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ABSTRACT 

 

An integral aspect of innate immune response to viral infections is the ability to 

detect non-self molecules to initiate antiviral signaling via pattern recognition receptors 

(PRRs). One subset of these receptors are cytoplasmic receptors that contain double 

stranded (dsRNA) binding domains, which allow them to identify non-self dsRNA 

produced during a viral infection and mount a protective cellular response. PKR is a 

dsRNA-activated eIF2α kinase that is a key regulator of cellular antiviral and stress 

response pathways. Activation of PKR’s catalytic activity requires binding to one of its 

activators, viral dsRNAs or the cellular protein PACT (PKR activator). Although PACT also 

binds to dsRNA, in uninfected cells PACT activates PKR by a direct interaction in the 

absence of dsRNA in response to oxidative stress, ER stress, and serum starvation. 

Prolonged PKR activation and downstream eIF2α phosphorylation and inhibition leads 

to cell death by apoptosis. A third dsRNA-binding protein TRBP (TAR-RNA-binding 

protein), which is homologous to PACT, inhibits PKR by a direct interaction as well as by 

sequestration of dsRNA and PACT. Recently, an inherited, early-onset form of the 

neuromuscular disorder dystonia has been identified to be associated with multiple 

missense mutations in the coding region of PACT. We investigated alterations in PACT 

activity caused by DYT16 mutations by examining changes in interactions with known 
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protein partners and ability to activate PKR during cellular stress. Our results establish 

that each point mutation may alter PACT’s functions differently. Patient lymphoblasts 

containing homozygous mutant P222L activate PKR with slower kinetics, albeit more 

robustly and for longer duration, as compared to wt lymphoblasts. In addition, the 

affinity of PACT-PACT and consequently PACT-PKR interaction is enhanced in vivo in 

these P222L dystonia lymphoblast lines, thereby leading to intensified PKR activation 

and consequently enhanced cellular death. Our results elucidate new mechanistic 

details of PKR regulation by PACT and shed new light on its impact on stress induced 

cellular apoptosis. 

Another cytoplasmic dsRNA receptor similar to PKR is the RNA helicase RIG-I, 

which has the ability to detect and be activated by 5’triphosphate uncapped dsRNA as 

well as the viral mimic dsRNA polyI:C. Once activated, RIG-I’s CARD domains oligomerize 

and initiate downstream mitochondrial anti-viral signaling (MAVS) to induce interferon 

(IFN) production. PACT stimulates RIG-I signaling in response to polyI:C treatment, in 

part, by stimulating RIG-I’s helicase activity and resulting in an enhanced induction of 

IFN. Despite the domain homology and similar structure of PACT and TRBP, the role of 

TRBP is unknown in RIG-I like receptor (RLR) signaling. We investigated the role of TRBP 

in RIG-I signaling and IFN production. Our results establish an inhibitory role of TRBP on 

RIG-I signaling, opposing PACT’s activating role. This inhibitory effect is also seen in the 

absence of PACT and PKR, indicating a direct role in RIG-I inhibition. The effect of DYT16 

causing mutations in PACT on RIG-I signaling in response to viral stress mimics was also 

investigated and appears to be unaffected by the DYT16 mutations.
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CHAPTER 1: INTRODUCTION1
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1.1 PKR activator protein PACT 

PACT is a double-stranded (ds) RNA-binding protein that was originally identified as 

a protein kinase R (PKR)-interacting protein in a yeast two-hybrid screen using the 

dominant negative mutant of PKR as bait (Patel and Sen 1998). PKR is an interferon 

(IFN)-induced protein kinase that plays a central role in antiviral innate immunity. PACT 

(also designated as PRKRA, DYT16) is a 313 amino acid long protein containing three 

dsRNA-binding and dimerization motifs homologous to those present in PKR and other 

dsRNA-binding proteins (Figure 1.1) (Patel and Sen 1998). Despite PACT’s functional role 

in activation of PKR, it is not induced by IFN or dsRNA treatment (Patel and Sen 1998). 

PACT was named for its ability to work as an endogenous activator of PKR in the 

absence of dsRNA, PKR’s only known activator at that time (Patel and Sen 1998). While 

human PACT was first identified by Dr. Rekha Patel while working for Dr. Ganes Sen at 

Cleveland Clinic, PACT’s murine homolog was subsequently identified by Dr. Takahiko 

Ito in Stratford May’s lab at the University of Texas Medical Branch by a similar yeast 

two-hybrid screen (Ito et al. 1999). The murine homolog of PACT was named RAX (PKR-

associated protein X) (Ito et al. 1999). Both labs found PACT to be ubiquitously 

expressed in multiple cell lines and in all human and murine tissues tested (Patel and 

Sen 1998, Ito et al. 1999, Gupta and Patel 2002).  

Although the dsRNA-binding motifs (dsRBMs) are evolutionarily conserved 

motifs present in proteins from bacteria to humans, some of the proteins belonging to
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Figure 1.1: Domain structure of PKR, PACT, TRBP, and RIG-I. M1 and M2 of PKR, PACT, 
and TRBP are conserved dsRNA binding motifs (dsRBMs) that also mediate protein-
protein interactions. PBM, PACT Binding Motif. M3 of PACT is essential for PKR 
activation. M3 (aka medipal domain) of TRBP mediates TRBP’s interactions with Merlin, 
Dicer, and PACT.  Blue Arrows indicate known sites of phosphorylation on each protein. 
CARD, Caspase activation and recruitment domain, site of oligomerization with other 
CARD domains. DExD/H Helicase, helicase domain with inherent ATPase activity. 
CTD/RD, C-terminal domain and regulatory domain, interaction site of PACT. I-VI, 
conserved helicase motifs. 
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this class share the most homology with PACT. These include Xenopus (Xlrbpa), 

Drosophila (RAX/loqs/R3D1, R2D2), human (TRBP), and mouse (Prbp) proteins (Gatignol 

et al. 1991, Eckmann et al. 1997, Patel and Sen 1998, Ito et al. 1999). PACT contains 

three dsRBMs, of which the two amino-terminal motifs M1 and M2 are true dsRBMs 

that exhibit dsRNA-binding activity (Figure 1.1) (Patel and Sen 1998, Huang et al. 2002). 

In addition, the M1 and M2 dsRBMs of PACT bind to the amino-terminal dsRBMs of 

other PACT molecules as well as other dsRBM containing proteins such as TRBP and PKR 

(Figure 1.1) (Patel and Sen 1998, Peters et al. 2001, Gupta et al. 2003, Chang and Ramos 

2005) to form homo- and heterodimers. The third, carboxy-terminal motif M3 has 

significant homology to the consensus dsRBM but is not a functional dsRBM and does 

not bind dsRNA (Figure 1.1) (Huang et al 2002, Li et al 2006).  

 Analysis of PACT expression has shown that PACT mRNA is expressed 

ubiquitously in various human organs, with the highest levels of expression seen in 

placenta, colon, and testis (Fasciano et al. 2007, Patel and Sen 1998, Ito et al. 1999, 

Gupta and Patel 2002). To better understand PACT’s expression pattern and 

characterize the promoter region, PACT’s transcription start site was mapped by primer 

extension (Fasciano et al. 2007). Surprisingly, PACT’s promoter sequence contains no 

TATA box, and the only recognizable regulatory elements identified were GC boxes, the 

known binding sites for the general transcription factor Sp1 (Fasciano et al. 2007, Rowe 

and Sen 2001). Six Sp1 binding sites were identified within the first 300 bp upstream of 

PACT’s transcription start site, and the minimal basal promoter was mapped to -101 bp 

upstream of transcription start site containing a single Sp1 binding site (Fasciano et al. 
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2007). A promoter including all six Sp1 binding sites, -309 bp upstream of transcription 

start, was able to increase reporter expression 2 fold (Fasciano et al. 2007).  A five-fold 

increase was seen with a -414 bp promoter, which contains no additional GC box Sp1 

binding sites, but does include a CCAAT box at position -404 to -400 (Fasciano et al. 

2007, Rowe and Sen 2001). No significant increase was seen with inclusion of further 

upstream sequences to -2002 bp (Fasciano et al. 2007). Individual mutation of each of 

the six GC boxes showed no significant effect on promoter activity, indicating 

redundancy within the promoter (Fasciano et al. 2007).  Further analysis showed that 

the first two GC box sites upstream of transcription start appear to have the most 

significant effect on expression, with either the first or second GC box site upstream 

being essential for full activity of the PACT promoter (Fasciano et al. 2007). Sp1 was 

shown to bind to both the first and second GC box site of the PACT promoter in vitro as 

well as in HeLa cells (Fasciano et al. 2007). It has been observed that in cell lines PACT’s 

expression level remains unchanged during various cellular and viral stresses, though 

untransformed peripheral blood mononuclear cells (PBMCs) infected with HIV-1 show 

an increase in PACT expression at the peak of infection (Clerzius et al. 2013, unpublished 

data).  

 

1.2 PACT's Functional Role during Cellular Stress 

Cells respond to various stress signals by inducing phosphorylation of the α-subunit 

of eukaryotic initiation factor 2 (eIF2) (Donnelly et al. 2013). Phosphorylation of eIF2α 

on serine 51 leads to a sharp decline in de novo protein synthesis and is considered as 
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an important strategy in cellular response against stressful insults including viral 

infection, the accumulation of misfolded proteins in the endoplasmic reticulum (ER), 

oxidative stress, and starvation (Donnelly et al. 2013). The phosphorylation of eIF2α is 

carried out by a family of four kinases, PERK (PKR-like ER kinase), PKR (protein kinase 

double-stranded RNA-dependent), GCN2 (general control non-derepressible-2), and HRI 

(heme-regulated inhibitor) (Donnelly et al. 2013). Each kinase primarily responds to a 

distinct type of stress or stresses (Donnelly et al. 2013). Of these, PKR is an IFN-induced 

serine/threonine kinase that is expressed ubiquitously and plays a central role in 

mediating IFN’s antiviral actions as well as in regulating cellular survival and apoptosis in 

response to several stress signals (Garcia et al. 2006). Although IFNs increase PKR's 

cellular abundance via transcriptional induction, PKR's kinase activity requires binding to 

one of its activators leading to autophosphorylation and enzymatic activation (Meurs et 

al. 1990). Double-stranded RNA, a replication intermediate for several viruses, was one 

of the first well-characterized activators of PKR (Figure 1.2) (Galabru and Hovanessian 

1987, Meurs et al. 1990). PKR binds dsRNA via its two dsRNA-binding motifs M1 and M2 

(Figure 1.1) (Lee et al. 1992, Patel and Sen 1992), which changes the conformation of 

PKR to expose the ATP-binding site (Nanduri et al. 2000) and leads to its 

autophosphorylation (Cole 2007). The two dsRBMs also mediate dsRNA-independent, 

protein-protein interactions with other proteins that carry similar domains (Patel et al. 

1995, Chang and Ramos 2005). Among these are proteins inhibitory for PKR activity such 

as TRBP (human immunodeficiency virus (HIV)-1 transactivation-responsive (TAR) RNA-

binding protein) (Benkirane et al. 1997) and proteins that activate PKR such as PACT 



 

 

 
Figure 1.2: PKR-Mediated Signaling. In the absence of stress, TRBP binds to and sequesters PACT and PKR, keeping PKR signaling 
inactive. At this time, PACT is constitutively phosphorylated at serine 246.  During viral stress, dsRNA produced by viruses binds 
directly to and activates PKR. TRBP works to counter PKR during viral stress by binding to dsRNA and sequestering it from PKR. 
During cellular stress (no dsRNA, e.g. endoplasmic reticulum stress), PACT is activated by phosphorylation at serine 287, which 
increases PACT’s affinity for PKR while simultaneously decreasing PACT’s affinity for TRBP. When either activator binds to PKR, it 
changes PKR’s conformation to expose PKR’s ATP binding pocket, which leads to autophosphorylation of PKR at threonine 446 and 
451 and PKR activation. Once activated, PKR phosphorylates eIF2α on Serine 51. This phosphorylation of eIF2α inhibits protein 
synthesis by blocking recycling of GDP to GTP within the eIF2 complex, halting initiation of translation.  This block in translation 
allows the cells to alleviate the stress (e.g. unfolded proteins, viral stress) or if unable to recover, undergo apoptosis.

7
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(Figure 1.2) (Patel and Sen 1998). Of PACT’s three dsRBMs, M1 and M2 are essential for 

binding to the corresponding M1 and M2 dsRBMs of PKR (Figure 1.1) (Peters et al. 2001, 

Huang et al. 2002). The third motif (M3) of PACT is essential for activation of PKR during 

cellular stress and binds to a specific region in the kinase domain of PKR with low 

affinity, this region is called the PACT binding motif (PBM) (Figure 1.1) (Peters et al. 

2001, Li et al 2006, Huang et al. 2002). The PBM in PKR spans from amino acids 326-337, 

with five of the residues (D328, D333, D331, G329, Y332) being essential for the 

interaction with PACT (Li et al. 2006). Although purified, recombinant PACT can activate 

PKR by direct interaction in vitro (Patel and Sen 1998), PACT-dependent PKR activation 

in cells occurs in response to a cellular stress signal (Ito et al. 1999, Patel et al. 2000, 

Bennett et al. 2004, Singh et al. 2009). PACT-mediated activation of PKR occurs in 

response to cellular stressors such as arsenite, hydrogen peroxide, growth factor 

withdrawal, thapsigargin, tunicamycin, and actinomycin. PKR activation results in 

phosphorylation and inhibition of the translation initiation factor eIF2α and subsequent 

apoptosis (Ito et al. 1999, Patel et al. 2000, Bennett et al. 2004). PACT (and its murine 

homolog RAX) is phosphorylated in response to the stress signals leading to its increased 

association with PKR and is essential for PKR activation in the absence of dsRNA (Ito et 

al. 1999, Patel et al. 2000, Bennett et al. 2004).  

TRBP, while structurally alike to PACT, inhibits PKR’s activity (Figure 1.2) (Gupta et al. 

2003, Daher et al. 2001). Similar to PACT, TRBP has three copies of dsRBMs with only 

the two amino terminal copies M1 and M2 being capable of binding dsRNA (Gatignol et 

al. 1991, Gatignol et al. 1993, Erard et al. 1998, Daviet et al. 2000), but the third 
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carboxy-terminal copy (M3/medipal domain) mediating protein-protein interactions 

with several proteins including Dicer (Daniels et al. 2009) , merlin (Xu et al. 2004), and 

PACT (Laraki et al. 2008) (Figure 1.1). In virally infected cells TRBP inhibits PKR by direct 

binding as well as by sequestering virally produced dsRNAs (Gupta et al. 2003, Daher et 

al. 2001). However, in uninfected cells TRBP inhibits PKR by direct binding (Cosentino et 

al. 1995) and by forming heterodimers with PACT and preventing it from activating PKR 

(Daher et al 2009, Singh et al 2011). TRBP-PACT and TRBP-PKR heterodimers are present 

in unstressed cells and after the onset of stress, PACT-TRBP and TRBP-PKR dimers 

dissociate (Daher et al. 2009, Gupta et al. 2003, Singh et al. 2011). Thus, TRBP regulates 

the activation of PKR in response to stress by controlling its accessibility to PACT (Singh 

et al. 2011, Gupta et al. 2003). Changes in the interactions between PACT, PKR, and 

TRBP have been shown to be mediated in part by phosphorylation of both PACT and 

TRBP (Peters et al. 2006, Singh et al. 2011, Paroo et al. 2009, Nakamura et al. 2015). 

Phosphorylation of two serine residues S246 and S287 in PACT’s PKR activation 

domain (M3) is required for PACT’s ability to activate PKR in response to stress signals 

(Peters et al. 2006). Constitutive phosphorylation of serine 246 is a pre-requisite for 

stress-induced phosphorylation of serine 287 of PACT (Peters et al. 2006). Stress 

induced phosphorylation of serine 287 in PACT causes dissociation of PACT-TRBP 

complexes while at the same time increasing PACT’s affinity for other PACT molecules as 

well as PKR, ultimately leading to PKR activation (Singh et al. 2009, Singh et al. 2011). 

Recently, phosphorylation sites of TRBP were identified and phosphorylation at all four 

sites (S142, S152, S283, S286) has been implicated in TRBP’s ability to inhibit PKR, with 
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unphosphorylated TRBP unable to inhibit PKR activity (Paroo et al. 2009, Nakamura et 

al. 2015). Thus apoptosis induced by cellular stress is regulated by PACT-TRBP-PKR 

interactions, with each partner capable of forming heterodimer and homodimer 

interactions (Singh et al. 2011).  

 

1.3 PACT and viral infections 

PACT’s function during viral infections was investigated soon after PACT was 

characterized as a dsRNA-binding protein and it was reported that PACT could act as a 

positive regulator of type I interferon (IFN) genes during Newcastle Disease Virus 

infection (Iwamura et al. 2001). It was shown that PACT overexpression lead to 

enhanced gene expression mediated by IRF3, IRF7, and NFκB motifs in various 

promoters of innate immune response genes (Iwamura et al. 2001). Only one complete 

dsRNA binding motif (either M1 or M2) of PACT was necessary for enhanced gene 

expression (Iwamura et al. 2001). Subsequently, a viral protein Us11 (from Herpes 

Simplex Virus Type 1) was found to inhibit PACT’s ability to activate PKR and decrease 

apoptosis (Peters et al. 2002). Interestingly, Us11 is unable to dissociate PACT from PKR 

but binds directly to PKR to inhibit PACT mediated PKR activation (Peters et al 2002).  

The first mechanistic insight as to how PACT was altering gene expression during a 

viral infection did not come until 2011, when PACT was shown to directly enhance the 

signaling of a cytoplasmic pattern recognition receptor, RIG-I (Kok et al. 2011). Pattern 

recognition receptors (PRRs) function to detect non-self molecules by recognizing 

structures conserved among microbial species, called pathogen-associated molecular 
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patterns (PAMPs) (Takeuchi and Akira 2010). PACT is now known to regulate two of 

these PRRs, PKR and RIG-I (Patel and Sen 1998, Kok et al. 2011). RIG-I (Retinoic acid 

inducible gene-1) is a PRR that, like PKR, recognizes dsRNA produced during viral 

infections (Kok et al. 2011). PACT interacts directly with RIG-I through RIG-I’s C-terminal 

domain (CTD) (Kok et al. 2011) to enhance RIG-I mediated induction of IFN. Thus, PACT 

is involved in RIG-I induced IRF3 activation as well as in stimulating RIG-I’s 

ATPase/Helicase activity (Kok et al. 2011). PACT dependent increase in RIG-I’s IFN 

inducing ability was seen both in the presence and absence of viral stress (polyI:C viral 

mimic and Sendai Virus infection) showing that PACT acts as an endogenous activator of 

RIG-I, similar to its actions on PKR (Kok et al. 2011).  In addition, PACT’s activation of 

RIG-I was shown to be independent of Dicer or PKR, further signifying a novel role for 

PACT during viral infection (Kok et al. 2011).  

After it was established that PACT could increase IFN signaling through RIG-I in 

addition to activating PKR, PACT’s association with viral protein Us11 was re-

investigated. It was known that Us11 could inhibit IFN signaling through the RIG-I like 

receptors (RLRs) RIG-I and MDA5 (Xing et al. 2012). Since it was also known that Us11 

could inhibit PACT signaling by direct binding to both PACT and PKR, the question arose 

if Us11 was also inhibiting IFN signaling by inhibiting PACT activation of RIG-I (Peters et 

al. 2002). Overexpression of Us11 could inhibit RIG-I activated IFN signaling, but only in 

the presence of PACT as basal RIG-I activity was unaffected by Us11 (Kew et al. 2013). 

PACT and Us11 were found to interact directly in vitro as well as co-fractionate from 

HSV-1 infected cells without involvement of an RNA molecule acting as a bridge (Kew et 
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al. 2013). Interaction of Us11 with PACT blocked its interaction with RIG-I, inhibiting 

downstream IFN production (Kew et al. 2013). Additional virally encoded proteins were 

also found to inhibit PACT’s ability to activate RIG-I, including Ebola virus protein VP35 

(Luthra et al. 2013), Middle East Respiratory Syndrome Coronavirus protein 4a (Siu et al. 

2014), and Influenza A Virus proteins NS1 and NS2 (Tawaratsumida et al. 2014). Though 

most research has pointed to virally encoded proteins inhibiting PACT dependent 

signaling, Luthra et al. reported that PACT also inhibited Ebola Virus RNA Polymerase 

activity by disrupting interaction with VP35 and effectively blocking viral replication 

(Luthra et al. 2013). In addition, it has also been shown that PACT activates RIG-I like 

receptor MDA5’s activity during viral infections (Siu et al. 2014).  

An additional aspect of PACT signaling that has been addressed is PACT’s ability to 

activate PKR during viral infections, in particular during HIV infection. PACT is known to 

activate PKR during multiple cellular stresses in the absence of dsRNA, but the role PACT 

plays in activating PKR during a viral infection was unknown (Figure 1.2) (Patel and Sen 

1998). Initial research on the effect of TRBP (~40% homologous to PACT) on PKR 

activation in the context of HIV infection suggested that TRBP boosts HIV replication 

both by directly enhancing expression of TAR-containing viral mRNAs as well as by 

inhibiting PKR activation caused by TAR RNA that has a stem and loop structure (Daher 

et al. 2001, Dorin et al. 2003). Subsequently, TRBP was also reported to inhibit PKR both 

in the presence as well as the absence of a virus through sequestration of PKR’s 

activators, PACT and dsRNA (e.g.TAR) (Figure 1.2) (Daher et al. 2009, Singh and Patel 

2012). In the absence of viral infections, this inhibition of PKR activation by TRBP is 
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reversed by cellular stress when interactions shift from TRBP-PACT and TRBP-PKR to 

PACT-PACT and PACT-PKR due to changes in phosphorylation of PACT and TRBP (Daher 

et al. 2009, Singh et al. 2011, Singh and Patel 2012, Nakamura et al. 2015). Thus, as TRBP 

inhibits PKR during both viral infection and cellular stress and PACT activates PKR during 

cellular stress, it was predicted that PACT could also activate PKR during viral stress. 

However, initial research has shown that PACT is unable to activate PKR during HIV 

infection and in fact may inhibit PKR activation (Daher et al. 2009, Clerzius et al. 2013, 

ongoing research by Evelyn Chukwurah in Rekha Patel’s lab).   

In addition to this, PACT and TRBP also play a role in RNA interference (RNAi) via a 

direct interaction with Dicer and are believed to maintain fidelity of small RNA 

processing by properly recruiting miRNA precursors to RNAi machinery (Kok et al. 2007, 

Lee 2006, Lee et al. 2013, Takahashi et al. 2013, Wilson et al. 2015). While the functions 

of PACT and TRBP in RNAi often seem redundant, some differences have been 

identified. These include different binding preferences of the two proteins (siRNA 

binding versus homodimer formation) as well as size of resulting miRNAs produced by 

the dicer when associated with PACT versus TRBP (Kok et al. 2007, Lee 2006, Lee et al. 

2013, Takahashi et al. 2013, Wilson et al. 2015, Heyam et al. 2015). The overlapping 

roles of TRBP and PACT in RNAi and antiviral innate immune response are not surprising, 

as in plants and insects RNAi functions as the main antiviral mechanism. 
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1.4 PACT and movement disorder dystonia 

In 2008, Camargos and colleagues described a recessively inherited form of early-

onset dystonia due to a homozygous missense mutation in PACT (termed PRKRA in 

GenBank) and classified these mutations as DYT16 (Figure 1.3) (Camargos et al. 2008, 

Klein 2008). The dystonias (DYT1-DYT26) (Peall et al 2015; Mencacci et al. 2015; Bragg et 

al. 2011) are a heterogeneous group of movement disorders, in which affected 

individuals develop sustained, painful, involuntary muscle contractions, leading to 

twisted postures and permanent disabilities (Geyer and Bressman 2006). The mutation 

identified by Camargos is a point mutation resulting in substitution of a proline for a 

leucine at amino acid position 222 and is located between the two conserved M1 and 

M2 dsRNA binding motifs (Camargos et al. 2008, Klein 2008). Initially, seven individuals 

from two unrelated families in Brazil were diagnosed with dystonia and were identified 

as having this P222L homozygous mutation, whereas heterozygous family members 

were unaffected (Camargos et al. 2008). Additional dystonia patients, two brothers from 

Poland, have since been found to exhibit the same P222L homozygous phenotype as 

seen in the Brazilian patients (Zech et al. 2014). Soon after the initial mutation was 

identified, a group in Germany identified a German dystonia patient carrying a novel 

heterozygous mutation in PACT (Seiber 2008). In this patient, a deletion of two 

nucleotides (c.266_267delAT) resulted in a frameshift and an early stop codon, resulting 

in a truncation of PACT protein after amino acid 88 followed by the 21 amino acids 

originating from the frameshift that are absent in the endogenous PACT protein (Figure 

1.3) (Seibler et al. 2008). 
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Figure 1.3: A. DYT16 Mutations. Schematic representation of DYT16 dystonia 
mutations. *unknown currently if C213R is recessive or dominant as this was a de novo 
mutation, not inherited. B. Frameshift DYT16 nucleotide sequence aligned to wt PACT. 
Alignment of frameshift DYT16 mutant with wtPACT showing two nucleotide (AT) 
deletion (bold and underlined). The resulting frameshift introduces 21 new amino acids 
(red) and an early stop codon producing a truncation.
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Recently, an American dystonia patient was found to be heterozygous for the P222L 

mutation identified in the Brazilian and Polish patients in combination with a new 

mutation C213R (Lemmon et al. 2013). This patient inherited the P222L mutation from 

his unaffected mother, though the second mutation, C213R, appears to be a de novo 

event, as it was not found in either parent (Lemmon et al. 2013). The same group who 

identified the polish patients with the P222L/P222L genotype, performed additional 

screening of dystonia patients’ genotypes and were able to identify three new 

mutations, each identified currently only in a single patient, and surprisingly associated 

with a dominant inheritance (Zech et al. 2014). Two of the dominant mutations were 

within the coding region, N102S and T34S, and the third patient’s mutation maps in the 

5’ UTR -14A>G (Zech et al. 2014). Last, an additional Brazilian patient was identified 

exhibiting two new mutations, C213F and C77S (de Carvalho Aguilar et al. 2015). This 

patient shows a pattern of recessive inheritance similar to the initial mutations, as 

heterozygous family members (for both mutations) are unaffected (de Carvalho Aguilar 

et al. 2015). While initially the link between PACT and dystonia seemed tentative, with 

the additional mutations (8 total) found only in dystonia patients as well as the global 

incidence (at least 4 countries, representing 3 continents), the causal link between PACT 

and dystonia DYT16 has now solidified. Further emphasizing this, is that none of these 

sequence variations were found in control samples obtained from the 1000 Genomes 

project, the National Heart, Lung, and Blood Institute Exome Sequencing Project (NHLBI-

ESP), or dsSNP137 (a public-domain archive for a broad collection of simple genetic 

polymorphisms), as well as being absent in 2002 in house exomes at the Technische 



 

17 

Universität München and in the 376 controls used for that particular study (Zech et al. 

2014).  

Although additional roles for PACT in development and disease have been indicated, 

they have not been well defined. PKR has been identified to be overactive in many 

neurodegenerative diseases including Alzheimer’s, where a possible involvement of 

PACT as the endogenous PKR activator has been suggested. (Onuki et al. 2004). Staining 

of Alzheimer’s disease brains show increased co-localization of PACT and active p-PKR 

(Paquet et al. 2012). PACT has also shown to be important for migration of cerebellar 

granule neurons in the developing cerebellum. In addition, PACT is involved in post-

natal pituitary development and differentiation, as well as skull and ear development 

based on study of PACT null mice and in mice with a missense point mutation (Yong et 

al. 2015, Rowe et al. 2006, Dickerman et al. 2006, Peters et al. 2009; Bennett et al. 2008) 

Depletion of PACT has also been shown to results in defective neuronal development in 

Drosophila (May 2008). These studies indicate the possibility of additional roles that 

PACT in neuronal development and disease, though currently the only direct link 

identified between PACT function and disease is within the context of dystonia.  

 

1.5 Structure of Dissertation 

Chapter 2 of this dissertation focuses on examining PKR’s ability to respond to 

cellular stress in a neuroblasoma cell line. This was addressed by establishing a human 

neuroblastoma cell line SK-N-SH that stably overexpresses the trans-dominant negative 

mutant of PKR. The level of apoptosis was then measured in this cell line compared to 
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the control SK-N-SH cells stably integrated with the empty vector at various time points 

after tunicamycin induced endoplasmic reticulum (ER) stress. The results showed a 

significant decrease in apoptosis in cells expressing trans-dominant negative PKR 

mutant, establishing that PKR signaling during ER stress regulates apoptosis in neuronal 

cells. This establishes the ubiquitous nature of the PKR stress response pathway and 

indicates a potential for altered stress response in neurons as a possible mechanism for 

DYT16 PACT mutations leading to neuronal abnormalities.  

Chapter 3 investigates the changes in cellular stress response caused by the 

dystonia causing point mutation P222L in PACT. We investigated differences in the 

ability of cells carrying the P222L mutation to respond to stress as compared to wt cells. 

Lymphoblasts derived from patients bearing the P222L homozygous mutations exhibited 

enhanced apoptosis in response to ER stress as compared to wt lymphoblasts. This 

enhanced apoptotic response resulted from increased interactions of P222L protein 

with TRBP thereby leading to a slower kinetics of PKR activation following stress. In 

addition, P222L mutation also increased PACT-PACT homodimer interactions as well as 

PACT-PKR heterodimer interactions resulting in a delayed but more robust and 

sustained PKR activation also contributing to enhanced apoptosis. This work highlights 

the importance of regulating the speed and duration of PKR activation and eIF2α 

phosphorylation in determining cellular fate as well as presenting a cellular 

consequence of one of the dystonia causing point mutations.  

Chapter 4 investigates the role of TRBP in RIG-I mediated induction of interferon 

production during viral stress and examines any difference from the established role of 



 

19 

PACT in RIG-I signaling. To address the potential role of TRBP in RIG-I signaling, a 

transient overexpression system was used in the human embryonic kidney cell line 

HEK293T with an interferon β promoter driven luciferase reporter. The dsRNA viral 

mimics polyI:C and 5’pppdsRNA were used to induce viral stress in the transfected 

HEK293T cells where the resulting levels of IFNβ promoter driven luciferase activity 

could be measured. The results showed that TRBP is able to inhibit RIG-I induced IFN 

production, at least in part, by directly inhibiting RIG-I signaling during both polyI:C and 

5’ppp dsRNA viral stress. This work establishes the functional interplay between the 

dsRNA-binding proteins PACT and TRBP in regulation of RIG-I like receptors and 

downstream interferon production with implications on viral susceptibility, disease 

progression, and antiviral immunity. 

Chapter 5 provides overall conclusions of this dissertation.



 

 
1Vaughn LS, Snee BM, and Patel RC. 2014 Gene. 536(1):90-6 
Reprinted here with permission from publisher. 
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CHAPTER 2: INHIBITION OF PKR PROTECTS AGAINST TUNICAMYCIN-INDUCED APOPTOSIS IN 

NEUROBLASTOMA CELLS1
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2.1 Abstract: 

Endoplasmic reticulum (ER) dysfunction is thought to play a significant role in 

several neurological disorders, including Alzheimer's disease, Parkinson’s disease, 

Huntington’s disease, multiple sclerosis, amyotrophic lateral sclerosis, cerebral 

ischemia, and the prion diseases. ER dysfunction can be mimicked by cellular stress 

signals such as disruption of calcium homeostasis, inhibition of protein glycosylation, 

and reduction of disulfide bonds, which results in accumulation of misfolded proteins in 

the ER and leads to cell death by apoptosis. Tunicamycin, which is an inhibitor of protein 

glycosylation, induces ER stress and apoptosis. In this study, we examined the 

involvement of double stranded (ds) RNA-activated protein kinase PKR in tunicamycin-

induced apoptosis. We used overexpression of the trans-dominant negative, 

catalytically inactive mutant K296R to inhibit PKR activity in neuroblastoma cells. We 

demonstrate that inhibition of PKR activation in response to tunicamycin protects 

neuronal cells from undergoing apoptosis. Furthermore, K296R overexpressing cells 

show defective PKR activation, delayed eIF2α phosphorylation, dramatically delayed 

ATF4 expression. In addition, both caspase-3 activation and C/EBP homologous protein 

(CHOP, also known as GADD153) induction, which are markers of apoptotic cells, are 

absent from K296R overexpression cells in response to tunicamycin. These results 

establish that PKR activation plays a major regulatory role in induction of apoptosis in
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response to ER stress and indicates the potential of PKR as possible target for 

neuroprotective therapeutics. 

 

2.2 Introduction:  

Several chronic neurodegenerative diseases such as Alzheimer’s, Parkinson’s, 

Huntington’s and Amyotrophic lateral sclerosis (ALS) exhibit abnormally folded proteins 

that aggregate and accumulate in neurons (Soto 2003; Ross and Poirier 2004). Presence 

of these aggregated proteins is closely related to initiation and progression of such 

neurodegenerative diseases. In recent years it has become clear that endoplasmic 

reticulum (ER) stress is also associated with neuronal death and contributes to the 

disease pathology (Doyle et al. 2011; Hoozemans and Scheper 2012). Depletion of 

calcium stores from ER lumen, inhibition of protein glycosylation, reduction of disulfide 

bonds, expression of mutated proteins, ischemic insults cause accumulation of 

misfolded or unfolded proteins in the ER and trigger activation of the ER stress pathway 

(Hetz 2012). ER stress response is a compensatory pathway that involves unfolded 

protein response (UPR), which is mediated by generalized suppression of protein 

synthesis via phosphorylation of initiation factor eIF2α, increased expression of 

molecular chaperones to assist protein folding, and ER associated degradation of 

misfolded proteins (Walter and Ron 2011). These protective responses function to 

control the accumulation of misfolded proteins in the ER transiently, but sustained ER 

stress leads to apoptosis with characteristic nuclear chromatin condensation, DNA 

fragmentation, and shrinkage of cell bodies (Gorman et al. 2012; Stefani et al. 2012). 
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Although phosphorylation of eIF2α causes a general block in translation, it paradoxically 

activates translation of the ATF4 mRNA (Donnelly et al. 2013), which encodes a 

transcription factor that binds to and activates the C/EBP homologous protein (CHOP) 

promoter (Tabas and Ron 2011). Thus, the expression of the transcription factor CHOP, 

also known as GADD153 is induced in response to eIF2α phosphorylation (Oyadomari 

and Mori 2004; Wek et al. 2006). Cells lacking CHOP are significantly protected from ER 

stress induced apoptosis and thus CHOP is thought to be one of the major inducers of 

apoptosis in response to ER stress (Zinszner et al. 1998; Oyadomari et al. 2002). 

PKR (protein kinase, RNA activated) is an interferon (IFN)-induced, double-

stranded RNA activated serine-threonine protein kinase that plays a pro-apoptotic role 

during prolonged ER stress (Shimazawa and Hara 2006; Singh et al. 2009; Nakamura et 

al. 2010). Most of the early work on PKR elucidated its function in the IFN regulated 

antiviral pathways (Katze 1995). However, PKR also plays a central role in inducing 

apoptosis in response to cellular stress (Williams 1999). Activation of PKR's catalytic 

activity requires the binding of one of its activators also leading to PKR 

autophosphorylation (Sadler and Williams 2007). There are two possible activators of 

PKR; double-stranded (ds) RNA, produced during viral infections (Garcia et al. 2007), and 

the protein activator PACT, which is the only known cellular protein that activates PKR 

(Patel and Sen 1998). Although recombinant PACT protein can activate PKR by a direct 

interaction in vitro, PACT-dependent PKR activation in cells occurs only in response to a 

stress signal (Ito et al. 1999; Patel et al. 2000; Bennett et al. 2006; Singh et al. 2009). 

PACT is phosphorylated in response to stress signals leading to its increased association 
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with and consequent catalytic activation of PKR (Patel et al. 2000; Singh et al. 2009). 

Activated PKR phosphorylates the translation initiation factor eIF2α, which results in an 

inhibition of protein synthesis and subsequent apoptosis (Patel et al. 2000). Our work 

has previously established that PACT-induced PKR activation in response to ER stress is 

essential for induction of apoptosis in neuronal cells (Singh et al. 2009). We 

demonstrated that PACT is phosphorylated in response to ER stressor tunicamycin 

(inhibitor of protein glycosylation) in neuroblastoma cells and is responsible for PKR 

activation by direct interaction. Furthermore, PACT as well as PKR null fibroblasts are 

markedly resistant to tunicamycin. Reconstitution of PKR and PACT expression in the 

null cells renders them sensitive to tunicamycin, thus demonstrating that PACT-induced 

PKR activation plays an essential function in induction of apoptosis. 

Substantial evidence correlating presence of activated PKR with 

neurodegenerative disease pathology exists from studies performed on human brain 

tissue (Chang et al. 2002; Hugon et al. 2009). In the present study we investigated if 

inhibition of PKR activation would protect the neuronal cells from apoptosis in response 

to ER stress. We established neuroblastoma cell lines that overexpress PKR’s 

catalytically inactive mutant K296R. The K296R mutation, which substitutes an arginine 

for lysine at position 296 within the catalytic subdomain II of PKR destroys its kinase 

activity (Ortega et al. 1996). It is well established that K296R prevents PKR activation in 

cells by direct interaction and heterodimer formation as well as by competition for 

activating molecules (Thomis and Samuel 1995). Our results indicate that K296R 

overexpressing cells are resistant to apoptosis in response to ER stressor tunicamycin. 
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Furthermore, this resistance can be attributed to a lack of PKR activation, delayed eIF2α 

phosphorylation, and a lack of ATF4 and CHOP induction. These results support the idea 

that inhibition of PKR activity could be explored as a therapeutic option for 

neurodegenerative conditions. 

 

2.3 Materials and Methods 

Reagents, Cells, and Antibodies 

SK-N-SH cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing 

10% fetal bovine serum and penicillin/streptomycin. The reagents used were as follows: 

tunicamycin (Santa Cruz), phosphatase Inhibitor cocktail (Sigma), pIRESpuro2 plasmid 

(Clontech), DAPI nuclear stain (Sigma). The following antibodies were used:  Anti-Flag 

monoclonal M2 (Sigma A8592), Anti-PKR (human) monoclonal (71/10, R & D systems), 

Anti-phospho-PKR (Thr451) (Cell Signaling, 3075), Anti-eIF2α (Invitrogen, AH01182), 

Anti-phospho-eIF2α (ser51) (Epitomics, 1090-1; Cell Signaling, 9721), Anti-ATF4 (Santa 

Cruz, sc-200), and caspase-3 (Santa Cruz H-277).  

 

DNA fragmentation analysis 

DNA fragmentation analysis was performed as described before (Singh et al. 2009). 

Equal numbers of EV and K11 SK-N-SH cells were treated with either 2 µg/ml or 5 µg/ml 

tunicamycin for 72 hours. Adherent and non-adherent (apoptotic) cells in culture 

medium were harvested and washed twice with ice cold 1X PBS solution. Cells were 

then lysed in 100 µl lysis buffer (10mM Tris-HCl pH 7.5, 10mM EDTA, 0.5% Triton X-100) 
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on ice for 5 minutes. Lysate was centrifuged at 13,000 xg for 5 minutes; supernatant was 

treated with proteinase K at 37°C for 1 h (1mg/ml). Nucleic acids were precipitated with 

300 μM NaCl and 50% isopropanol at -20°C for at least an hour. Precipitates were 

collected at 13,000 xg for 5 minutes and the resulting pellet was left to air dry. Pellet 

was then re-suspended in modified TE buffer (10mM Tris-HCl pH 7.5, 10mM EDTA), 

treated with RNase A (20µg/ml) at 37°C for 30 min. The resulting DNA preparation was 

run and analyzed on a 1.5% agarose gel.  

 

DAPI staining 

After treatment with 5 µg/ml tunicamycin for indicated period of time, cells were 

washed twice with 1X PBS, then fixed in a 1:1 solution of methanol:acetone for 1 min. 

The fixative was washed with ice cold 1X PBS. DAPI stain (4,6-diamidino-2-phenylindole) 

at 0.5 µg/ml in PBS was placed onto the cells for 5 minutes at room temperature in the 

dark. After incubation, the cells were rinsed once with 1X PBS, and viewed under the 

fluorescence microscope and counted as live or apoptotic. % apoptotic cells were 

calculated using the formula, % apoptosis = (fluorescent dead cells/total fluorescent 

cells) X 100. 

 

Western Blot analysis 

Cells were treated with tunicamycin and harvested at indicated time points. Cells were 

collected, washed with two washes with ice cold 1X PBS. Harvested cells were lysed in 

western lysis buffer (2% Triton X-100, 20mM Tris-HCl pH 7.5, 100mM KCl, 200mM NaCl, 



 

27 

4mM MgCl2, Glycerol 40%, phosphatase inhibitor cocktail (Sigma) 1:100) for 5 minutes 

on ice. Lysate was centrifuged at 13,000 xg for 2 minutes. Protein concentration in the 

supernatant was quantified Bradford reagent. For the analysis of eIF2α phosphorylation 

25 µg of the total protein was analyzed and for PKR phosphorylation, ATF4, and CHOP 

50 µg of the total protein was analyzed by western blot analysis. 

 

PKR kinase activity assay  

PKR activity assays were performed using an anti-PKR monoclonal antibody (R & D 

system; 71/10). EV and K11 cells were harvested when they were at 70% confluency. 

Cells were washed in ice-cold PBS and collected by centrifugation at 600 xg for 5 min. 

Cell extracts were prepared in lysis buffer (20 mM Tris-HCl pH 7.5, 5 mM MgCl2, 50 mM 

KCl, 400 mM NaCl, 2 mM DTT, 1% Triton X-100, 100 U/ml aprotinin, 0.2 mM PMSF, 20% 

glycerol). A 100 µg aliquot of total protein was immunoprecipitated using anti-PKR 

monoclonal antibody (71/10) in high salt buffer (20 mM Tris-HCl pH 7.5, 50 mM KCl, 400 

mM NaCl, 1 mM EDTA, 1 mM DTT, 1% Triton X-100, 100 U/ml aprotinin, 0.2 mM PMSF, 

20% glycerol) at 4C for 30 min on a rotating wheel. Then 20 l of Protein A-agarose 

beads were added and incubation was carried out for a further 1 h. The Protein A-

agarose beads were washed four times in 500 µl of high-salt buffer and twice in activity 

buffer (20 mM Tris-HCl pH 7.5, 50 mM KCl, 2 mM MgCl2, 2 mM MnCl2, 0.1 mM PMSF, 5% 

glycerol). The PKR assay was performed with PKR still attached to the beads in activity 

buffer containing 0.1 mM ATP and 1 µCi of [ 32P] ATP at 30C for 10 min. The standard 

activators of the enzyme were 1 µg/ml of polyI.polyC (dsRNA) or 0.116 pmol of pure 
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recombinant PACT protein. Labeled proteins were analyzed by SDS-PAGE on a 12% gel 

followed by autoradiography.  

 

2.4 Results 

Generation of K296R overexpressing SK-N-SH cell lines: 

In order to develop a system to test the effects of inhibition of PKR’s kinase 

activity, we generated SK-N-SH lines that carried PKR’s dominant negative mutant 

K296R stably integrated into the genome. SK-N-SH cells constitutively express a low 

level of endogenous wild type PKR. The flag epitope tagged mutant K296R reading 

frame was cloned into a bicistronic vector, pIRESpuro2. This allowed for high efficiency 

selection for a stable integration of the gene of interest. In this expression vector, K296R 

is cloned as a first reading frame and puromycin resistance marker for selection is 

expressed from a second, downstream reading frame. The presence of an internal 

ribosome entry site (IRES) element between the two reading frames allows for 

expression of K296R and puromycin resistance marker from the same mRNA molecule, 

thereby increasing the efficiency of isolating of clones that express the gene of interest 

among the puromycin resistant clones. Total 8 clones were expanded and analyzed for 

Flag-K296R PKR expression. As seen in Fig. 2.1 A, the western blot analysis showed 

expression of flag-K296R protein to different levels in various clones (lanes 1-8). The 

cells stably transfected with the empty vector (EV) pIRESpuro2 did not express any FLAG 

K296R (lane 9). Clone K11, which showed expression of flag-K296R at a high level was 

selected for further analysis of ER stress induced apoptosis. To ensure that  
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Figure 2.1: Overexpression of K296R mutant inhibits PKR activity in SK-N-SH cells. A. 
Establishment of stable SK-N-SH lines overexpressing dominant negative K296R 
mutant PKR. pIRESpuro2 empty vector (EV) and FLAG-K296R/pIRESpuro2 transfected 
(K1- K12) puromycin resistant clones were isolated and expanded. Expression of FLAG-
K296R was verified by western blot analysis of 50 µg total protein with anti-flag 
antibody. Monoclonal anti-β-actin antibody was used on the same blot ensure all lanes 
were loaded equally. B. Kinase activity assay. PKR immunoprecipitated from EV or K11 
cell extracts was activated by the addition of dsRNA or purified recombinant PACT. PKR 
activators were added as follows- Lane 1 and 4: no activator; Lane 2 and 5: 1 µg/ml 
polyI.polyC; lane 3 and 6: 4 ng of pure PACT protein. Position of autophosphorylated 
PKR is indicated by an arrow.  
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overexpression of K296R does inhibit PKR activation in K11 cells, we performed a PKR 

kinase activity assay with extracts prepared from EV and K11 cells. As seen in Fig. 2.1 B, 

extract from EV cells showed a low level of PKR kinase activity in the absence of any 

activator (lane 1) and showed a robust activation in the presence of dsRNA and PACT 

(lanes 2 and 3). In contrast to this, extract from K11 cells showed undetectable levels of 

PKR kinase activity in the absence of activator (lane 4) and showed significantly reduced 

kinase activity in the presence of dsRNA as well as PACT (lanes 5 and 6). These results 

establish that an overexpression of K296R inhibits PKR activity in K11 cells very 

efficiently. 

 

Overexpression of K296R protects cells from tunicamycin-induced apoptosis 

In order to test the effect of K296R overexpression, we compared apoptosis of 

EV and K11 cells in response to tunicamycin treatment, which induces ER stress by 

blocking protein glycosylation in the ER. The progression of apoptosis was monitored by 

DNA fragmentation analysis 72 hours after tunicamycin treatment. Late apoptosis is 

associated with fragmentation of chromosomal DNA into multiples of the nucleosomal 

units, known as DNA laddering (Yeung 2002). As seen in Fig. 2.2 A, the EV cells show 

distinct fragmentation of DNA after 72 treatment at both 2 μg/ml and 5 μg/ml 

tunicamycin. In contrast, there is little or no DNA fragmentation seen with 2 μg/ml 

tunicamycin treatment and only very slight fragmentation seen with 5 μg/ml 

tunicamycin in the K11 cells. These results indicate that the K11 SK-N-SH cells are 

markedly resistant to apoptosis in response to tunicamycin treatment.   
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Figure 2.2: Inhibition of PKR activity reduces apoptosis in response to tunicamycin. A. 
DNA Fragmentation analysis. EV and K11 were treated with either 2 µg/ml or 5 µg/ml 
tunicamycin as indicated for 72 h. The DNA fragmentation was analyzed 72 hours after 
treatment. Cell type and treatment concentration is indicated on top. C indicates 
untreated control cells and M indicates 100 bp ladder DNA size markers. B. Chromatin 
condensation analysis. EV and K11 were treated with 5 µg/ml tunicamycin for 24 h or 
48 h, the data shown is from 24 h treatment samples. At the end of treatment period 
the cells were fixed and stained with DAPI nuclear stain. The fluorescent nuclei were 
analyzed under a microscope. C. Quantification of chromatin condensation analysis. 
Approximately 600 nuclei were counted either as normal or apoptotic based on DAPI 
intensity and nuclear morphology. Percentage of apoptotic nuclei was calculated and is 
represented as a bar graph. The error bars represent standard error. D. Caspase-3 
activation analysis. EV and K11 cells were treated with 2 µg/ml tunicamycin and cell 
extracts were prepared at indicated times after treatment. Induction of caspase-3 
cleavage was examined by western blot analysis with anti-caspase-3 antibody. The same 
blot was stripped and re-probed with anti-β-actin antibody. The treatment times are 
indicated on top of lanes and C represents untreated cells.  
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To further quantify the level of apoptosis in EV versus K11 cells, DAPI staining 

was performed on fixed cells at 24 and 48 h after tunicamycin treatment to assay for 

chromatin condensation. Cells were analyzed by looking at morphology of the nucleus. 

Viable, non-apoptotic cells show a diffuse blue fluorescence of the nucleus and 

apoptotic cells show nuclei that have intense blue fluorescence, often times these 

apoptotic nuclei exhibited densely fluorescent lobular appearance. Fig. 2.2 B shows 

representative images of both EV and K11 cells treated with 5 µg/ml tunicamycin 

(Tunica) for 24 h compared to untreated cells (C). In the EV cells, there is a distinct 

increase in condensed nuclear morphology in response to tunicamycin treatment. In the 

K11 cells, there are fewer condensed, intensely fluorescent nuclei in the tunicamycin 

treated sample in comparison with the EV cells. Fig. 2.2 C shows the quantification of 

the data represented in fig. 2.2 B. More than 600 nuclei for each sample were counted 

as apoptotic (intense fluorescence) or non-apoptotic (dull, diffused fluorescence). The 

percentage of apoptotic nuclei was calculated and is represented in the bar graph. As 

seen in Fig. 2.2 C, tunicamycin treatment showed about 15% apoptosis at 24 h time 

point in EV cells, which increased further to about 22% at 48 h (bleu bars). In contrast to 

this, K11 cells showed about 8% apoptosis at 24 h and about 13% apoptosis at 48 h (red 

bars). These results confirm that overexpression of K296R protein protects SK-N-SH cells 

from apoptosis in response to tunicamycin. 

In order to further assay for apoptosis in response to tunicamycin, we studied 

activation of a well-established apoptosis marker, caspase-3. We assayed for caspase-3 

activation using western blot analysis using an antibody that detects both the 
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procaspase-3 and the active cleaved caspase-3 forms. As seen is Fig. 2.2 D, caspase-3 

cleavage product corresponding to active caspase-3 was observed at 12 and 24 h after 

tunicamycin treatment in EV cells (lanes 5 and 6). In contrast to this, no active caspase-3 

cleavage products were detected in K11 cells in response to tunicamycin. These results 

further confirm that K11 cells are resistant to tunicamycin induced apoptosis. 

 

PKR activation in response to tunicamycin is inhibited in K11 cells 

Our previous work established that PACT is phosphorylated in response to 

tunicamycin induced ER stress and associates with PKR to activate its kinase activity 

(Singh et al. 2009). PKR activation in response to tunicamycin leads to phosphorylation 

of eIF2α, which signals inhibition of protein synthesis as part of the ER stress response 

pathway. Thus, we next analyzed PKR activation in response to tunicamycin in K11 and 

EV cells. A western blot analysis was performed using a threonine 451 phosphospecific 

PKR antibody that specifically detects the catalytically active PKR. As seen in Fig. 2.3, the 

EV cells show serine 451 phosphorylation (and therefore activation of PKR) as early as 2 

hours after tunicamycin treatment (lane 2) and PKR remains activated at 8 hours after 

treatment (lane 4). In K11 cells, PKR shows no phosphorylation at any time points and 

remains inactive even after 8 hours of treatment (lanes 5-8). The same blot was probed 

with anti-PKR monoclonal antibody to detect total PKR levels in cells, which showed 

equal amount of total PKR in all lanes of EV and K11. An increased amount of total PKR 

can be seen in the K11 cells (lanes 5-8), which can be accounted for by the Flag-K296R 

PKR being overexpressed in these cells in addition to the endogenous PKR.  Flag   
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Figure 2.3: Overexpression of K296R inhibits PKR activation in response to 
tunicamycin. EV and K11 cells were treated with 2 µg/ml tunicamycin and cell extracts 
were prepared at indicated times after treatment. Phosphorylation of PKR was 
examined by western blot analysis with a phosphothreonine-451 specific antibody. The 
same blot was stripped and re-probed with an anti-PKR monoclonal, anti-flag 
monoclonal, and anti-β-actin monoclonal antibodies. The treatment times are indicated 
on top of lanes and C represents untreated cells. 
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antibody showed presence of Flag-K296R protein in K11 cells and not in EV cells and β-

actin antibody showed equal loading in all lanes. 

 

eIF2α phosphorylation in response to tunicamycin is delayed in K11 cells 

To further investigate the effect of PKR inhibition on markers of ER stress 

response pathway, we investigated the phosphorylation status of eIF2α. Western blot 

analysis was performed using a serine 51 phosphospecific anti-eIF2α antibody. As shown 

in Fig. 2.4, EV cells have an initial increase in eIF2α phosphorylation 2 h after 

tunicamycin treatment (lane 2). Phosphorylation of eIF2α is maintained until 8 h (lane 4) 

after treatment and at 12 h it shows a decrease (lane 5) returning to basal levels by 24 h 

(lane 6). In contrast, the increase in eIF2α phosphorylation is not seen until 12 hours 

after treatment (lane 11) in K11 cells. The same blot was probed with anti-eIF2α 

antibody to ensure total eIF2α protein levels remained unchanged and with anti-β-actin 

antibody to ensure equal loading in all lanes. 

 

Induction of transcription factor ATF-4 in response to tunicamycin is delayed in K11 cells 

One of the consequences of eIF2α phosphorylation is the induction of ATF-4, 

which is a transcription factor that plays a central role in promoting apoptosis. We 

analyzed the expression of ATF-4 in response to tunicamycin in K11 cells. As shown in 

Fig. 2.5 A, the induction of ATF4 was seen in EV cells at 4 h after treatment (lane 3), with 

a consistent increase until 24 h after treatment (lanes 4-6). However, K11 cells exhibited 

a very slight induction of ATF4 at 4 h after treatment (lane 9) with the larger induction   
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Figure 2.4: Overexpression of K296R inhibits eIF2α phosphorylation in response to 
tunicamycin. EV and K11 cells were treated with 2 µg/ml tunicamycin and cell extracts 
were prepared at indicated times after treatment. Phosphorylation of eIF2α was 
examined by western blot analysis with a phosphoserine-51 specific antibody. The same 
blot was stripped and re-probed with an anti-eIF2α, and anti-β-actin antibodies. The 
treatment times are indicated on top of lanes and C represents untreated cells. 
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being delayed until 24 h after treatment (lane 12). These results indicate that ATF-4 

induction is compromised in K11 cells in response to tunicamycin. 

 

Absence of CHOP induction in response to tunicamycin in K11 cells 

The essential role of transcription factor CHOP in the apoptotic pathway induced 

by ER stress is unequivocally established. Thus, we compared CHOP induction in 

response to tunicamycin in EV and K11 cells by western blot analysis. As shown in Fig. 

2.5 B, CHOP induction was seen at 8 h and 12 h after tunicamycin treatment in EV cells 

(lanes 3 and 4) and declined at 24 h after tunicamycin treatment (lane 5). In contrast to 

this, there was no induction of CHOP expression in response to tunicamycin in K11 cells 

(lanes 6-10). These results demonstrate that the induction of pro-apoptotic protein 

CHOP is compromised in K11 cells. 

 

2.5 Discussion  

Abnormally folded proteins have been shown to aggregate in neurons in several 

chronic neurodegenerative diseases and are closely correlated with either the initiation 

or development of disease symptoms (Aguzzi and O'Connor 2010). The 

neurodegeneration observed in such diseases is thought to result from ER stress caused 

by accumulation of misfolded protein aggregates (Rao and Bredesen 2004). One aim of 

cellular ER stress response is to inhibit protein synthesis globally to cope with folding of 

accumulated misfolded proteins and that is mainly achieved by phosphorylation of the 

initiation factor eIF2α on serine 51 (Wek and Cavener 2007). There are two protein   
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Figure 2.5: A. Overexpression of K296R inhibits induction of ATF4 in response to 
tunicamycin. EV and K11 cells were treated with 2 µg/ml tunicamycin and cell extracts 
were prepared at indicated times after treatment. Induction of ATF4 expression was 
examined by western blot analysis with anti-ATF4 antibody. The same blot was stripped 
and re-probed with anti-β-actin antibody. The treatment times are indicated on top of 
lanes and C represents untreated cells. B. Overexpression of K296R inhibits induction 
of CHOP (GADD153) in response to tunicamycin. EV and K11 cells were treated with 2 
µg/ml tunicamycin and cell extracts were prepared at indicated times after treatment. 
Induction of CHOP expression was examined by western blot analysis with anti-CHOP 
antibody. The same blot was stripped and re-probed with anti-β-actin antibody. The 
treatment times are indicated on top of lanes and C represents untreated cells. 
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kinases that respond to ER stress to phosphorylate eIF2α; PKR and PKR-like ER resident 

kinase (PERK). Phosphorylation of eIF2α by PERK in response to ER stress is considered a 

protective response since it attenuates the new protein synthesis and the cells gain time 

to manage correct folding (Rao and Bredesen 2004) or degrade the accumulated 

misfolded proteins (Ron and Walter 2007). In accordance with this, homozygous 

mutations in PERK cause pancreatic beta-cell death and diabetes (Shi et al. 2003; Zhang 

et al. 2006). Thus, lack of PERK kinase activity and lack of eIF2α phosphorylation makes 

the cells more vulnerable to apoptosis in response to ER stress (Harding et al. 2000). In 

contrast to this, PKR activation by ER stressors such as thapsigargin (which causes Ca+ 

release from the ER) or tunicamycin leads to activation of apoptotic pathways 

(Srivastava et al. 1995; Scheuner et al. 2006). Although the primary result of PKR 

activation by ER stress is also phosphorylation of eIF2α on serine-51, the outcome of this 

event is opposite of PERK activation and leads to cell death by apoptosis. In accordance 

with this, inhibition of PKR activation in response to ER stress leads to a reduction in 

apoptosis (Tang et al. 1999; Onuki et al. 2004) and PKR null cells are resistant to ER 

stress induced apoptosis (Singh et al. 2009). These apparently opposite effects of these 

two eIF2α kinases probably arise from phosphorylation of proteins other than eIF2α.  

Previously our work on ER stress has established that PACT mediated PKR 

activation is essential for tunicamycin-induced apoptosis (Singh et al. 2009). Both PKR 

and PACT null fibroblasts are markedly resistant to ER stress induced apoptosis. We 

wanted to explore the requirement of PKR activity in neuronal cell apoptosis in response 

to ER stress because of its central importance in neurodegenerative diseases. Thus, in 
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the current study we used a specific inhibitor of PKR to block PKR activation in 

neuroblastoma cells after inducing ER stress and investigated its effect on neuronal 

apoptosis. Consistent with our previous observations, our results presented here 

indicate that inhibition of PKR inhibits apoptosis in neuroblastoma cells. Inhibition of 

apoptosis by PKR inhibition could be attributed to a lack of ATF4 and consequently 

CHOP induction. While phosphorylation of eIF2α reduces the synthesis of a majority of 

cellular proteins, the translation of mRNAs containing small upstream open reading 

frames (uORFs) within their 5′UTR is selectively increased (Harding et al. 2000). The 

mRNA encoding ATF4 transcription factor contains uORFs and thus ATF4 synthesis is 

upregulated in response to eIF2α phosphorylation. ATF4 promotes the expression of the 

proapoptotic transcription factor, CHOP (Fawcett et al. 1999; Harding et al. 2000). 

CHOP-deficient cells are modestly resistant to ER stress-inducing agents compared to 

their wild-type counterparts (Zinszner et al. 1998), while enforced CHOP expression 

sensitizes cells to ER stress (McCullough et al. 2001). Thus, the lack of CHOP induction in 

K11 cells is consistent with their insensitivity to tunicamycin. Furthermore, a lack of 

procaspase-3 cleavage to generate the active caspase-3 in K11 cells further establishes 

that K11 cells are protected from induction of apoptosis in response to tunicamycin. 

The link between presence of activated PKR and neurodegeneration has been 

explored and confirmed for over a decade since the first report showed enhanced levels 

of activated PKR in brains of patients suffering from Huntington’s disease (Peel et al. 

2001). This was soon followed by a report establishing increased PKR activation and 

eIF2α phosphorylation in Alzheimer’s patients’ brains, especially in degenerating 
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hippocampal neurons (Chang et al. 2002). Amyloid-β peptide has been shown to induce 

PKR and eIF2α phosphorylation in primary neurons and neuroblastoma cells, inhibition 

of which also blocks neuronal apoptosis (Chang et al. 2002; Suen et al. 2003). Neurons 

from PKR null mice were resistant to amyloid-β toxicity compared to their wt 

counterparts (Suen et al. 2003). Inhibition of PKR using a randomized ribozyme library 

could protect SK-N-SH cells from ER stress induced apoptosis, however the mechanism 

of this protection was not investigated (Onuki et al. 2004). Phosphorylated PKR and 

eIF2α co-localize with phosphorylated tau protein in affected degenerating neurons and 

senile plaques in AD patients as well as in transgenic mouse models (Peel and Bredesen 

2003; Page et al. 2006). Elevated levels of active PKR and phosphorylated eIF2α that 

correlated with cognitive decline were reported in blood lymphocytes of Alzheimer’s 

patients (Paccalin et al. 2006). Enhanced neuronal immunoreactivity for phosphorylated 

PKR was seen in extrastriatal brain regions in brains from Parkinson’s and Huntington’s 

disease patients (Bando et al. 2005). In case of HIV-infected patients, the 

neurodegeneration caused by gp120 glycoprotein has been associated with dementia 

and correlates with PKR induction and activation (Alirezaei et al. 2007). In case of 

Creutzfeld-Jacob disease the presence of activated PKR in affected brains was reported 

using an antibody specific for activated PKR (Paquet et al. 2009). Thus, presence of 

activated PKR correlates well with neurodegeneration and apoptosis seen in various 

diseases. 

In order to further investigate and establish involvement of PKR in neuronal 

apoptosis seen in various neurodegenerative diseases, it would be of value to test 
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disease progression in established mouse models of such diseases in either a PKR null 

background or in the presence of agents that modulate PKR activity. Studies can also be 

extended in primary cultured neurons established from PKR null mice to test if the lack 

of PKR protects the neurons from amyloid-  

Inhibition of PKR activation in response to ER stress thus may be beneficial in 

preventing apoptosis and neurodegeneration in patients. Inhibition of PKR activity by a 

small molecule inhibitor oxandol-imidazol compound C16 has been shown to offer 

protection against apoptosis in neuronal cell cultures (Shimazawa and Hara 2006). Using 

a different neuroblastoma cell line SH-SY5Y, and employing a pharmacological approach 

to inhibit PKR activity, these authors demonstrated that PKR activity plays an essential 

function in induction of apoptosis in response to ER stress. Thus, protection against 

neuronal apoptosis via use of PKR inhibition has now been tested in two different 

neuroblastoma cell lines by using different experimental approaches. Our results 

presented in this paper are obtained by using a specific trans-dominant negative mutant 

to inhibit PKR activation and thus rules out any non-specific off target effects that 

chemical inhibitors may exhibit. Indeed, such lack of specificity was recently reported 

for one of the small molecule inhibitors previously thought to be specific for PKR (Chen 

et al. 2008). A peptide inhibitor (PRI) of PKR has been described that has not been 

explored yet for inhibition of ER stress induced apoptosis (Nekhai et al. 2000). Such 

peptide inhibitors are likely to be more specific in targeting PKR activation as compared 

to chemical inhibitors. It also remains to be tested if PKR inhibition may relieve 

neurodegeneration in mouse models of Alzheimer’s disease. Our results presented here 
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demonstrate that PKR inhibition using overexpression of a highly specific trans 

dominant negative mutant offers protection against neuronal apoptosis and support the 

idea that PKR may be a good target for drug development for treatment of 

neurodegenerative diseases.  



 

 
1This research was originally published in the Journal of Biological Chemistry. Vaughn LS, 
Bragg DC, Sharma N, Camargos S, Cardoso F, and Patel RC. “Altered Activation of Protein 
Kinase PKR and Enhanced Apoptosis in Dystonia Cells Carrying a Mutation in PKR 
Activator Protein PACT.” J Biol Chem. 2015; 290(37):22543-57. © the American Society 
for Biochemistry and Molecular Biology. Reprinted here with permission from the 
publisher. 
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CHAPTER 3:  ALTERED ACTIVATION OF PROTEIN KINASE PKR AND ENHANCED APOPTOSIS IN 

DYSTONIA CELLS CARRYING A MUTATION IN PKR ACTIVATOR PROTEIN PACT1 
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3.1 Abstract 

PACT is a stress-modulated activator of the interferon (IFN)-induced double-

stranded (ds) RNA-activated protein kinase (PKR). Stress-induced phosphorylation of 

PACT is essential for PACT’s association with PKR leading to PKR activation. PKR 

activation leads to phosphorylation of translation initiation factor eIF2α inhibition of 

protein synthesis, and apoptosis. A recessively inherited form of early-onset dystonia 

DYT16 has been recently identified to arise due to a homozygous missense mutation 

P222L in PACT. In order to examine if the mutant P222L protein alters the stress-

response pathway we examined the ability of mutant P222L to interact with and 

activate PKR. Our results indicate that the substitution mutant P222L activates PKR 

more robustly and for longer duration albeit with slower kinetics in response to the 

endoplasmic reticulum (ER) stress. In addition, the affinity of PACT-PACT and PACT-PKR 

interactions is enhanced in dystonia patient lymphoblasts, thereby leading to intensified 

PKR activation and enhanced cellular death. P222L mutation also changes the affinity of 

PACT-TRBP interaction after cellular stress, thereby offering a mechanism for the 

delayed PKR activation in response to stress. Our results demonstrate the impact of a 

dystonia-causing substitution mutation on stress induced cellular apoptosis.
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3.2 Introduction 

PKR is an interferon (IFN)-induced serine/threonine kinase expressed ubiquitously 

that mediates IFN’s antiviral actions and regulates cellular survival and apoptosis in 

response to stress (Garcia et al. 2006). PKR's kinase activity requires binding to one of its 

activators leading to its autophosphorylation and enzymatic activation (Meurs et al. 

1990). Double-stranded (ds) RNA, a replication intermediate for several viruses, binds to 

PKR’s two dsRNA-binding motifs (dsRBMs) (Green and Mathews 1992; McCormack et al. 

1992; Patel and Sen 1992), and activates PKR by unmasking the ATP-binding site 

(Nanduri et al. 2000) leading to its autophosphorylation (Cole 2007). The two dsRBMs 

also mediate dsRNA-independent protein-protein interactions with other proteins that 

carry similar domains (Patel et al. 1995; Chang and Ramos 2005). Among these are 

proteins TRBP (human immunodeficiency virus (HIV)-1 transactivation-responsive (TAR) 

RNA-binding protein) that inhibits PKR activity (Benkirane et al. 1997), and PKR activator 

protein PACT (Patel and Sen 1998). 

PACT's association with PKR activates PKR in the absence of dsRNA (Patel and Sen 

1998; Patel et al. 2000). PACT contains three copies of dsRBM (Fig. 3.1 A), of which the 

two amino-terminal motifs (M1 and M2) bind to the dsRBMs of PKR. The third, carboxy-

terminal motif 3 (M3) is dispensable for interaction with PKR but is essential for PKR 

activation and interacts with a specific region in its kinase domain (Peters et al. 2001; 

Huang et al. 2002). Although purified, recombinant PACT can activate PKR by direct 

interaction in vitro (Patel and Sen 1998), PACT-dependent PKR activation in cells occurs 

in response to stress signals (Ito et al. 1999; Patel et al. 2000; Bennett et al. 2006; Singh 
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et al. 2009) such as arsenite, peroxide, growth factor withdrawal, thapsigargin, and 

cellular apoptosis (Ito et al. 1999; Patel et al. 2000; Bennett et al. 2006). PACT (and its 

murine homolog RAX) is phosphorylated in response to stress leading to its increased 

association with PKR (Ito et al. 1999; Patel et al. 2000; Bennett et al. 2006).  

Similar to PACT, TRBP is a dsRNA binding protein but unlike PACT it inhibits PKR. In 

uninfected cells and in the absence of cellular stress TRBP inhibits PKR by direct binding 

(Cosentino et al. 1995) and by forming heterodimers with PACT (Daher et al. 2009). 

Recently we have shown that cellular stress signals cause PACT to dissociate from TRBP 

leading to PACT-mediated PKR activation. TRBP-PACT heterodimers present in 

unstressed cells dissociate as PACT is phosphorylated on S287 in M3 in response to 

oxidative stress, serum starvation and ER stress (Peters et al. 2006; Singh et al. 2011) by 

a protein kinase yet to be identified. Stress-induced phosphorylation at serine 287 has a 

dual role in PACT mediated PKR activation as it causes dissociation of PACT-TRBP 

complex and at the same time increases PACT’s affinity for PKR (Singh et al. 2011). Two 

PACT molecules can also interact via the conserved dsRBMs and phosphorylation of 

serine 287 enhances PACT-PACT interactions (Singh and Patel 2012). The PACT-PACT 

homodimers interact strongly with PKR leading to catalytically active PKR. Thus stress-

induced phosphorylation of serine 287 of PACT serves to enhance PACT-PACT and PACT-

PKR interactions in addition to reducing PACT-TRBP interactions. Consequently, 

apoptosis in response to stress signals is regulated by various PACT-TRBP-PKR 
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interactions, with each partner capable of forming homomeric interactions as well as 

interacting with the other two proteins. 

Camargos and colleagues described a recessively inherited form of early-onset 

generalized dystonia due to a homozygous missense mutation in PACT (PRKRA) 

(Camargos et al. 2008). The dystonias are a heterogeneous group of movement 

disorders in which affected individuals develop sustained, often painful involuntary 

muscle contractions and twisted postures that can have devastating consequences 

(Geyer and Bressman 2006). For DYT16, the affected members from the two unrelated 

families have the same P222L mutation in PACT gene (Camargos et al. 2012). This point 

mutation lies between the conserved motifs M2 and M3 within PACT (Klein 2008). The 

other mutation reported in PACT that causes dystonia is a frameshift mutation which 

results in truncation of the protein after 88 amino acids (Seibler et al. 2008). Recently, 

three more recessive mutations (C77S, C213F, and C213R) were found in DYT16 patients 

(Brashear 2013; Lemmon et al. 2013; de Carvalho Aguiar et al. 2015). The three most 

recent mutations reported in Polish and German families (T34S, N102S, and c.-14A>G) 

indicate a worldwide involvement of PACT (PRKRA) gene in dystonia (Zech et al. 2014). 

In spite of the identification of many genetic mutations that lead to dystonia, the 

molecular mechanisms involved in disease onset or progression have remained largely 

unknown (Bragg et al. 2011). In this report we have analyzed the effect of P222L 

mutation on PACT’s biochemical properties such as dsRNA binding, PKR interaction, and 

PKR activation. P222L mutation does not affect PACT’s ability to bind dsRNA, or its 

ability to interact with PKR in vitro. However, in mammalian cells the P222L mutant 
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protein interacts with higher affinity with TRBP, forms homodimers more efficiently, and 

in response to stress causes a delayed but much prolonged activation of PKR. In 

accordance to the altered biochemical properties of P222L protein, dystonia patient 

cells exhibit enhanced apoptosis in response to endoplasmic reticulum (ER) stressor 

tunicamycin. These results indicate that dystonia-causing PACT mutation alters the 

kinetics and duration of eIF2α phosphorylation in response to ER stress and has 

deleterious implications on cell survival. 

 

3.3 Materials and Methods 

Reagent, Cell Lines, and Antibodies:  

Patient B-lymphoblast cell lines were cultured in RPMI 1640 medium and HeLa M 

cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM), both containing 

10% fetal bovine serum and penicillin/streptomycin. The wt and DYT16 dystonia patient 

lymphoblast cell lines were Epstein Barr Virus (EBV)-transformed to create stable cell 

lines, as previously described (Anderson and Gusella 1984). The other reagents were as 

follows: tunicamycin (Santa Cruz), Phosphatase Inhibitor Cocktail (Sigma), The 

antibodies used are as follows: Anti-flag monoclonal M2 (Sigma A8592), Anti-PKR 

(human) monoclonal (71/10, R&D Systems), anti-phospho-PKR polyclonal (Thr451) (Cell 

Signaling, 3075), anti-eIF2α polyclonal (Invitrogen, AH01182), anti-phospho-eIF2α 

(ser51) polyclonal (Epitomics, 1090-1; Cell Signaling 9721), anti-PACT rabbit monoclonal 

(abcam 75749), and anti-myc monoclonal (Santa Cruz 9E10). 
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Generation of P222L substitution mutation:  

Point mutation P222L was generated using a mutagenic primer for PCR amplification 

to change codon for Proline 222 from CCT to CTT. The primer sequences were as 

follows:  

 Upstream mutagenic primer: 

  5’CCTTGAGGAATTCTCTTGGTGAAAAGATCAAC-3’  

 Downstream primer:   

  5’GGGGATCCTTACTTTCTTTCTGCTATTATC-3’ 

The PCR product was sub-cloned into pGEMT-easy vector (Promega). Once the 

sequence of the point mutant (P222L) was verified, we generated full-length P222L ORF 

in pcDNA3.1- by a three-piece ligation of XbaI -EcoRI restriction piece from flag-

PACT/BSIIKS+, EcoRI-BamHI piece from P222L point mutant/pGEMT-easy, and XbaI-

BamH1 cut pcDNA3.1-. The full-length P222L mutant in pcDNA3.1- has an amino-

terminal flag or myc tag. Full length P222L mutant was sub-cloned into mammalian two-

hybrid system vectors and pET15b (Novagen). TRBP constructs were as described before 

(Singh et al. 2011). 

 

dsRNA-binding assay: 

The in vitro translated, 35S-labeled PACT proteins were synthesized using the TNT-T7 

coupled reticulocyte lysate system from Promega and the dsRNA-binding activity was 

measured by using the previously established polyI.polyC-agarose binding assay (Patel 

and Sen 1992; Patel and Sen 1998). 4 μl of in vitro translation products were diluted 
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with 25 μl of binding buffer (20 mM Tris, pH 7.5, 0.3 M NaCl, 5 mM MgCl2, 1 mM DTT, 

0.1 mM PMSF, 0.5% Nonidet P-40, 10% glycerol) and incubated with 25 μl of poly(I)-

poly(C)-agarose beads at 30 0 C for 30 min. The beads were washed 4 times with 500 μl 

of binding buffer and the bound proteins were analyzed by SDS-PAGE and fluorography. 

For competition assay with soluble ssRNA or dsRNA, 1 µg of poly(C) or poly(I)-poly(C) 

was incubated with the proteins for 15 min at 300 C before the addition of poly(I)-

poly(C)-agarose beads. To ascertain specific interaction between PACT proteins and 

poly(I)-poly(C)-agarose beads, in vitro translated, 35S-labeled firefly luciferase protein 

was assayed for binding to the poly(I)-poly(C)-agarose beads using same conditions. The 

T lanes represent total radioactive proteins in the reticulocyte lysate and B lanes 

represent the proteins that remain bound to poly(I)-poly(C)-agarose beads after 

washing. The poly(I)·poly(C)-agarose binding was quantified on Typhoon FLA7000 by 

analyzing the band intensities in T and B lanes. The percentage of PACT proteins bound 

to poly(I)·poly(C)-agarose was calculated from these values (% binding = 100 X band 

intensity in B lane/band intensity in T lane), and was plotted as bar graphs. 

 

Co-immunoprecipitation with in vitro translated proteins: 

In vitro translated, 35S-labeled PKR and flag epitope-tagged PACT proteins were 

synthesized using the TNT-T7 coupled reticulocyte system from Promega and the co-

immunoprecipitation assay was performed as described before (Patel and Sen 1998). 
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Co-immunoprecipitation Assay in HeLa cells: 

 For PACT/P222L and PKR co-immunoprecipitations, HeLa cells were co-transfected in 

6-well culture dishes with 500 ng of flag-PACT/pcDNA3.1- or flag-P222L/pcDNA3.1- using 

the Effectene (Qiagen). For PACT/P222L-TRBP, PACT-PACT, and P222L-P222L co-

immunoprecipitations, HeLa cells were co-transfected in 6-well culture dishes with 250 

ng each of (i) myc-TRBP/pcDNA3.1- and flag-wtPACT/pcDNA3.1-, (ii) myc-

TRBP/pcDNA3.1- and flag-P222L pcDNA3.1-, (iii) flag-PACT/pcDNA3.1- and myc-PACT 

/pcDNA3.1-, and (iv) flag-P222L/pcDNA3.1- and myc-P222L /pcDNA3.1-. At 24 h post-

transfection, co-immunoprecipitations were performed as described before. 

 

PKR kinase activity assays: 

 PKR kinase activity assays were performed using HeLa M cell extracts as described 

before (Patel and Sen 1998; Singh et al. 2011). One µg/ml of poly(I) poly(C) was used as 

the standard activator. Purified PACT or P222L proteins in amounts varying from 50 pg 

to 100 ng were tested their effect on PKR activity.  

 

DNA Fragmentation analysis: 

 DNA fragmentation analysis was performed as described before (Singh et al. 2009). 

5x106 lymphoblast cells established from wt individuals and dystonia patients were 

treated with 0.5 µg/ml tunicamycin for 48 hours followed by DNA fragmentation 

analysis. In order to quantify the DNA fragmentation, the fluorescence image was 

inverted and the total band intensities in the entire lanes were computed with 
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Imagequant software on Typhoon FLA 7000 phosphorimager (GE Healthcare and Life 

Sciences) and compared with untreated samples as well as between wt and patient 

cells. The band intensities in wt untreated samples were considered as 1.0 and fold 

increases in band intensities with respect to wt untreated samples were calculated and 

subjected to statistical analysis. A statistical analysis from four different experiments 

was performed to calculate p values to determine significant differences between wt 

and patient untreated and treated samples. 

 

Flow cytometry analysis: 

 5x105 lymphoblast cells established from wt individuals and dystonia patients were 

treated with 0.5 µg/ml tunicamycin for 48h. After treatment, cells were washed once in 

1X PBS, re-suspended in 70% ethanol and kept at -20°C overnight. Cells were rinsed with 

1X PBS, re-suspended in 0.5 ml 1X PBS, and 1 ml of PC Buffer (50mM Na2HPO4, 85mM 

sodium citrate, 0.1% Triton-X pH7.8) was added drop wise followed by incubation at RT 

for 35 min. Cells were rinsed with 1X PBS, labeled with propidium Iodide (PI) (25 µg/ml 

PI in PBS, 10 µg/ml RNase A, 0.1% Triton-X) for 30 min. Cell cycle analysis was performed 

by the Flow Cytometry core at USC School of Pharmacy.  

 

Caspase 3/7 assay: 

 Patient and wt B-lymphoblast cells were plated at 2x105 and either left untreated or 

treated with 0.5 µg/ml tunicamycin. Aliquots of untreated and treated cells were 

collected at indicated time points. After collection, aliquots were mixed with equal parts 
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of Promega Caspase-Glo 3/7 reagent and incubated for 45 minutes. Luciferase activity 

was measured with a negative control of cell culture medium alone used to normalize 

all readings. 

 

Western Blot analysis:  

Western blot analysis was performed using primary antibodies as described under 

reagents. Western blots were quantified using Imagequant LAS 4000. 

 

Expression and purification of recombinant wt PACT and P222L: 

 The protein coding regions (wt or P222L mutant) were subcloned into pET15b 

(Novagen) to generate PACT/pET15b and P222L/pET15b resulting in the in-frame fusion 

of PACT ORF to the histidine tag. The recombinant proteins were expressed and purified 

as described (Patel and Sen 1998; Singh et al. 2011) 

 

Mammalian two-hybrid interaction assay: 

 The wt PACT and P222L ORFs were sub-cloned into pSG424 (Addgene) such that it 

produces an in-frame fusion to GAL4 DBD and in VP16 AD vector pVP16AASV19N 

(Takacs et al. 1993; Patel et al. 1995) such that it produces an in-frame fusion to VP16 

AD. Fusion proteins were tested for interaction in various combinations. COS-1 cells 

were transfected with 250 ng of each of the three (two test plasmids encoding proteins 

to be tested for interaction, and reporter plasmid pG5Luc) and 1 ng of pRLNull 

(Promega) to normalize the transfection efficiencies using Effectene (Qiagen). Cells were 
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harvested 24 h after transfection and assayed for luciferase activity. Western blot 

analysis was done using the anti-GAL4 DBD and -VP16 AD antibodies. 

 

Yeast two-hybrid interaction assay: 

  PACT and its point mutants were expressed as GAL4 DNA-binding domain fusion 

proteins from pGBKT7 vector, while PACT and its point mutants, TRBP, and PKR was 

expressed as GAL4 activation domain fusion proteins from pGADT7 vector. Each pGBKT7 

and pGADT7 construct was co-transformed into S. cerevisiae strain AH109 (clontech) 

and selected on double dropout SD minimal medium lacking tryptophan and leucine. 

Transformation of each of the PACT constructs in pGBKT7 and empty vector pGADT7 

served as negative controls. In order to check for the transformants’ ability to grow on 

quadruple dropout histidine, leucine, tryptophan, and adenine-lacking medium, 10 l of 

serial dilutions (of OD600 = 10, 1.0, 0.1, 0.01) of an overnight liquid culture were spotted 

for each of the transformants on quadruple dropout SD medium plates lacking adenine, 

tryptophan, leucine and histidine containing 25 mM 3-amino-1,2,4-triazole. Plates were 

incubated for three days at 30C.  

 

Quantifications and Statistics 

All western blot images and radioactive gel scans (Typhoon FLA7000) were 

quantified using GE Life Sciences ImageQuant TL software. To determine statistical 

significance of results of the western blots as well as DNA fragmentation, flow 

cytometry profiles, and caspase assay a two-tailed Student’s T-test was performed, 
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assuming equal variance. Each figure legend indicates p values as denoted by brackets 

and special characters. Note that our alpha level was p=0.05.  

 

3.4 Results 

P222L mutation does not affect PACT’s dsRNA binding, but increases interaction with 

PKR:  

 The P222L point mutation is between the conserved M2 and M3 motifs (Fig. 3.1 A). 

Currently there is no structural information on PACT to predict possible changes due to 

P222L mutation. In order to determine if the mutation affects PACT’s dsRNA binding 

activity, an in vitro dsRNA-binding assay previously well established for PKR and PACT 

(Patel and Sen 1998) was performed (Fig. 3.1 B and C). As seen in Figure 3.1 B, both the 

wt PACT (lane 2) and P222L mutant (lane 4) bind to dsRNA. The binding to dsRNA 

immobilized on the beads could be competed out by exogenously added dsRNA (lanes 6 

and 8) but not ssRNA (lanes 5 and 7). Firefly luciferase, a protein that does not bind 

dsRNA used as a negative control showed no binding to the beads. The quantification of 

percentage binding indicates that both wt PACT and P222L appear to have a similar 

affinity for dsRNA under the condition that the assay was carried out (Fig. 3.1 C). We 

next examined if P222L mutation affects PACT’s interaction with PKR using co-

immunoprecipitation assays (Fig. 3.2 A and B). 35S-methionine labeled flag-PACT, flag-

P222L mutant, and untagged PKR were in vitro translated using rabbit reticulocyte 

system. The flag-tagged PACT or P222L mutant was immunoprecipitated using anti-flag 

mAb-agarose and the co-immunoprecipitation of untagged wt PKR was measured. As   
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Figure 3.1: Effect of P222L mutation on dsRNA-binding. (A) Domain structure of PACT. 
Grey boxes: dsRNA-binding M1 and M2 motifs, blue box: M3 motif that does not bind 
dsRNA but in essential for PKR activation. Vertical blue lines: phosphoserines 246 and 
287. Red arrow: P222L mutation. (B) dsRNA-binding assay. dsRNA-binding activity of wt 
PACT and P222L was measured by polyI.polyC-agarose binding assay with in vitro 
translated 35S-labeled proteins. T, total input; B, proteins bound to polyI.polyC-agarose. 
Competition lanes: competition with 100-fold molar excess of ssRNA (ss) or dsRNA (ds). 
The bands below the parent PACT bands represent products of in vitro translation from 
internal methionine codons and thus are not produced in similar quantities in all 
translation reactions and thus are of variable intensity in lanes 1-8. (C) Quantification of 
dsRNA-binding assay. Bands were quantified by phosphorimager analysis and % bound 
was calculated. Error bars: standard deviation from 3 independent experiments. The p 
value (0.43) calculated using statistical analyses indicated no significant difference 
between % dsRNA-binding of wt (blue bar) and P222L mutant (red bar) as indicated by 
the bracket marked as “NS”. 
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Figure 3.2: Effect of P222L mutation on PACT-PKR interaction. (A) Co-IP of in vitro 
translated proteins. 5 µl of in vitro translated, 35S-labeled flag-tagged wt PACT and 
P222L proteins were mixed with 5 µl of in vitro translated, 35S-labeled wt PKR. Flag-PACT 
proteins were immunoprecipitated using anti-flag mAb-agarose, and wt PKR co-
immunoprecipitation was analyzed by SDS-PAGE. T, total input (20% of the IP samples); 
IP, immunoprecipitates. (B) Quantification of data in 2 A. The radioactivity present in 
the bands was measured by phosphorimager analysis and the % co-IP was calculated as 
(radioactivity present in the co-immunoprecipitated PKR band/the radioactivity present 
in the PKR band in the total lane) X 100. This value was normalized to the amount of 
radioactivity present in the PACT bands in IP lanes to correct for differences in 
translation/immunoprecipitation. Error bars: standard deviation from 3 independent 
experiments. The p value (0.391) calculated using statistical analyses indicated no 
significant difference between % co-IP of wt (blue bar) and P222L mutant (red bar) with 
PKR as indicated by the bracket marked as “NS”. (C) Co-IP of wt PACT and P222L 
proteins from HeLa cells. HeLa cells were transfected with flag-PACT/pCDNA3.1- (lanes 1 
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Figure 3.2 (cont.): and 2) or pCDNA3.1- (lane 3). 24h after transfection, Flag-tagged PACT 
protein was immunoprecipitated for 1 h using anti-flag mAb-agarose. The 
immunoprecipitates were analyzed by western blot analysis with anti-PKR monoclonal 
antibody (PKR Co-IP panel). The blot was stripped and re-probed with monoclonal anti-
flag M2 antibody (Flag-PACT panel). The input gel (20% of IP lanes) shows western blot 
analysis of total proteins in the extract, without immunoprecipitation to ascertain equal 
amount of Flag-PACT expression after transfection in and that equal amount of PKR was 
present in both samples. (D) Quantification of Co-IP in 2 C. The relevant bands were 
quantified by phosphorimager analysis and % Co-IP was calculated from the band 
intensities in input and IP lanes. These values were normalized to band intensities of 
Flag-PACT in IP gel. The error bars: standard deviation calculated from 3 independent 
experiments. The p value (0.0027) calculated using statistical analyses indicated a 
significant difference between % co-IP of wt (blue bar) and P222L mutant (red bar) with 
PKR as indicated by the bracket marked by #. 
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seen in Fig. 3.2 A and B, both flag-PACT and flag-P222L mutant appear to have a similar 

affinity for PKR under the condition that the assay was carried out (lanes 2 and 4) and 

PKR was not immunoprecipitated with Flag-mAB-agarose in the absence of Flag-PACT 

(lane 6). In this assay, using in vitro translated proteins no significant difference in the 

strength of interaction with PKR was observed between wt and P222L mutant PACT 

proteins under the condition that the assay was carried out (Fig. 3.2 B). In order to assay 

for PACT-PKR interaction in a mammalian cells, flag-PACT and flag-P222L mutant were 

expressed in HeLa cells and co-immunoprecipitation of endogenous wt PKR with the 

flag-tagged proteins was assayed. Both flag-PACT and flag-P222L were able to pull down 

wt PKR, and flag-P222L consistently showed a higher efficiency for co-

immunoprecipitating PKR as compared to flag-PACT (Fig. 3.2 C, lanes 1 and 2). In the 

absence of transfected Flag-PACT proteins, no immunoprecipitation of endogenous PKR 

was observed with anti-Flag mAb-agarose (lane 3). The % co-immunoprecipitation was 

quantified from 3 separate experiments by analyzing band intensities (Fig. 3.2 D) and 

the results consistently showed a significantly stronger interaction of flag-P222L with 

PKR as compared to flag-PACT interaction with PKR. These results establish that P222L 

mutant retains the ability to bind to PKR and compared to wt PACT, exhibits an 

enhanced PKR interaction in mammalian cells. 

 

P222L mutation makes PACT a more efficient PKR activator:  

 The effect of P222L mutation on PACT’s ability to activate PKR was assayed by using 

the in vitro PKR activity assay. Hexahistidine tagged wt PACT and P222L proteins 
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expressed in bacteria were purified on Ni affinity beads. (Fig.3.3 A). These purified 

recombinant proteins were used as activators for in vitro PKR kinase activity assay using 

PKR immunoprecipitated from HeLa cells (Patel and Sen 1998). The assay measures 

autophosphorylation and activation of PKR. As seen in Fig. 3.3 B, there is a basal level of 

PKR activity seen in the absence of exogenous PKR activator (lane 1), and significantly 

elevated PKR activity in the dsRNA (ds) positive control (lane 2). There is a dose 

dependent increase in PKR autophosphorylation in response to increasing amounts of 

wt PACT (lanes 3-7). In response to increasing amounts of P222L there is significantly 

higher autophosphorylation of PKR (lanes 8-12) as compared to that seen with 

equivalent amounts of wt PACT (lanes 3-7). The quantification of radioactive signal in 

PKR band using phosphorimager analysis is shown in Fig. 3.3 C. Statistical analyses were 

performed on results from five independent experiments and all concentrations of wt 

and P222L protein showed significant PKR activation. Three of these p-values are as 

indicated in Figure 3.3 C with brackets. These results indicate that the P222L mutant 

activates PKR more efficiently in vitro as compared to wt PACT.  

 

Patient lymphoblasts homozygous for P222L mutation exhibit enhanced sensitivity to the 

ER stressor tunicamycin: 

 To analyze the effect of P222L mutant’s increased ability to activate PKR in a cellular 

context, apoptosis in response to the ER stressor tunicamycin was evaluated in patient 

and wt lymphoblasts. Tunicamycin inhibits protein glycosylation in the ER causing 

misfolded proteins to accumulate thereby inducing the ER stress response pathway   
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Figure 3.3: Effect of P222L mutation on PKR activation. (A) Purification of recombinant 
PACT proteins. 500 ng of purified, recombinant hexahistidine-tagged wt PACT and 
P222L proteins analyzed by SDS-PAGE and Coomassie blue staining. (B) Kinase activity 
assay. PKR immunoprecipitated from HeLa cell extracts using PKR monoclonal antibody 
that immunoprecipitates total PKR (R & D systems) was used to measure PKR kinase 
activity without any activator (C) or activators added as indicated above the lanes. Lane 
1: PKR activity without any activator, lane 2: 100 ng/ml polyI·polyC as activator. Purified 
recombinant wt PACT or P222L in amounts of 50 pg (lanes 3 and 8), 500 pg (lanes 4 and 
9), 5ng (lanes 5 and 10), 50 ng (lanes 6 and 11), and 100 ng (lanes 7 and 12). (C) 
Quantification of kinase assay. The radioactivity present in the bands was measured by 
phosphorimager analysis and the relative signal intensities are plotted. The error bars: 
standard deviation from 5 independent experiments performed with two independent 
preparations of recombinant wt PACT and P222L proteins. Student T-tests performed 
indicated that the relative signal intensity increases in radioactive PKR bands as 
compared to control lanes at all wt and P222L protein concentrations were very 
significant with all p-values lower than 0.05. Three of these values were also analyzed 
further to investigate if the differences observed between wt and P222L activation of 
PKR were significant, and are as indicated: 500 pg (bracket *) = 0.0015; 5 ng (bracket **) 
= 0.0017; 50 ng (bracket ***) = 0.003, n=5. 
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(Schonthal 2012). Apoptosis was measured using DNA fragmentation, flow cytometry, 

and caspase 3 and 7 activity. As seen in Figure 3.4 A, the wt lymphoblast cells show 

some increase in fragmented DNA with tunicamycin treatment (lanes 2 and 4). In 

contrast to this, the patient lymphoblasts show markedly increased DNA fragmentation 

in response to tunicamycin (lanes 6, 8, and 10) indicating enhanced sensitivity to the ER 

stress. Quantification of DNA fragmentation was performed to calculate fold increases 

in band intensities after tunicamycin treatment compared to untreated samples (Figure 

3.4 B). Statistical analysis revealed that the patient lymphoblasts show significantly 

more DNA fragmentation as compared to wt lymphoblast in response to tunicamycin 

(bracket marked by #). In addition, the patient lymphoblasts also show significantly 

more DNA fragmentation as compared to wt lymphoblasts even in untreated samples 

(bracket marked by *). These results indicate that patient lymphoblasts are more 

sensitive to apoptosis in response to the stress and show significantly higher level of 

apoptosis even in the absence of any deliberately applied external ER stress. To further 

compare the apoptotic response of wt and patient lymphoblasts, we measured the 

caspase activity in response to tunicamycin. As seen in Figure 3.4 C, there is a dramatic 

increase in caspase 3/7 activity in patient lymphoblasts as compared to the wt 

lymphoblasts, even in the absence of the ER stress (bracket *). In addition, a significant 

increase in caspase activity is seen 6 hours after treatment in the patient lymphoblasts 

(bracket ***) whereas the wt lymphoblasts show a very modest increase in caspase 

activity at 6 hours (bracket #). Although there is a more significant increase in caspase 

activity in wt lymphoblasts at 24 hours (bracket **), the overall caspase activity in the   
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Figure 3.4: Tunicamycin-induced apoptosis is enhanced in dystonia patient 
lymphoblasts. (A) DNA fragmentation analysis. Lymphoblast cell lines established from 
2 normal (wt) individuals and 3 dystonia patients were treated with 0.5 µg/ml 
tunicamycin for 48h. The DNA fragmentation was analyzed as described under 
experimental procedures. Lanes 1-4: wt (normal) lymphoblasts, lanes 5-10: dystonia 
patient (affected) lymphoblasts. The - lanes (1, 3, 5, 7, and 9): untreated cells; and the + 
lanes (lanes 2, 4, 6, 8, and 10): tunicamycin treated cells. Lane M: 100-bp ladder. (B) 
Quantification of DNA fragmentation. The inverted images from all four experiments as 
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Figure 3.4 (cont.): in Fig. 4 A were analyzed by GE Lifesciences ImageQuant TL software 
to calculate total band intensities in each lane from top to bottom. Blue bars: normal 
(wt) lymphoblasts and the red bars: dystonia patient lymphoblasts. Band intensities in 
wt untreated samples were considered as 1.0 and all other samples were expressed as 
fold increases compared to that value. Student T-tests were performed, and p values are 
as follows * = 0.00012 (significant), # = 0.00015 (significant), n=4. (C) Caspase-Glo 3/7 
assay. Lymphoblast cell lines established from 2 normal (wt) individuals and 3 dystonia 
patients were treated with 0.5 µg/ml tunicamycin for indicated time points. Caspase 3 
and 7 activities were measured, blue bars: normal (wt) lymphoblasts and the red bars: 
dystonia patient lymphoblasts. Student T-tests were performed, and p values are as 
follows * = 0.00016 (significant), ** = 0.00041 (significant), # = 0.002 (significant), and 
*** = 0.0037 (significant), n=4. (D) Flow cytometry analysis. Lymphoblasts from 2 
normal (wt) or 3 affected (dystonia patient) individuals were treated with 0.5 µg/ml 
tunicamycin. Cells were harvested at 48 h after the treatment and subjected to flow 
cytometry analysis. The sub-G0/G1 cell population represents the dying cells. The sub-
G0/G1 percentages are displayed in each panel. These experiments were repeated four 
times. The most representative profiles from a single experiment with one wt and one 
patient line are shown. (E) Flow cytometry quantification and statistical analysis. The 
percentage of sub G1 cells from the experiment in panel D is represented as a bar graph 
and the percentages of sub G1 cells from 4 different experiments were subjected to 
student T-tests, and p values are as follows * = 0.00022 (significant), # = 0.00025 
(significant). 
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wt lymphoblasts is fairly low even at 24 hours after treatment as compared to the 

patient lymphoblasts. These results further establish that patient lymphoblasts exhibit 

enhanced sensitivity to the ER stressor tunicamycin and in agreement with our DNA 

fragmentation results (Figure 3.4 A), also show higher caspase activity without any 

external stressor. In order to further quantify the difference in apoptosis between wt 

and patient lymphoblasts, flow cytometry analysis was performed. As seen in Figure 3.4 

D only 3.1% of the wt cells had a subG1 DNA content in the absence of the ER stress 

(panel a), whereas 10.1% of the patient cells had a SubG1 DNA content in the absence of 

the ER stress (panel c). When the lymphoblast lines were treated with tunicamycin for 

48 hours prior to analysis, the subG1 population increased to 34.1% for wt lymphoblasts 

(panel b) and to 48.3% in patient lymphoblast (panel d). Figure 3.4 E shows a bar graph 

representing this data with the error bars and statistical analyses performed for 4 

different experiments. The difference in % apoptosis between wt and dystonia patient 

cells both in untreated as well as in tunicamycin treated samples is statistically 

significant as indicated by the brackets * and #. These results demonstrate that the 

patient cells exhibit significantly higher levels of apoptosis in the absence of an extrinsic 

stress signal, and are markedly more sensitive to the ER stressor tunicamycin.  

 

Patient lymphoblasts homozygous for P222L mutation show a delayed but enhanced and 

prolonged PKR activation in response to tunicamycin: 

 To understand the mechanism of enhanced sensitivity of patient lymphoblasts to the 

ER stress we compared PKR activation kinetics by western blot analysis in wt and patient 
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lymphoblasts at indicated time points after tunicamycin treatment. As shown in Figure 

3.5 A, PKR phosphorylation is observed at 1h (lane 2) and 2h (lane 3) after treatment, 

begins to decrease at 4h (lane 4) and is barely detectable after 8h (lanes 5-7) in wt cells. 

In contrast to this, the patient cells do not show an increase in PKR phosphorylation 

until 2 h after treatment (lane 9) but this phosphorylation is maintained and continually 

increased until 24 h after treatment (lanes 10-13). These results demonstrate that PKR 

activation follows a slow albeit prolonged kinetics in patient cells as opposed to rapid 

and short duration in wt cells. The ratio of phosphorylated PKR to total PKR was 

calculated based on phosphorimager quantification of band intensities and is 

represented in Fig. 3.5 B and the p-values calculated from student T-tests indicate a 

significant difference in PKR phosphorylation between wt and patient lymphoblasts as 

represented by brackets marked *, **, and ***. We next examined if eIF2α 

phosphorylation in response to tunicamycin followed kinetics similar to PKR activation. 

Similar to the kinetics of PKR activation, eIF2α phosphorylation is seen as early as 1 h 

(lane 2) after treatment and is maintained high until 4 h (lanes 2-4) after which the 

levels gradually decreased (lanes 5-7) in wt cells. In patient lymphoblasts, a comparable 

increase is not seen until 8h after treatment (lane 12) and these levels slowly rise until 

24h after treatment (lanes 11-14). These results indicate that eIF2α phosphorylation is 

delayed in response to tunicamycin in patient lymphoblasts, but persists for a prolonged 

duration compared to wt cells. The ratio of phosphorylated eIF2α to total eIF2α was 

calculated based on phosphorimager quantification of band intensities and is 

represented in Fig. 3.5 D and the p-values calculated from student T-tests indicate a   
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Figure 3.5: PACT-PKR interaction, PKR activation, and eIF2α phosphorylation in 
response to tunicamycin in normal and dystonia patient lymphoblasts. (A) PKR 
phosphorylation kinetics. Lymphoblasts from normal (wt), or affected (dystonia patient) 
individuals were treated with 0.5 μg/ml tunicamycin. The cell extracts were prepared at 
indicated times and analyzed by western blot analysis. The same blot was stripped and 
re-probed with all antibodies. The analysis was repeated four times with each line and 
the best representative blots are shown. (B) Quantification of p-PKR and total PKR 
signals. The ratio of phosphorylated PKR to total PKR, calculated using the Imagequant 
software is represented. The value for ratio obtained for control samples was 
considered 1.0 for each experiment and all other ratios obtained with treated samples 
were expressed relative to this value for comparisons between experiments. The fold 
increases in ratios after tunicamycin treatment compared to the control samples were 
calculated at each time point. Error bars represent standard deviation from 3 
experiments. (C) eIF2α phosphorylation kinetics in response to tunicamycin. Same as in 
(A), except eIF2α phosphorylation and total eIF2α was analyzed. (D) Quantification of p- 
eIF2α and total eIF2α signals. The ratio of phosphorylated eIF2α to total eIF2α, 
calculated using the Imagequant software and phosphorimager is represented. The 
analysis was done as in 2 B. (E) Co-immunoprecipitation of endogenous PKR and PACT 
proteins. Lymphoblasts from normal (wt), or dystonia patients (P222L) were treated 
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Figure 3.5 (cont.): with 0.5 μg/ml tunicamycin. The cell extracts were prepared at 
indicated times and endogenous PKR protein was immunoprecipitated using anti-PKR 
mAb that immunoprecipitates total PKR and proteinA-sepharose. The 
immunoprecipitates were analyzed by western blot analysis with anti-PACT monoclonal 
antibody (PACT co-IP panel). The blot was stripped and re-probed with anti-PKR mAb to 
ascertain an equal amount of PKR in each lane (PKR panel). The input blot: western blot 
analysis of total proteins in the extract with anti-PACT mAb showing equal amount of 
PACT in all samples. (F) PACT-PKR co-IP quantification and statistical analysis. The ratio 
of PACT co-IP signals to total input PACT signals were calculated using GE Life sciences 
ImageQuant TL software and was further normalized to PKR IP signals. The averages 
from 3 experiments were plotted as bar graphs. The error bars represent standard error 
and the data from different experiments were subjected to student T-tests, and p values 
are as follows * = 0.0025 (significant), NS = 0.0531 (not significant), ** = 0.0003 
(significant), ## = 0.0002 (significant), and ### = 0.0006 (significant). 
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significant difference in eIF2α phosphorylation between wt and patient lymphoblasts as 

represented by brackets marked #, ##, and ###. We next evaluated the association of 

PACT with PKR in response to tunicamycin using a co-immunoprecipitation analysis. PKR 

was immunoprecipitaed from wt and patient lymphoblast cell lysates at indicated time 

points after tunicamycin treatment using a PKR monoclonal antibody. The 

immunoprecipitates were analyzed by western blot analysis using anti-PACT antibody. 

As seen in Fig. 3.5 E, in wt cells, compared to control (lane 1) PACT association with PKR 

is increased at 2h and 4h (lanes 2 and 3) after tunicamycin treatment and returns to 

basal levels by 8h (lane 4). However, in patient cells PACT association with PKR stays at 

basal levels at 2h after treatment (lane 6) similar to control (lane 5) and only shows 

increase at 4h (lane 7) and 8h (lane 8). These results suggest that PACT association with 

PKR shows delayed kinetics in patient lymphoblasts in response to tunicamycin. It is 

interesting to note that in absence of tunicamycin an increase in P222L association with 

PKR is seen in patient cells as compared to PACT association with PKR in wt cells, further 

confirming increased association of P222L with PKR in absence of stress (Fig. 3.2 C). 

PACT’s co-immunoprecipitation with PKR was quantified from 3 separate experiments 

and is shown as a bar graph in Figure 3.5 F. The ratio of PACT co-IP signals to PACT input 

signals were normalized to PKR IP signals for each lane. The delayed kinetics of PACT 

association with PKR in response to tunicamycin in dystonia patient cells is further 

confirmed by this analysis. The p-values calculated from student T-tests are as indicated 

in the figure legend and demonstrates that the difference observed in kinetics of PACT-

PKR association between wt and patient cells is statistically significant. The data shown 
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is representative of results from 3 different patient samples, all of which showed a 

similar trend. 

 

P222L mutation enhances PACT-TRBP as well as PACT-PACT interactions: 

 We next examined if the P222L mutation affects PACT’s interaction with TRBP 

consequently resulting in altered kinetics of PKR association and activation. In the 

absence of stress, PKR-TRBP and PACT-TRBP heterodimers prevail and prevent PACT 

from activating PKR. In response to stress PACT is phosphorylated on serine 287, which 

decreases its affinity for TRBP thus reducing TRBP-PACT heterodimers (Singh et al. 

2011). This phosphorylation also increases PACT’s binding affinity for PKR while 

simultaneously stabilizing PACT-PACT interactions. Thus we reasoned that the altered 

kinetics of PKR activation in patient cells may result from P222L’s effect on PACT-TRBP 

interaction. We examined the interactions between PACT-TRBP and PACT-PACT using 

co-immunoprecipitation assays with PACT and TRBP marked by two different epitope 

tags. Fig. 3.6 A represents analysis of PACT-TRBP interaction. As seen in lanes 1 and 3, 

myc-TRBP interacts with both FLAG-wt as well as FLAG-P222L. The interaction between 

FLAG-wt PACT and myc-TRBP is significantly reduced to almost undetectable levels 2h 

after tunicamycin treatment (lane 2). In contrast to this, FLAG-P222L stays associated 

with myc-TRBP strongly at 2h after treatment (lane 4). In absence of Flag-PACT, no myc-

TRBP was immunoprecipitated (lanes 5 and 6) thereby indicating that myc-TRBP 

immunoprecipitation is solely due to interaction with Flag-PACT. These results indicate 

that the delayed activation of PKR in patient cells could result from an enhanced   
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Figure 3.6: P222L mutation affects TRBP-PACT and PACT-PACT interactions. (A) Co-
immunoprecipitation of flag-PACT with myc-TRBP at early time point after ER stress. 
HeLa cells were transfected with either flag- wt PACT or flag-P222L mutant and myc-
TRBP. 24 hours after transfection, cells were either left untreated or treated with 50 
µg/ml tunicamycin. 2 hours after treatment, cells were harvested and flag-PACT was 
immunoprecipitated using anti-flag mAb-sepharose and co-immunoprecipitation of 
myc-TRBP was analyzed by western blot analysis with anti-myc mAb (myc-TRBP panel). 
The blot was stripped and re-probed with anti-flag mAb to ascertain an equal amount of 
flag-PACT protein in each lane (flag-PACT panel). The input blot: western blot analysis of 
total proteins in the extract with anti-myc mAb. (B) Co-immunoprecipitation of flag-
PACT with myc-TRBP at late time points after ER stress. HeLa cells were transfected 
with either flag- wt PACT or flag-P222L mutant and myc-TRBP. 24 hours after 
transfection, cells were either left untreated or treated with 50 µg/ml tunicamycin. AT 8 
and 24 hours after tunicamycin treatment, cells were harvested and flag-PACT was 
immunoprecipitated using anti-flag mAb-sepharose and co-immunoprecipitation of 
myc-TRBP was analyzed by western blot analysis with anti-myc mAb (myc-TRBP panel). 
The blot was stripped and re-probed with anti-flag mAb to ascertain an equal amount of 
flag-PACT protein in each lane (flag-PACT panel). The input blot: western blot analysis of 
total proteins in the extract with anti-myc mAb. (C) Co-immunoprecipitation of flag-
PACT and myc-PACT. HeLa cells were transfected with either flag- wt PACT and myc-wt 
PACT or flag-P222L mutant and myc-P222L mutant. 24 hours after transfection, cells 
were either left untreated or treated with 50 µg/ml tunicamycin. 2 hours after 
treatment, cells were harvested and flag-PACT was immunoprecipitated using anti-flag 
mAb-sepharose and co-immunoprecipitation of myc-PACT was analyzed by western blot 
analysis with anti-myc mAb (myc-PACT panel). The blot was stripped and re-probed with 
anti-flag mAb to ascertain an equal amount of flag-PACT protein in each lane (flag-PACT 
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Figure 3.6 (cont.): panel). The input blot: western blot analysis of total proteins in the 
extract with anti-myc mAb. (D) Mammalian two-hybrid assay. COS-1 cells were 
transfected with 250 ng of each of the two test plasmids encoding proteins to be tested 
for interaction, 50 ng of the reporter plasmid pG5Luc, and 1 ng of plasmid pRL-Null to 
normalize transfection efficiency. Cells were harvested 24 h after transfection, cell 
extracts were assayed for luciferase activity. The plasmid combinations are as indicated. 
C1: wt PACT/GAL4DBD and VP16AD EV (negative control), C2: GAL4DBD EV and wt 
PACT/VP16AD (negative control), wt/wt: wt PACT/GAL4DBD and wt PACT/VP16AD, C3: 
P222L/GAL4DBD and VP16AD EV (negative control), C4: GAL4DBD EV and 
P222L/VP16AD (negative control), mut/mut: P222L /GAL4DBD and P222L/VP16AD. The 
experiment was repeated twice with each sample in triplicates, and the averages with 
standard error bars are presented. Student T-tests performed to calculate p-values 
indicated that the differences observed between the negative controls and test values 
(C1, C2 and wt/wt, C3, C4 and mut/mut) were highly significant: bracket * (0.0071), 
bracket ** (0.0001), bracket # (0.0037), bracket ## (0.0002). The difference between 
wt/wt and mut/mut interaction was also highly significant as indicated by the p value 
represented by bracket ### (0.0001). (E) Western blot analysis. COS-1 cell extracts were 
examined by western blot analysis using an anti-GAL4-DBD mAb (Santa Cruz), anti-
VP16AD Ab (Santa Cruz), and anti- -actin mAb. The samples are indicated on top of the 
lanes. 
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interaction of P222L with TRBP that sequesters P222L mutant away from PKR. Since we 

observed altered PKR phosphorylation as well as eIF2α phosphorylation kinetics in 

patient lymphoblasts as compared to wt lymphoblasts, we examined if this change in 

kinetics could result from a lack of TRBP re-association with PACT at later time points 

after ER stress. Fig. 3.6 B represents analysis of PACT-TRBP interaction at 8 and 24 hours 

after tunicamycin treatment. As seen in lanes 1 and 4, myc-TRBP interacts with both 

FLAG-wt as well as FLAG-P222L in untreated cells. The FLAG-wt PACT and myc-TRBP 

begin to re-associate 8h after tunicamycin treatment (lane 2). In contrast to this, myc-

TRBP stays dissociated from FLAG-P222L at 8h after treatment (lane 5). At 24h after 

tunicamycin treatment myc-TRBP shows a strong re-association with flag-wt (lane 3) and 

in contrast to this, myc-TRBP shows no re-association with flag-P222L even at 24h.These 

results indicate that the delayed but prolonged activation of PKR in patient cells could 

result from an enhanced interaction of P222L with TRBP that initially sequesters P222L 

mutant away from PKR but once dissociated from TRBP, P222L mutant does not re-

associate rapidly with TRBP and thus continues to activate PKR even at 24h after the ER 

stress. Since PKR activation in response to stress is efficiently achieved by PACT-PACT 

homodimers after serine 287 phosphorylation, we examined if P222L mutation affects 

formation of PACT-PACT homodimers in response to tunicamycin. As seen in Fig. 3.6 C, 

myc-wt PACT and FLAG-wt PACT do not associate with high affinity in absence of stress 

(lane 1), but their interactions is detected 2h after tunicamycin treatment (lane 2). In 

contrast, Flag-P222L binds strongly to myc-P222L molecules even in absence of stress 

(lane 3) and this interaction is somewhat intensified at 2h after treatment (lane 4) and is 
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significantly stronger than the interaction between wt PACT molecules. In the absence 

of Flag-PACT, no myc-PACT was immunoprecipitated thereby validating that myc-PACT 

was immunoprecipitated solely by its interaction with Flag-PACT (lanes 5 and 6). These 

results suggest that the prolonged activation of PKR seen in patient cells results from 

more efficient formation of PACT homodimers that may be stable for a longer duration 

after initial onset of stress. Since we detected an enhanced interaction between P222L 

molecules in the absence of stress, we further examined this by using a mammalian 

two-hybrid assay to determine the relative increase in homomeric interactions due to 

P222L mutation in comparison with the wt PACT homomeric interactions. As shown in 

Fig. 3.6 D, P222L-P222L homomeric interaction (P222L/P222L) activated the reporter 

gene 1.5 fold higher than wt PACT-wt PACT homomeric interactions (wt/wt) thus 

validating that P222L mutation enhances interaction between PACT molecules. Student 

T-tests indicated the observed differences to be statistically significant as indicated in 

the figure legend. It is worth noting that the wt PACT-wt PACT as well as P222L-P222L 

interactions are statistically significant as compared to all negative controls (brackets *, 

**. #, and ##), and the difference between wt PACT-wt PACT and P222L-P222L 

interactions is also statistically significant (bracket ###). Fig. 3.6 E shows results of a 

western blot analysis to ensure that wt and P222L proteins were expressed at similar 

levels in cells and the observed enhanced P222L-P222L interaction was not due to 

differences in expression levels of wt PACT and P222L.  

In order to ensure that the P222L mutation affects the affinity of PACT-PACT, PACT-

TRBP, and PACT-PKR directly without the involvement of a third partner, we measured 
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the relative affinities of these interactions using a yeast two hybrid system. We have 

used this system extensively to demonstrate that stress-induced phosphorylation of 

PACT results in changes in affinity of its interaction with TRBP and PKR. Thus, this system 

is sensitive enough to detect changes in affinity between these proteins, and measures 

direct interaction between two proteins. Such changes in relative affinities of the 

binding partners have been demonstrated to change the cellular outcome in response 

to a stressor. As seen in fig. 3.7 A and B, in comparison to wtPACT, the P222L mutant 

shows significant increase in interaction between two PACT molecules (P222L-P222L in 

panel B versus PACT-PACT in panel A). P222L mutation also increases P222L-PKR (panel 

B) interaction as compared to wtPACT-PKR (panel A). In contrast, the interaction with 

TRBP (P222L-TRBP in panel B versus PACT-TRBP in panel A) is not affected to a 

significant extent by P222L mutation. These results are in agreement with our co-

immunoprecipitation data in fig. 3.6. PACT is constitutively phosphorylated on serine 

246 and gets phosphorylated at serine 287 in response to the ER stress. We have 

previously established that a phosphomimetic double mutation S246D,S287D (termed 

DD) increases interactions with PKR (DD-PKR in panel C versus PACT-PKR in panel A) and 

another molecule of PACT (DD-DD in panel C versus PACT-PACT in panel A) while 

decreasing the interaction with TRBP (DD-TRBP in panel C versus PACT-TRBP in panel A). 

In order to test the effect of stress-induced phosphorylation on the molecular 

interactions under study, we combined the two mutants to generate P222L,DD mutant. 

Thus, the P222L,DD mutant represents the P222L dystonia mutant under conditions of 

the ER stress caused by tunicamycin. As seen in panel D, P222L,DD mutant shows the   
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Figure 3.7: Effect of P222L mutation on molecular interactions with PACT’s binding 
partners in yeast two-hybrid assay. A. Interaction of wtPACT with wtPACT, TRBP, and 
PKR, B. Interaction of P222L mutant with P222L, TRBP, and PKR, C. Interaction of PACT 
mutant S246D,S287D (DD) with DD, TRBP, and PKR, D. Interaction of PACT mutant 
P222LDD with P222LDD, TRBP, and PKR. Various plasmid constructs as indicated in 
methods section were transformed into yeast strain AH109 and selected on double 

dropout medium lacking tryptophan and leucine. 10 l of serial dilutions (of OD600 = 10, 
1.0, 0.1, 0.01) were spotted for each transformant on quadruple dropout SD medium 
plate that lacks adenine, tryptophan, leucine and histidine and have 25 mM 3-Amino-

1,2,4-triazole (3-AT). Plates were incubated for three days at 30C. Transformation of 
PACT constructs in pGBKT7 and empty vector pGADT7 served as negative controls. E. 
Relative affinities of PACT-PACT, PACT-TRBP, and PACT-PKR interactions. The growth 
obtained in the yeast two-hybrid interaction assay was scored and is represented in the 
table. +++ indicates strong growth, ++ indicates moderate growth, + indicates good 
growth, and +/- indicates poor growth.  
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strongest interaction with itself (P222L,DD-P222L,DD) and with PKR (P222L,DD-PKR) and 

the least interaction with TRBP (P222L,DD-TRBP) when compared to results in panels A-

C. Thus, these results clearly indicate that the P222L mutation found in dystonia patients 

leads to increased homodimer formation and PKR interaction under conditions of the ER 

stress. The altered kinetics of PKR activation and eIF2a phosphorylation that we observe 

in dystonia patient cells can be attributed to these changes in relative affinities of the 

binding partners. 

 

3.5 Discussion 

Dystonia is a genetically heterogeneous neurological movement disorder that is 

characterized by intermittent or sustained muscle contractions causing abnormal 

repetitive movements, and postures. In recent years, genetic diagnostic tools have led 

to identification of several monogenic forms of dystonia and dystonia-related disorders 

designated as DYT1-25 in OMIM (Online Mendelian Inheritance in Man) and many 

causative mutations in respective genes have been described (Xiao et al. 2014). Of 

these, DYT16 is associated with mutations in PACT and was initially described in two 

unrelated Brazilian families (Camargos et al. 2008) and a single German patient (Seibler 

et al. 2008). The affected individuals displayed symptoms of generalized dystonia in 

childhood with mean age being 9 years. All seven Brazilian patients shared the same 

substitution mutation (c.655C>T;P222L) in exon 7 of the PACT gene. The German patient 

had a heterozygous frameshift mutation (c.266-267delAT;p.H89fsX20) in exon 3. 

Recently another genetically confirmed case of DYT16 with an early presentation was 

http://link.springer.com/search?dc.title=Online+Mendelian+Inheritance+in+Man&facet-content-type=ReferenceWorkEntry&sortOrder=relevance
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described and whole exome sequencing revealed 2 mutations in PACT (Lemmon et al. 

2013). The first c.665C>T;P222L was inherited from the mother and was the same as the 

Brazilian cohort. The second mutation c.637T>C;C213R was a de novo event and was 

absent in both parents. Two other recessive mutations have been identified that 

manifest as substitution mutations in PACT C77S and C213F (de Carvalho Aguiar et al. 

2015). Recently three additional point mutations were reported in Polish and German 

patients (Zech et al. 2014). 

We examined the effect of the P222L mutation on cellular stress response since 

regulation of apoptosis in response to stress is PACT’s well-characterized function (Patel 

et al. 2000; Daher et al. 2009; Singh et al. 2011; Singh and Patel 2012). The lymphoblasts 

derived from three dystonia patients carrying the P222L mutation exhibited significantly 

enhanced apoptosis in response to ER stress. The mechanisms leading to the enhanced 

sensitivity to tunicamycin were explored and our results indicated that the P222L 

mutation leads to PACT’s increased interaction with TRBP and consequently causes 

altered kinetics of PKR and eIF2α phosphorylation in response to the ER stress. In 

patient cells, the dissociation of PACT from TRBP in response to the ER stress is delayed, 

and thus formation of PACT-PKR homodimers is delayed. However, PACT-PACT 

homodimers appear to be more stable and thus PKR activation is enhanced and persists 

for a significantly longer duration after an ER stress event. Consequently eIF2α 

phosphorylation also is delayed but persists for a longer duration in patient cells. The 

reason for relative eIF2α phosphorylation levels in patient cells not reaching as high as 

that in wt cells is unclear but may be due differences in the level of eIF2α phosphatases 
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at early and late time points after the initial stress. The phosphorylation of eIF2α on 

serine 51, which is a single regulatory stress-induced modification is of significant 

functional relevance (Donnelly et al. 2013). Our work presented here highlights the 

importance of regulating the speed and duration of eIF2α phosphorylation in 

determining cellular fate.  

As represented in a schematic model in Fig. 3.8, in normal cells PACT-TRBP 

interaction has an inhibitory effect on PKR activation, and phosphorylation of PACT in 

response to stress disrupts TRBP-PACT interaction (Daher et al. 2009; Singh et al. 2011). 

Free PACT then forms homodimers that associate with PKR to activate its kinase activity 

resulting in eIF2α phosphorylation (Fig. 3.8 A) (Singh and Patel 2012). The P222L mutant 

remains associated with TRBP longer under the ER stress conditions thereby causing a 

delayed PKR activation (Fig. 3.8 B). However P222L associates with PKR with higher 

affinity and thus remains associated with PKR for a longer duration thereby causing 

stronger and persistent PKR activation and eIF2α phosphorylation. In accordance with 

this, P222L-P222L homodimers are more stable even in the absence of the ER stress (Fig. 

3.6 B and C). It is interesting to note that although P222L-P222L homodimers form 

efficiently in the absence of a stress signal, the P222L homodimers are unable to cause 

PKR activation in the absence of a stress signal (Fig. 3.6 B, Fig. 3.5 A, and Fig. 3.7). Thus, 

stress-induced phosphorylation at serine 287 possibly serves an additional function than 

simply promoting formation of PACT-PACT homodimers. It is also interesting to note 

that P222L mutation enhances PACT’s interaction with PKR as measured by cell-based 

co-immunoprecipitation assays from mammalian cell extracts (Figure 3.2 C and D).   
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Figure 3.8: A schematic model of PKR activation in wt and dystonia cells. (A) wt cells. 
As previously established (references 19, 21, 22), in the absence of stress, PACT 
heterodimerizes with TRBP, PKR is catalytically inactive and eIF2α is not phosphorylated. 
At early time points after ER stress, PACT dissociates from TRBP due to its 
phosphorylation, forms homodimers that bind to PKR with high affinity, activate its 
kinase activity leading to eIF2α phosphorylation. At late time points after ER stress, cells 
recover by forming TRBP-PACT heterodimers and turning off PKR and eIF2α 
phosphorylation. (B) Dystonia cells. In absence of stress, P222L mutant forms 
heterodimers with TRBP, PKR is catalytically inactive and eIF2α is not phosphorylated. At 
early time points after ER stress, P222L remains bound to TRBP, and PKR and eIF2α 
phosphorylation is inhibited. At late time points after ER stress, P222L dissociates from 
TRBP, forms homodimers that bind to PKR with high affinity and activate its kinase 
activity leading to eIF2α phosphorylation. Thus, at late time point cells are unable to 
recover efficiently from ER stress because PKR and eIF2α remain phosphorylated. (C) 
Schematic representation of the altered PKR activation and eIF2α phosphorylation 
kinetics in dystonia cells. The blue line: PKR phosphorylation, purple line: eIF2α 
phosphorylation. The red dotted line: a threshold time point. If PKR and eIF2α remain in 
their phosphorylated state beyond this time point, recovery from ER stress is prevented 
resulting in increased apoptosis. 
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However, co-immunoprecipitation assays performed with the in vitro translated 

proteins shows no enhancement of P222L interaction with PKR (Figure 3.2 A and B). This 

indicates a possible role of post-translational modifications on P222L in enhancing 

interaction with PKR that possibly take place in mammalian cells but not in reticulocyte 

lysates. Further molecular analysis of other substitution mutations (C77S, C213F, C213R, 

T34S, N102S) recently described in DYT16 patients (Zech et al. 2014; de Carvalho Aguiar 

et al. 2015) would be important to determine if an altered ER stress response is a 

common theme in DYT16 dystonia. Our preliminary results indicate that the frameshift 

mutant protein reported in dominantly inherited dystonia case causes potent PKR 

activation and also leads to cellular death in cell culture (unpublished results). For 

efficient recovery and cellular survival after the ER stress, it is essential that the 

temporary inhibition of protein synthesis caused by phosphorylated eIF2α is reversed 

and synthesis of survival related proteins takes place at late time points (Hetz 2012). As 

depicted in Fig. 3.8 C, the perturbation of this survival pathway due to the P222L 

mutation leading to delayed but prolonged PKR activation and eIF2α phosphorylation 

can result in increased cell death as recovery and survival mechanisms may not be 

induced optimally in dystonia patients.  

Our results presented here elucidate the cellular consequence of dystonia causing 

PACT mutations for the first time. Based on our results, it is conceivable to imagine that 

in P222L homozygotes, the neuronal cells may not cope well with cellular stress. 

Although, apoptosis of neurons is a possible extreme outcome of such detrimental 

events, survival of neurons that may not function at an optimal level could also be 
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equally detrimental. Analysis of whole exome sequencing in one particular patient 

(Lemmon et al. 2013) revealed two mutations within PACT gene. The first c.665C>T 

(p.P222L) was inherited from his mother and is the same mutation described in the 

Brazilian cohort and analyzed here. The second mutation c.637T>C (p.C213R) was not 

present in either parent, and indicated a de novo event. Thus, this patient is 

heterozygous for each mutation, but has both copies of PACT gene mutated, and thus 

has no wt PACT protein present. Similar to other DYT16 patients, this patient developed 

dystonia symptoms in early childhood and imaging revealed progressive MRI 

abnormalities with significant bilateral volume loss in the basal ganglia (Brashear 2013), 

which is interesting in view of the observed enhanced apoptosis in our experiments. 

This patient developed dystonia after a febrile illness, which could be a possible cellular 

stress event that may have triggered progressive cellular dysfunction or loss. Although 

our results are obtained using patient lymphoblasts, the PACT-PKR stress response 

pathway is present ubiquitously in all cell types including neurons (Chen et al. 2006; 

Paquet et al. 2012; Vaughn et al. 2014). Although neurodegeneration would be the 

expected long-term outcome of neuronal apoptosis neither apoptosis not 

neurodegeneration has been systematically investigated in blood or brain of dystonia 

patients, but possible similarities and links between neurodegenerative Parkinson’s 

disease and dystonia have recently been noted (Stoessl et al. 2014). Thus, 

neurodegeneration has not been investigated in any form of dystonia patients and this 

lack of information is usually interpreted as neurodegeneration generally being absent 

in dystonia patients. At the same time, PKR activation and ER stress due to misfolded 
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proteins has also been observed in pathologies of many neurodegenerative diseases 

such as Alzheimer’s, Parkinson’s, Huntington’s, and Amyotrophic Lateral Sclerosis (ALS) 

(Marchal et al. 2014). Any contribution of PACT in PKR activation in these 

neurodegenerative diseases also remains unexplored at present. Nevertheless, possible 

neurodegeneration should be explored in DYT16 patients in the future especially in light 

of our results indicating increased apoptosis in P222L patient cells. It is also unknown at 

present if DYT16 patients exhibit any deficiencies in the innate immune system and 

respond differently to infections; and in the future this may be something worth 

investigating considering PACT’s involvement in innate immunity. It is interesting to 

note that DYT16 patient lymphoblasts show higher levels of apoptosis in the absence of 

a stress signal as seen in the results of our flow cytometry analysis and caspase activity 

assays. It is unclear at present if this results from chronic low levels of PKR activation or 

is via a PKR independent mechanism. Similarly, any effect of PACT on activation of PKR-

like endoplasmic reticulum kinase (PERK) has not been explored and could have a yet 

unidentified role on higher levels of apoptosis observed in patient cells. 

In addition to activating PKR in response to cellular stress, PACT is known to function 

in the RNAi (Yong et al. 2014) and innate immune pathways (Heyam et al. 2015) and it is 

possible that the P222L mutation could affect these pathways. Although our research 

certainly does not rule out this possibility, it definitely establishes that at least one 

pathway regulated by the PACT-PKR interaction is significantly altered by the P222L 

mutation and results in major changes in the cell survival in response to the ER stress. 

Importance of such perturbation by the P222L mutation is further underscored by the 
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fact that the change in response to ER stress is reflected in increased apoptosis in 

patient cells. 

The involvement and importance of the ER stress response for dystonia has been 

noted before for two other genes. Torsin A mutations were the first mutations to be 

described as the genetic basis of DYT1 dystonias (Bressman 2007). Torsin A functions as 

a molecular chaperone within the ER/secretory pathways and the mutant forms of 

torsin A have been shown to either misfold and trigger the ER stress response or cause a 

secretion defect causing a chronic, low level ER stress (Hewett et al. 2007; Gordon et al. 

2011; Thompson et al. 2014). THAP1 (thanatos-associated domain-containing apoptosis-

associated protein-1) mutations were described as the genetic basis of DYT6 dystonia 

(Fuchs et al. 2009). THAP1 is a transcription factor and has a nuclear function; however, 

it is also localized to the cytoplasm and possesses a N-terminal THAP domain that is 

homologous to the THAP0 domain found in p52rIPK or PRKRIR (protein-kinase, 

interferon-inducible double stranded RNA dependent inhibitor, repressor of p58 

repressor) (Bragg et al. 2011). Thus, THAP1 may be involved in the ER stress response 

pathway by regulating PKR activity by inhibiting the function of the PKR inhibitor protein 

p58. Functionally, THAP1 may work similarly to PACT if it enhanced PKR activation. This 

can be tested in the future in DYT6 patient cells. Our results strongly emphasize the 

importance of the proper regulation of the ER stress response pathway and underscore 

the possibility that any dysregulation may sensitize cells to apoptosis.



 

 

 
1Vaughn LS and Patel RC. To be submitted 2015.  
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CHAPTER 4: OPPOSING ROLES OF TWO DSRNA-BINDING PROTEINS PACT AND TRBP ON 

RIG-I MEDIATED SIGNALING
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4.1 Abstract: 

An integral aspect of innate immunity is the ability to detect non-self molecules 

to initiate antiviral signaling via pattern recognition receptors (PRRs). One such receptor 

is the RNA helicase RIG-I (retinoic acid inducible gene 1), which has the ability to detect 

and be activated by 5’triphosphate uncapped double stranded RNA (dsRNA) as well as 

the viral mimic dsRNA polyI:C. Once activated, RIG-I’s CARD domains oligomerize and 

initiate downstream MAVS (mitochondrial antiviral signaling protein) signaling 

ultimately inducing interferon (IFN) production. Another dsRNA binding protein PACT, 

originally identified as the cellular protein activator of PKR, has recently been shown to 

enhance RIG-I signaling in response to polyI:C treatment, in part by stimulating RIG-I’s 

ATPase and helicase activities thereby causing an increased induction of IFN. TRBP (TAR-

RNA-binding protein), which is about 45% homologous to PACT, inhibits PKR signaling by 

binding to PKR as well as by sequestration of its’ activators, dsRNA and PACT. Despite 

the domain homology and similar structure of PACT and TRBP, the role of TRBP has not 

been explored in RIG-I like receptor (RLR) signaling. This work focuses on the effect of 

TRBP on RIG-I signaling and IFN production. Our results indicate that TRBP acts as an 

inhibitor of RIG-I signaling in a PACT- and PKR-independent manner. Surprisingly, this is 

independent of TRBP’s post-translational modifications shown to be important for other 

signaling functions of TRBP, but does implicate TRBP’s dsRNA-binding ability. This work 

has major implications on viral susceptibility, disease progression, and antiviral 
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immunity as it demonstrates the regulatory interplay between two dsRNA binding 

proteins PACT and TRBP on RIG-I mediated IFN production.  

 

4.2 Introduction: 

 Key to the effectiveness of innate immunity is the ability of the host cell to 

discriminate between self and non-self molecules (Ahmad and Hur 2015). Detection of 

pathogenic molecules is done by pattern recognition receptors (PRRs), which are able to 

detect pathogen-associated molecular patterns (PAMPs) or microbe-associated 

molecular patterns (MAMPs) (Weber 2015, Schlee 2012). After detection of foreign 

molecular patterns, PRRs can initiate signaling pathways associated with innate 

immunity (Ahmad and Hur 2015). One such receptor is RIG-I (retinoic acid inducible 

gene 1), a cytoplasmic PRR which is activated by long double stranded (ds) RNAs, highly 

structured RNA molecules, 5’ mono-, di-, or triphosphorylated dsRNA structures, 

polyU/UC rich RNA, or by 3’ monophosphorylated RNA (Weber 2015). Once bound to an 

identified non-self molecule, RIG-I initiates downstream signaling by oligomerization of 

its two caspase activation and recruitment domains or CARDs (Figure 4.1). Once 

oligomerized, RIG-I’s CARD domains in turn oligomerize with CARD domains in 

Mitochondrial Anti-Viral Signaling Protein (MAVS) (also known as IPS-1, VISA, and Cardif) 

and activate downstream signaling (Schlee 2012, Wu and Hur 2015). After MAVS 

activation, the transcription factors IRF-3 and NFκB are activated, which induce type 1 

interferon (IFN) genes (Schlee 2012, Seth et al 2005). The induced IFNs then initiate anti-
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Figure 4.1 Domain structure of PKR, PACT, TRBP, and RIG-I. M1 and M2 of PKR, PACT, 
and TRBP are evolutionarily conserved dsRNA binding motifs (dsRBMs) that also 
mediate protein-protein interactions. PBM, PACT Binding Motif. M3 of PACT is essential 
for PKR activation. M3 (aka medipal domain) of TRBP mediates TRBP’s interactions with 
Merlin, Dicer, and PACT.  Blue Arrows indicate known sites of phosphorylation on each 
protein. CARD, Caspase activation and recruitment domain, site of oligomerization with 
other CARD domains. DExD/H Helicase, helicase domain with inherent ATPase activity. 
CTD/RD, C-terminal domain and regulatory domain, interaction site of PACT. I-VI, 
conserved helicase motifs. 
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viral signaling responses in an autocrine and paracrine manner by inducing additional 

gene products.  

  PACT, a dsRNA-binding protein first identified as the endogenous protein 

activator of PKR, has recently been shown also to function as an endogenous activator 

of RIG-I (Kok et al. 2011). PACT activates RIG-I in the absence of dsRNA, but the 

presence of both PACT and dsRNA further enhances RIG-I activation, and amplifies 

downstream IFN signaling (Kok et al. 2011). PACT has been shown to directly interact 

with RIG-I through RIG-I’s C-terminal or regulatory domain (CTD/RD) and increase RIG-I’s 

ATPase activity (Figure 4.1) (Kok et al. 2011). PACT contains two well-characterized and 

evolutionarily conserved dsRNA-binding motifs (dsRBM), also found in the proteins PKR 

and TRBP.  

 TRBP (TAR RNA-binding protein, named for its ability to bind TAR RNA made 

during HIV infection) has been implicated in a multitude of signaling pathways. TRBP has 

been shown to aid HIV replication in infected cells (Gatignol et al 1991, Dorin et al. 

2003), to regulate dicer activity during RNA interference (RNAi) in all cells (Lee et al. 

2006, Lee et al. 2013, Chendrimada et al. 2005, Haase et al. 2005), and to inhibit PKR 

kinase activity during cellular and viral stress (Park et al 1994, Daher et al. 2009, Singh et 

al 2011, Dorin et al. 2003). Interest in investigating TRBP’s effect on RIG-I activity stems 

from the fact that PACT and TRBP are about 45% homologous and have been implicated 

in the same cellular pathways, performing overlapping functions in some instances 

(Koscianska et al. 2011, Wilson et al. 2015, Heyam et al. 2015, Kok et al. 2007) and 

exerting opposing effects in other instances (Gupta et al 2003, Patel and Sen 1998, 
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Gatignol et al. 1991). Previous work has shown that TRBP and PACT have opposite 

effects on PKR signaling during non-viral cellular stresses (Daher et al. 2009, Singh et al. 

2011, Singh and Patel 2012, Nakamura et al. 2015). This makes it interesting to 

investigate the effect of TRBP on RIG-I signaling, especially since it functions as a 

negative regulator of PKR, another major PRR and a viral restriction factor.  

 In this study, we examined if TRBP has a redundant role similar to PACT, an 

inhibitory role opposite of PACT, or exerts no effect on RIG-I signaling. Our results 

establish that TRBP inhibits RIG-I signaling and uncovers key differences in PACT and 

TRBP mediated RIG-I regulation. Our results demonstrate for the first time, an additional 

pathway involved in innate immunity that is regulated in an opposite manner by these 

two dsRNA-binding proteins.  

 

4.3 Materials and Methods: 

Reagents and Cell lines 

HEK293Ts, PACT -/- MEFs (gift from Dr. Ganes Sen), and PKR -/- MEFs (gift from Bryan 

Williams) were cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% 

fetal bovine serum and penicillin/streptomycin. LMW PolyI:C and 5’ppp dsRNA were 

purchased from Invivogen.  IRF3 antibody (Santa Cruz), p-IRF3 antibody (Cell Signaling), 

β-actin antibody (Sigma).  
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Generation of PACT and TRBP mutants 

All TRBP and PACT AA and DD point mutations were generated using a mutagenic 

primer for PCR amplification to change specific codons. The primer sequences were as 

follows: 

Primer Sequence 

wt TRBP FOR 5’GCTCTAGACATATGGAAATGCTGGCCGCCAACCCAGGC 3’ 

wt TRBP REV 5’GGATCCTCACTTGCTGCCTGCCATGC 3’ 

K59A TRBP REV 
5’GACTGCTCCCCCCTTTGAGGTGTTTGAGGGCCACCTCAGCTGCCTT
GTGCTTGGCTGCCTTCGCGCTGGGGCCCTGC 3’ 

K189A TRBP FOR 
5’CGAATTCACCATGACCTGTCGAGTGGAGCGTTTCATTGAGATTGG
GAGTGGCACTTCCGCAAAATTGGCAAAGC 3’ 

S131A TRBP FOR 5’CGCCATGGAACTGCAGCCCCCTGTCGCCCCTCAGC 3’ 

S121D TRBP REV 
5’GTTCCATGGCGGGGTCCCTGGTTAGGACTACAGATGGAACTGGGG 
3’ 

S121A REV TRBP 
5’GTTCCATGGCGGGGGCCCTGGTTAGGACTACAGATGGAACTGGG
G 3’ 

S131D TRBP FOR 5’CGCCATGGAACTGCAGCCCCCTGTCGACCCTCAGC 3’ 

S262D, S265D 
TRBP REV 

5’CGGAGCTCACTGAGGACACGGCAGCAGGCAGGGCCCAGGGCACC
CAGGTCGCCCAGGTCGCAACTG 3’ 
 

S262A, S265A 
TRBP REV 

5’CGGAGCTCACTGAGGACACGGCAGCAGGCAGGGCCCAGGGCACC
CAGGGCGCCCAGGGCGACCCTG 3’ 

 

AA PACT and DD PACT were cloned as stated previously (Singh et al 2011). The PCR 

products were subcloned into pGEMT-Easy vector (Promega). Once the sequence and 

correct mutation was verified, we generated full length mutant ORF in pBSIIKS+ by a 

three piece ligation with the wt remaining sequence (TRBP phosphorylation mutants 

made from two mutant products and one wt product ligated into pBSIIKS+). Full length 

sequences are amino-terminal flag tagged.  
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PACT dsRNA binding mutants K84A and K189A were cloned using GeneEditor in vitro 

Site-Directed Mutagenesis System from Promega using the following mutagenic 

primers:  

Primer Sequence 

K84A PACT FOR CGCCAGCTTCGCACTTGTACCTTC 

K84A PACT REV GAAGGTACAGTGCGAAGCTGGCG 

K177A PACT FOR GAAAGGGGGCATCAGCAAAGCAAGCCAAAAG 

K177A PACT REV CTTTTGGCTTGCTTTGCTGATGCCCCCTTTC 

 

ATPase activity assay 

HEK293T cells were transfected with flag-RIG-I/pEFBOS+ for 24-48hrs. Cells were 

harvested, washed twice with 1X PBS, then lysed in 100µl lysis buffer (20mM Tris-HCl pH 

7.5, 150mM NaCl, 1mM EDTA, 1mM DTT, 20% glycerol, 1% Triton-X, 0.2mM PMSF, 

100u/mL aprotonin, 1:100 phosphatase inhibitor cocktail [Sigma]), lysate was then 

transferred to flag-conjugated agarose beads. After 2 hours of IP, lysate was washed 

three times with lysis buffer, then eluted with 3X flag peptide (Sigma). 20µl of eluted 

flag-RIG-I was then mixed with polyI:C, recombinant PACT, or recombinant TRBP as 

indicated. After 5 minute incubation, mixtures were further incubated in Activity Buffer 

(500µM ATP, 8.3ηM [γ-32p] ATP, 50mM Tris-acetate (pH 6.0), 5mM dithiothereitol (DTT), 

and 1.5mM MgCl2) and reaction incubated at 37°C for 30 minutes. 10% of total reaction 

was then spotted onto TLC PEI Cellulose F plates (Millipore) and resolved in a buffer 

containing 1M formic acid and 0.5M LiCl. Resulting TLC plate was then scanned using a 

phosphorimager (Typhoon FLA7000).  
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Recombinant Protein 

The protein coding regions (PACT or TRBP) were subcloned into pET15b (Novagen) to generate 

in-frame fusion of PACT/TRBP ORF to the histidine tag. The recombinant proteins were 

expressed and purified as described (Patel and Sen 1998, Singh et al 2011). 

 

Transfection 

Transfections of reporters, proteins, and polyI:C was done using Effectene (Qiagen). 

5’ppp dsRNA was transfected using 5’ppp dsRNA-lyovec purchased from Invivogen. 

dsRNA treatment was for 16 hours overnight, 24 hours after reporter and protein 

vectors were transfected. 

 

Luciferase assay 

Luciferase activity was determined using the Dual-Luciferase Reporter Assay System 

from Promega. Luciferase readings were normalized to Renilla expressed from pRL null. 

For all luciferase experiments, 200ng of IFNβ–luc, 1ng of Renilla, 50ng of RIG-I, 50ng of 

PACT, and 50ng of TRBP (unless otherwise stated) was transfected into HEK293Ts, PACT 

-/- MEFs, and PKR -/- MEFs. TRBP and PACT concentrations are listed for each 

experiment. HEK293T cells were harvested 16 hours after dsRNA treatment (50ng of 

polyI:C and 1µg/mL) 5’ppp dsRNA were used for indicated experiments). Each sample 

was washed twice with 1X PBS then lysed in 200µl of 1X Passive Lysis Buffer for 5 min. 

Lysates were spun at 13.2 k for 5 minutes and 15µl of each lysate was transferred to a 

new tube. 25µl of both Luciferase and Stop and Glo-Renilla reagents were used for 



 

95 

readings. Enzymatic activity was measured using a femtomaster luminometer. Each test 

was done in triplicate. For each test, luciferase numbers were first normalized to Renilla 

to account for transfection efficiency. Then,  RIG-I + dsRNA stimulation was set as 100 

and all samples within that set normalized to this positive control.  

 

dsRNA-binding assay 

The in vitro translated, 35S-labeled PACT proteins were synthesized using the TNT-T7 

coupled reticulocyte lysate system from Promega and the dsRNA-binding activity was 

measured by using the previously established poly(I)-poly(C)-agarose binding assay 

(Patel 1992, Patel 1998). 4 µl of in vitro translation products were diluted with 25 µl of 

binding buffer (20 mM Tris, pH 7.5, 0.3 M NaCl, 5 mM MgCl2, 1 mM DTT, 0.1 mM PMSF, 

0.5% IGEPAL, 10% glycerol) and incubated with 25 µl of poly(I)-poly(C)-agarose beads at 

30 0 C for 30 min. The beads were washed 4 times with 500 µl of binding buffer and the 

bound proteins were analyzed by SDS-PAGE and fluorography. For competition assay 

with soluble ssRNA or dsRNA, 1 µg of poly(C) or poly(I)-poly(C) was incubated with the 

proteins for 15 min at 300 C before the addition of poly(I)-poly(C)-agarose beads. To 

ascertain specific interaction between PACT proteins and poly(I)-poly(C)-agarose beads, 

in vitro translated, 35S-labeled firefly luciferase protein was assayed for binding to the 

poly(I)- poly(C)-agarose beads using same conditions. The T lanes represent total 

radioactive proteins in the reticulocyte lysate and B lanes represent the proteins that 

remain bound to poly(I)-poly(C)- agarose beads after washing. The poly(I)·poly(C)- 

agarose binding was quantified on Typhoon FLA7000 by analyzing the band intensities in 
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T and B lanes. The percentage of PACT proteins bound to poly(I)·poly(C)-agarose was 

calculated from these values (% binding = 100 X band intensity in B lane/band intensity 

in T lane), and was plotted as bar graphs 

 

Quantification 

All radioactive TLC and SDS-PAGE gel scans (Typhoon FLA7000) were quantified using GE 

Life Sciences ImageQuant TL software. Each experiment was normalized to internal 

controls.  

 

4.4 Results: 

TRBP is a robust inhibitor of RIG-I signaling.  

As PACT is an established activator of RIG-I signaling, but PACT and TRBP have 

opposite effects on PKR signaling, we examined the effect of TRBP on RIG-I induced 

activation of IFN-β production in HEK293T cells. As seen in Figure 4.2 A, PACT augments 

RIG-I mediated IFN-β production in response to polyI:C as previously documented. In 

contrast to this, TRBP inhibits RIG-I mediated IFNβ production in response to polyI:C by 

approximately 40%. Previously, LGP2 was reported to act as an inhibitor of MDA5 

mediated IFN-β production at high concentrations but act as an activator at lower 

concentrations (Bruns et al. 2014). In order to examine any concentration-dependent 

effects of TRBP on RIG-I signaling, a dose response curve was performed (Figure 4.2 B). 

The results exhibit a PACT concentration-dependent gradual increase in IFN-β 

production, and a dose-dependent decrease in IFN-β production with TRBP. It is also 
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Figure 4.2 TRBP inhibits RIG-I mediated interferon production in response to polyI:C 

and 5’ppp dsRNA. (A and B) IFN- induction after polyI:C treatment. HEK293Ts were 
transfected with IFN-β reporter, expression constructs for RIG-I, and either 50ng of PACT 
or TRBP as indicated, then treated with polyI:C. pRLnull plasmid was co-transfected for 
normalization of transfections. Cell extracts were assayed for dual luciferase activity. (C 

and D) IFN- induction after 5’ppp dsRNA treatment. HEK293Ts were transfected with 
IFN-β reporter, RIG-I, and 50ng of PACT or 5ng, 50ng, or 200ng of TRBP as indicated, 
then treated with 5’ppp dsRNA. pRLnull plasmid was co-transfected for normalization of 
transfections. Cell extracts were assayed for dual luciferase activity.
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important to note that TRBP inhibits RIG-I signaling even in the absence of polyI:C 

(Figure 4.2 A, Figure 4.2 D). This indicates that TRBP may function is an inhibitor of RIG-I 

mediated signaling in response to activators of RIG-I other than polyI:C.  

 It has been shown previously that PACT can enhance RIG-I signaling in the 

absence of any RNA activator as well as in response to polyI:C, but shows no additional 

enhancement in response to RIG-I’s best-characterized activator, 5’ppp-dsRNA. We 

wanted to examine TRBP’s effect on RIG-I signaling in the presence of 5’ppp-dsRNA. As 

seen in Figure 4.2C, unlike PACT, TRBP inhibits RIG-I signaling in response to 5’ppp-

capped dsRNA, which is in agreement of results in Figure 4.2B and indicate a direct 

inhibition of RIG-I signaling by TRBP regardless of the activator. A dose response curve 

with increasing concentrations of TRBP in the presence of 5’ppp-dsRNA shows a 

concentration-dependent inhibition of RIG-I signaling (Figure 4.2 D). These results 

establish that TRBP inhibits RIG-I mediated IFN- production in response to various RIG-I 

ligands.  

 

TRBP-Mediated inhibition of RIG-I is independent of PACT as well as PKR.  

Previous work has shown that TRBP interacts directly with both PACT as well as 

PKR to inhibit PKR's kinase activity. Since TRBP, PACT, and PKR interact with each other 

to influence PKR activation and signaling during cellular stress and viral infections, we 

next examined if TRBP’s inhibition of RIG-I signaling was direct or was mediated via the 

actions of PACT or PKR. In addition, PKR has been shown to enhance IFN production 

during viral infections (Taghavi and Samuel 2012, McAllister et al. 2012). To determine if 
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TRBP could inhibit RIG-I in the absence of PACT, we performed experiments similar to 

the ones shown in Figure 4.2 in PACT -/- MEFs. As seen in Figure 4.3 A, in the absence of 

PACT, TRBP is still able to inhibit RIG-I signaling in untreated and polyI:C treated cells. 

Similarly, the role of PKR in TRBP mediated inhibition of RIG-I signaling was addressed by 

using PKR -/-MEFs. As seen in Figure 4.3 B, TRBP is able to inhibit RIG-I signaling in 

response to polyI:C treatment in the absence of PKR. As the absence of both PACT and 

PKR have no effect on TRBP’s ability to inhibit RIG-I signaling, PACT and PKR likely do not 

play any role in TRBP-mediated inhibition of RIG-I.  

 

Mapping PACT and TRBP domains required for effect on RIG-I mediated signaling. 

In order to map the domains of PACT required for enhancement of RIG-I 

signaling, deletion constructs of PACT were utilized as represented in Figure 4.4 A. The 

three dsRBDs by themselves and the combinations of two dsRBDs were tested for their 

effect of RIG-I mediated signaling (Huang et al 2002) (Figure 4.4 A).  

Figure 4.4 B shows that full length PACT increases activation of RIG-I signaling in 

response to polyI:C by about 65%, whereas M1M2 and M1 alone can only activate by 

about 30%. Interestingly, M2M3 inhibits RIG-I signaling by about 30%, but M2 and M3 

domains alone have no effect on downstream signaling. This indicates that M1 domain 

of PACT is important for PACT’s ability to activate RIG-I and deletion of M1 domain 

surprisingly results in an inhibition of RIG-I signaling. As M2M3 of PACT is able to inhibit 

signaling similar to TRBP, understanding the structural differences between PACT and 

TRBP become more important. Given the high degree of sequence similarity between 
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Figure 4.3 TRBP-mediated inhibition of RIG-I requires neither PACT nor PKR. A. PACT 
requirement for TRBP inhibition of RIG-I signaling. PACT -/- MEFs were transfected with 
IFN-β reporter, RIG-I, PACT, and/or TRBP as indicated, then treated with polyI:C. pRLnull 
plasmid was co-transfected for normalization of transfections. Cell extracts were 
assayed for dual luciferase activity. B. PKR requirement for TRBP inhibition of RIG-I 
signaling. PKR -/- MEFs were transfected with IFN-β reporter, RIG-I, and TRBP as 
indicated, then treated with polyI:C. pRLnull plasmid was co-transfected for 
normalization of transfections. Cell extracts were assayed for dual luciferase activity.  
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Figure 4.4 Mapping the domains of PACT and TRBP required for influencing RIG-I 
mediated signaling. A. Schematic of PACT domain constructs. Deletion constructs for 
each of PACT’s functional domains were made to assess effect on RIG-I signaling. B. 
Ability of PACT domains to affect RIG-I mediated IFN-β induction. HEK293Ts were 
transfected with IFN-β reporter, RIG-I, and 50ng of the expression constructs for either 
full length PACT or domains of PACT as indicated, then treated with polyI:C. pRLnull 
plasmid was co-transfected for normalization of transfections. Cell extracts were 
assayed for dual luciferase activity. C. Schematic of TRBP domain constructs. Deletion 
constructs for each of PACT’s functional domains were made to assess effect on RIG-I 
signaling. D. Ability of TRBP domains to affect RIG-I mediated IFN-β induction. 
HEK293Ts were transfected with IFN-β reporter, RIG-I, and 50ng of either wt TRBP or 
domains of TRBP as indicated, then treated with polyI:C. pRLnull plasmid was co-
transfected for normalization of transfections. Cell extracts were assayed for dual 
luciferase activity.
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PACT and TRBP, it is interesting to note that the differences that possibly result in 

structural changes are important for their dramatically different cellular functions and 

effects on signaling.  

Similarly, In order to map the domains of TRBP required for inhibition of RIG-I 

signaling, deletion constructs of TRBP were utilized as represented in Figure 4.4 C. 

Figure 4.4 D shows that full length TRBP is able to inhibit RIG-I signaling in response to 

polyI:C, and with progressive C-terminal M3 domain deletions, the inhibition increases 

with M1M2 of TRBP inhibiting RIG-I signaling significantly more than full length TRBP. 

Surprisingly, the M1 domain of TRBP is able to robustly activate RIG-I signaling similar to 

full length PACT and M1 of PACT. These results point to the importance of the M2 

domain of TRBP for inhibition of RIG-I signaling. Together, this demonstrates that both 

PACT and TRBP’s M1 domain is able to enhance RIG-I signaling and that TRBP’s M2 

domain appears to be important for inhibitory effect on RIG-I signaling (Figure 4.4 B and 

D). 

 

Neither PACT nor TRBP’s phosphorylation state influences RIG-I mediated signaling.  

Phosphorylation of PACT and TRBP in response to cellular stress influences their 

interactions with various binding partners including PKR and result in significant changes 

in signaling outcomes (Peters et al. 2006, Singh et al. 2009, Singh et al. 2011, Paroo et al. 

2009, Nakamura et al. 2015, Vaughn et al. 2015). Thus, we wanted to know if PACT and 

TRBP’s phosphorylation status changes their effects on RIG-I mediated signaling. PACT 

has two known phosphorylation sites that are involved in signaling in response to 
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oxidative and endoplasmic reticulum (ER) stress; serine 246 (constitutive) and serine 

287 (stress induced) (Peters et al. 2006, Singh et al. 2009, Singh et al. 2011). To address 

the effect of PACT phosphorylation on RIG-I signaling, both serine 246 and 287 were 

mutated to either alanine to mimic unphosphorylated (inactive state during PKR 

signaling) PACT or to aspartic acid to mimic phosphorylated (activated state during PKR 

signaling) PACT (Figure 4.5 A). As seen in Figure 4.5B, neither the phospho-defective AA, 

or phospho-mimic DD mutant showed any difference in the ability to enhance RIG-I 

signaling in comparison to wt PACT. These results indicate that the sites that are known 

to be phosphorylated during oxidative and endoplasmic reticulum stress have no 

influence in regulation of PACT mediated enhancement of RIG-I signaling.  

 Similarly, phosphorylation of TRBP has been linked to changes in its ability to 

inhibit PKR during metabolic stress as well as to stabilize miRNA-generating complexes 

(Paroo et al. 2009, Nakamura et al. 2015). Four phosphorylation sites in TRBP (serines 

142, 152, 283, and 286) are targets of mitogen-activated protein kinase (MAPK) Erk and 

JNK, and are of functional significance during RNAi and metabolic stress (Paroo et al. 

2009, Nakamura et al. 2015). It has been shown that changes in phosphorylation state 

of TRBP alter TRBP’s stability in cells (Paroo et al. 2009, Nakamura et al. 2015). In vitro 

PKR activity assays showed that phospho-defective TRBP could inhibit PKR activity, but 

that phospho-mimetic TRBP was unable to inhibit PKR signaling (Nakamura et al. 2015). 

Phosphorylation status of TRBP also influences binding affinity for PKR (Nakamura et al. 

2015). These findings indicate the importance of phosphorylation in determining TRBP’s 

activity and suggest a possible role of TRBP phosphorylation in its ability to inhibit RIG-I 
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Figure 4.5 Phosphorylation of PACT and TRBP does not influence RIG-I mediated 
signaling. A. Schematic of phosphorylation sites of PACT and TRBP. Residues previously 
determined to be phosphorylated and important for PKR signaling were mutated from 
serine to alanine (phospho-defective) or aspartic acid (phospho-mimic). B. 
Phosphorylation of PACT does not affect RIG-I signaling. HEK293Ts were transfected 
with IFN-β reporter, RIG-I, and 50ng of either wt PACT or phosphorylation mutants AA 
or DD of PACT as indicated, then treated with polyI:C. pRLnull plasmid was co-
transfected for normalization of transfections. Cell extracts were assayed for dual 
luciferase activity. C. Phosphorylation of TRBP does not affect RIG-I signaling. 
HEK293Ts were transfected with IFN-β reporter, RIG-I, and 50ng of either wt TRBP or 
phosphorylation mutants 4SA or 4SD of TRBP as indicated, then treated with polyI:C. 
pRLnull plasmid was co-transfected for normalization of transfections. Cell extracts were 
assayed for dual luciferase activity.



 

105 

signaling. All serines that are known to be phosphorylated in TRBP were mutated to 

alanines to mimic unphosphorylated state (4SA) or aspartic acids to mimic a 

phosphorylated state (4SD) (Figure 4.5 A). In Figure 4.5 C, a comparison of the ability of 

wt TRBP, 4SA, and 4SD to inhibit RIG-I signaling is shown. Neither mutant 4SA nor 

mutant 4SD exhibited a significantly different inhibitory activity towards RIG-I signaling. 

This indicates that while TRBP phosphorylation status has been shown to play a crucial 

role during PKR signaling and RNAi, it appears to have no significant effect on the ability 

of TRBP to inhibit RIG-I signaling. This demonstrates that TRBP activity may be regulated 

differently in response to various stress signals, a feature it shares with PACT.  

 

TRBP but not PACT’s dsRNA-binding ability influences RIG-I signaling.  

Being a cytoplasmic PRR that detects non-self dsRNA in cells to initiate anti-viral 

signaling, RIG-I's dsRNA-binding activity is critical for its ability to identify non-self 

molecules. Both PACT and TRBP have two conserved dsRBMs that can bind to dsRNA, 

and thus they may affect RIG-I activity via their ability to sequester such RNAs. PACT and 

TRBP have opposite effects on PKR activity, another non-traditional PRR for dsRNA, and 

TRBP sequesters dsRNA to keep it from activating PKR during HIV infection. This leads to 

the question if PACT or TRBP’s ability to bind dsRNA could affect its ability to activate or 

inhibit RIG-I signaling. PACT activation of RIG-I signaling could be via dsRNA recruitment 

and TRBP inhibition through sequestration of dsRNA away from RIG-I. To test this, PACT 

and TRBP mutants defective in dsRNA-binding were made based on the knowledge of 

similar mutations in conserved domains of PKR (Patel et al. 1996), each a single 
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mutation in either the M1 or M2 dsRBM (Figure 4.6 A). dsRNA-binding activity was 

tested and compared to wt PACT and wt TRBP dsRNA-binding ability (Figure 4.6 B and 

C). Both single mutations in PACT and TRBP showed significantly less dsRNA-binding as 

compared to wt proteins (Figure 4.6 B and C).  

 After verification of a reduction in dsRNA-binding activities, both PACT and TRBP 

mutants' ability to alter RIG-I signaling was assessed (Figure 4.6 D and E). Surprisingly, 

mutants of PACT lacking the ability to bind dsRNA were still able to activate RIG-I similar 

to wt PACT (Figure 4.6 D). This indicates that dsRNA-binding of PACT is not required for 

its ability to enhance RIG-I signaling.  

Single point mutations in TRBP’s dsRNA-binding domains were not as effective at 

abolishing dsRNA-binding as those in PACT, but only were able to reduce dsRNA-binding 

by about 45% (Figure 4.6 B and C). Though dsRNA-binding was not completely 

compromised, a decrease in ability to inhibit RIG-I signaling was seen (Figure 4.6 E). This 

indicates a potential role of dsRNA sequestration away from RIG-I, thereby blocking RIG-

I’s activation by dsRNA.  

 

Neither PACT nor TRBP affect RIG-I’s ATPase activity in the presence of a dsRNA 

activator.  

Previous work with RIG-I has linked RIG-I’s helicase and ATPase activity with 

initiation of downstream signaling, though it has been shown that ATPase activity is not 

essential for signaling (Bamming and Horvath 2009). PACT was shown previously to 

activate RIG-I’s ATPase activity in vitro, giving a possible mechanism for PACT mediated 



 

 

 
Figure 4.6 dsRNA binding ability of TRBP but not that of PACT influences RIG-I induced IFN production. A. Schematic of dsRNA-
binding mutations of PACT and TRBP. Residues mutated from lysine to alanine based on previously established mutations that 
abolish dsRNA binding.  B. dsRNA-binding assay. dsRNA-binding ability of wt and mutant PACT and TRBP was measured by polyI:C-
agarose binding assay with in vitro translated 35S-labeled proteins. T, total input; B, protein bound to polyI:C agarose. C. 
Quantification of data in 5.5 B. Radioactivity in both total input and bound protein bands was quantified, and % bound was 
calculated by (bound protein/total input) *100. The error bars represent standard deviation calculated from 2 experiments. D. 
dsRNA-binding ability of PACT does not affect RIG-I signaling. HEK293Ts were transfected with IFN-β reporter, RIG-I, and 50ng of 
either wt PACT or dsRNA-binding mutants K84A or K177A of PACT as indicated, then treated with polyI:C. pRLnull plasmid was co-
transfected for normalization of transfections. Cell extracts were assayed for dual luciferase activity. E. dsRNA-binding ability of 
TRBP aids in inhibition of RIG-I signaling. HEK293Ts were transfected with IFN-β reporter, RIG-I, and 50ng of either wt TRBP or 
dsRNA-binding mutants K59A or K189A of TRBP as indicated, then treated with polyI:C. pRLnull plasmid was co-transfected for 
normalization of transfections. Cell extracts were assayed for dual luciferase activity.
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enhancement of RIG-I signaling (Kok et al. 2011).  To investigate TRBP’s effect on RIG-I’s 

ATPase activity, an in vitro ATPase activity assay was performed with purified RIG-I and a 

combination of polyI:C and either recombinant PACT or TRBP (Figure 4.7).  

First, a polyI:C curve was performed to identify the lowest concentration of 

polyI:C necessary to activate RIG-I to allow for an increase or decrease in ATPase activity 

to be visualized. Figure 4.7 A and B shows that as little as 10ng of polyI:C was sufficient 

to activate immunoprecipitated RIG-I, but an additional activation by increasing 

amounts of polyI:C could still be seen. Using 10ng of polyI:C, either recombinant PACT or 

TRBP was added to address changes in ATPase activity. As seen in Figure 4.7 C and D, 

neither PACT nor TRBP were able to affect RIG-I’s ATPase activity. To ensure that the 

lack of effect was not a result of using recombinant proteins produced in bacteria, this 

experiment was repeated with PACT and TRBP immunoprecipitated from mammalian 

cells and identical results were seen (data not shown). These results indicate that TRBP 

inhibits RIG-I signaling without affecting RIG-I's ATPase activity. 

 

4.5 Discussion: 

 In this study, we investigated the effect of the dsRNA-binding protein TRBP on 

RIG-I induced IFN production in response to dsRNA. Our results indicate that TRBP 

inhibits RIG-I signaling in response to both polyI:C and 5’ppp dsRNA viral mimics (Figure 

4.2). TRBP's actions on RIG-I differ from the actions of PACT, which enhances RIG-I 

signaling only in response to polyI:C and not in response to 5’ppp dsRNA. TRBP 

inhibition of RIG-I is independent of PACT or PKR, indicating that TRBP affects RIG-I 
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Figure 4.7 Neither PACT nor TRBP affect RIG-I’s ATPase activity in the presence of 
dsRNA. A. polyI:C dose response for RIG-I activation. RIG-I immunoprecipitated from 
HEK293T cells was activated by increasing amounts of polyI:C as indicated to measure 
RIG-I ATPase activity as determined by ATP hydrolysis. The positions of ATP and free 
phosphate are as indicated. B. Quantification of data in 5.6 A. Radioactivity in the free 
phosphate and ATP spots was quantified, and samples were first normalized by dividing 
free phosphate by total (free phosphate plus ATP). To calculate relative fold activation, 
these normalized numbers were compared to polyI:C control values, which were as 
considered as 1.  C. Effect of PACT and TRBP on RIG-I’s ATPase activity. RIG-I 
immunoprecipitated from HEK293T cells was activated by incubation with 1ng polyI:C, 
and varying amounts of recombinant PACT or TRBP were added as indicated to measure 
changes in ATPase activity as determined by ATP hydrolysis.  D. Quantification of data 
in 5.6 C. Radioactivity in the free phosphate and ATP spots was quantified, and samples 
were first normalized by dividing free phosphate by total (free phosphate plus ATP). To 
calculate relative fold activation, these normalized numbers were compared to polyI:C 
control values, which were as considered as 1.
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pathway directly and not by inhibiting PACT from activating RIG-I or via inhibiting PKR 

activity (Figure 4.3). To help to determine how PACT and TRBP are able to affect RIG-I 

signaling in opposing ways despite the high degree of homology between them, deletion 

constructs of both proteins were tested for their effect on RIG-I signaling (Figure 4.4). 

One surprising finding in this analysis was that the stand-alone M1 domain of TRBP 

enhances RIG-I signaling instead of inhibiting it, thus indicating that carboxy-terminal 

region of TRBP serves a strong inhibitory function on RIG-I signaling. Furthermore, The 

M1 domains of PACT and TRBP both have a positive effect on RIG-I signaling in spite of 

the full-length proteins having opposite effects. This demonstrates that overall 

differences protein structure and resulting differences in protein or RNA interactions 

likely are responsible for their opposing activities. In support of this, it was previously 

reported that PACT and TRBP exhibit different preferences and affinities for binding to 

their interacting partners; PACT preferred to form homodimers over binding to dsRNA 

while TRBP preferred to bind to dsRNA over forming homodimers (Takahashi et al. 

2013).  

Phosphorylation state of neither PACT nor TRBP showed any effect on RIG-I 

signaling, which is noteworthy as changes in these phosphorylation sites are essential 

for changes in signaling through PKR (Figure 4.5). This could indicate that these proteins’ 

activities are constitutive and that post-translational modifications are unable to affect 

their activities, or that previously unidentified phosphorylation sites or other post-

translation modifications are necessary to change PACT and TRBP activity in response to 

RNA signals. Interestingly, dsRNA-binding ability of PACT was unimportant for activation 
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of RIG-I signaling during polyI:C treatment, but TRBP's dsRNA-binding activity seems 

essential for RIG-I inhibition at least in part (Figure 4.6). Inhibition of signaling via 

sequestration of dsRNA by TRBP has been previously observed for PKR signaling during 

viral infections. Since the dsRNA-binding mutants of TRBP we tested were not able to 

eliminate dsRNA-binding completely, it is yet to be determined if dsRNA sequestration 

can account for all of TRBP’s inhibitory capacity. To further test the implications of 

dsRNA-binding of TRBP on its ability to inhibit RIG-I, the two single point mutations will 

be combined to create a more effective dsRNA-binding mutant.  

While it may be surprising that dsRNA-binding is not necessary for PACT’s 

activities with RIG-I, it has been shown previously that LGP2 which acts as an 

endogenous activator of MDA5 also does not have a requirement for dsRNA-binding for 

its activity (Bamming and Horvath 2009). This suggests an alternative form of activation 

by PACT independent of dsRNA binding. It has been demonstrated previously that PACT 

forms homodimers readily within stressed cells, and this has been shown to aid in PKR 

activation. During viral stress, PACT oligomerization may aid in RIG-I’s CARD domain 

oligomerization during viral stress (Vaughn et al 2015, Singh and Patel 2012). RIG-I CARD 

domain oligomerization has been shown to be either induced by ubiquitination induced 

oligomerization or through an ubiquitin independent, filament mediated 

oligomerization (Wu and Hur 2015). Previously, this RIG-I CARD filament has been 

shown to be induced near dsRNA ends, implicating proximity-induced oligomerization. 

This proximity-induced oligomerization could be recapitulated through an artificial 

fusion protein, which could sufficiently enhance anti-viral signaling (Wu and Hur 2015). 
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This leads to the possibility that multimers of PACT are able to localize RIG-I CARD 

domains with in close enough proximity to induce oligomerization. A dramatic increase 

in homodimer formation of PACT during non-viral cellular stress has been demonstrated 

to be heavily influenced by phosphorylation of PACT at serines 246 and 287, which we 

have demonstrated here is unable to affect RIG-I signaling (Figure 4.5), thus indicating 

that additional regulatory modifications on PACT that are yet to be characterized may 

be involved on its effects on RIG-I. 

Last, TRBP does not inhibit RIG-I’s ATPase activity in the presence of polyI:C 

activator in vitro (Figure 4.7). This clearly distinguishes TRBP's mode of action on RIG-I 

signaling pathway compared to that of PACT, as it was previously reported that PACT 

mediated enhancement of RIG-I signaling occurred mainly via PACT directly binding to 

RIG-I and stimulating RIG-I’s ATPase activity in the absence of a dsRNA (Kok et al 2011). 

This differs from results previously seen indicating that PACT could activate RIG-I’s 

ATPase activity (Kok et al. 2011), which could possibly be attributed to differences in the 

use of recombinant RIG-I and immunoprecipitated RIG-I in the RIG-I ATPase activity 

assay. A schematic model is presented in Figure 4.8, which shows the known activities of 

PACT and dsRNA in activating RIG-I signaling and the additional novel aspect of RIG-I 

regulation by TRBP partially through dsRNA sequestration.  

Tight regulation of innate immunity is crucial during viral infections and is 

essential for host survival, while aberrant activation of innate immunity can lead to 

excessive inflammation and IFN production leading to various pathologies (Crow 2011). 

Anomalous production of IFN leads to a group of disorders termed interferonopathies, 
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Figure 4.8 Regulation of RIG-I activation by dsRNA-binding proteins PACT and TRBP.  
During most viral infections, dsRNA is produced as either a replicative intermediate or a 
by-product during viral replication. This dsRNA is sensed by RIG-I, the cytoplasmic PRR. 
RIG-I can be activated by both dsRNA itself and by a dsRNA-binding protein PACT. TRBP, 
another cytoplasmic dsRNA-binding protein, inhibits RIG-I signaling independently of 
PACT and at least in part though dsRNA sequestration.
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highlighting the importance of negative regulation of these pathways when not under a 

pathogenic threat (Crow 2011). Various types of Interferonopathies have been linked 

with mutations in RLR and dsRNA binding proteins, which lead to aberrant IFN 

production and development of disease (Crow 2011, Crow and Manel 2015).  PACT 

activation and TRBP inhibition of RIG-I signaling may help to maintain the delicate 

balance of IFN production so the host can mount a rapid anti-viral response, and 

ascertain that the IFN response is not sustained once the pathogen threat is cleared.  

Lack of TRBP or mutations in TRBP may also lead to increased steady state levels of IFN, 

though no mutations have yet been identified. The regulatory interplay between these 

two dsRNA-binding proteins helps to maintain homeostasis during times of cellular 

stress and during recovery. This work demonstrates that TRBP has a broad ability to 

inhibit RIG-I regardless of dsRNA activator, highlighting TRBP’s importance as a negative 

regulator in innate immunity. Further research needs to address whether TRBP 

inhibition of RIG-I signaling is via a direct interaction with RIG-I or a result of inhibition of 

the signaling steps downstream of RIG-I activation. It also remains to be tested if TRBP 

can inhibit other PRRs during viral stress.   
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CHAPTER 5: GENERAL DISCUSSION
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This dissertation focuses on the regulatory roles of the dsRNA-binding proteins 

PACT, TRBP, PKR, and RIG-I during cellular stress and innate immunity and how these 

roles might be altered in DYT16 dystonia. Collectively, these dsRNA binding proteins 

have diverse functions in both discrete and overlapping signaling pathways, which help 

to maintain homeostasis in the face of cellular stress. This work demonstrates the levels 

of regulation that dsRNA-binding proteins exert, and how any deviation of this 

regulation results in disease.  

In Chapter 2, it was shown that by inhibiting PKR activity by overexpression of a 

trans-dominant negative mutant during tunicamycin-induced endoplasmic reticulum 

(ER) stress, we could rescue neuroblastoma cells from an apoptotic fate. The expression 

of the transcription factor ATF4 and of its transcriptional target CHOP were both 

drastically inhibited in response to PKR inhibition. In addition, caspase-3 activation, 

which is a marker of apoptosis, was also significantly inhibited in cells when PKR was 

inhibited. This establishes that PKR signaling during ER stress regulates apoptosis in 

neuronal cells and further establishes the ubiquitous nature of the PKR stress response 

pathway. The ability of PKR to control apoptosis during cellular stress is especially 

pertinent to disease pathologies, including neurodegenerative diseases like Alzheimer’s. 

In addition to neurodegenerative diseases, this research indicates the possibility of an 

altered stress response in neurons as a possible mechanism where the DYT16 PACT 

mutations lead to the movement disorders seen in dystonia patients. This work also 
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demonstrates that PKR inhibition during cellular stress may be beneficial in preventing 

apoptosis and neurodegeneration in patients and therefore, PKR may be a good target 

for drug development for the treatment of neurodegenerative diseases.  

In Chapter 3, changes in PACT activity caused by the P222L mutation found in 

DYT16 dystonia were investigated in the context of tunicamycin-induced ER stress. 

Lymphoblasts derived from patients bearing the P222L homozygous mutations exhibited 

enhanced apoptosis in response to ER stress as compared to wt lymphoblasts. This 

enhanced apoptotic response resulted from altered interactions leading to a delayed 

PKR-eIF2 response. First, increased interactions of P222L PACT with TRBP lead to slower 

kinetics of PKR activation following stress. In addition, P222L PACT mutation also 

increased PACT-PACT homodimer interactions as well as PACT-PKR heterodimer 

interactions ultimately resulting in a delayed but more robust and sustained PKR 

activation contributing to the enhanced apoptosis seen in the patient lymphoblasts. This 

work highlights the importance of regulating the speed and duration of PKR activation 

and eIF2α phosphorylation in determining cellular fate as well as presenting a cellular 

consequence of one of the dystonia causing point mutations. Our results also suggest 

that other cellular pathways in which PACT is functionally involved may be affected by 

the P222L mutation and future work can examine the effect of dystonia-causing P222L 

mutation on regulation of innate immunity and RNA interference by PACT.  

In Chapter 4, it was shown that TRBP plays an inhibitory role in RIG-I mediated 

induction of interferon (IFN) in response to polyI:C dsRNA, a viral mimic. This introduces 

an additional pathway where PACT acts as an activator and TRBP as an inhibitor of 
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signaling, reminiscent to the regulation of PKR signaling. The results showed that TRBP 

inhibits RIG-I induced IFN production, at least in part, by directly inhibiting RIG-I 

signaling in response to both polyI:C and 5’ppp dsRNA. The results also demonstrated 

that dsRNA-binding is an important aspect of TRBP’s activity (unlike PACT) on RIG-I 

signaling, suggesting dsRNA sequestration as a main inhibitory mechanism. These 

results also highlight the importance of negative regulation of innate immunity, as 

aberrant IFN production can lead to development of diseases termed interferonopathies 

as well as other auto-inflammatory diseases. This work establishes a regulatory interplay 

between the two dsRNA-binding proteins PACT and TRBP in RIG-I mediated interferon 

production and this regulation could have wide implications on viral susceptibility, 

disease progression, and antiviral immunity.  
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