 

proliferation (Mohapel et al., 2005; Narimatsu et al., 2009). Specifically, M1 muscarinic 

receptors are necessary for cholinergic-induced NSCs proliferation. Furthermore, 

exercise-induced promotion of aged NSC proliferation was abolished by specific 

lesioning of the septal cholinergic system, demonstrating the cholinergic system is 

necessary for exercise-induced neurogenesis (Itou et al., 2011). Thus, the cholinergic 

system also mediates exercise-induce increase in neurogenesis.  

 

 1.8.3 DOPAMINE AND EXERCISE 

 The effects of exercise on dopamine levels in the hippocampus have rendered 

mixed results. Some studies find that exercise significantly increases dopaminergic 

content (Chaouloff et al., 1986). For example, De Castro et al. confirmed an increase in 

dopaminergic metabolism in the whole brain of rats sacrificed 48 hours after an 8-week 

running training period (de Castro and Duncan, 1985). A related study used a 1-week 
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training model to examine brain dopamine metabolism and found that the sum of 

DOPAC and homovanillic acid was increased with running and remained elevated 

throughout the first hour of recovery (Chaouloff et al., 1987). Indeed, more recent studies 

have demonstrated increases in dopamine concentration and dopamine receptor binding 

(Greenwood et al., 2011). These results may be a result of increased bursting/activation 

of dopamine neuron in the VTA due to wheel running (Wang and Tsien, 2011). 

Additionally, chronic voluntary and forced wheel running demonstrate increase tyrosine 

hydroxylase and well as dopamine in several brain areas (Dishman et al., 1997; Sutoo and 

Akiyama, 2003; Droste et al., 2006; Foley and Fleshner, 2008; Greenwood et al., 2011). 

Thus, exercise seems to mediate an increase in dopamine production and release in the 

brain. 

 Other studies have found no change or a decrease in dopamine levels after acute 

or chronic physical exercise (Brown and Van Huss, 1973; Lukaszyk et al., 1983; Sudo, 

1983; Acworth et al., 1986). Notably, no study has found a significant decrease in 

dopaminergic content specifically in the hippocampus after an acute or chronic physical 

exercise-training plan, although several studies report a significant increase in dopamine 

content in the hippocampus (Chaouloff et al., 1987; Bailey et al., 1992). Thus, it seems 

that exercise, when it does have an effect, tends toward increasing dopaminergic content 

in the hippocampus.  
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1.9 SIGNIFICANCE REVISITED 

 

 As discussed above, interplay between the glutamatergic system and 

cholinergic/dopaminergic system in the hippocampus are required for learning and 

memory. Specifically, kainate receptors play an important role in the physiology and 

pathophysiology of synaptic transmission. However, there have been no studies that have 

systematically examined whether mAChRs or D1 DARs in the brain alters kainate 

receptor function. To fill this significant knowledge gap, we first needed to identify 

pharmacological tools that can be used to identify specific kainate receptor subtypes. This 

tool will be useful to differentiate which kainate receptor subtypes are responsible for 

mediating KAR synaptic transmission in the normal hippocampus. After identifying 

which kainate receptor subtypes are responsible for KAR synaptic transmission, we must 

determine whether mAChRs and/or D1-like DARs can alter KAR synaptic transmission 

in the normal hippocampus. Several lines of evidence suggest that interaction between 

KARs and muscarinic/dopaminergic receptor may occur; however, this will be the first 

directly tested proof of concept. Understanding whether this interaction occurs and 

identifying which receptors are responsible, will reveal a novel mechanism by which the 

normal brain undergoes synaptic plasticity. Additionally, it will provide newfound 

mechanisms by which neurological disorders, such as epilepsy, and neurological 

therapies, such as exercise, may illicit their effects. Lastly, we will determine how the 

dopaminergic system is altered in the chronically epileptic brain. Understanding long-

term changes in dopaminergic content in the epileptic brain will provide us with a 
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comprehensive view of where the dysfunctional interaction between the glutamatergic 

and dopaminergic system exists. These studies are important, because they can shed light 

on a novel mechanism that occurs in the brain, which are necessary for brain health. 

Furthermore, understanding these mechanisms can unlock targets for therapies for 

neurological diseases.  
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CHAPTER 2 

GENERAL METHODS

 

2.1 INTRODUCTION TO ELECTROPHYSIOLOGY 

Electrophysiology is the study of the flow of ions through a cell or group of cells, 

and it also refers to the specific techniques required to measure this flow of ion. Every 

thought, every nerve impulse, every movement, and every heartbeat is controlled by 

highly specific and precisely timed flow of ions through cell membranes. Interfering with 

this flow could have a wide range of effects, from beneficial (as in exercise) to fatal (such 

as a prolonged seizure). Thus, having a detailed understanding of the ions and the 

transporters/receptors that mediate their passage through the cell membrane is 

indispensable when deciphering neurological disorders and developing novel therapies to 

remedy them. 

Electrophysiologists use the basic physical laws of electricity to understand the 

electrical activity of cells and the receptors inhabiting them. By far, the most useful law 

of electricity in electrophysiology is Ohm’s law. Ohm’s law states that voltage (V) or 

electrical potential (ΔV) is equal to current (I) multiplied by resistance (R): V=IR. In a 

cell, voltage is a measure the electrical potential difference across the cell membrane, 

which in most cells in negative a rest. The current is a measure of the amount of charged 

particles flowing through the cell membrane. Last, but certainly not least, resistance is a 
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measure of the friction or resistance on ion flow, which is primarily a function of 

technical access to the cell. Electrophysiology equipment allows us to measure and 

modify eACh electrical component of the cell, as the experimental procedure sees fit.  

 

2.1.1 ELECTRICAL POTENTIAL  

Ions flow through plasma membranes because there is a difference in electrical 

potential (volts, V or ΔV) between the interior and exterior of cells. The ability of every 

cell to maintain an electrical potential is derived from two main characteristics. First, the 

distribution of ions inside the cell differs from those outside the cell. Most cells have a 

higher concentration of potassium (K
+
) and a lower concentration of sodium (Na

+
) and 

calcium (Ca
2+

) inside the cell than in the extracellular space. Ion specific pumps that 

require energy maintain this ionic gradient. Furthermore, the cell’s interior contains 

negatively changed proteins that are impermeable to the cell membrane. Taken together, 

the interior electrical potential of most cells at rest is negative, compared to the 

extracellular space.  

Secondly, the plasma membrane itself has selective ion permeability. Every cell is 

enveloped by a plasma membrane consisting of lipids and proteins. Lipids are 

hydrophobic (repel water), which causes them to arrange into a phospholipid bilayer that 

is impermeable to ions. Ions are transported through this otherwise impermeable layer 

through specialized proteins, ion channels and transporters. The selective permeability of 

the cell membrane for each ion depends on the amount and states of its varied ion 

channels. During rest, most cells are highly permeably to K
+
, moderately permeable to 
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Cl
-
, and only slightly permeable to Na

+
 and Ca

2+
. These two properties of the cell, the 

varied distribution of ions and the selective permeability of ions, are necessary for a cell 

to maintain its electrical potential.  

 

 2.1.2 VOLTAGE CLAMP 

Voltage clamp is an experimental paradigm used by electrophysiologists to 

measure ion currents through a cell membrane by holding (“clamping”) the electrical 

potential inside the cell constant. In theory, when ionotropic channels, such as kainate 

receptor, bind to glutamate, they open and allow Na
+
 ions to flow into the cells and K

+
 

ions to flow out of the cell, and thereby mediating an inward current of positive ions. By 

holding voltage constant, a change in current is directly related to the function of the 

receptors and channels expressed on the cell. Thus, we can reliably measure and 

confidently interpret KAR kinetics by measuring the current produced by ions flowing 

across the cell membrane at a given voltage.  

 

2.2 WHOLE CELL PATCH-CLAMP ELECTROPHYSIOLOGY 

In patch clamp electrophysiology, we are measuring the flow of ions across a 

single cell or single channel. This technique was first demonstrated by Erwin Neher and 

Bert Sakmann (Neher and Sakmann, 1976) in 1976, and later won the Nobel Prize in 

Physiology or Medicine in 1991. Changes in current and voltage are sensed by an 

electrode. Several different configurations of this technique exist, one of which is whole-
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cell recording. To acquire a whole-cell configuration a glass electrode is placed on the 

surface of a cell and mild suction is applied to rupture the membrane, allowing for the 

contents of the cell cytoplasm to diffuse and exchange with the internal solution inside 

the glass pipette. The whole-cell configuration produces a convenient method to directly 

apply substances into the cell in order to study the electrical currents and properties from 

the entire cell, or we may perfuse agonist or antagonist on the extracellular space of the 

cell to measure changes in ions flow (current) through receptors.  

 Whole-cell electrophysiology is used to study the movement of electrically 

charged ions, commonly through voltage-gated or ligand-gated channels. Glutamatergic 

receptors, such as kainate receptors, are permeable to Na
+
 and K

+
 ions. When these 

receptors open, Na
+
 enters the cell and creates a more positive intracellular environment 

(depolarizes). In an effort to maintain the cell electrical potential at -70mV (in voltage 

clamp), a negative current is applied to the cell. Thus, a KAR response from voltage-

clamped data is negative.  

 

 2.2.1 EXPERIMENTAL PROTOCOL FOR WHOLE-CELL PATCH CLAMP RECORDINGS 

HEK-293T cells (GenHunter, Nashville, TN, USA) were maintained in 

Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 100 

IU ml
-1

 penicillin and 100 µg ml
-1

 streptomycin. Cells were passaged with a 0.025% 

trypsin/0.01% EDTA solution in phosphate-buffered saline (10 mM Na2HPO4, 150 mM 

NaCl, pH 7.3). Full length cDNAs for the GluK or Neto1 subunits in mammalian 

expression vectors were transfected into cells using calcium phosphate precipitation as 
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previously described (Mott et al. 2010). Plasmids encoding rat GluK2 (Q), GluK4 or 

GluK5 were provided by S. Heinemann (Salk Institute, San Diego, CA, USA). Human 

Neto1 was provided by S. Tomita (Yale University, New Haven, CN, USA). Plasmids 

were transfected at ratios of 1:3:4 (GluK2: GluK4 – GluK5: Neto1), previously shown to 

optimize formation of heteromeric receptors (Barberis et al. 2008) and Neto1 assembly 

with KARs (Fisher & Mott, 2012). To identify transfected cells, we co-transfected 1 µg 

of a cDNA encoding a single-chain antibody recognizing the hapten 4-ethoxymethylene-

2-phenyl-2-oxazoline-5-one (phOx; Chesnut et al. 1996). Positively transfected cells 

were isolated using phOx-coated beads 18 – 28 hr after transfection and plated onto glass 

coverslips treated with poly-L-lysine and collagen.  

 Whole-cell recordings were performed on isolated HEK-293T cells 40 – 52 h 

after transfection under voltage-clamp conditions. Patch pipettes were pulled from 

borosilicate glass with an internal filament (World Precision Instruments, Sarasota, FL, 

USA) on a two-stage puller (Narishige, Japan) to a resistance of 5 – 10 MΩ and filled 

with a solution containing (in mM): 130 CsGluconate, 5 CsCl, 10 Hepes, 5 CsBAPTA, 2 

MgCl2, 2 MgATP, 0.3 NaGTP (pH 7.3, 290-300 mosmol l
-1

). Cells were continually 

perfused with an external solution containing (in mM): 150 NaCl, 3 KCL, 10 Hepes, 1 

CaCl2, 0.4 MgCl2 (pH 7.4, 295-305 mosmol l
-1

). For whole-cell recordings glutamate and 

antagonists (ACET and kynurenate) were applied to cells using a stepper solution 

changer (SF-77B, Warner Instruments, Hamden, CT, USA). The time course of drug 

application was <50 ms in the whole-cell recording configuration as determined using a 

diluted external solution applied to the electrode. Rise times (10 – 90%) of the junction 

potential at the open tip were consistently faster than 400 µs and were tested using a 
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diluted external solution. All antagonists were applied to cells before glutamate per 

sweep. Current recordings were amplified (Axopatch 200B; Molecular Devices, Foster 

City, CA, USA), filtered (1kHz) and digitized at 10 kHz using a Digidata 1320 analog to 

digital board (Molecular Devices) and stored on a computer hard drive for off-line 

analysis.  

 

2.3 FIELD POTENTIAL ELECTROPHYSIOLOGY 

 Field-potential electrophysiology is performed extracellularly, as opposed to 

whole cell record which is recorded intracellularly. Once the tissue is prepared a 

stimulating electrode is placed into the tissue to depolarize a population of neurons. Field 

potential electrophysiology allows electrophysiologists to record activity of a population 

of neurons by placing the recording electrode within a cell body region or within the 

dendrites or axons of the neuronal population. Activation of these neurons results in a 

summation of the extracellular potentials creating either a field inhibitory postsynaptic 

potential (fIPSP) or a field excitatory postsynaptic potential (fEPSP).  

 Because these recordings are extracellular and measures collective cell activity, 

the placement of the recording electrode and stimulation electrode is critical to ensure 

proper interpretation of the data. Relative to the electrode, neuronal activation can create 

what is denoted as an extracellular sink or source. The flow of positively charged ions 

into a cell or dendrite leaves the extracellular space more negative, creating an 

extracellular sink, while a positive waveform (source) is created by the current that leaves 

the cell (generally at the cell body) to complete the local circuit. Field potential 



 
 

66 

recordings in the mossy fiber – CA3 synapse are at particular risk for improper electrode 

placement, as the CA3 region contains mossy fibers input as well as the 

associational/commissural fibers. Pure stimulation of the mossy fibers, elicited through 

activation of dentate granule cells, would evoke an extracellular sink in area CA3 stratum 

lucidum. However, if the placement of the recording electrode was not precise an 

extracellular source evoked from the CA3 A/C fibers would contaminant the response. 

The overall response would be a fEPSP comprised of both a downward sink and upward 

source. Thus, in experiments involving the mossy fiber – CA3 synapse, steps are taken to 

ensure pure mossy fiber stimulation and recording. 

 

 2.3.1 EXPERIMENTAL PROTOCOL FOR FIELD POTENTIAL RECORDINGS 

Hippocampal slices were made from postnatal day (P) 21 – P28 and P45 – P60 

Sprague-Dawley rats as described previously (Iyengar and Mott, 2008). Briefly, animals 

were deeply anesthetized with isoflurane and decapitated with a guillotine. The brain was 

removed under ice-cold (4ºC), sucrose-based ‘cutting’ artificial cerebrospinal fluid 

(aCSF) that contained (in mM): 2 KCl, 1.25 NaH2PO4, 26 NaHCO3, 10 glucose, 248 

sucrose, 0.5 CaCl2, and 5 MgSO4 (350mOsm). The use of this solution during the cutting 

process enhances neuronal survival by limiting excessive excitation. Transverse slices 

were made with a vibratome (Leica VT1000S, Nussloch, Germany) at 500 µM and 

incubated for at least one hour at room temperature in aCSF containing (in mM): 125 

NaCl, 2.7 KCl, 1.25 NaH2PO4, 25 NaHCO3, 10 glucose, 0.5 CaCl2, 5 MgSO4, 20 µM D-
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AP-5, and 1 mM kynurenate (305 mOsm; pH=7.4). Both the sucrose-based and standard 

aCSF were oxygenated with 95% O2 / 5% CO2. 

 After 1 hour, individual slices were transferred to a submersion chamber 

maintained at 32 – 34 ºC, held in place by a bent piece of platinum wire resting on the 

surface of the slice, and perfused continuously at 3 – 4 ml/min with recording aCSF 

containing (in mM): 125 NaCl, 2.01 KCl, 1.25 NaH2PO4, 25 NaHCO3, 10 glucose, 2 

CaCl2, 1 MgSO4. Glass electrodes were pulled from borosilicate glass to achieve 2 – 3 

MΩ and filled with recording aCSF. Extracellular dendritic field potentials recording 

were made from the stratum lucidum of the CA3 region of the hippocampus, which was 

visually identified with a light microscope (See Figure 2.1). Synaptic currents were 

evoked with a monopolar platinum-iridium glass electrode positioned in the stratum 

lucidum. For AMPA-fEPSPs recordings, we recorded composite MF-fEPSPs, which 

were primarily composed of AMPA-fEPSPs (~ 93%) (Contractor et al., 2003), with aCSF 

containing 10 µM MK-801, 50 µM picrotoxin, and 1 µM CGP 55845 to block NMDA, 

GABAA, and GABAB receptors, respectively. We defined synaptic currents as MF-

fEPSPs if they showed characteristically large paired-pulse facilitation (Salin et al., 

1996), had a rapid rise time and short latency, and were inhibited by >70% by the group 

II-selective metabotropic glutamate receptor (mGluR) agonist (2S,2’R,3’R)-2-(2’3’-

Dicarboxycyclopropyl) glycine (DCG-IV, 1 µM), which was bath applied at the end of 

some experiments. To isolate KA-fEPSPs recordings, we recorded from CA3 pyramidal 

cells in the presence of the aCSF containing the AMPA antagonist GYKI53655 (50 µM) 

in addition to the GABAA, GABAB and NMDA receptor antagonist cocktail. Once KAR-

fEPSPs were isolated, a four pulse train stimuli (100 Hz, 0.1 ms/stumulus, cathodal, 
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monophasic, rectangular constant current pulses) were delivered every 30 sec through 

monopolar, platinum-iridium stimulating electrodes (FHC Inc., Bowdoin, ME) referenced 

to the bath ground. KAR-fEPSPs were stable for a minimum of 20 min. prior to 

pilocarpine (300 nM) perfusion onto the slice for 10 – 15 min. to activate predominately 

M1 mAChRs. In experiments were M1 mAChRs or PKC were inhibited, telenzepine 

(100 nM) or chelerythrine (5 µM) respectively were applied concurrently with AMPA, 

GABAA, GABAB, and NMDA antagonists. To resolve small KAR-fEPSPs that were 

obscured by stimulation artifacts, we digitally subtracted a “template” stimulation trace 

that was acquired after application of an AMPA/KAR antagonist (CNQX, 50 µM) at the 

end of the recordings. 

 

Figure 2.1 Illustration of the mossy fiber – CA3 synapse and field recording 

configuration. 
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2.4 PILOCARPINE MODEL OF SE 

 The use of animal models in investigation potential therapies for epilepsy is 

indispensable. These models, and specifically the pilocarpine model, closely resembles 

distinct anatomical and physiological alterations seen in the human disease, including 

sclerosis and cell loss and mossy fiber sprouting. Additionally, the pilocarpine model 

develops spontaneous seizures, chronic hyperexcitability, appropriate responsiveness to 

AEDs, and develop comorbidities, such as anxiety and learning and memory deficits, that 

are strongly associated with chronically epileptic patients. Without these models would 

not be able to elucidate the mechanism precipitation or preventing seizures. The current 

study will utilize a pilocarpine to initiate status epilepticus followed by a period of 

epileptogenesis (30 days) and eventually the development of spontaneously recurring 

seizures.  

 

 2.4.1 ANIMAL CARE AND USE 

 All animal care and use procedures were carried out in accordance with protocols 

written under the guidance of the National Institutes of Health Guide for the Care and 

Use of Laboratory Animals and approved by the institutional Animal Care and Use 

Committee at the University of South Carolina. Male Sprague-Dawley rats were 

purchased from Harlan, and housed at 1 – 3 rats per cage with ab libitum access to food 

and water. Rats were housed in a climate-controlled facility with a light/dark cycle of 

12/12 hours.  
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 2.4.2 PILOCARPINE MODEL OF STATUS EPILEPTICUS 

 Adult male Sprague-Dawley rats (42 – 50 days; Harlan, Indianapolis, IN) 

received intraperitoneal (i.p.) injections of scopolamine methyl bromide, to block 

peripheral muscarinic receptors, and terbutaline hemisulfate (2 mg/kg) to activate 

peripheral β2-adrenergic receptors to act as a bronchodilator and prevent respirator 

depression associated with SE. Pilocarpine hydrochloride (390 mg/kg) was 

intraperitoneally injected 30 – 40 minutes after scopolamine and terbutaline injection. 

Following pilocarpine injection, rats were observed continuously for the occurrence of 

behavioral seizures and were scored on the Racine scale (Racine, 1972) (Table 2.1). 

Approximately 70% of rats experienced class V seizures. Animals that did not exhibit SE 

after 45 minutes were given an additional ‘booster’ of pilocarpine (200 – 300 mg/kg). 

Nearly 90% of animals receiving a pilocarpine ‘booster’ experienced sufficient SE. 

Animals that successfully had a stage V seizure were allowed to seize 2 hours (status 

epilepticus) before the seizures were suppressed by intraperitoneally injected diazepam 

(DZP, 25 mg/kg). This group of animals served as the ‘pilo’ group. In order to limit 

physical distress and any peripheral effects of pilocarpine, animals received additional 

doses of the scopolamine/terbutaline cocktail approximately one-hour into SE as well as 

upon termination of SE with DZP. A separate group of animals were treated identically, 

but received saline (390 mg/kg) instead of pilocarpine hydrochloride. This group of 

animals served as the ‘sham’ group. Approximately 1 – 2 hours after seizures were 

terminated, animals received a subcutaneous dose of the scopolamine/terbutaline cocktail 

(2 mg/kg), lactate Ringer’s solution (2 mL), and rat chow that had been softened and 
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sweetened in high sucrose water. Animals that did not enter SE were excluded from the 

study.  

 All animals were housed overnight in the animal facility and their health status 

was checked as early as possible on the following day to determine if they successfully 

recovered from treatment. Animals still experiencing side effects from treatment 

(lethargy, immobility) were given additional subcutaneous injections of lactated Ringer’s 

solution and the scopolamine/terbutaline cocktail and placed on a heating pad. For 

animals who endured the first night post-treatment the survival rate was nearly 100%. 

Animals in our “pilo” group were video monitored a minimum of 30 days post-treatment 

to ensure the appearance of spontaneously occurring seizures. This experimental protocol 

was used in Chapter 5 to explore alterations in the dopaminergic system in the epileptic 

brain.  

 

Table 2.1 Racine scale of epileptic seizures 

Score Observed Rat Motor Behavior 

0 Normal behavior (exploring, walking, grooming, etc.) 

1 Immobility, staring ‘curled up’ posture 

2 Automatisms 

(Chewing, head bobbing, twitching, wet-dog shakes) 

3 Forelimb/hindlimb myoclonic jerking, head tremor 

4 Rearing and whole body clonus 

5 Rearing and falling over; loss of posture 

6 Tonic-clonus seizures with tonic forelimb flexion/extension, whole-

body clonus 

7 Wild-running with bouncing; death 
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2.5 WESTERN BLOT ANALYSIS 

 Western blotting is a widely used tool to detect the presence and measure the 

abundance of specific proteins (MacPhee, 2010). Western blotting begins with successful 

extraction and isolation of a particular lysate. Proteins are then separation by molecular 

weight through electrophoresis onto a polyacrylamide gel. The proteins are then 

transferred onto a membrane and probed with antisera to detect the presence of the 

specific protein. During application of the appropriate primary and secondary antibody, 

the membrane undergoes blocking to prevent non-specific binding between antibody and 

membrane. Blocking usually consists of submerging the membrane in a non-fat milk or 

bovine serum albumin solution. Once the appropriate antisera is bound to the protein, its 

relative expression can be determined through process such as enhanced 

chemiluminescence (ECL). The peroxidase conjugated secondary antisera serves to 

oxidize the luminol substrate within the ECL to emit light. This light is then captured 

onto film and measured using densitometry. The following sections describe in detail the 

western blotting protocol utilized in Chapter 5 to determine differences in dopamine 

D1/D5 receptor, DAT, and COMT protein abundance within specific brain regions in the 

hippocampus following pilocarpine-induces temporal lobe epilepsy.  

 

 2.5.1 MEMBRANE PREPARATION 

 Immunoblot analysis was performed as described in a previous study (Grillo et 

al., 2011). Briefly, the hippocampus was rapidly extracted and processed ‘whole’ or 

microdissected into CA1, CA3, and dentate gyrus. Tissue was homogenized in ice cold 
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homogenization buffer (mM: 2 EDTA, 2 EGTA, 20 HEPES, 0.32M sucrose, 1% 

phosphatase inhibitor, and 1% protease inhibitor). The samples were then homogenized 

and centrifuged for 10 min at 500 x g at 4C to remove nuclear fraction. The supernatant 

containing the total membrane fraction was centrifuged at 31,000 x g for 30 min at 4C. 

The resulting crude plasma membrane fraction was resuspended in phosphate buffered 

saline (PBS) and stored at -80ºC until used for analysis. A Bradford protein assay was 

used as a simple and accurate way to measure protein concentration in the crude plasma 

membrane, and used to ensure equal protein is loaded across all lanes.  

 

 2.5.2 SDS-PAGE AND ANTIBODY DEVELOPMENT 

 Aliquots of 20 μg of crude plasma membrane proteins were denatured by diluting 

them in a 1:1 ratio with BioRad Laemmli Sample Buffer with 5% β-mercaptoethanol. 

Samples were then heated at 95C for 5 min and loaded into pre-cast polyacrylamide gels 

(4 – 15%). Running buffer (in mM: 25 Tris, 240 Glycine, 0.1% SDS) was added to the 

appropriate tank, BioRad mini PROTEAN-Tetra, and ran using the BioRad Power Pack 

HC for at least 30 min at 175 – 200 V. Following sodium dodecyl sulfate polyacrylamide 

gel polyvinylidene fluoride (PVDF) membranes using the BioRad Trans-Blot SD Semi-

Dry Transfer Cell. Protein transfer was completed using the BioRad Power Pack HC for 

30 min at 25V. Transfer buffer contained (in mM): 25 Tris, 192 Glycine, and 20% 

methanol. All equipment was acquired from Bio-Rad Laboratories, Inc. 

 PVDF blocked in TBS plus 5% nonfat dry milk for 60 min. PVDF 

membranes were incubated with primary antisera in TBS/5% nonfat dry milk. After an 
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overnight incubation at 4°C, blots were washed with TBS plus 0.05% Tween 20 (TBS-T) 

and incubated with peroxidase labeled species-specific secondary antibodies. PVDF 

membranes were then washed with TBS-T and developed using enhanced 

chemiluminescence reagents (ECL, Amersham) as described by the manufacturer. 

Normalization for protein loading was performed using a mouse monoclonal primary 

antibody selective for actin (Sigma Chemical Company). 

 

Table 2.2 Primary antibodies for western blot analysis 

Ligand 
Manufacturer; 

Catalog number 
Primary Concentration 

D1 Millipore; AB1765P 1:200 

D5 Santa Cruz; sc-1441 1:250 

TH Millipore; AB152 1:1,000 

COMT Millipore AB5873 1:1,500 

DAT Millipore: AB2231 1:2,000 

 

2.6 IMMUNOHISTOCHEMISTRY 

 Immunohistochemistry is a power tool used to visualize the localization and 

distribution of specific protein the fixed tissue. Thus, much care should be taken to 

preserve the original architecture and connectivity in the brain. Immunostaining 

techniques use a combination of immunology and histology. Immunology is used to 

produce protein-specific antibodies from the serum of animals. Antibodies bind to 

corresponding antigens presented on the cell surface. We use an indirect method of 

immunohistochemistry to amplify the labeled signal. Antibodies for the specific protein is 

applied to the tissue, where they bind to corresponding antigen, while excess and 



 
 

75 

unbound antibody is washed off (primary). To identify the location of the antibody and 

consequently the location of the antigen, an additional antibody is applied to tissue. This 

antibody was developed in another species to recognize and bind to the species from 

which the primary antibody was developed (secondary). Lastly, another antibody 

conjugated with a peroxidase enzyme will bind to the antibody complex. This peroxidase 

enzyme recognizes peroxide and allows us to visualize the location of the antibodies and 

consequently the location of the antigen.  

 Histology is used because we observe the structure and preservation of tissue. 

Generally, brains are fixed with formaldehyde and can either be sectioned immediately or 

undergo cryoprotecting, which allows longer preservation of the tissue morphology in the 

freezer. In many cases, this fixative can prevent sufficient antibody/antigen binding. 

Thus, a popular detergent, Triton X can be used to improve penetration of the antibody 

and improve labeling. We employed such techniques in this study. The following sections 

describe in detail the immunohistochemistry protocol used in Chapter 5 to determine 

alterations in dopamine D1/D5 receptor expression within the hippocampus following 

pilocarpine-induced chronic temporal lobe epilepsy. 

Free-floating sections were incubated with a mouse anti-glutamic acid 

decarboxylase 67 (GAD-67, 1:1000; Millipore; product No. MAB5406), goat anti-

dopamine D5 receptor (D5, 1:500; Santa Cruz Biotechnology, Inc., Santa Cruz, CA, 

USA; product No. sc-1441), rat anti-dopamine D1 receptor (D1, 1:100; Sigma, St. Louis, 

MO, USA; product No. D2944), or rabbit anti-tyrosine hydroxylase (TH, 1:2000; 

Millipore; product No. AB152) antibodies for 24 hours at room temperature (RT) or 48 

hours at 4°C. The GAD-67 antibody was used for cell body labeling as well as 
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quantification of GABAergic neurons. These steps were followed by secondary antibody 

incubation with either biotinylated donkey anti-mouse, anti-rabbit, anti-goat, or anti-rat 

(1:400, Jackson ImmunoResearch Laboratories, Inc., West Grove, PA, USA; product 

Nos. 715-065-151, 711-065-152, 705-065-003, 712-065-150) for 1.5 hours at RT, and 

horseradish peroxidase conjugated streptavidin (1:1600; Jackson ImmunoResearch 

Laboratories, Inc.; product No. 016-030-084) for 1 hour at RT. Immunoreactivity was 

developed using nickel sulfate-cobalt chloride intensified diaminobenzidine with 

hydrogen peroxide, yielding blue-black immunopositive cells. 

 

 2.6.1 PERFUSION OF TISSUE FIXATION 

 All tissue was processed according to previously described protocols (Stanley et 

al., 2012). Briefly, rats were deeply anesthetized using isoflurance and transcardially 

perfused with phosphate-buffered saline and 4% paraformaldehyde. Briefly, once 

anesthetized, a lateral incision to the lower abdomen was made which extended upwards 

to expose the chest cavity and the heart. A hemostatic clamp was placed on the 

descending vena cava to prevent perfusate flow to the lower extremities. A 20 x ½ gauge 

needle attached to the perfusion pump was inserted through the apex of the left ventricle 

and held firmly in place with a hemostat. Once inserted, the right atrium was clipped to 

allow perfusate flow. Ice cold, oxygenated (95% O2 / 5% CO2) 0.05 M PBS (pH 7.4) 

was perfused at approximately 60 mL/min for 4 – 5 min, followed by the ice cold fixative 

(0.1 M phosphate buffer / 4% paraformaldehyde), for approximately 20 min. Whole 
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brains were removed and postfixed overnight followed by cryoprotection in 30% sucrose. 

Tissue was coronally sectioned at a 45 µm thickness on a crystat. 

 

 

 2.6.2 IMMUNOPEROXIDASE 

 Free-floating sections were incubated with primary antibodies (Table 2.2) 

antibodies for 24 hours at room temperature (RT) or 48 hours at 4°C. The GAD-67 

antibody was used for cell body labeling as well as quantification of GABAergic neurons. 

These steps were followed by secondary antibody incubation for 1.5 hours at RT, and 

horseradish peroxidase conjugated streptavidin (1:1600; Jackson ImmunoResearch 

Laboratories, Inc.; product No. 016-030-084) for 1 hour at RT. Immunoreactivity was 

developed using nickel sulfate-cobalt chloride intensified diaminobenzidine with 

hydrogen peroxide, yielding blue-black immunopositive cells. 

 

Table 2.3 Primary antibodies for immunohistochemistry analysis 

Ligand 
Manufacturer; 

Catalog Number 
Primary Concentration 

GAD-67 MAB5406 1:1,000 

D5 sc-1441 1:500 

D1 D2944 1:100 

TH AB152 1:2,000 
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 2.6.3 SLIDE PREPARATION AND ANALYSIS 

 Stained and free floating tissue sections were mounted on slides with a 0.15% 

gelatin solution and allowed to dry overnight. Once dry, tissue were serial dehydration 

step with increasing concentrations of ethanol (50%, 70%, 95%, 100%, 100%; 3 

min/bath) followed by two, 10 min incubations in xylene. Slides were immediately cover-

slipped using cover glass and DPX mounting solution (Sigma, St. Louis, MO) and 

allowed several days to dry prior to analysis and long-term storage. Analysis on 

immunohistochemical data was performed using cell counts.  

  

 2.6.4 CELL COUNTS & PHOTOMICROGRAPHS 

 Immunopositive cells were counted using a Nikon ECLIPSE 80i microscope 

equipped with a CX900 camera (Nikon; Tokyo, Japan) using Neurolucida software (v.10; 

MicroBrightField, Inc.; Williston; VT, USA). Minor adjustments to color, contrast, and 

brightness were made using Adobe Photoshop 7.0 (San Jose, CA, USA).  

 

2.7 HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) 

 High performance liquid chromatography (HPLC) is a technique that can be used 

to identify, quantify and purify individual analytes of a given solution. Typically, HPLC 

involves a high pressure pump used to carry analytes suspended in a mobile phase 

through an analytical column. The column contains densely packed silica beads that 

facilitate the separation of analytes based on polar interactions. After being separated, 
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analytes are detected by an electrochemical detector. Retention times can be varied based 

on mobile phase flow rate, composition or pH, as well as ambient temperature in some 

cases. All HPLC products were purchase from BASi.  

Rats were deeply anesthetized with isoflurane. Their hippocampi were rapidly 

extracted and immediately weighted and chilled. Hippcampal tissue was homogenized 

using individual plastic disposable pestles and 1.5mL centrifuge tubes. The tissue was 

homogenized in a 0.1M perchloric acid (HClO4) solution containing 0.02% sodium 

metabisulfite (Na2S2O5) and dihydroxybenzylamine (DHBA, 146.5 ng/mL, as an internal 

standard for monamines) in a proportion of 15 µL solution for each milligram of tissue. 

The homogenized tissue was then centrifuges at 11,000g at 4ºC for 40 min. After 

centrifugation, the sample supernatant was filtered using 0.2 µM nylon disposable 

syringe filters and stored at -80ºC until analyzed. Centrifuged tubes containing the tissue 

pellet was also stored at -80ºC to use as a post hoc control to normalize for protein 

concentration. We analyzed hippocampal tissue homogenates from “control” and 

“epileptic” rats using high performance liquid chromatography (HPLC) with 

electrochemical detection for the analytes dopamine, DOPAC, and norepinephrine (NE). 

Elution times for these monoamines and their metabolites are displaying in Table 2.2 

(Cavalheiro et al., 1994). 

 

Table 2.4 Chromatographic parameters for monoamines and monoamine 

metabolites 

Neurotransmitter Retention time (min) 

4-hydroxy-3-methoxy-mandelic acid (VMA) 3.60 
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4-hydroxy-3-methoxyphenly glycol (MPHG) 4.20 

Norepinephrine (NE) 4.60 

Dihydroxybenzylamine (DHBA) 7.30 

Dihydroxyphenylacetic acid (DOPAC) 8.00 

Dopamine (DA) 11.00 

4-hydroxy-3-methoxy-phenylacetic acid 

(HVA) 
20.00 

  

2.7.1 DOPAMINE CHROMATOGRAPHY 

 Dopamine, DOPAC, and NE were separated by a C18 carbon polymer column 

using a mobile phase (pH 3.4) containing 14.5 mM NaH2PO4. A post-column 

immobilized enzyme reactor containing covalently bound dopamine, DOPAC, and NE 

oxidase generated stoichiometric quantities of hydrogen peroxide, which were detected 

by a “peroxidase wired” glassy carbon electrode (Huang et al., 1995; Fadel et al., 2001). 

Dopamine peak areas were quantified by comparison with a daily three-point standard 

curve defining the range of dopamine values. Dopamine, DOPAC, and NE levels in 

epileptic hippocampi were normalized as a percent of the average control hippocampi 

dopamine, DOPAC, and NE content.  

 

2.8 STATISTICAL ANALYSIS 

Electrophysiological data was analyzed using pClamp10 (Molecular Devices, 

Sunnyvale, CA) and Origin7.5 (OriginLab, Northampton, MA). Data collected from 

western blot analysis and immunohistochemistry was analyzed using ImageJ 1.47V 
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(National Institute or Health, USA) or cell counts. Data depicting changes in DAR, DAT, 

and COMT protein expression were obtained by averaging data collected from a 

minimum of two separate western blots. 

All cell counts, electrophysiological data, and immunoblot data were analyzed 

using independent samples Student’s t-test for significant main effects. All values are 

expressed as the mean ± standard error of the mean (SEM). P <0.05 defined significant 

main effects. 



 
 

82 

CHAPTER 3 

SUBUNIT DEPENDENT PHARMACOLOGY OF KAINATE RECEPTORS

 

3.1 INTRODUCTION 

 

Kainate receptors (KARs) are ionotropic glutamate receptors composed of 

tetrameric assemblies of GluK1-5 subunits (Pinheiro and Mulle, 2006). GluK2, GluK4, 

and GluK5 are thought to compose postsynaptic KARs at mossy fiber (MF) to CA3 

pyramidal cell synapses (mossy fiber-CA3 synapses) (Mulle et al., 1998; Contractor et 

al., 2003; Fernandes et al., 2009), where they contribute with small amplitude, slowly 

decaying currents (Castillo et al., 1997; Vignes and Collingridge, 1997). Despite their 

small amplitude, KAR-excitatory postsynaptic currents (EPSCs) were hypothesized to be 

important for the integration of information because they summate temporally (Frerking 

and Ohliger-Frerking, 2002). Furthermore, kainate receptors are composed of subunits 

that demonstrate distinct pharmacology, kinetics, and localization, thus, providing a 

higher level of complexity to deciphering the role of kainate receptor subunits in the 

brain. Although we know that each subunit can bind to glutamate and open the receptor, 

we do not know whether each subunit contributes equally to receptor activation, 

desensitization, and subsequently the KAR current at postsynaptic MF-CA3 synapses.  
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 The lack of pharmacological tools that selectively block KAR subunits known to 

be located on CA3 pyramidal cells hampers clarifying the physiological relevance of 

postsynaptic KARs at mf-CA3 synapses. Recently, an intense effort was made to 

synthesize and characterize subunit-selective KAR antagonists, mainly against GluK1 

(Jane et al., 2009). However, no selective antagonist of GluK5 or GluK4 subunits yet 

exists, although they likely represent a major population of KARs in the brain (Wenthold 

et al., 1994). Previous papers hint at how other GluK1 antagonists can be promiscuous in 

also inhibiting heteromeric GluK2/K5 receptors (Pinheiro et al., 2013). The implication 

of KAR-EPSCs at hippocampal MF synapses has only been addressed by comparing 

wild-type and GluK2
-/-

 mice, which display loss of postsynaptic KARs (Mulle et al., 

1998; Sachidhanandam et al., 2009). This was followed by demonstrations showing that 

KAR-EPSCs are eliminated when GluK4 and GluK5 subunits are knocked out 

(Fernandes et al., 2009). Thus, these two experiments can be explained by the latter, 

suggesting that GluK2 is necessary for integration of GluK4 and GluK5 into the synapse. 

However, it is the GluK2/GluK4 and/or the GluK2/GluK5 heteromers that are necessary 

for KAR-EPSCs at the MF-CA3 synapses. Interestingly, the GluK4
-/-

 demonstrated the 

most diminished KAR-EPSCs at MF-CA3 synapses compared with the GluK5
-/-

(Contractor et al., 2003; Fernandes et al., 2009). However, these results are not 

conclusive that the GluK4 subunit is more important for postsynaptic KAR transmission 

than the GluK5 subunit, because receptor compensation from congenital knockouts 

cannot be ruled out. In addition to the previous research demonstrating a need for the 

GluK4 and GluK5 subunits to produce postsynaptic KAR current, new research has 

implicated a novel role for the auxiliary protein Neto1 in trafficking of KARs to the 



 
 

84 

synapse and altering the properties KAR postsynaptic current at mf-CA3 synapses 

(Copits et al., 2011; Straub et al., 2011a). 

 In search for antagonists of KARs at mf-CA3 synapses, we reevaluated the 

efficacy of willardiine derivatives (Jane et al., 2009) on native KARs. ACET was 

originally developed as a GluK1 selective antagonist (Dolman et al., 2007). We found 

that ACET blocks postsynaptic KARs at mf-CA3 synapses. We further show that ACET 

is also an antagonist of recombinant GluK5 and GluK4 subunits, the subunits required for 

postsynaptic KAR current. Using this tool and the drug kynurenate, which was previously 

demonstrated to antagonize the GluK2 subunit, we directly investigated the relative 

contribution of the GluK2 and GluK5 subunits to KAR current in recombinant cells and 

the brain. 

 

3.2 MATERIALS AND METHODS 

 

3.2.1 CULTURE AND TRANSFECTION OF HEK-293T CELLS 

HEK-293T cells (GenHunter, Nashville, TN, USA) were maintained in 

Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 100 

IU ml
-1

 penicillin and 100 µg ml
-1

 streptomycin. Cells were passaged with a 0.025% 

trypsin/0.01% EDTA solution in phosphate-buffered saline (10 mM Na2HPO4, 150 mM 

NaCl, pH 7.3). Full-length cDNAs for the GluK or Neto1 subunits in mammalian 

expression vectors were transfected into cells using calcium phosphate precipitation as 
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previously described (Mott et al. 2010). Plasmids encoding rat GluK2 (Q), GluK4 or 

GluK5 were provided by S. Heinemann (Salk Institute, San Diego, CA, USA). Human 

Neto1 was provided by S. Tomita (Yale University, New Haven, CN, USA). Plasmids 

were transfected at ratios of 1:3:4 (GluK2: GluK4 – GluK5: Neto1), previously shown to 

optimize formation of heteromeric receptors (Barberis et al. 2008) and Neto1 assembly 

with KARs (Fisher & Mott, 2012). To identify transfected cells, we co-transfected 1 µg 

of a cDNA encoding a single-chain antibody recognizing the hapten 4-ethoxymethylene-

2-phenyl-2-oxazoline-5-one (phOx; Chesnut et al. 1996). Positively transfected cells 

were isolated using phOx-coated beads 18 – 28 hr after transfection and plated onto glass 

coverslips treated with poly-L-lysine and collagen.  

 

3.2.2 WHOLE-CELL RECORDING 

 Whole-cell recordings were performed on isolated HEK-293T cells 40 – 52 h 

after transfection under voltage-clamp conditions. Patch pipettes were pulled from 

borosilicate glass with an internal filament (World Precision Instruments, Sarasota, FL, 

USA) on a two-stage puller (Narishige, Japan) to a resistance of 5 – 10 MΩ and filled 

with a solution containing (in mM): 130 CsGluconate, 5 CsCl, 10 Hepes, 5 CsBAPTA, 2 

MgCl2, 2 MgATP, 0.3 NaGTP (pH 7.3, 290-300 mosmol l
-1

). Cells were continually 

perfused with an external solution containing (in mM): 150 NaCl, 3 KCL, 10 Hepes, 1 

CaCl2, 0.4 MgCl2 (pH 7.4, 295-305 mosmol l
-1

). For whole-cell recordings glutamate and 

antagonists (ACET and kynurenate) were applied to cells using a stepper solution 

changer (SF-77B, Warner Instruments, Hamden, CT, USA). The time course of drug 
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application was <50 ms in the whole-cell recording configuration as determined using a 

diluted external solution applied to the electrode. Rise times (10 – 90%) of the junction 

potential at the open tip were consistently faster than 400 µs and were tested using a 

diluted external solution. All antagonists were applied to cells before glutamate per 

sweep. Current recordings were amplified (Axopatch 200B; Molecular Devices, Foster 

City, CA, USA), filtered (1kHz) and digitized at 10 kHz using a Digidata 1320 analog to 

digital board (Molecular Devices) and stored on a computer hard drive for off-line 

analysis.  

 

3.2.3 ANALYSIS OF WHOLE-CELL CURRENTS 

 Whole-cell currents were analyzed using the programs Clampfit (pClamp9.2 

suite, Molecular Devices, Foster City, CA, USA) and Origin (MicroCal, Northampton, 

MA, USA). Concentration-response data were fit with a four-parameter logistic equation: 

Current = [Minimum current + (Maximum current – Minimum current)]/1 + (10^(log 

EC50 – log [Glutamate]) x n), where n represents the Hill number. All fits were made to 

normalized data with current expressed as a percentage of the maximum response to 

glutamate for each cell. Peak currents and log EC50 values were compared using unpaired 

Student’s t tests with a significance level of P = 0.05. 
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3.3 RESULTS 

 

3.3.1 ACET INHIBITION OF HETEROMERIC KAINATE RECEPTORS 

ACET is a williardine compound previously described to be a GluK1 antagonist 

(Dargan et al., 2009; Jane et al., 2009). Studies have confirmed that ACET does not 

inhibit the activation of GluK2 homomeric currents (Dargan et al., 2009). However, 

doubts about the specificity of ACET to inhibit only GluK1 receptors were raised when it 

was demonstrated that ACET could inhibit KAR currents at mossy fiber-CA3 synapses 

(Dargan et al., 2009), a synapse in which few if any postsynaptic GluK1 receptors are 

located (Paternain et al., 2003). To examine the selectivity of ACET, we transfected 

HEK-293T cells with heteromeric and homomeric kainate receptors known to be 

predominantly expressed on CA3 pyramidal cells (GluK2, GluK2/K4 and GluK2/K5) 

and evaluated the efficacy of ACET to inhibit their glutamate-induced current. 

Using whole cell patch-clamping electrophysiology, we gained access to the 

internal milieu of the cell and clamped the voltage inside the cell at -70 mV. An EC50 

glutamate dose was applied to each cell as a reference for maximum current activation. 

Glutamate was applied at the beginning and end of each experiment to 1) receive a 

reference for maximum current activation, and 2) as a way to determine receptor 

rundown throughout the experiment. In cells transfected with GluK2/K4 KAR subtypes, 

a 5 sec application of 30 µM glutamate produced a rapid on and fast desensitizing current 

(Figure 3.1A). These receptor kinetics are similar to those reported in other papers (Fisher 

and Fisher, 2014). Co-application of 1 µM ACET with 30 µM glutamate reliably reduced 
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the peak current amplitude by 54 ± 6.3% (Figure 3.1A). In cells transfected with 

GluK2/K5 KAR subtypes, an EC50 glutamate dose of 10 µM produced a rapidly activated 

but slowly desensitizing current (Figure 3.1A). This receptor kinetic was similar to those 

reported in other papers (Fisher and Mott, 2011; Fisher and Fisher, 2014). Co-application 

of 1 µM ACET with 10 µM glutamate reliably reduced the peak current by 92 ± 0.85% 

(Figure 3.1A). However, in cell transfected with GluK2 KAR subtypes, and EC50 

glutamate dose of 300 µM glutamate produced a rapidly activating and desensitizing 

current (Figure 3.1B). Co-application of 1 µM ACET with 300 µM glutamate did not 

inhibit the peak current amplitude (Figure 3.1B).  

Interestingly, our results demonstrate that 1µM ACET is not sufficient to inhibit 

GluK2 when expressed alone. However, 1 µM ACET is sufficient to inhibit peak currents 

when GluK2 is expressed with either GluK4 or GluK5 subunits. Thus, we designed 

further experiments to test whether the GluK4 or GluK5 subunits contribute to the 

appearance of ACET inhibition. To test whether GluK4 or GluK5 subunits contribute to 

ACET inhibition of heteromeric KAR currents, we co-transfected GluK4 or GluK5 

subunits with a mutated GluK2, in which the 738
th

 glutamate (E) amino acid was 

replaced with a aspartate (D) amino acid. This mutation reduces the GluK2 subunit 

sensitivity to glutamate 1,000 fold (Fisher and Mott, 2011), resulting in the lack of GluK2 

activation at glutamate concentrations less than 1 mM. Now, when GluK4 and GluK5 is 

expressed with the mutated GluK2 subunit (GluK2E738D), the receptor kinetics change 

from a rapid on and desensitizing current to a non-desensitizing current. This was 

reported and elucidated in other papers, where they described this phenomenon was due 

to activation of only two identical subunits in the tetramer (Fisher and Mott, 2011). 
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Desensitization requires that activation of at least three or more subunits. By removing 

the sensitivity of the GluK2 subunit to glutamate, only the GluK4 or GluK5 subunits in 

the tetramer can bind to glutamate, and thus produces a non-desensitizing current. 

Application of 1 µM ACET was sufficient to block activation induced by EC50 dose of 

glutamate (Figure 3.1B)  

 

Figure 3.1 ACET inhibits current at GluK2/4 and GluK2/5 heteromers by 

antagonizing the GluK4 and GluK5 subunit, respectively. 

A. Sample waveforms showing the effect of ACET (1 µM, red trace) compared to 

glutamate alone (black trace). ACET inhibits the glutamate-induced current in 

HEK-293T cell transfected with wildtype GluK2/K4 or GluK2/K5 kainate 

receptors.  

B. Sample waveforms showing the effect of ACET (1 µM, red trace) compared to 

glutamate alone (black trace). Similarly to previously reported, ACET did not 

inhibit current at cells transfected with wildtype GluK2 homomeric KAR 

receptors. However, in cells transfected with heteromeric KARs in which the 

GluK2 subunit was mutated so that it was 1,000 fold less sensitive to glutamate 

(GluK2(E738D)/K4 and GluK2(E738D)/K5), ACET almost completely inhibits 

the glutamate-induced current. 
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Desensitization requires that activation of at least three or more subunits. By 

removing the sensitivity of the GluK2 subunit to glutamate, only the GluK4 or GluK5 

subunits in the tetramer can bind to glutamate, and thus produces a non-desensitizing 

current. Application of 1 µM ACET was sufficient to block activation induced by EC50 

dose of glutamate (Figure 3.1B)  

 

3.3.2 ACET SIMILAR INHIBITS THE GLUK4 AND GLUK5 SUBUNITS 

 The GluK4 and GluK5 subunits can have drastically different pharmacology from 

the other KAR subtypes. They can be activated by ligands, such as AMPA, that GluK1 – 

GluK3 subunits cannot bind (Alt et al., 2004). Also, GluK4 and GluK5 are more sensitive 

to glutamate, given them the name of ‘high affinity’ KAR subunits (Heckmann et al., 

1996; Paternain et al., 1998; Barberis et al., 2008; Fisher and Mott, 2011, 2013). Thus, 

their incorporation into KAR subtypes can have drastic effects on the pharmacology of 

the whole KAR receptor. We previously, demonstrated that 1 µM of ACET was 

sufficient to reduce EC50 glutamate activation of GluK2-containing heteromers, although 

the inhibition of GluK2/K5 wildtype KARs current was more than in GluK2/K4 KARs. 

This difference in current inhibition in GluK4 versus K5 KARs was occluded when co-

expressed with a mutant GluK2, which lacked sensitivity to the EC50 glutamate dose. 

Next, we sought to determine whether the sensitivity of the GluK4- and GluK5-

containing KARs to ACET was similar. To test this, we conducted an ACET 

concentration curve, where increasing concentration of ACET were co-applied with an 

EC50 concentration of glutamate. Peak current responses were recorded for each 
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concentration in each cell. All data was normalized to the EC50 glutamate concentration 

alone. Results are reported as a measure of how much a particular drug (ACET or 

kynurenate) is needed to inhibit current amplitude by half (IC50). Analyses of wildtype 

GluK2, GluK2/4 and GluK2/5 receptors demonstrated that the IC50 of ACET was very 

different across the KAR subtypes (GluK2, IC50 = 126 ± 3 nM, n = 4; GluK2/K4, IC50 = 

71 ± 5 nM, n = 8; and GluK2/K5, IC50 = 29 ± 7 nM, n = 10, respectively) (Figure 3.2A). 

As shown above, wildtype GluK2/K5 heteromers have the highest sensitivity to ACET 

inhibition, followed by wildtype GluK2/K4 heteromers. As expected, GluK2 homomers 

were non-responsive to ACET inhibition until concentrations exceeding 1 µM. It is also 

important to note that ACET inhibition of the GluK2/K4 peak current plateaued at ~45% 

of the maximum glutamate response irrespective of increased ACET concentrations 

(Figure 3.2A). Thus, the difference in wildtypes GluK2/K4 and GluK2/5 sensitivity to 

ACET inhibition is more pronounced with higher concentrations of ACET (Figure 3.2A).  

Interestingly, the difference between GluK2/K4 and GluK2/K5 sensitivity to 

ACET inhibition was abolished when co-expressed with the mutated GluK2 subunit 

(GluK2(E738D)). ACET concentration-response curves for GluK2(E738D)/K4 and 

GluK2(E738D)/K5 were not statistically different. This was also supported by the 

similarities of their ACET IC50s: GluK2(E738D)/K4, IC50 = 112 ± 1 nM, n = 6; 

GluK2(E738D)/K5, IC50 = 64 ± 1 nM, n = 7 (Figure 3.2C). 

Steady-state current is achieved when there is equilibrium between the amount of 

receptors in the desensitized state and the open state. Thus, the amount of current remains 

constant in the presence of glutamate. ACET did not inhibit the steady-state current in 

wild-type GluK2/K4 and GluK2/K5 KARs (Figure 3.2B). However, the steady-state 
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current in GluK2(E738D)-containing heteromers was sensitive to ACET inhibition 

(Figure 3.1B).   

GluK2 homomeric KARs with a glutamine (Q) residue in the pore domain are 

subject to voltage dependent block by intracellular polyamines, which cause inward 

rectification of their current – voltage relationship. The ending result is that positive ions 

are hindered from leaving the cell even when the cell is depolarized to higher voltages. 

Cell that express heteromeric KARs do not experience inward rectification and allow ions 

to flow freely in or out of the cell in response to hyperpolarization or depolarization, 

respectively. To ensure that heteromeric receptors were expressed when we transfected 

with GluK2 and GluK4 or GluK5, we test for the lack of inward rectification. To test for 

the presence of rectification, we took the cell through a range of voltage steps (-90 mV - 

+70 mV) and measured the peak current in response to the EC50 glutamate. Results were 

plotted on a current (I) – volts (V) curve, where peak current for each step is averaged 

and normalized to the peak current at -90 mV. The presence of positive current indicates 

the lack of inward rectification and the successful expression of functional heteromeric 

KARs. In cell transfected with GluK2/K5 and GluK2/K4, we saw the presence of 

positive current when the cells were depolarized above 0 mV (Figure 3.2C). However, we 

saw a lack of positive current at higher voltage potential in cell transfected with GluK2 

homomers (Figure 3.2C).  

The glutamate EC50 for GluK2-containing homomers and heteromers and 

GluK2(E738D) have been previously described (Fisher and Fisher, 2014). Our glutamate 

concentration curve agrees with this published data (Figure 3.2D).  
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Figure 3.2 The efficacy of ACET is similar at GluK4 and GluK5 KAR subunits. 

However this similarity is occluded when these subunits are incorporated with the GluK2 

subunit. 

A. Graph illustrating an ACET concentration curve. Peak amplitude of each current 

to concentration of ACET was normalized to the peak current response to 

glutamate application alone. The difference in ACET inhibition of wildtype 

GluK2/K4 to GluK2/K5 was abolished when the GluK2 subunit was mutated to 

be 1,000-fold less sensitive to glutamate.  

B. ACET (1 µM) does not inhibit steady state currents at wildtype GluK2/K4 or 

GluK2/K5 KAR receptors.  

C. Graph illustrating the I-V curve for cells transfected with GluK2 homomers and 

GluK2/K4 and GluK2/K5 heteromers. Cells transfected with heteromers 

GluK2/K4 and GluK2/K5 demonstrated reduced inward rectification compared to 

GluK2 homomers, and thus, confirms expression of heteromeric receptors.  

D. Glutamate EC50s are 330 µM (GluK2) and 8 µM (GluK2/K5). GluK2(E738D) is 

less sensitive to glutamate than wildtype (GluK2). 
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3.3.3 NETO1 ALTERS ACET INHIBITION  

Neto1 is an auxiliary protein to KARs. Neto1 alters the kinetics of GluK2-

containing receptors (Copits et al., 2011; Straub et al., 2011a; Fisher and Mott, 2013). As 

previously described, co-expressing Neto1 with GluK2/K5 KARs removes 

desensitization of the glutamate-induced current (Figure 3.3A). Co-application of ACET 

inhibited peak current amplitude in GluK2/K5 cells expressing Neto1 similarly to those  
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Figure 3.3 Neto1 enhances ACET inhibition of steady state GluK2/K5 currents 

A. Sample waveforms demonstrating that ACET (1 µM) inhibits steady state current 

at GluK2/K5 receptors only when Neto1 is present. 

B. Averaged data demonstrating that co-transfecting with Neto1 enhances ACET 

inhibition of steady state, but not peak current at GluK2/K5 receptors. We suggest 

that the steady state current remaining in the presence of ACET is mediated by 

activated GluK2 subunits. 

 

not expressing Neto1. Alternatively, we previously demonstrated that ACET did not 

inhibit the steady-state current in cells not expressing Neto1. However, when Neto1 is co-

expressed with GluK2/K5 receptors, ACET now inhibits the steady-state current (Figure 

3.3A, B). 

 

3.3.4 KYNURENATE INHIBITION OF GLUK2-CONTAINING KAINATE RECEPTORS 

Kynurenate (KYN) is a non-selective glutamate antagonist. Among GluK2-

containing KARs, kynurenate preferentially inhibits the GluK2 subunit (Fisher and Mott, 

2011). Thus, when co-expressed with GluK2/K5 kainate receptors, coapplication of 

kynurenate with an EC50 concentration of glutamate yielded a non-desensitizing current. 

Representative waveforms illustrate that KYN dose-dependently inhibits the peak current 

amplitude of GluK2, GluK2/K4, and GluK2/K5 KARs induced by an EC50 dose of 

glutamate. In GluK2 homomers, the rapidly activating and desensitizing current is 

progressively inhibited by increasing concentrations of KYN (Figure 3.4A). GluK2/K4 

currents, although desensitizing slight slower, responded to KYN inhibition similarly to 

GluK2 homomers (Figure 3.4A). A difference remained in that at higher KYN  
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Figure 3.4 Kynurenate has distinct effects on GluK2/K4 and GluK2/K5 receptors 

A. Sample waveforms demonstrating that with increasing kynurenate (KYN) 

concentration, glutamate-activated current at GluK2 homomeric receptors is 

progressively inhibited. Increasing concentrations of kynurenate had a similar 

effect on GluK2/K4 receptors. Alternatively, at GluK2/K5 receptors, kynurenate 

inhibits peak current and strongly removes desensitization. 

B. Reduced inward rectification in IV-curves confirms expression of heteromeric 

GluK2/K4 and GluK2/K5 receptors. 

C. Graph illustrating a kynurenate concentration curve. Kynurenate inhibition of 

glutamate-induced currents was normalized to the peak current amplitude of 

glutamate application alone. Peak glutamate current at GluK2/K5 receptors is less 

sensitive to kynurenate inhibition than GluK2 or GluK2/K4 receptors.  
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concentrations, GluK2/K4 currents adopted a non-desensitizing receptor kinetic (Figure 

3.4A). KYN application had a distinguishing different effect on GluK2/K5 KAR kinetics. 

Increasing concentrations of KYN did inhibit the peak current amplitude, however, it 

more so removed desensitization (Figure 3.4A). A KYN concentration-curve, further 

demonstrates that GluK2 (IC50 = 345 ± 50 µM, n = 8) and GluK2/K4 (IC50 = 162 ± 15 

µM, n = 5) have similar sensitivities to KYN inhibition (Figure 3.4C). However, 

GluK2/K5 KARs (IC50 = 3857 ± 163 µM, n = 9) were less sensitive to KYN inhibition 

than the other GluK2-containing KARs (Figure 3.4C). These results agree with 

previously published data (Fisher and Mott, 2011). Additionally, the presence of 

heteromers in GluK2/K4 and GluK2/K5 transfected cells was confirmed by the lack of 

inward rectification (Figure 3.4B). 

 

3.3.5 NETO1 ALTERS KYNURENATE INHIBITION 

As described previously, incorporation of Neto1 into GluK2/K5 preparations 

removes desensitization of the glutamate-induced current. In wildtype GluK2/K5 

receptors, coapplication of 1 mM KYN with an EC50 dose of glutamate moderately 

suppresses the peak current amplitude (Figure 3.5A, B). However, the steady-state current 

is significantly increased (Figure 3.5A, C). When Neto1 is expressed with GluK2/K5 

KARs, KYN inhibits the peak current amplitude similarly to preparations without Neto1 

(Figure 3.5A, B). However, the steady-state current is now inhibited by 3 mM KYN. 

Thus, KYN reduces desensitization of GluK2/K5 receptors not expressed with Neto1 and 

thereby alters the ratio of the steady-state amplitude to the peak amplitude. However, 
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KYN does not alter this steady-state/peak amplitude ratio when applied to GluK2/K5 

receptors with coexpressed Neto1 (Figure 3.5A, C).  

 

Figure 3.5 Neto1 occludes the effect of kynurenate on desensitization, but not 

inhibition 

A. Representative traces illustrating that co-transfected cells containing GluK2/K5 

with Neto1 occludes kynurenate removal of desensitization and allows inhibition 

of the steady-state current. 

B. Concentration curve comparing the relative kynurenate inhibition of GluK2/K5 ± 

Neto1 peak current amplitude. Co-transfection with Neto1 does not alter 

inhibition of GluK2/K5 peak current by kynurenate. 

C. Concentration curve illustrating the relative inhibition of GluK2/K5 ± Neto1 

steady state current. Co-transfection with Neto1 prevents inhibition of GluK2/K5 

steady state current by kynurenate. 

0

20

40

60

80

100

120

 

 

-6 -5 -4 -3 -2
0

20

40

60

80

100

 

C.

B.

-2-3

2 sec

GluK2/K5

GluK2/K5

   +Neto1

GluK2/K5
10M glu

GluK2/K5

10M glu

GluK2/K5 + Neto1

log [kynurenate], M

P
e

a
k

 C
u

rr
e

n
t 

(%
 C

o
n

)

log [kynurenate], M

S
te

a
d

y
 S

ta
te

 C
u

rr
e

n
t

(%
 P

e
a

k
)

GluK2/K5

   +Neto1

50 pA

100 pA

-4

A.



 
 

99 

3.3.6 USING ACET AND KYNURENATE AS PHARMACOLOGICAL TOOLS 

In the previous sections, we demonstrated that ACET inhibits the GluK5 and 

GluK4 KAR subunits in heteromers. Additionally, we confirmed that KYN preferentially 

does not inhibit the GluK5 KAR subunit in heteromers. Thus, we can use these drugs as 

pharmacologic tools to selectively activate or inhibit specific receptors subunits in the 

GluK2/K5 heteromer. To test the effectiveness of these tools, we sought to verify the 

receptor occupancy model for KARs. The receptor occupancy model states that 

desensitization occurs when three or more subunits are activated. If only two or less 

KARs are activated, the receptor can open, but will not desensitize (Fisher and Mott, 

2011; Fisher and Fisher, 2014; Reiner and Isacoff, 2014). Application of an EC50 

glutamate dose allowed GluK2/K5 receptors to rapidly open and desensitize, as 

illustrated previously. Co-application with 3 mM kynurenate, preferentially inhibits the 

GluK2 subunits, leaving the GluK5 subunits to open the receptor to a non-desensitizing 

current. Consecutively, co-applying 1 µM ACET inhibited the remaining predominately 

GluK5-mediated current (Figure 3.6A). Steady-state was measured across conditions (10 

µM glutamate alone, 3 mM KYN, and 3 mM KYN + 1 µM ACET) and normalized to the 

condition with the maximum steady-state current (KYN). Averaged data demonstrates 

that the steady-state current was significant reduced in the glutamate alone (26 ± 1%, n = 

5) and KYN + ACET (1 µM: 23 ± 4.5%, n = 5; 10 µM: 8.3 ± 1.7%, n = 5; p < 0.05) 

condition compared to the KYN condition.  

 We determined that activation of the GluK5 subunit is sufficient to open the 

receptor. Next, we wanted to determine whether activation of the GluK2 subunit is 

sufficient to open the heteromeric receptor. We applied the EC50 dose of glutamate (300  
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Figure 3.6 Occupancy of either the GluK2 or GluK5 subunits can activate 

GluK2/K5 receptors 

A. Sample waveforms (left) and bar graph (right) illustrating that kynurenate (3 mM) 

removed desensitization at GluK2/K5 receptors, and consequently enhances the 

steady state current. ACET (1 µM) inhibits this steady state current. Bar graph 

(right) illustrates the amplitude of the steady state current for each condition 

normalized to the condition with the maximum steady state amplitude (3mM 

kynurenate alone). 

B. Sample waveform (left) and bar graph (right) illustrating that co-application of 

ACET (10 µM) with glutamate (300 µM) enhances the steady state current and 

the addition of KYN (3 mM) inhibits this steady state current. Bar graph (right) 

illustrates the steady state current amplitude for each condition normalized to the 

condition with the maximum steady state current (10μM ACET). 

 

µM) to ensure sufficient activation of the GluK2 subunits. The GluK2 subunit is less 

sensitive to glutamate activation than the GluK2/K5 subunit. Thus, more glutamate is 

needed to ensure sufficient binding of the GluK2 subunit. Perfusion of 300 µM glutamate 

opened and rapidly desensitized the GluK2/K5 KARs. Co-application of 10 µM ACET (a 
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dose chosen to maximally inhibit the GluK5 subunits with minimal inhibition of the 

GluK2 subunits), open the GluK2/K5 KAR to a non-desensitizing current. Consecutive 

application of 3 mM KYN with 10 µM ACET completely inhibited GluK2/K5 current. 

The steady-state current was significantly reduced in the 300 µM glutamate alone (14 ± 

7%, n = 5, p < 0.05) and 10 µM ACET + 3 mM KYN condition (26 ± 1%, n = 5, p < 

0.05) compared to the ACET condition.   

3.3.7 ACET INHIBITS KAINATE – MEDIATED SYNAPTIC TRANSMISSION  

 The GluK4 and GluK5 subunits are necessary for kainate receptor synaptic 

transmission at the mossy fiber – CA3 synapse (Fernandes et al., 2009). Thus, we 

hypothesized that ACET will inhibit kainate receptor fEPSPs at this synapse. Field 

EPSPs were evoked by stimulating mossy fibers extending from the dentate gyrus 

pyramidal cell layer and recording synaptic field potentials in CA3 stratum lucidum. The 

KAR component of the fEPSP was isolated with an antagonist cocktail: 50 µM GYKI 

53655, 10 µM MK801, 50 µM picrotoxin, and 1 µM CGP 5585, and resembled the slow 

fEPSPs as previously described (Castillo et al., 1997) (black trace, Figure 3.7A,B). 

Concurrent perfusion of 1 µM ACET significantly and completely blocked the KAR 

fEPSP (red trace, 6.6 ± 4.8%, n = 8 p < 0.05), Figure 3.7A,B). Averaged data was 

represented as a bar graph, where the peak amplitude was normalized to the fEPSPs 

amplitude with the antagonist cocktail alone.  
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Figure 3.7 ACET blocks kainate receptor synaptic transmission at mossy fiber – 

CA3 synapses. 

A. Sample waveform of KAR fEPSPs (black trace) isolated by perfusing an 

antagonist cocktail (50 µM GYKI 53655, 10 µM MK801, 50 µM picrotoxin, and 

1 µM CGP 55845). Adding 1 µM ACET to the perfusing antagonist cocktail 

completely inhibited the KAR EPSPs.  

B. Bar graph of averaged data normalized to the KAR fEPSPs. ACET significantly 

inhibited the KAR fEPSPs.  

 

 

3.4 DISCUSSION 

 

In the present study, we used whole cell electrophysiology on cells transfected 

with various GluK2-containing KARs to determine whether ACET and/or kynurenate can 

be used as pharmacological tools to delineate specific subunit contribution to KAR 

current. We found that ACET inhibits current at heteromeric KARs by binding to the 



 
 

103 

GluK4 and GluK5 subunits, and KYN preferentially does not inhibit the GluK5 subunit. 

Furthermore, we demonstrated that ACET inhibits KAR – mediated synaptic current in 

the brain, specifically the mossy fiber – CA3 synapse. These drugs can be used as 

pharmacological tools to distinguish GluK2 subunit contribution from KAR current from 

the GluK5 subunit.   

 

3.4.1 INHIBITION OF GLUK2-CONTAINING KAINATE RECEPTORS BY ACET 

ACET is a willidarine compound originally characterized as a GluK1 antagonist 

(Jane et al., 2009). However, doubts about ACET being a selective drug for GluK1 has 

surfaced. One reason for recent suspicion is that other compounds within the ACET 

family and with a similar structure, have demonstrated a more promiscuous ligand 

affinity than for the GluK1 subunit alone. One such compound was the drug UBP310 

(Pinheiro et al., 2013). Pinheiro et al., described quite convincingly that UBP310 can 

inhibit current at GluK2/K5 currents in cultured cells and acute brain slices (Pinheiro et 

al., 2013). Here we describe that ACET, similar to UBP310, also has a more promiscuous 

ligand affinity than previously thought and inhibits glutamate current at GluK2/K5 

receptors. We took it a step further and characterized another GluK2-containing 

heteromer, GluK2/K4. Our results demonstrated that not only is the GluK2/K5 receptor 

sensitive to ACET inhibition, but also GluK2/K4 receptors. Furthermore, by mutating the 

GluK2 subunit, we determined that ACET inhibition of GluK2-containing heteromers 

was due to ACET inhibiting specifically the GluK4 and GluK5 subunits.  
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Interestingly, ACET inhibition at GluK2/K4 wildtype receptors plateaued around 

45% of the maximum glutamate response, such that higher concentrations of ACET did 

not produce additional inhibition of the GluK2/K4 current. The reason for the plateau 

could be that the GluK4 is fully inhibited (as indicated by the GluK2(E738D)/K4 

concentration-curve), however the remaining current is mediated by the GluK2 subunit. 

An alternative explanation is that ACET may act as a partial agonist. Partial agonists 

have partial efficacy at the receptor relative to a full agonist. They are often confused 

with competitive antagonists because partial agonists can compete with full agonists for 

receptor binding sites and produce a net reduction in receptor activation. Future studies 

are needed to determine whether ACET is in fact a partial agonist. Our results suggest 

that ACET is not a specific GluK1 antagonist, but should be considered more of an 

inhibitor of most KARs (there is no data available on ACET inhibition of GluK3 KARs) 

except at GluK2 subunits. 

We also examine the impact of the auxiliary subunit Neto1 on the ACET 

inhibition of GluK2/K5 current. Neto1 is an auxiliary protein known to bind to KARs in 

the brain and recombinant cells (Tang et al., 2011). Neto1 has a role in incorporation of 

KARs to the synapse and alters for KAR synaptic transmission (Copits et al., 2011; 

Straub et al., 2011a). In recombinant cells, Neto1 has little impact on surface expression 

of recombinant KARs. However, Neto1 does change receptor kinetics (Fisher and Mott, 

2012, 2013). Co-expression of Neto1 shifts the concentration dependent for the onset of 

desensitization towards higher levels of glutamate, but does not change the glutamate 

EC50 for GluK5-containng subunits (Fisher and Mott, 2013). Thus, at the glutamate EC50 

for GluK2/K5 (10 µM) the presence of Neto1 changed the receptor kinetics from a 
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rapidly desensitizing current to a non-desensitizing current, as previously reported (Fisher 

and Mott, 2013). In the present study, we demonstrate that the presence of Neto1 does not 

significantly change ACET inhibition of GluK2/K5 peak current. However, the presence 

of Neto1 did alter how ACET inhibited the heteromeric current. ACET did not inhibit the 

remaining steady-state current in the absence of Neto1. However, in the presence of 

Neto1, ACET inhibited the steady-state current. It is our suggestion that ACET does not 

bind to the desensitized conformation of GluK2/K5 heteromeric receptor. Thus, in 

preparations when Neto1 is absent and the GluK2/K5 receptors are allowed to undergo a 

desensitized conformation, ACET will inhibit the GluK2/K5 peak current when the 

receptors are predominantly in an open/activated conformation. However, ACET did not 

inhibit the steady state GluK2/K5 current when majority of the GluK2/K5 receptors are 

in the desensitized conformation. Alternatively, when Neto1 is co-expressed with 

GluK2/K5 receptors, the GluK2/K5 receptor is prevented from undertaking a 

desensitized conformation, and now ACET can inhibit both the peak and steady state 

current. These results suggest that ACET may have bias towards the physical 

conformation of GluK5-containing kainate receptors.  

Another cause for suspicion on the subunit selectivity of ACET, is that ACET 

produced inhibition of kainate mediated mossy fiber – CA3 EPSPs (Dargan et al., 2009). 

Interestingly, GluK1 is not expressed at detectably levels on CA3 pyramidal cells, and 

thus, does not contribute to kainate mediated mossy fiber – CA3 EPSPs (Bahn et al., 

1994; Bureau et al., 1999; Paternain et al., 2000). These results produced confusion about 

the function of KARs in the brain. We submit that the previous confusion was stemmed 

from the misunderstanding about the subunit selectivity of ACET. Our results from 
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recombinant cells demonstrate that ACET inhibits current at heteromeric receptors 

containing either GluK4 or GluK5 subunits. Both GluK4 and GluK5 subunits are 

expressed at high level postsynaptically on CA3 pyramidal cells (Bahn et al., 1994), and 

they are required for kainate-mediate current at that synapse (Fernandes et al., 2009). 

Thus, our results provide further reasoning that postsynaptic KARs located on CA3 

pyramidal neurons are composed of GluK4 and GluK5 subunits.  

Additionally, we discovered in our own hands that ACET completely blocks 

kainate mediated EPSPs at mossy fiber – CA3 synapses. This was quite interesting to us, 

because although we expected ACET to reduce KAR EPSPs at this synapse, we did not 

expect a complete blockage of this KAR EPSPs. Glutamate released from presynaptic 

terminals can reach concentrations of ~ 1mM before rapidly declining (Clements et al., 

1992; Clements, 1996; Diamond and Jahr, 1997). Majority of our data in this paper used 

the EC50 dose of 10 µM glutamate. This concentration is sufficient to activate the GluK5 

subunits; however, it is 30 fold less than the EC50 glutamate concentration for the GluK2 

subunit. Thus, most of the current is produced as a result of glutamate binding to the 

GluK5 subunit, in which 1 µM ACET produced a pronounced inhibition of the current. 

However, when glutamate concentration was increased (300 µM glutamate) equivalent to 

the EC50 for the GluK2 subunit and allowing sufficient activation of the GluK2 subunit, 1 

µM ACET produced much less inhibition of the peak GluK2/K5 current (Figure 3.6B).  

We suggest that these seemingly contradictory data between ACET inhibition of the 

recombinant and brain slice KAR responses is an extension of ACET bias for the 

open/activation confirmation over the desensitized conformation. At the synapse, 

released glutamate is rapidly removed before kainate receptors can undergo a 
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desensitized conformation (deactivation). However, in our preparations the onset and 

duration (5 seconds) of applied glutamate is slow compared to the synapse, and allows 

sufficient time for KAR desensitization. Indeed, other studies have demonstrated with 

similar antagonist to ACET (UBP310), that rapidly applying glutamate allows UBP310 to 

inhibit the GluK2/K5 response significantly more than with prolonged application of 

glutamate (Pinheiro et al., 2013). Another potential explanation is that higher-affinity 

GluK5 subunits contribute to the rapid activation of GluK2/K5 heteromeric receptors 

even at high glutamate concentrations, while during prolonged glutamate application the 

binding of lower-affinity GluK2 subunits (which are insensitive to ACET and UBP310) 

to glutamate contributes more to the GluK2/K5 heteromeric current. 

 

3.4.2 INHIBITION OF GLUK2-CONTAINING KAINATE RECEPTORS BY KYNURENATE 

Kynurenate is a nonselective competitive antagonist of glutamate receptors. 

Previous studies have reported that kynurenate has a substantially higher affinity for 

GluK2 than GluK5 subunits (Fisher and Mott, 2011). However, it is not known whether 

kynurenate can inhibit currents at GluK2/K4 heteromers nor whether the presence of 

Neto1 alters kynurenate inhibition of KAR current. At a concentration that blocked 

current at GluK2 homomers, our findings demonstrate that kynurenate produced little 

inhibition of peak current and removed desensitization from GluK2/K5 receptors. These 

results are consistent with previously reported data (Fisher and Mott, 2011). We further 

characterized kynurenate inhibition of GluK2/K4 receptors. Kynurenate dose 

dependently inhibited GluK2/K4 heteromers. Unlike kynurenate inhibition of GluK2/K5 
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receptors, kynurenate did not substantially increase the steady-state current. The resulting 

kinetics of kynurenate inhibition resembled kynurenate inhibition of GluK2 homomers. 

We do not know why there is such qualitative difference in receptor kinetics between the 

GluK2/K4 and GluK2/K5 receptors when kynurenate is applied. One suggestion is that 

the GluK4 subunit appears to make greater contribution to desensitization (Mott et al., 

2010), and can desensitize to glutamate activation in and of itself (Fisher and Fisher, 

2014).  

We also examined whether co-expression with Neto1 alters kynurenate inhibition 

of KAR current. Similarly to our previous data with ACET, the presence of Neto1 did not 

alter GluK2/K5 sensitivity to kynurenate inhibition. However, it did alter the kinetics of 

the receptor once kynurenate was applied. As reported earlier, kynurenate potentiated the 

GluK2/K5 steady-state current (Fisher and Mott, 2011). Co-expression of Neto1 removed 

desensitization and allowed kynurenate to inhibit the steady-state current.  

 

3.4.3 FUNCTIONAL SIGNIFICANCE OF PHARMACOLOGICAL TOOLS FOR KAINATE 

RECEPTORS 

 KARs contribute to synaptic integration at glutamate synapses (Frerking and 

Ohliger-Frerking, 2002).  Specifically, GluK2/K5 receptors are known to constitute a 

major population of KARs in the brain: both subunits are abundantly co-expressed in the 

cerebellum, neocortex, striatum, amygdala, and hippocampus, at higher levels than other 

KAR subunits (Bureau et al., 1999). The lack of pharmacological tools has hindered our 

understanding of KARs and their function in the brain. Recent studies, using congenital 
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knockout animals, have shown that GluK5 subunits are required for proper function of 

synaptic KARs and contribute to their slow kinetics (Contractor et al., 2003; Barberis et 

al., 2008; Fernandes et al., 2009). However, congenital knockouts are not site or region 

specific and remove presynaptic KARs. Additionally, congenital knockouts may undergo 

receptor compensation and not represent KAR function in the normal brain. It would 

therefore be of great value to be able to directly test the implication of KARs in synaptic 

integration and information transfer in CA3 pyramidal cells.  

Based on our results we identified ACET and kynurenate as potential 

pharmacological tools to elucidate the relative function of GluK2 and GluK5 receptors at 

GluK2/K5 heteromers. Previous studies observed that glutamate binding of GluK5 

subunits activated GluK2/K5 channels and subsequent activation of the GluK2 subunit 

desensitizes the receptor (Fisher and Mott, 2011). They concluded that the GluK2 subunit 

intrinsically desensitized the receptor. However, it is not known whether the GluK2 

subunit can open the GluK2/K5 receptor to a non-desensitizing current. We identified 

ACET as a drug selective for the GluK4 and GluK5 subunits in GluK2-containing 

heteromers. Additionally, we identified kynurenate as a glutamate antagonist that 

preferentially inhibits the GluK2 subunits. Thus, we used both ACET and kynurenate to 

determine whether the GluK2 or the GluK5 subunits are intrinsically unique in their 

functional role in desensitizing the receptor. Applying 10 µM ACET inhibited glutamate 

binding to the GluK5 subunits, and thus glutamate binding to only the GluK2 subunits 

was sufficient to open the heteromeric receptor to a non-desensitizing current. The 

remaining current was sensitive to 3 mM kynurenate inhibition, suggesting the remaining 

current was predominantly mediated by glutamate binding to the GluK2 subunit. 
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Furthermore, applying 3 mM kynurenate to GluK2/K5 receptors exposed to 300 µM 

glutamate (an EC50 for the GluK2 subunit) produced a non-desensitizing current as 

previously described in this study and other publications (Fisher and Mott, 2011). 

Concurrent application of 1 µM ACET inhibited the remaining current, suggesting that 

the remaining current was mediated predominantly by glutamate binding to the GluK5 

subunit. Our results indicate that either GluK2 or GluK5 subunits can open the KAR 

channel, while binding of the other can initiate desensitization. Thus, we propose that 

KAR desensitization requires three or more subunits to bind to glutamate regardless of 

the subunits activated. Additionally, we observed that glutamate binding to either the 

GluK2 or the GluK5 subunits is sufficient to open KAR receptors. Thus, ACET and 

kynurenate can be used as pharmacological tool to differentiate subunit contribution to 

the KAR current. 
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CHAPTER 4 

MUSCARINIC AND DOPAMINERGIC RECEPTOR REGULATION OF KAINATE 

RECEPTOR NEUROTRANSMISSION AT THE MOSSY FIBER – CA3 SYNAPSE

 

4.1 INTRODUCTION 

 

 Muscarinic acetylcholine receptors (mAChRs) play a critical role in synaptic 

plasticity and neuronal excitability (Dodd et al., 1981). In the hippocampus, they are 

important for modulating learning and memory in the hippocampus (Power et al., 2003). 

There are five types of mAChR, M1 – M5 (Bonner, 1989), all of which, except M5 

mAChRs, can be found at different levels of expression in area CA3 in the hippocampus 

(Volpicelli and Levey, 2004) where they are co-expressed with kainate receptors. One 

way mAChRs influence the synaptic network is by modulating the function of glutamate 

receptors. Both NMDA and AMPA receptors have been shown to be susceptible to 

mAChR modulation (Marino et al., 1998; Lu et al., 1999; Grishin et al., 2005; Dickinson 

et al., 2009; Nomura et al., 2012). Specifically, NMDA receptor currents in CA3 

pyramidal neurons are reduced by activation of M1 mAChRs through a mechanism 

proposed to involve a calmodulin-activated tyrosine phosphatase (Grishin et al., 2005). 

Additionally, M1 mAChRs induce long-term depression of hippocampal AMPA receptor 

activity through protein kinase C (PKC) mediated phosphorylation of specific AMPAR 

subunits, which cause AMPAR dissociation from GRIP1 (a postsynaptic domain 
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localization protein) and subsequent removal of AMPARs from the synapse (Dickinson 

et al., 2009). Although we know that NMDAR and AMPARs can be modulated by M1 

mAChRs, it is not known whether M1 mAChRs can alter KAR activity in the brain.  

 There are several lines of evidence to suggest that M1 mAChRs can modulate 

KAR activity in the brain. Dysfunctional interactions between KARs and mAChRs have 

been demonstrated in a number of neurological diseases, including temporal lobe 

epilepsy (Frucht et al., 2000). For example, injection of a mAChR agonist (pilocarpine) 

in rodents induces prolonged seizures and epilepsy (Cavalheiro et al., 1991), which can 

be blocked by a KAR antagonist (Smolders et al., 2002). Also, previous studies have 

reported that M1 mAChRs can increase KAR current in recombinant cells (Benveniste et 

al., 2010). Although these studies were not conducted in brain tissue, it does validate the 

potential for KAR and M1 mAChR interaction. As stated earlier, M1 mAChRs are 

GPCRs and elicits modulatory effects through phosphorylation cascades and second 

messenger systems (Felder, 1995). KAR subunits can be phosphorylated, which can 

affect both KAR channel conductance and KAR trafficking to and away from the synapse 

(Cho et al., 2003; Park et al., 2006; Selak et al., 2009; Rojas et al., 2013). 

Phosphorylation sites for PKC have been found on the GluK2 and GluK5 subunits (Rojas 

et al., 2013). However, it remains unclear whether M1 mAChRs can alter KAR activity in 

the hippocampus or whether this can be mediated through a PKC phosphorylation-

signaling cascade.  

 In this study we sought to determine whether M1 mAChRs alters KAR activity in 

the hippocampus. We evaluated this question at the mossy fiber – CA3 synapse because 

it contains a reliable and well-characterized postsynaptic KAR activity. Our hypothesis is 
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that, similarly to NMDAR at the same synapse, activation of M1 mAChRs will depress 

KARs at the mossy fiber – CA3 synapse. Furthermore, we suspect this M1 mAChR 

mediated depression will be mediated through a PKC phosphorylation signaling cascade.   

 

4.2 MATERIALS AND METHODS 

 

4.2.1 BRAIN SLICES PREPARATION 

Hippocampal slices were made from postnatal day (P) 21 – P28 and P45 – P60 

Sprague-Dawley rats as described previously (Iyengar and Mott, 2008). Briefly, animals 

were deeply anesthetized with isoflurane and decapitated with a guillotine. The brain was 

removed under ice-cold (4ºC), sucrose-based ‘cutting’ artificial cerebrospinal fluid 

(aCSF) that contained (in mM): 2 KCl, 1.25 NaH2PO4, 26 NaHCO3, 10 glucose, 248 

sucrose, 0.5 CaCl2, and 5 MgSO4 (350mOsm). The use of this solution during the cutting 

process enhances neuronal survival by limiting excessive excitation. Transverse slices 

were made with a vibratome (Leica VT1000S, Nussloch, Germany) at 500 µM and 

incubated for at least one hour at room temperature in aCSF containing (in mM): 125 

NaCl, 2.7 KCl, 1.25 NaH2PO4, 25 NaHCO3, 10 glucose, 0.5 CaCl2, 5 MgSO4, 20 µM D-

AP-5, and 1 mM kynurenate (305 mOsm; pH=7.4). Both the sucrose-based and standard 

aCSF were oxygenated with 95% O2 / 5% CO2. 
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4.2.2 FIELD POTENTIAL ELECTROPHYSIOLOGY 

 After 1 hour, individual slices were transferred to a submersion chamber 

maintained at 32 – 34 ºC, held in place by a bent piece of platinum wire resting on the 

surface of the slice, and perfused continuously at 3 – 4 ml/min with recording aCSF 

containing (in mM): 125 NaCl, 2.01 KCl, 1.25 NaH2PO4, 25 NaHCO3, 10 glucose, 2 

CaCl2, 1 MgSO4. Glass electrodes were pulled from borosilicate glass to achieve 2 – 3 

MΩ and filled with recording aCSF. Extracellular dendritic field potentials recording 

were made from the stratum lucidum of the CA3 region of the hippocampus, which was 

visually identified with a light microscope. Synaptic currents were evoked with a 

monopolar platinum-iridium glass electrode positioned in the stratum lucidum. For 

AMPA-fEPSPs recordings, we recorded composite MF-fEPSPs, which were primarily 

composed of AMPA-fEPSPs (~ 93%) (Contractor et al., 2003), with aCSF containing 10 

µM MK-801, 50 µM picrotoxin, and 1 µM CGP 55845 to block NMDA, GABAA, and 

GABAB receptors, respectively. We defined synaptic currents as MF-fEPSPs if they 

showed characteristically large paired-pulse facilitation (Salin et al., 1996), had a rapid 

rise time and short latency, and were inhibited by >70% by the group II-selective 

metabotropic glutamate receptor (mGluR) agonist (2S,2’R,3’R)-2-(2’3’-

Dicarboxycyclopropyl) glycine (DCG-IV, 1 µM), which was bath applied at the end of 

some experiments. To isolate KA-fEPSPs recordings, we recorded from CA3 pyramidal 

cells in the presence of the aCSF containing the AMPA antagonist GYKI53655 (50 µM) 

in addition to the GABAA, GABAB and NMDA receptor antagonist cocktail. Once KAR-

fEPSPs were isolated, a four pulse train stimuli (100 Hz, 0.1 ms/stumulus, cathodal, 

monophasic, rectangular constant current pulses) were delivered every 30 sec through 
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monopolar, platinum-iridium stimulating electrodes (FHC Inc., Bowdoin, ME) referenced 

to the bath ground. KAR-fEPSPs were stable for a minimum of 20 min. prior to 

pilocarpine (300 nM) perfusion onto the slice for 10 – 15 min. to activate predominately 

M1 mAChRs. In experiments were M1 mAChRs or PKC were inhibited, telenzepine 

(100 nM) or chelerythrine (5 µM) respectively were applied concurrently with AMPA, 

GABAA, GABAB, and NMDA antagonists. To resolve small KAR-fEPSPs that were 

obscured by stimulation artifacts, we digitally subtracted a “template” stimulation trace 

that was acquired after application of an AMPA/KAR antagonist (CNQX, 50 µM) at the 

end of the recordings. 

 

4.3 RESULTS 

 

4.3.1 KAINATE RECEPTOR SYNAPTIC TRANSMISSION IS DEPRESSED BY MACHR 

ACTIVATION 

 Muscarinic receptors have been shown to affect the function of AMPA and 

NMDA glutamate receptors. However, it is not known whether muscarinic receptors can 

regulate the function of kainate receptors. To test this question, we used the drug 

pilocarpine. Pilocarpine is a M1 preferring mAChR agonist. Previous studies have 

demonstrated that mAChR activation with pilocarpine can alter KAR currents in oocytes 

and KAR-dependent excitability in mossy fibers (Benveniste et al., 2010). Here, we 

demonstrate that pilocarpine (300 nM), a muscarinic acetylcholine receptor (mAChR) 
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agonist that preferentially binds to M1 mAChRs, produced a depression in KAR fEPSPs 

at the mossy fiber – CA3 synapse (Pilo: 63.6 ± 6.9% of baseline fEPSP amplitude, n = 8, 

p < 0.05) (Figure 4.1A). We previously demonstrated that ACET (1 μM), a previously 

characterized GluK1 KAR subunit – selective antagonist, inhibits current at heteromeric 

receptors containing either the GluK4 or GluK5 subunits (Chapter 3). Additionally, we 

demonstrated that ACET (1 μM) was sufficient at completely inhibiting KAR current at 

the mossy fiber – CA3 synapse (Chapter 3). Thus, we applied ACET (1 μM) after each 

experiment as a control to verify that we were measuring the KAR fEPSP. Any further 

depression induced by ACET application indicated the remaining KAR fEPSPs. After 

pilocarpine administration, ACET (1 μM) application completely blocked the KAR 

fEPSP, such that a competitive AMPA/KAR antagonist (CNQX, 50 μM) did not produce 

any additional inhibition of the KAR fEPSP current (Figure 4.1A). Thus, by using both 

controls (ACET and CNQX) we are confident that we measured the KAR fEPSP in its 

entirety.  

 There a several ways mAChRs can modulate KAR fEPSPs. Muscarinic 

acetylcholine receptors, specifically M1, co-localize with KARs on CA3 pyramidal 

neurons. There are two potential ways these receptors can interact. Activation of 

mAChRs can either 1) initiate a G-protein to begin a signaling cascade that would 

eventually cause phosphorylation of the KARs, or 2) directly binding to KARs. Both of 

these scenarios are a direct postsynaptic mechanism and require mAChRs and KARs to 

be co-localized. Alternatively, mAChRs could affect KAR fEPSPs by affecting the 

amount of glutamate released from presynaptic terminals. If activation of mAChRs 

reduced glutamate release from mossy – fiber terminals, then the KAR fEPSPs would be 
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reduced because less glutamate is binding to KARs postsynaptically. This scenario does 

not require mAChRs to be co-localized with KARs, and thus, is an indirect presynaptic 

mechanism by which activation of mAChRs can affect KAR fEPSPs. To determine 

whether mAChR depression of fEPSPs at the mossy fiber – CA3 synapse is postsynaptic  
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Figure 4.1 mAChR activation depresses kainate, but not AMPAR-mediated fEPSPs 

A. A graph illustrating the peak amplitude of KAR fEPSP as it changes over time as 

a result of drug application. Trains were evoked by stimulation of the mossy fiber 

– CA3 pathway. Application of pilocarpine (300 nM) depresses the kainate 

fEPSP. ACET (1 µM), a drug we previously characterized as an antagonist at 

GluK4 and GluK5 receptors, completely inhibited the KAR-fEPSP, as verified by 

an AMPA/KAR antagonist (CNQX, 50 µM)  

B. Pilocarpine (300 nM) does not depress the AMPA fEPSP. Subsequent application 

of CNQX (50 μM) completely block synaptic transmission, confirming the 

presence of AMPA receptors.  

C. Bar graph illustrating peak amplitude for KAR and AMPA fEPSP normalized to 

the peak amplitude recorded during baseline. Pilocarpine significantly depresses 

the kainate, but not the AMPA fEPSP measured after 10 min. of pilocarpine 

application.  

 

or presynaptic, we tested whether the AMPA fEPSP is also affected by mAChR 

activation. To isolate the AMPA fEPSPs, we perfused an antagonist cocktail (same as 

Chapter 3) to block NMDA, GABAA, GABAB, and KAR synaptic transmission 

throughout the experiment (Figure 4.1B). Application of pilocarpine (300 nM) did not 

inhibit the AMPA fEPSP (Pilo: 100.9 ± 9.7% of baseline fEPSP amplitude, n = 7, p < 

0.05). Subsequent application of CNQX (50 μM) served as a control and completely 

inhibited the AMPA fEPSP. The inhibition of KAR fEPSPs by pilocarpine (300 nM) was 

significantly more than AMPA fEPSPs. 

 

4.3.2 MACHR DEPRESSION OF KARS IS A FORM OF SHORT-TERM PLASTICITY 

 Next we wanted to determine whether this mAChR – induced depression of KAR 

fEPSPs was a form of short-term plasticity or long-term plasticity. Plasticity is a change  
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Figure 4.2 mAChR depression of KAR is short term 

A. Pilocarpine (300 nM) transiently depresses the kainate fEPSP. 

B. Pilocarpine (300 nM) significantly depresses the kainate fEPSP, but not 45 

minutes after pilocarpine is washed out. 

 

in the way one neuron communicates with another neuron. This change in 

communication can persist longer than 1 hour (long-term plasticity) or less than 1hour 

(short-term plasticity). Both forms of plasticity have important implication in the brain 

(Martin et al., 2000). Inhibition of either short-term or long-term plasticity in the 
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hippocampus causes significant deficits in learning and memory (Morris et al., 1986; 

Silva et al., 1996). To test which form of synaptic plasticity is exemplified, we applied 

pilocarpine (300 nM) as previously described. Then, we washed out the pilocarpine for 

45 minutes and recorded the KAR fEPSP amplitude as a percent to the baseline 

amplitude (Figure 4.2A). Pilocarpine (300 nM) produced a similar depression to KAR 

fEPSPs as we reported previously (Pilo: 60.0 ± 4.3% of baseline fEPSP amplitude, n = 5, 

p < 0.05). However, this depression went away as pilocarpine (300 nM) was washed out 

(Washout: 108.7 ± 5.5% of baseline fEPSP amplitude, n = 5, p < 0.05). Thus, the 

mAChR depression of the KAR fEPSP did not last longer than 1hour, and resembles a 

short-term plasticity. Subsequent application of ACET (1 µM) and CNQX (50 µM) 

produced complete inhibition of the measured KAR fEPSP. As stated previously, 

pilocarpine (300 nM) induced a significant depression of KAR fEPSPs. However, the 

KAR fEPSP amplitude was not significantly different from baseline 45 min. after 

pilocarpine (300 nM) application (washout) (Figure 4.2B). 

 

4.3.3 ACTIVATION M1 MACHRS DEPRESS KAR FEPSPS AT MOSSY FIBER – CA3 

SYNAPSES 

 Our previous data demonstrated that activation of mAChRs transiently depresses 

KAR fEPSP at mossy fiber – CA3 synapses through a direct postsynaptic mechanism. 

The next step in elucidating this mechanism is to determine the mAChR necessary for 

KAR fEPSP depression. Pilocarpine at low concentrations is considered an M1 preferring 

agonist (Fisher et al., 1993). Additionally, M1 mAChRs are abundantly expressed in CA3 
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pyramidal neurons (Cortes et al., 1984; Cortés et al., 1986; Rodríguez-Puertas et al., 

1997; Scarr et al., 2007). Thus, we sought to determine whether M1 mAChRs are  

 

Figure 4.3 M1 mAChRs mediate the pilocarpine-induced depression of KAR 

fEPSPs 

A. Telenzepine (100 nM), an M1 mAChR antagonist, prevents pilocarpine-induced 

depression of KAR fEPSPs at mossy fiber – CA3 synapses. 

B. There is no significant difference in KAR fEPSP amplitude in the presence of 

telenzepine (100 nM) with or without pilocarpine (300 nM) co-application.  

 

responsible for the pilocarpine – induced depression of KAR fEPSPs. To test this, we 

isolated the KAR fEPSP as previously described and preapplied an M1 mAChR 
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antagonist (telenzepine, 100 nM) for a minimum of 15 min before administering 

pilocarpine (300 nM). In the presence of telenzepine (100 nM), pilocarpine (300 nM) 

failed to depress the KAR fEPSP (Figure 4.3A). The presence of a KAR fEPSP was 

verified by complete inhibition of synaptic transmission by subsequent applications of 

ACET (1 µM) and CNQX (100 µM). A bar graph illustrates that neither application of 

telenzepine (100 nM) nor co-application of telenzepine (100 nM) and pilocarpine (300 

nM) produced significant inhibition of the KAR fEPSP amplitude as compared to 

baseline KAR fEPSP amplitude prior to telenzepine (100 nM) application (97.9 ± 4.7%, n 

= 7) (Figure 4.3B).  

 

4.3.4 PKC PHOSPHORYLATION IS NOT REQUIRED FOR MACHR – INDUCED 

DEPRESSION OF KAR FEPSPS 

 We discovered earlier that M1 mAChRs depresses KAR fEPSPs more than likely 

through a postsynaptic mechanism. One potential mechanism is by M1 mAChRs eliciting 

a G-protein mediated second messenger signaling cascade resulting in the 

phosphorylation of KARs. M1 mAChRs can coupled to Gαq and are thought to initiate a 

second messenger cascade involving protein kinase C (PKC). To test whether PKC 

phosphorylation is necessary for M1 mAChR – induced depression of the KAR fEPSPs, 

we bath applied a PKC inhibitor (chelerythrine. 5 µM) at least 15 min. prior to and during 

pilocarpine (300 nM) application (Figure 4.4 A,B). In the presence of chelethryine (5 

µM), pilocarpine still depressed the average KAR fEPSP amplitude to levels similar to 

that of pilocarpine application alone (67.9 ± 13.7%, n = 6). However, the depression in 

KAR fEPSPs was not statistically significant. Thus, PKC mediated phosphorylation of 
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KARs may not be fully responsible for M1 mAChR depression of KAR fEPSPs. 

Subsequent bath application of ACET (1 µM) and CNQX (100 µM) verified the presence 

of KAR fEPSPs.  

 

 

Figure 4.4 mAChRs depression of KARs is not mediated through PKC 

A. Chelerythrine (5 μM), a PKC inhibitor, does not prevent pilocarpine-induced 

depression of KAR fEPSPs at mossy fiber – CA3 synapses.  

B. Pilocarpine (300 nM) depression of KAR fEPSPs is not significant in the presence 

of chelerythrine.  
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4.3.5 M1 MACHR DEPRESSION OF KAR FEPSP IS DEVELOPMENTALLY REGULATED 

Kainate receptor expression and function is fundamentally different in the 

adolescent brain than the adult brain (Bahn et al., 1994). All data collected previously 

was using adolescent aged rats (P21 – P28). However, it is not known whether this 

regulation changes during further development. Thus, we examined whether this same 

phenomenon (M1 mAChR activation depresses KAR fEPSP) happens in an ‘adult’ aged 

brain. In this experiment, we used rats aged P65 – P80. The experimental set up was  

 

Figure 4.5 mAChR depression of KARs is developmentally regulated 

A. Pilocarpine (300 nM) fails to depress the kainate fEPSP in 65 days old rats. 

B. Pilocarpine (300 nM) significantly suppresses kainate fEPSP in 22 days old rats, 

but not 65 days old rats.  
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identical to previous experiments by isolating the KAR fEPSP with an antagonist 

cocktail. Then, we recorded a minimum of 20 min. of stable baseline (Figure 4.5A). Bath 

application of pilocarpine (300 nM) did not depress the KAR fEPSP. Subsequent bath 

application of ACET (1 µM) and CNQX (100 µM) confirmed the presence of KAR 

synaptic transmission. A bar graph illustrates that pilocarpine (300 nM) application 

significantly depressed the KAR fEPSPs in “adolescent” rat brains (22 days); however, 

pilocarpine (300 nM) failed to produce a significant depression of KAR fEPSPs in the 

“adult” rat brain (65 days) (87.6 ± 5.3%, n = 5).  

 

4.3.6 D1-LIKE DOPAMINE RECEPTORS DO NOT ALTER KAR FEPSP AT THE MOSSY 

FIBER – CA3 SYNAPSE 

 

 Dopamine receptors (DARs) are another GPCR with important modulatory 

affects in the brain (Ehringer and Hornykiewicz, 1960; Robinson and Berridge, 1993; 

Goto and Grace, 2007; Del Campo et al., 2011; Lodge and Grace, 2011). DARs are 

separated into two groups based upon the G protein in which they associate: D1 and D5 

DARs (D1-like) couple to Gs proteins and stimulate adenylate cyclase activity, leading to 

PKA phosphorylation, while D2, D3, and D4 DARs (D2-like) couple to Gq proteins and 

inhibit adenylate cyclase activity. Specifically, the D1 DARs in the hippocampus are 

necessary for learning and memory (Huang and Kandel, 1995; Lemon and Manahan-

Vaughan, 2006; Bethus et al., 2010; Clausen et al., 2011; da Silva et al., 2012). Previous 

studies have shown that D1-like DARs can mediate other ionotropic glutamate receptors,  
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Figure 4.6 Activation of D1-like dopamine receptors did not alter KAR fEPSP 

Activation of D1-like (D1 and D5) dopamine receptors (SKF38393, 50 µM) did 

not alter KAR fEPSPs at the mossy fiber – CA3 synapse. Subsequent bath 

application of ACET (1 µM) and then CNQX (100 µM) verified the presence of 

KAR potentials and the lack of AMPAR potentials.  

 

such as NMDAR and AMPAR, through either a classical PKA-mediated second 

messenger signaling pathway or a direct protein-protein interaction (Price et al., 1999; 

Lee et al., 2002b; Hallett et al., 2006; Paoletti et al., 2008). However, it is not known 

whether KAR activity is mediated by dopamine receptors. Recombinant data demonstrate 
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that KARs can be phosphorylated by PKA, yielding an increase in KAR current 

(Raymond et al., 1993; Wang et al., 1993; Kornreich et al., 2007). There is no data to 

demonstrate whether this can happen in the brain.  

 In this experiment, we sought to determine whether D1 dopamine receptors 

modulate KAR function in the brain. As previously described, we isolated KAR fEPSPs 

at the mossy fiber – CA3 synapse by stimulating the hilus of the dentate gyrus and 

recording in CA3 stratum lucidum in the presence of an antagonist cocktail to block 

AMPA, NMDA, GABAA, and GABAB synaptic potentials. After recording a stable 

baseline for a minimum of 20 min., we bath applied a selective D1-like DAR agonist 

(SKF38393, 50 μM) (Figure 4.6). Activation of D1-like DARs did not significantly alter 

the KAR fEPSP (101.9 ± 16.3, n = 4). To verify the presence of a KAR fEPSP, we 

subsequently bath applied the selective KAR antagonist, ACET (1 μM). Furthermore, to 

ensure that we did not inadvertently measure AMPAR fEPSPs, we bath applied an 

AMPAR/KAR antagonist, CNQX (100 μM), which did not produce any further reduction 

of the measured KAR fEPSP. These data demonstrate a lack of D1 DAR modulation of 

KAR activity in the mossy fiber – CA3 synapse.  

 

4.4 DISCUSSION 

 

The major findings of our study are that M1 mAChRs, but not D1-like dopamine 

receptors, activation depresses KAR fEPSPs. This effect is likely through a postsynaptic 

mechanism, because the AMPAR fEPSP was unaffected by M1 mAChR activation by 

pilocarpine. M1 mAChRs are the major muscarinic receptor located in the hippocampus 
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(Cortes et al., 1984; Cortés et al., 1986; Rodríguez-Puertas et al., 1997; Scarr et al., 

2007). It binds to the Gαq protein to signal PKC phosphorylation. Inhibition of PKC 

phosphorylation prevented the significant depression of KAR fEPSPs by pilocarpine. 

However, a depression in the KAR fEPSP did occur. This suggests that PKC 

phosphorylation has some affect on the magnitude of the depression. Interestingly, this 

depression of KAR fEPSPs by M1 mAChRs is developmentally regulated and goes away 

with age (‘adult’ P65 – P80).  

 

4.4.1 M1 MACHRS DEPRESS KAR, BUT NOT AMPAR, AT MOSSY FIBER – CA3 

SYNAPSES 

This report is the first demonstration that M1 mAChRs can alter KARs activity in 

the brain. We demonstrated that pilocarpine, an M1 preferring agonist, depresses KAR 

fEPSPs at the mossy – fiber CA3 synapse. This depression was completely blocked by an 

M1 antagonist. In other studies, it was reported in a recombinant receptor that muscarinic 

activation by pilocarpine potentiated GluK2 containing heteromeric, but not homomeric, 

KARs, suggesting that potentiation of KARs by mACh receptors also requires the high-

affinity KAR subunits (Benveniste et al., 2010). The difference in M1 mAChRs 

potentiating instead of inhibiting KAR activity, as in what we saw in our studies, could 

result from the experimental model being used. It is possible that the mACh receptors 

could increase channel conductance and receptor trafficking simultaneously. 

Recombinant experimental models are more sensitive to changes in channel conductance 

than trafficking. HEK-239T cell do not express synapse scaffolding proteins, and thus, 
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those experiments would not undergo changes in receptor trafficking that would resemble 

that in the actual brain slice. In the brain, it is possible that the amount of receptor 

trafficking away from the synapse could outperform the increase in channel conductance. 

Indeed, M1 mAChRs have been shown to alter NMDAR and AMPAR synaptic 

transmission primarily through trafficking of the receptors in or out of the synapse 

(Zheng et al., 1998; Dickinson et al., 2009; Nomura et al., 2012).  

Although my research has yielded several interesting results, there are several 

questions that must be addressed. It was interesting to us that activation of M1 mAChRs 

can produced a significant depression of postsynaptic KAR fEPSPs but not AMPAR 

fEPSPs located in the same cell populations and synapses. Even more interesting is that 

both KARs and AMPARs can be phosphorylated by mAChRs and specifically M1 

mAChRs. Thus, it seems interesting how there is a significant effect on KARs but not 

AMPARs. Further looking in the literature reveals that we are not the only laboratory to 

find such interesting divergence in the effect of muscarinic activation on glutamate 

receptors. Grishin et al. demonstrated that M1 mAChR activation depressed NMDAR 

currents on postsynaptic CA3 pyramidal neurons, but did not affect AMPAR currents at 

the same synapse (Grishin et al., 2005). Alternatively, other studies have shown that the 

same signaling cascade can elicit different effects on KARs and AMPARs due to the 

receptor association with the PDZ domain – interacting proteins PICK1 and GRIP 

(Hirbec et al., 2003). Dissociation of PICK1 with KARs caused a loss of KAR synaptic 

function, while the dissociation of PICK1 with AMPARs caused an increase in AMPAR 

synaptic function. 
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4.4.2 M1 MACHR DEPRESSION OF KAR ACTIVITY IS A FORM OF SHORT-TERM 

PLASTICITY 

Another interesting result that deserves some explanation is that M1 mAChR 

depression of KAR fEPSP was a form of short-term plasticity. Short-term plasticity, as 

opposed to long-term plasticity, lasts for less than 1 hour after the initial stimulus. This 

form of plasticity is thought to be important for the dynamic regulation of synaptic 

function (Silva et al., 1996). Other studies have suggested that the determinate factor 

between a short-term versus long-term plasticity phenotype is the association with a 

second messenger system. Previous studies have reported that PICK1 plays an important 

role in the expression of long-term depression, and disruption of glutamate receptor 

interaction with PICK1 turns long-term plasticity into short-term plasticity (Xue et al., 

2010). Thus, one mechanism that might explain the short-term effect is a dissociation of 

KARs with a PICK1 complex (Xue et al., 2010).  

 

4.4.3 M1 MACHR DEPRESSION OF KAR ACTIVITY IS NOT MEDIATED BY PKC 

PHOSPHORYLATION 

Another interesting result was that M1 mAChR depression of KAR fEPSPs at the 

mossy fiber – CA3 synapse was not prevented by application of the PKC inhibitor, 

chelethryine. M1 mAChRs couple to Gq proteins and are primarily thought to regulate 

other proteins, including glutamate receptors, through a PKC-dependent signaling 

cascade. We found this not to be true for M1 mAChR depression of KARs fEPSPs at the 

mossy fiber – CA3 synapse. As we previously discussed, Grishin et al demonstrated that 
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M1 mAChRs postsynpatically depressed NMDAR, but not AMPAR, current at CA3 

pyramidal neurons (Grishin et al., 2005). This depression was mediated not through PKC 

phosphorylation but was dependent upon protein tyrosine phosphatases. Thus it is 

possible that our M1 mAChR depression of KARs located also on CA3 pyramidal 

neurons is mediated through protein tyrosine phosphatases.  

An alternative explanation for the inability of chelethryine to inhibit the 

pilocarpine-induced depression of KAR fEPSPs at the mossy fiber – CA3 synapse is that 

chelethryine did not block PKC activity. Unlike the other drugs used in this chapter 

whose ligand binding sites are extracellular, chelethryine must maneuver inside the cell 

to inhibit PKC activity. We did not incorporate a positive control into our experiments to 

verify the inhibition of PKC activity by chelethryine. 

 

4.4.4 M1 MACHR DEPRESSION OF KAR ACTIVITY IS DEVELOPMENTALLY 

REGULATED 

We also discovered that M1 mAChR – induced depression of KAR fEPSPs was 

developmentally regulated. In rats around adolescent age (P21 – P28), the KAR fEPSP 

depression was robust; however, in rats around adult age (P65 – P80) we no longer saw a 

M1 mAChR depression of KAR fEPSP. Although we did not directly test the reason for 

this development ‘switch’, there are several possible mechanisms that we can speculate to 

be responsible. One such mechanism is the age-dependent change in mAChR expression. 

Previous studies have demonstrated that although mRNA expression of mAChRs does 

not change in the hippocampus, mAChR protein expression is age-dependently 
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downregulated in the hippocampus (Lee et al., 1994; Narang, 1995; Tice et al., 1996). 

Specifically, M1 mAChRs expression in the CA3 field of the hippocampus is 

significantly reduced in the aged rat brain compared to the young rat brain. A reduction in 

the expression of M1 mAChRs in the adult rat brain would occlude the M1 –dependent 

depression KAR fEPSPs.  

Another possible explanation is the expression level of KARs. KARs are 

necessary for the correct integration of mossy fiber – CA3 synapse (Tashiro et al., 2003; 

Lanore et al., 2012). Early in development KARs expression is high, peaking at P9 (Bahn 

et al., 1994). After P9 the expression of KARs steadily declines. In the transition from 

adolescent to adulthood, the ratio of GluK2 expression to GluK4 and GluK5 become 

higher (Bahn et al., 1994). Thus, it may be possible that the relative concentration of 

ACET-sensitive KAR responses decline with aging. However, the persistence of an 

ACET-sensitive KAR response in the adult mossy fiber – CA3 synapse verifies that the 

KARs necessary for mAChR regulation is present. 

Lastly, another possible difference is the relative expression of proteins associated 

with translocation of KARs to the synapse, such as GRIP and PICK1. GRIP association 

has been shown to increase more than 100% from P7 to P11, while PICK1 remains 

unchanged (Xue et al., 2010). An age - induced increase in GRIP expression relative to 

PICK1 expression was demonstrated to cause a switch from a depressive plasticity to 

facilitation plasticity at the same synapse (Xue et al., 2010). If this trend continues 

through adulthood, we can contend that our M1 mAChR – induced depression of KAR 

fEPSPs would not persist with aging. 
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These data demonstrate that muscarinic cholinergic receptors can modulate KARs 

in the brain. Acetylcholine is released in the brain, specifically in the hippocampus, 

during different brain states, such as during exercise (Nakajima et al., 2003; Uchida et al., 

2006) and just before a seizure (Hillert et al., 2014). Understanding what happens to the 

glutamate receptors, especially KARs, during these brain states can provide a better 

understanding for how the brain functions to improve cognition while exercising, and it 

will allow us to elucidate critical mechanism involved in the genesis of a seizure, which 

will lead to potential therapies.  

 

4.4.5 KAINATE RECEPTOR ACTIVITY IN THE MOSSY FIBER – CA3 SYNAPSE IS NOT 

MEDIATED BY D1-LIKE DOPAMINE RECEPTORS 

 In contrast to our M1 mAChR data, we found that D1-like dopamine receptors did 

not alter KAR activity in the mossy fiber – CA3 synapse. D1-like dopamine receptors 

couple to Gs proteins to stimulate adenylate cyclase activity and PKA mediated 

phosphorylation pathways. Thus, these data suggest that KAR activity is more sensitive 

to M1 mAChR regulation than D1-like DAR mediated regulation. Indeed, there are few 

PKA phosphorylation sites on the C-terminus domain of KARs (GluK2, S856 and S868) 

(Rojas and Dingledine, 2013). These PKA phosphorylation at residues S856 and S868 

have only been shown to potentiate kainate-evoked currents of recombinant receptor 

(Raymond et al., 1993; Wang et al., 1993). There is no evidence demonstrating that PKA 

phosphorylation can alter KAR activity in the brain. 
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CHAPTER 5 

ALTERED DOPAMINERGIC REGULATION IN A CHRONIC MODEL OF TEMPORAL 

LOBE EPILEPSY

 

5.1 INTRODUCTION 

 

Dopamine receptors in the hippocampus are important for modulating learning 

and memory (Packard and White, 1991; Gasbarri et al., 1996; Bernabeu et al., 1997; 

O’Carroll et al., 2006). The hippocampus receives dense dopaminergic innervation from 

the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) (Simon et 

al., 1979; Scatton et al., 1980; Swanson, 1982), where dopamine is synthesized through 

the rate-limiting enzyme, tyrosine hydroxylase (TH). Dopamine released from these 

neurons can bind to two main types of dopamine receptors: D1-like (D1 and D5) and D2-

like (D2L/S, D3, and D4), which are categorized based on pharmacological agonists and 

second messenger coupling. Particularly D1-like receptors have been shown to be 

important in learning and memory consolidation (Frey et al., 1990, 1991; Huang and 

Kandel, 1995; Otmakhova and Lisman, 1996, 1998; Navakkode et al., 2007; Granado et 

al., 2008; Ortiz et al., 2010). Pharmacological blockage of D1-like receptors prevents 

early and late phase long-term potentiation, a cellular model of learning, and blocks long-

term memory storage (Frey et al., 1990, 1991). Additionally, D1 knockouts and adult rats 

undergoing D1 receptor reduction in the CA1 region of the hippocampus exhibited 
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significant decline in spatial learning, fear learning, classical conditioning of the eyelid 

response, as well as the associated activity-dependent synaptic plasticity in the 

hippocampal CA1-CA3 synapse (Ortiz et al., 2010). These studies provided compelling 

evidence that a reduction in D1-like receptors in the hippocampus is correlated with 

deficits learning and memory. 

In temporal lobe epilepsy, D1-like receptors are also implicated in seizure 

generation, as previous studies have shown that a D1-like receptor agonist can elicit 

seizures in and of itself (O’Sullivan et al., 2008). Furthermore, a D1-like antagonist can 

prevent seizures (al-Tajir et al., 1990a, 1990b; Barone et al., 1990; Turski et al., 1990; 

DeNinno et al., 1991; Starr, 1996).  To date, it is unknown whether temporal lobe 

epilepsy alters D1 and D5 dopamine receptor protein expression in the hippocampus. The 

chronic epilepsy model we use is clinically relevant as rats experience chronic 

spontaneous seizures with comorbid cognitive decline (Rice et al., 1998). However, it is 

not known whether dopamine receptors in this model have been pathologically altered.  

One potential mechanism by which D1-like dopamine receptors mediate learning 

and memory and temporal lobe epilepsy is by altering ionotropic glutamate receptor 

function. D1-like dopamine receptors can alter both AMPAR and NMDAR function 

through either a phosphorylation-signaling cascade or direct protein-protein 

heterodimerization (Price et al., 1999; Snyder et al., 2000; Lee et al., 2002b; Dunah et al., 

2004; Gao et al., 2006; Hallett et al., 2006). Although we previously did not see an 

interaction between D1-like dopamine receptor activation and KAR receptor – mediated 

synaptic transmission at the mossy fiber – CA3 synapse (Figure 4.6), evidence exists for 

a potential interaction in epilepsy. Previous studies have demonstrated that a D1-like 
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dopamine receptor antagonist can reduce the severity of seizures initiated by kainate 

receptor agonists (Bourne et al., 2001). Before we can investigate whether D1-like 

dopamine receptors regulate KAR function in the epileptic hippocampus, we must first 

determine how D1-like dopamine receptors are altered in the epileptic hippocampus.  

The goal of this study was to compare and contrast the dopaminergic system 

between the normal and chronically epileptic brain. We were particularly interested in 

evaluating differences known to regulate learning and memory. Thus, we evaluated the 

effects of chronic epilepsy on D1 and D5 dopamine protein expression, dopamine 

concentration, dopamine metabolites, and dopamine transporter protein expression in the 

hippocampus.  Our study provides further detail for one mechanism that may explain the 

cognitive decline commonly experienced by TLE patients.  

 

5.2 MATERIALS AND METHODS 

 

5.2.1 ANIMALS 

 Adult male Sprague Dawley rats (40-45 days old; 200-250 gm) were purchased 

from Harlan and were housed two-three per cage. Rats were kept in a temperature-

controlled facility with access to food and water ad libitum. All experimental procedures 

were approved by the University of South Carolina Animal Care and Use Committee in 

accordance with the NIH Guide for the Care and Use of Laboratory Animals. Every 

effort was made to minimize animal suffering and to reduce the number of animals used.  
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5.2.2 INDUCTION OF STATUS EPILEPTICUS (SE) 

 The pilocarpine model of TLE is widely used in rodents (Cavalheiro, 1990) and 

reproduces the human condition closely (Curia et al., 2008). Specifically, rodents treated 

with pilocarpine exhibit spontaneous generalized and partial seizures, behavioral 

abnormalities, as well as the pathologic and histological signs commonly observed in 

human patients with TLE (Goffin et al., 2007). The mechanism by which pilocarpine 

administration causes spontaneous recurrent seizures and epilepsy is fairly well 

understood (Hamilton et al., 1997) and the stereotypic set of behavior produced by this 

cholinergic agonist is well characterized (Goffin et al., 2007).  

 For detailed methods on the pilocarpine model of induced status epilepticus, 

please see section 2.4.2.  

 

5.2.3. IMMUNOHISTOCHEMISTRY 

 For detailed immunohistochemistry methods, please see section 2.6.  

 

5.2.4. CELL COUNTS 

 Sections containing dorsal hippocampus (approximately 3.14-3.6 mm caudal to 

bregma; Paxinos and Watson, 1998) were selected for manual cell counts of GAD-67-

positive somata. An area was selected encompassing all regions (stratum oriens [SO], 

stratum pyramidale [SP], and striatum radiatum [SR]) of CA1 at 2X magnification, and 

all immunopositive cells were counted using a Nikon ECLIPSE 80i microscope equipped 
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with Neurolucida software (v.9, MicroBrightField, Inc., Williston, VT, USA) at 20X 

magnification. For all counts, no hemispheric differences were noted in either sham or 

epileptic tissue in any neuronal marker, cells or terminals. Therefore, we unilaterally 

counted and averaged across two sections for each animal.  

 

5.2.5. IMMUNOBLOT ANALYSIS 

Please see section 2.5 for detailed immunoblot analysis methods.  

 

5.2.6. SPECIFICITY OF THE ANTISERA 

The D1 dopamine receptor antibody used in this study (#D2944, Sigma, St. Louis, 

MO, USA) is a rat monoclonal (clone 1-1-F11 s.E6) which recognizes the C-terminal 97 

amino acid of D1 dopamine receptor. The immunogen was affinity purified. The 

specificity of this antibody, which does not cross-react with fusion proteins derived from 

the same regions of D2, D3, D4, D5 receptors, has been well documented (Levey et al., 

1993). 

The polyclonal D5 receptor antiserum (#SC-1441, Santa Cruz Biotechnology, 

Inc., Santa Cruz, CA, USA) was raised in goat and is a widely used antiserum to D5 

receptors. Previous absorption studies demonstrate that it recognizes D5 dopamine 

receptors, but not other dopamine receptor homologues (D1, D2, D3, D4) (Bodei et al., 

2009).  
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5.2.7. HIGH PERFORMANCE LIQUID CHROMATOGRAPHY (HPLC) 

 Please see section 2.7 for a detailed description of the high performance liquid 

chromatography methods.  

 

5.2.8. STATISTICAL ANALYSES 

 Data are presented as mean ± standard error. Student’s t-test for independent 

samples was used to compare the difference between means. Two sample sets were 

considered significantly different when p < 0.05. All statistical data were analyzed and 

graphical representations made in Origin version 7.5 software (OriginLab Corp, 

Northampton, MA).  

 

5.3 RESULTS 

 

5.3.1 D1 DOPAMINE RECEPTORS ARE LOCALIZED DISTINCTLY IN INTERNEURONS, 

AND LESS APPARENT IN PYRAMIDAL NEURONS 

To determine how D1-like dopamine receptors are altered in the chronic epileptic 

CA1 region of the hippocampus, we first sought to determine the localization of both D1 

and D5 dopamine receptors in the control ‘naïve’ brain. A previous study identifies D1 

dopamine receptor localization primarily in non-parvalbumin GABAergic interneurons 

(Gangarossa et al., 2012). Indeed, our immunostaining for D1 dopamine receptor clearly 

revealed interneurons in all layers (stratum oriens, stratum pyramidale, and stratum 
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radiatum) of hippocampal area CA1 (Fig. 5.1, B-D). Less distinct labeling was seen in the 

pyramidal cell body layer and proximal dendrites. No staining was observed in the ‘no 

primary’ control (Fig. 5.1, A). 

 

Figure 5.1 D1 dopamine receptors are located primarily in interneurons and less 

apparently in pyramidal neurons. 

A. Representative normal CA1 demonstrating lack of immunostaining in the absence 

of primary antiserum. 

B. Representative D1 dopamine receptor labeled CA1 illustrating D1 labeling 

prominently in interneurons throughout the stratum oriens (S.O.), striatum 

pyramidale (S.P.), and striatum radiatum (S.R.). Faint labeling was observed 

diffused throughout the pyramidal cell body layer. 
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5.3.2. D5 DOPAMINE RECEPTORS ARE LOCALIZED PREDOMINANTLY IN PYRAMIDAL 

NEURONS 

 

D5 dopamine receptor pattern of labeling was substantially different from D1 

dopamine receptors. Previous studies report D5 labeling in pyramidal cell bodies and 

apical dendrites (Khan et al., 2000). Indeed, our D5 labeling was almost exclusive to 

pyramidal neurons (Fig. 5.2, B-D). Labeling extended from the pyramidal cell soma 

surface down the length of the dendrites into the stratum lacunocum-molecularis (Fig. 

5.2, B-D). This resulting pattern of labeling suggests that D5 DARs may elicit its 

functional effects predominantly through excitatory inputs.  

 

5.3.3. REMAINING INTERNEURONS CONTAIN MORE D1 DOPAMINE RECEPTORS 

 

 To investigate whether D1-like receptor protein expression and/or localization are 

altered in the chronically TLE CA1 region of the hippocampus, we performed western 

blots from microdissected CA1 and immunohistochemistry from sham-treated and 

epileptic animals. Immunoblot analysis revealed that D1 protein expression in the 

epileptic CA1 (113.326 ± 6.832%, n = 8) was not significantly different from sham-

treated animals (Fig. 5.3, D). This result was particularly interesting based on previous 

reports that interneurons are selectively susceptible to neuron loss in epilepsy (Houser 

and Esclapez, 1996; Morin et al., 1998; André et al., 2001; Cossart et al., 2001; Dinocourt 

et al., 2003). Immunostaining with D1 receptor antibody revealed no change in labeling 

pattern between sham-treated and epileptic animals (Fig. 5.3, A-C). However, D1 DAR 
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labeled interneurons appeared more intensely stained in the epileptic condition than 

sham-treated (Fig. 5.3, A-C). These results suggest that the remaining interneurons are 

more tightly regulated by D1 dopamine receptors.  

 

Figure 5.2 D5 dopamine receptors are located primarily on pyramidal neuron soma 

surface and dendrites. 

A. Representative CA1 from a naïve rat demonstrating lack of immunostaining in the 

absence of D5 primary antiserum. 

B. Representative D5 dopamine receptor labeled CA1 illustrating D5 labeling 

exclusively to pyramidal neuron soma surface and dendrites that extend 

throughout stratum radiatum (S.R.) and terminate in the stratum lacunosum 

molecular (SLM). Striatum oriens (S.O.), striatum pyramidale (S.P.) 
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Figure 5.3 D1 dopamine receptor expression does not change in epilepsy CA1, but 

the intensity of interneuron labeling increases.  

A. Immunohistochemistry for D1 dopamine receptor labeling in area CA1 of sham-

treated rats.  

B. Immunohistochemistry for D1 dopamine receptor labeling in area CA1 of 

epileptic rats reveal no difference in labeling pattern. 

C. However, closer analysis suggests that D1 dopamine receptor labeling in 

interneurons are more intense in the epileptic CA1 area than sham-treated. 

D. Western blot analysis demonstrated no significant change in total D1 dopamine 

protein expression between epileptic and sham-treated CA1. 
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5.3.4 DOPAMINE D5 RECEPTORS ARE REDUCED IN EPILEPSY 

We then sought to determine whether the localization and/or protein expression of 

D5 dopamine receptors were altered in the chronically epileptic CA1 region of the 

hippocampus. Immunoblot analysis of D5 protein expression in microdissected CA1 

revealed a 72% significant reduction in epilepsy (27.701 ± 4.574%, n = 10, p < 0.0001) 

compared to sham-treated animals (Fig. 5.4, E). This result was reproduced by an 

unbiased colleague. Immunostaining also confirmed the immunoblot analysis. D5 

labeling in the epileptic condition was visibly reduced predominately in the pyramidal 

dendrites (Fig. 5.4, A-D). Instead of dense D5 dopamine receptor labeling extending 

down into the stratum lacunocum-molecularis as in the sham condition (Fig. 5.4, A,C), in 

the epileptic conditions D5 labeled staining was less dense and remained proximal to the 

pyramidal cell body layer (Fig. 5.4, B,D). 

 

5.3.5 INTERNEURONS IN STRATUM ORIENS ARE SELECTIVELY LOSS IN EPILEPSY 

To ensure that GABAergic interneurons are selectively lost in our chronic TLE model, 

we completed immunostaining for GAD67 and counted the positively labeled neurons. 

Results were normalized to sham-treated animals. As previously reported, we observed a 

significant reduction in GAD67 positively labeled interneurons, particularly in stratum 

oriens, in epilepsy (27.19 ± 0.809%, n = 5) when compared to sham. No significant 

difference was observed in the epileptic stratum pyramidale (82.895 ± 6.644%, n = 5) or 

stratum radiatum (82.915 ± 8.814%, n = 5) when compared to sham-treated animals (Fig. 

5.4). This data confirms previous reports that interneurons are selectively lost in epilepsy 
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(Houser and Esclapez, 1996; Morin et al., 1998; André et al., 2001; Cossart et al., 2001; 

Dinocourt et al., 2003). Thus, knowing that D1 expression in located primarily in 

interneurons and interneurons are selective loss in epilepsy, demonstrating that total D1 

expression does not change suggests that D1 expression in remaining interneurons may 

have increased. 

 

Figure 5.4 D5 dopamine receptor expression is reduced in the epileptic CA1 

A. Immunohistochemistry for D5 dopamine receptor labeling in area CA1 of sham-

treated rats 

B. Immunohistochemistry for D5 dopamine receptor labeling in area CA1 of 

epileptic rats revealed a substantial decrease in immunostaining in the pyramidal 

neuron soma and dendrites.  

C. Higher magnification of D5 dopamine receptors labeled dendrites in striatum 

radiatum in sham-treated rats. 



 
 

146 

D. Higher magnification of D5 dopamine receptors labeled dendrites in striatum 

radiatum in epileptic rats. 

E. Western blot analysis confirmed immunohistochemistry results, revealing a 

significantly reduction in D5 expression in microdissected CA1 area. 

 

 

Figure 5.5 Epilepsy reduces the number of GABAergic interneurons in CA1. 

A. Immunohistochemistry for glutamate decarboxylase (GAD)-67 labeling in area 

CA1 of sham-treated rats. 

B. Immunohistochemistry for glutamate decarboxylase (GAD)-67 labeling in area 

CA1 of epileptic rats revealed seizure-related decreases in inhibitory neurons in 

stratum oriens (S.O.). 

C. Higher magnification of GABAergic labeling CA1 interneurons in sham treated 

rats. 

D. Higher magnification of GABAergic labeling CA1 interneurons in epileptic rats. 

E. Epilepsy was associated with a significant decrease in the number of GAD-67 

immunoreactive cells in CA1 limited to S.O.
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5.3.6 LOCALIZATION OF D1 DOPAMINE RECEPTORS IS UNCHANGED IN THE EPILEPTIC 

DENTATE GYRUS 

 

D1 dopamine receptors are expressed more abundantly in the dentate gyrus than 

any other region in the hippocampus (Gangarossa et al., 2012), where they impact neuron 

excitability and learning and memory. Indeed, D1-like dopamine receptors activate 

during a “novel” or “rewarding” signal in freely moving animals, and consequentially 

increases DG excitability (Hamilton et al., 2010). Furthermore, inhibition of D1-like 

dopamine receptors inhibits LTP in the DG (Yanagihashi and Ishikawa, 1992; Kusuki et 

al., 1997; Swanson-Park et al., 1999). Thus, we investigated whether D1 dopamine 

receptor expression is altered in the epileptic dentate gyrus. In agreement with previous 

studies, D1 dopamine receptors demonstrated diffused labeling throughout the molecular 

layer (MOL) and hilus (H) of the dentate gyrus (Figure 5.6A). We also observed abundant 

D1 dopamine receptor labeling in the stratum lucidum. Notably, D1 dopamine receptor 

labeling was absent from granule cell layer (GCL). This pattern of labeling suggests that 

D1 dopamine receptors are expressed on dentate granule cell dendrites and axons (mossy 

fibers), but absent from dentate granule cell soma.  

D1 dopamine receptor expression in the epileptic dentate gyrus demonstrated no 

observable difference in D1 dopamine receptor labeling pattern or strength in labeling 

signaling (Figure 5.6B). Thus, these results illustrate that D1 dopamine receptor 

expression is unchanged in the epileptic dentate gyrus. 
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Figure 5.6 D1 dopamine receptor expression in the dentate gyrus does not change in 

epilepsy. 

A. Immunohistochemistry for D1 dopamine receptor labeling in the dentate gyrus of 

sham-treated rats. D1 dopamine receptors are localized throughout the molecular 

layer (MOL) and hilus (H) of the dentate gyrus but absent from the granule cell 

layer (GCL).  

B. Immunohistochemistry for D1 dopamine receptor labeling in the dentate gyrus of 

epileptic rats revealed a similar labeling pattern to sham-treated controls.  

 

5.3.7 LOCALIZATION OF D1 DOPAMINE RECEPTORS IS UNCHANGED IN THE EPILEPTIC 

CA3 REGION 

 

In the CA3 region, previous studies have demonstrated spare localization of D1 

dopamine receptors on GABAergic interneurons (Gangarossa et al., 2012). In this study, 

we also found that D1 dopamine receptors are scattered on interneurons (Figure 5.7A, B). 

However, in addition to D1 labeled interneurons, we also saw prominent labeling in the 

stratum lucidum, resembling mossy fiber axon labeling.  

H
GCL

MOL

4x4x

B.A.

EpilepticSham



 
 

149 

Mossy fiber sprouting and hyperexcitability is a hallmark symptom of chronic 

epilepsy (Tauck and Nadler, 1985; Sutula et al., 1988, 1989; Houser et al., 1990; Babb et 

al., 1991; Cronin et al., 1992). Thus, we investigated whether D1 dopamine receptor 

expression is altered in the epileptic CA3 region compared to sham-treated controls 

(Figure 5.7C, D). Our immunostaining demonstrated no observable differences in D1 

dopamine receptor labeling in the epileptic CA3 region (Figure 5.7C) when compared to 

sham-treated control (Figure 5.7D).  
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Figure 5.7 D1 dopamine receptor expression does not change in the epileptic CA3 

region.  

A. Representative normal hippocampus illustrating the CA1, CA3, and dentate gyrus 

(DG) regions. The black box indicates the CA3 region.  

B. Magnification of the CA3 region from a naïve rat. D1 dopamine receptor 

immunobloting prominently labeled mossy fiber axons in the stratum lucidum 

(S.L.). D1 dopamine receptors were also expressed on spare interneurons 

throughout the stratum oriens (S.O.), stratum radiatum (S.R.), stratum pyramidale 

(S.P.), and stratum lucidum (S.L.). 

C. Immunohistochemistry for D1 dopamine receptor labeling in the CA3 region of 

sham-treated rats. 

D. Immunohistochemistry for D1 dopamine receptor labeling in the CA3 region of 

chronically epileptic rats demonstrates similar labeling pattern and intensity to the 

sham-treated rats.  

 

5.3.8 TOTAL DOPAMINE AND DOPAMINE METABOLITE LEVELS REMAIN UNCHANGED 

IN TLE HIPPOCAMPUS 

We next sought to better understand how changes in the D1-like receptor 

expression and localization might alter overall dopaminergic function. Our leading 

hypothesis was overall D1-like receptor expression in the TLE hippocampal was 

suppressed due to homeostatic compensation for upregulated dopamine. Thus, we used 

HPLC to measure dopamine, dopamine metabolites, and norepinephrine concentration in 

whole TLE hippocampus and sham-treated controls. Several experimental controls were 

applied to ensure we identified the correct peak as dopamine. In addition to running 

standard controls at various concentrations, sample from a sham-treated hippocampus 

was also spiked with DA standard. The solemn differentiating peak was considered 

dopamine (Fig. 5.6, C).  

Total dopamine (DA), dopamine metabolites (DOPAC), and norepinephrine (NE) 

in whole hippocampus were unaffected by TLE (Fig. 5.6, A-B,D). Monoamine levels  
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Figure 5.8 Total dopamine and dopamine metabolite levels remain unchanged in the 

TLE hippocampus. 

A. High performance liquid chromatography (HPLC) chromatorgrams for sham-

treated (black line) superimposed with epileptic (gray line) illustrated no change 

in total hippocampus concentration of dopamine (DA), dopamine metabolite (3,4-

dihydroxyphenylacetic acid (DOPAC)), or norepinephrine (NE, downstream 

synthesized catecholamine).  

B. Chromatographs of a combination standard (100 nM of NE, DOPAC, and DA; 

black dash line), sham-treated sample (black solid line), and sham-treated sample 

“spiked” with 100 nM combination standard (gray line) superimposed to 

demonstrate correct identification of each monoamine.  

C. Quantification of DA, DOPAC, dopamine utilization (DOPAC/DA, a measure of 

released dopamine), and NE revealed no significant differences in monoamine 

concentrations between the epileptic and sham-treated hippocampus. 
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were reported as a percentage of Sham-treated controls. Total levels of DA in epileptic 

animals were 86.376 ± 8.114% of that in sham-treated animals (n = 4 sham-treated, n = 7 

epileptic) (Fig. 5.6, A-B,D). Total DOPAC levels in epileptic animals were 105.466 ± 

23.817% of that in sham-treated animals. Total NE levels in epileptic animals were 

100.609 ± 3.115% of that in sham-treated animals. Dopamine utilization was calculated 

by dividing total DOPAC by DA concentration as a measure of released dopamine. No 

difference was observed in the epileptic hippocampus (125.133 ± 27.885%) from sham-

treated animals. Thus, the amount of dopamine produced is not different between the 

sham and epileptic hippocampus. These results suggest that changes in dopamine 

receptor expression are more significant. 

 

5.3.9. REDUCED DOPAMINE CLEARANCE IN THE EPILEPTIC HIPPOCAMPAL CA1 

REGION 

After observing that dopamine concentration did not change in epilepsy, we then 

evaluated whether dopamine clearance is altered in the chronically epileptic 

hippocampus. Western blots for COMT in microdissected CA1 from epileptic and sham-

treated animals displayed two bands (35kD and 25kD) (Fig. 7, B). Immunoblot analysis 

revealed no significant difference at either protein size (35kD, 109.921 ± 10.073%; 25kD, 

98.658 ± 12.286%; n = 11) when compared to sham-treated animals (Fig. 7, B).  

Immunoblots for DAT also displayed a band at two protein sizes (80kD and 

55kD) (Fig. 7, A). Epilepsy demonstrated a significant reduction in DAT protein 

expression in the 80kD protein size (50.588 ± 10.867%, n = 11, p = 0.03) but not the  
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55kD protein size (84.534 ± 8.287%, n = 11), when compared to sham-treated animals 

(Fig. 7, A). Thus, we observed reduced dopamine clearance in the epileptic hippocampal 

CA1 region.  

 

 

Figure 5.9 Reduced dopamine clearance in the epileptic hippocampal CA1 region. 

A. Antigen for DAT recognized bands at 80 kilodaltons (kD) and 55 kD. Western 

blot analysis revealed a significant reduction in dopamine transporter (DAT) 

protein expression in the epileptic CA1 area only at 80 kD when compared to 

sham-treated rats. 

B. Antigen for COMT recognized bands at 35 kD and 25 kD. Western blot analysis 

revealed no difference in catechol-O-methyl transferase (COMT) protein 

expression in the epileptic CA1 area when compared to sham-treated rats. 

Immunoblot analyses were corrected for actin. 
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5.3.10 NO CHANGE IN DOPAMINERGIC FIBER EXPRESSION IN THE EPILEPTIC 

HIPPOCAMPAL CA1 REGION 

To determine whether dopaminergic fibers expression and/or localization were 

altered in the epileptic condition, we performed immunoblots with microdissected 

hippocampal CA1 and immunohistochemistry with epileptic and sham-treated animals. 

Immunoblot analysis revealed no significant change in epileptic tyrosine hydroxide (TH) 

expression (97.047 ± 15.919%, n = 8) from sham-treated animals (Fig. 8, C). This result 

was confirmed by immunostaining. TH labeled catecholamine fibers that dispersed 

randomly throughout all CA1 layers (Fig. 7, A-B). Thus, no change was observed in the 

amount of dopaminergic fibers. 
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Figure 5.10 No change in dopaminergic fiber expression in the epileptic 

hippocampal CA1 region. 

A. Immunohistochemistry for tyrosine hydroxylase (TH) labeling in area CA1 of 

sham-treated rats. 

B. Immunohistochemistry for tyrosine hydroxylase (TH) labeling in area CA1 of 

epileptic rats revealed no difference in dopaminergic fiber innervation. 

C. Western blots confirmed immunostaining results, demonstrating no difference in 

TH protein expression when comparing epileptic to sham-treated CA1. TH 

protein expression was normalized to actin. 

 

 

5.4 DISCUSSION 

 

The principal finding of this study is that the dopaminergic system is altered in a 

chronic model of temporal lobe epilepsy. In our study we have identified differential 

patterns of labeling between D1 and D5 receptors. D1 DARs were located primarily on 

interneurons, diffused throughout the molecular layer of the dentate gyrus, and on mossy 

fiber axons, while D5 receptors were located predominately in pyramidal neurons 

dendrites. D5 DAR protein expression was significantly reduced in proximal dendrites of 

the epileptic hippocampal CA1 area. No change in protein expression was seen in D1 

DARs; however we did observe a possible increase in interneuron D1 DAR expression in 

the epileptic CA1. These results were accompanied by a reduction in dopamine clearance, 

but no change in overall dopamine content.  

We identify that D5 dopamine receptors are significantly reduced in the epileptic 

hippocampus. This deficit in D1-like receptor may result in the cognitive decline 

associated with epilepsy. To date the role of D5 dopamine receptors are not well 

characterized. However, previous studies have elucidated a role for D5 dopamine 
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receptors in learning and memory. D5 dopamine receptors are particularly important in 

regulating plasticity of the medial perforant path onto dentate granule cells (Yang and 

Dani, 2014) Furthermore, a rat model of ADHD that demonstrates impaired learning also 

has significantly lower D5 dopamine receptor expression than healthy controls (Medin et 

al., 2013).  

Previous studies have identified D1 DARs primarily on interneurons (Mansour et 

al., 1990, 1991; Fremeau et al., 1991; O’Sullivan et al., 2008; Gangarossa et al., 2012). 

However, other studies suggest that D1 DARs are predominately in pyramidal neurons 

(Bergson et al., 1995). We identify D1 DARs to be predominately located on 

interneurons, with diffuse labeling throughout the stratum pyramidal cell body layer and 

dendrites. In our hands, we identified no change in D1 DAR expression. This was of 

particular interest to us because we identified D1 DARs to be primarily located on 

interneurons. It has been widely demonstrated in previous literature and also replicated in 

this study that interneurons, particularly in the stratum oriens, are susceptible to cell death 

in epilepsy (Dinocourt et al., 2003). Thus, no change in D1 DAR expression may indicate 

that the remaining interneurons have upregulated D1 DAR expression.  

There is not a consensus on how the dopaminergic system is altered in epilepsy. 

Some studies indicated that dopamine concentration increases (Cavalheiro et al., 1994), 

while others indicate no change dopamine content but an increase in dopamine 

metabolites (Freitas et al., 2004). We identified no significant change in dopamine 

concentration. We went to great lengths to identify the correct peak for each monoamine 

measured. Not only were various concentration of each monoamine standard used to 

complete the standard curves for measuring accurate concentration and retention times, 
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but a hippocampus sample was “spiked” with a combination of each monoamine 

standard. The spiked sample, original hippocampus sample, and the monoamine standard 

were all superimposed onto each other, and the peaks in common were identified as the 

respective monoamine.  

We demonstrated a significant reduction of dopamine clearance in the epileptic 

hippocampal CA1 region. This reduction in dopamine clearance suggests that even 

though dopamine concentration is unchanged in the epileptic hippocampus, the dopamine 

may be allowed to diffuse further away for the synapse. This would allow dopamine to 

bind to receptors it would not normally interact with, in effect, increasing its sphere of 

influence. Immunoblots for both COMT and DAT produced two bands. COMT 

immunoblots produced bands at 35kD and 25kD. The 35kD band represents the 

phosphorylated form of COMT, which is transported to the cell surface where it can be 

more active. The 25kD COMT band represents the non-phosphorylated from of COMT, 

which is left in the cytoplasm and is considered the less active form. DAT immunoblots 

demonstrated bands at 80kD and 55kD. The 80kD band represents the glycosylated, 

mature form of DAT, which is packaged and transported to the cell membrane. The 55kD 

band is thought to be the non-glycosylated, immature form of DAT, which is left in the 

endoplasmic reticulum.  

Based on our findings, we suggest that dopamine D1-like receptor expression is 

differentially regulated in the epileptic hippocampus. A decrease in D5 dopamine 

receptors located in CA1 hippocampus pyramidal neurons and reduction in dopamine 

clearance may speak to the deficits in learning and memory seen is patients with temporal 

lobe epilepsy. 
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CHAPTER 6 

GENERAL DISCUSSION AND SIGNIFICANCE

 

6.1 FINDINGS OF THE STUDY 

 

1. ACET selectively inhibits the GluK4 and GluK5 subunits in GluK2/K4 and GluK2/K5 

heteromeric receptor. Kynurenate selectively inhibits the GluK2 subunits. We used both 

drugs to determine that glutamate binding to either the “high-affinity” subunits (GluK4 or 

GluK5) or the GluK2 subunit is sufficient to activate the heteromeric receptor. However, 

desensitization occurred only when three or more subunits are bound to glutamate. 

Furthermore, we demonstrated that perfusing ACET onto brain slices inhibits kainate 

receptor synaptic transmission at the mossy fiber – CA3 synapse. See Figure 6.1 for an 

illustration of these conclusions. 

 

2. Activation of M1 mAChRs, but not D1 dopamine receptors, depressed KAR synaptic 

transmission at the mossy fiber – CA3 synapse. This effect is mediated through co-

localized M1 and KARs on the postsynaptic CA3 neuron. However, PKC 

phosphorylation does not explain this depression. Furthermore, M1 mAChR depression 

of KAR synaptic transmission goes away in adulthood. See Figure 6.2 for an illustration 

of these conclusions. 
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3. Dopamine D5 receptor is significantly reduced in the epileptic CA3 region of the 

hippocampus, while D1 dopamine receptor expression in remaining interneurons is 

upregulated. Additionally, dopamine transporter and COMT were significantly reduced 

although tyrosine hydroxylase and dopamine content were unchanged. Thus, total 

dopamine in the epileptic hippocampus is unchanged but dopamine clearance is reduced. 

This suggests that more dopamine is floating in the extrasynaptic space. See figure 6.3 for 

an illustration of these conclusions. 

 

6.2 MUSCARINIC MODULATION OF KAINATE RECEPTORS: IMPLICATIONS FOR 

EXERCISE AND EPILEPSY 

 

Exercise alters the cholinergic system in healthy and diseased brains. Particularly, 

in the hippocampus, exercise has been shown to double acetylcholine release during 

moderate intensity exercise (Nakajima et al., 2003; Uchida et al., 2006), while inhibiting 

acetylcholine degradation by inhibiting acetylcholinesterase (Tsakiris et al., 2006). Thus, 

more acetylcholine is released and remains in the extrasynaptic space in the exercising 

brain. This increase in acetylcholine content would increase binding and activation of 

acetylcholine receptors, including abundantly expressed M1 muscarinic acetylcholine 

receptors (Cortes et al., 1984; Cortés et al., 1986; Rodríguez-Puertas et al., 1997; Scarr et 

al., 2007). In the CA3 region, we proved that M1 mAChR activation depressed KAR-

mediated synaptic transmission, where they are co-localized on CA3 pyramidal neurons 

(Chapter 4). Thus, an exercise-induced increase in acetylcholine in the hippocampus 

would increase binding to M1 mAChRs in principal neurons, including in the CA3. This 
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Figure 6.1 Illustration of the receptor occupancy model for KAR activation and desensitization. When no glutamate is 

present, the kainate receptor is closed and no current is produced. If either GluK2 or the GLuK5 subunits in the GluK2/K5 

heteromeric tetramer are bound to glutamate, the receptor opens to a non-desensitzing current. However, when three or more 

subunits in the tetramer are bound to glutamate, the kainate receptor will desensitize. 
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Figure 6.2 Illustration of M1 mAChR depression of kainite receptor EPSPs. During normal synaptic 

transmission, depolarization of mossy fibers causes release of glutamate from mossy fiber terminals. This released 

glutamate binds to GluK2/K4 and/or GluK2/K5 receptors located postsynaptically on CA3 pyramidal neurons and 

produces a KAR EPSP. Bath application of pilocarpine activates M1 mAChRs located on CA3 pyramidal neurons, 

which elicits a signaling cascade that either phosphorylates or dephosphorylates GluK2/K4 and GluK2/K5 

receptors. The end result is KARs trafficking away from the synapse and smaller KAR fEPSP amplitudes. 
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Figure 6.3 Illustration of dopaminergic system alteration in the epileptic CA1 

compared to the normal brain. We discovered that D5 dopamine receptors and 

dopamine clearance is reduced in the epileptic hippocampus, while dopamine 

concentration and the amount of dopaminergic fiber is unchanged. Thus, we reasoned 

that released dopamine remains in the extrasynaptic space longer in the epileptic brain 

compared to the normal brain. 

 



 

 
 

163 

increased M1 mAChR activation would subsequently depress KAR synaptic 

transmission.  

Overactivation of KARs have been implicated in epilepsy (Ben-Ari and Cossart, 

2000; Vincent and Mulle, 2009; Contractor et al., 2011; Lerma and Marques, 2013). 

First, due to their slow deactivation kinetics, KARs facilitate temporal summation of 

postsynaptic excitatory potentials and epileptiform bursting (Castillo et al., 1997; Vignes 

and Collingridge, 1997; Frerking et al., 1998; Kidd and Isaac, 2008). Secondly, 

postsynaptic KARs elicits a metabotropic function that reduces the slow 

afterhyperpolarization, causing an increase in spike firing and neuronal excitability 

(Melyan et al., 2002, 2004). Furthermore, a hallmark symptom of chronic epilepsy in 

both human and animal models is mossy fiber sprouting, where mossy fibers in the CA3 

make aberrant synaptic connections onto dentate granule cell neurons (Buckmaster et al., 

2002). This sprouting creates an excitatory feed forward circuit that is susceptible to 

epileptiform bursting. KARs also located on these sprouted mossy fibers and can respond 

to glutamate (Epsztein et al., 2005). Lastly, KARs are also located presynaptically on 

principal and interneurons where they facilitate glutamate release and inhibit GABA 

release (Contractor et al., 2011; Carta et al., 2014). Overactivation of presynaptic KARs 

would tilt the excitatory/inhibitory brain balance to being more excitatory. Thus, an 

exercised-induced suppression of KARs activity on CA3 pyramidal neurons would be 

beneficial for patients with epilepsy. Indeed, humans and animals with a chronic model 

of temporal lobe epilepsy have demonstrated reduced seizure frequency and susceptibility 

to developing seizures when engaged in exercise training (Westerberg et al., 1984; Arida 

et al., 1999, 2004, 2009a, 2013; de Lima et al., 2011; Gomes da Silva et al., 2011; Nyberg 
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et al., 2013). Acutely, seizures susceptibility is higher during rest than during or 

immediately after bouts of physical activity, which has been shown to silence 

epileptiform discharges (Camilo et al., 2009; Vancini et al., 2010; de Lima et al., 2011). 

 

6.3 ALTERATIONS IN THE DOPAMINERGIC SYSTEM IN TEMPORAL LOBE 

EPILEPSY: IMPLICATIONS FOR EXERCISE 

 

Forty years ago, epilepsy was thought to be a disease of dopaminergic 

hypoactivity versus schizophrenia (Lamprecht, 1977; Starr, 1996), which is thought to be 

a disease of dopaminergic hyperactivity. This theory was conceived as a result of studies 

demonstrating that application of a general dopamine receptor agonist reduces seizure 

susceptibility (Lamprecht, 1977; Lal, 1988), whereas blockage of dopamine receptors 

induced seizures (Laird et al., 1984; Jann et al., 1993). We now known that there are two 

subtypes of dopamine receptors: D1-like and D2-like. These dopamine receptors have 

opposite effects on seizure susceptibility. D1-like dopamine receptor activation 

precipitates seizures (Starr et al., 1987; al-Tajir et al., 1990a, 1990b), while D2-like 

dopamine receptors reduce seizure susceptibility (al-Tajir et al., 1990a; Al-Tajir and 

Starr, 1991).  

In the chronically epileptic brain, we found that D5 dopamine receptor expression 

is reduced in CA1, while total D1 dopamine receptor expression is unchanged but likely 

upregulated in remaining interneurons in CA1. Additionally, we discovered that total 

dopamine concentration remains unchanged, while dopamine clearance is reduced in the 

whole hippocampus. Taken together, these results suggest that more dopamine is 
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remaining in the extrasynaptic space. An increase in extrasynaptic dopamine would allow 

more dopamine binding to both D1-like and D2-like dopamine receptors. In theory, these 

anatomical changes of increased extrasynaptic dopamine and reduced D1-like dopamine 

receptor expression are beneficial for the epileptic condition.  

Interestingly, these changes mimic exercise’s effects on the dopaminergic system. 

Briefly, exercise also increased dopamine concentration in the brain while reducing D1 

DA receptor density (de Castro and Duncan, 1985; MacRae et al., 1987; Greenwood et 

al., 2011). Exercise also decreases dopamine turnover (a ratio of dopamine metabolites to 

dopamine concentration) in Parkinson patients (Aguiar et al., 2015), suggesting that a 

higher percentage of released dopamine remains in the extrasynaptic space. Also, 

exercise has been shown to increase the sensitivity of dopamine receptors to dopamine 

(Zigmond et al., 2012). As stated in the previous section, exercise is beneficial for people 

with epilepsy and can be used as an alternative therapy in conjunction with 

pharmaceutical therapies to help patients manage their seizures. 

 

6.4 FUTURE DIRECTIONS 

 

1.  We used ACET and kynurenate to discover that binding to either the GluK2 or 

GluK5 subunit is sufficient to activate the receptors, and that binding or both are required 

for desensitization. However, we did not investigate the subunit contribution to 

deactivation, which is fundamentally different mechanism than desensitization. Also, 

deactivation has significant physiological relevance. Therefore, it would be important to 
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use the pharmaceutical tools, ACET and kynurenate, to delineate the function roles of 

GluK2 and GluK5 to deactivation.  

 

2. We found that M1 mAChRs depresses postsynaptic KAR-mediated synaptic 

transmission at the mossy fiber – CA3 synapse. Epilepsy has been shown to modulate 

both the cholingeric system and kainate receptor expression. Thus, it would be important 

to determine whether a chronic model of epilepsy alters this M1 mAChR-mediated 

depression of KARs. 

 

3. The dopaminergic system is altered in a chronic model of temporal lobe epilepsy. 

Exercise is a potent therapy demonstrated to both reduce seizure frequency and alter the 

dopaminergic system. Thus, it would be important to evaluate the anatomical and 

functional differences between the dopaminergic system in a chronically epileptic rat and 

a chronically epileptic rat that is allowed to undergo physical activity. 
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