
University of South Carolina University of South Carolina 

Scholar Commons Scholar Commons 

Theses and Dissertations 

12-14-2015 

Genetic and Epigenetic Variations in Asthma and Wheeze Genetic and Epigenetic Variations in Asthma and Wheeze 

Illnesses Illnesses 

Todd M. Everson 
University of South Carolina - Columbia 

Follow this and additional works at: https://scholarcommons.sc.edu/etd 

 Part of the Epidemiology Commons 

Recommended Citation Recommended Citation 
Everson, T. M.(2015). Genetic and Epigenetic Variations in Asthma and Wheeze Illnesses. (Doctoral 
dissertation). Retrieved from https://scholarcommons.sc.edu/etd/3207 

This Open Access Dissertation is brought to you by Scholar Commons. It has been accepted for inclusion in 
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please 
contact digres@mailbox.sc.edu. 

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/740?utm_source=scholarcommons.sc.edu%2Fetd%2F3207&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/3207?utm_source=scholarcommons.sc.edu%2Fetd%2F3207&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu


GENETIC AND EPIGENETIC VARIATIONS IN ASTHMA AND WHEEZE ILLNESSES 

 

by 

 

Todd M. Everson 

 

Bachelor of Science 

Colorado State University, 2006 

 

Master of Public Health 

Oregon Health and Science University, 2011 

 

 

 

Submitted in Partial Fulfillment of the Requirements 

 

For the Degree of Doctor of Philosophy in 

 

Epidemiology 

 

The Norman J. Arnold School of Public Health 

 

University of South Carolina 

 

2015 

 

Accepted by: 

 

Melinda Forthofer, Major Professor 

 

Hongmei Zhang, Committee Member 

 

John Holloway, Committee Member 

 

Wilfried Karmaus, Committee Member 

 

Lacy Ford, Senior Vice Provost and Dean of Graduate Studies



ii 

© Copyright by Todd M. Everson, 2015 

All Rights Reserved.



iii 

ACKNOWLEDGEMENTS 

 I gratefully acknowledge the guidance I received from my dissertation committee. 

I am sincerely grateful to my committee chair, Dr. Melinda Forthofer, whose unwavering 

support guided me through this process and encouraged me to frame my research within 

the broader context of public health. I thank Dr. John Holloway, Dr. Hongmei Zhang and 

Dr. Wilfried Karmaus for fostering my interests in epigenetics and for their assistance in 

exploring unique statistical and methodological approaches for answering difficult 

epidemiologic questions. Above all, I am truly appreciative of my entire committee for 

their mentorship and their patience throughout this dissertation. I also would like to thank 

the Isle of Wight research team, including S. Hasan Arshad, Ramesh Kurukulaaratchy, 

Susan Ewart, Veeresh Patil, and Gabrielle Lockett, for all of the hard work they did in 

developing the cohort, generating the data, and contributing to discussions about my 

research. 

I would also like to acknowledge the funding that made this research possible. We 

thank the High-Throughput Genomics Group at the Wellcome Trust Centre for Human 

Genetics (funded by Wellcome Trust grant reference 090532/Z/09/Z and MRC Hub grant 

G0900747 91070) for the generation of the methylation data. The research reported in 

this work was supported by the National Institute of Allergy and Infectious Diseases 

under award number R01 AI091905 (PI: Wilfried Karmaus) and R01 AI061471 (PI: 

Susan Ewart); the 18-year follow-up was supported by a grant from the National Heart 

and Blood Institute (R01 HL082925, PI: S. Hasan Arshad).  



iv 

ABSTRACT 

 Asthma, a chronic respiratory condition, is common worldwide with no cure and 

limited effective prevention strategies. It is well recognized that asthma has a 

multifaceted etiology, though many of the underlying mechanisms involved in asthma 

development, persistence and remission are still convoluted. Epigenetic mechanisms, 

such as DNA methylation, regulate gene-expression but are not related to changes in the 

actual DNA sequence. Recently, differential patterns of DNA methylation within many 

genes have been associated with asthma, particularly within genes involved in the 

differentiation of pro-inflammatory T-helper 2 (Th2) cells. DNA methylation patterns 

within less known biologic pathways undoubtedly are involved in asthma pathogenesis as 

well. The purpose of this dissertation was three-fold. First, we explored whether genetic 

and epigenetic variations within Th2-genes differed among persons with different 

phenotypic presentations of wheeze illnesses. Second, we conducted an epigenome-wide 

association study (EWAS) to identify novel DNA methylation loci associated with 

asthma. Last, we conducted a follow-up study of our top EWAS findings, to investigate 

whether the expression of the associated genes were predictive of infant wheeze. 

We found that DNA-M within GATA3 and IL4 varied based on different wheeze-

illness phenotypes, suggesting that Th2-genes are under differential epigenetic regulation 

for different presentations of asthma. We also identified nine novel DNA methylation 

loci (cg25578728 in CHD7, cg16658191 in HK1, cg00100703 in UNC45B, cg07948085 
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[intergenic], cg04359558 in LITAF, cg20417424 in ST6GALNAC5, cg19974715 

[intergenic], cg01046943 in NUP210 and cg14727512 in DGCR14) associated with 

asthma at age 18. For two of those genes (HK1 and LITAF), expression levels in cord 

blood were predictive of infant wheeze. Interestingly, the observed methylation and 

expression patterns of HK1 and LITAF could be consistent with increased resistance to 

apoptotic signaling. Apoptotic-resistance among pro-inflammatory cells can increase the 

duration of an inflammatory response and is affiliated with asthmatic pathophysiology. 

Thus we may have identified under-studied genes and their epigenetic regulation, which 

could play important roles in asthma pathophysiology. These genes may offer new 

insights into the etiology of asthma, be investigated as potential targets for therapy, or be 

considered for inclusion in algorithms used to predict early-life wheeze and later-life 

asthma.
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CHAPTER 1 

BACKGROUND ON ASTHMA AND EPIGENETICS 

1.1 Asthma Background:  

Asthma is a chronic respiratory disease often defined by reversible airway 

obstruction, wheeze, bronchial hyper-responsiveness, and inflammation
1
. Many 

molecular pathways influence the recruitment and the activity of different immune cells 

during asthmatic symptoms, thus leading to heterogeneity in what triggers the symptoms 

to occur as well as their severity and responsiveness to treatments
1
. Given the vast 

heterogeneity in asthma, many possible phenotypes have been described. In fact, it is 

unclear whether asthma is a single disease with multiple presentations, or instead several 

different diseases, all with the common symptom of reversible restriction of the airways
2
. 

Some characteristics allow for the distinction of common asthma sub-types. For 

instance, those whose asthma symptoms are triggered by allergens (ie. pollen, cockroach, 

mold, and dust mite) are often distinguished from those whose symptoms arise with no 

apparent allergic triggers  as “extrinsic” vs. “intrinsic” types
1
. Interestingly, there is also 

some overlap in triggers for both extrinsic and intrinsic asthma. Both may be 

symptomatic to exercise, cold air, and inhaled irritants
3
, suggesting some overlap in 

common underlying mechanisms leading to exacerbations. Intrinsic asthma appears to be 

more severe, as positive skin prick tests (SPTs) are less common in severe asthma 

compared to less-severe asthma and extrinsic asthma tends to have an earlier onset than 
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intrinsic
3
 but is more transient and responds better to treatment with corticosteroids

1
. The 

exact distribution of extrinsic vs intrinsic asthma is unclear, although the majority of 

asthmatics tend have the extrinsic characteristics of allergic sensitization such as high 

serum immunoglobulin (Ig)E and/or positive SPT results
3
.  

Aside from differences in triggers and allergic hypersensitivity characterized by 

extrinsic vs. intrinsic phenotypes, asthmatics also may differ in many other characteristics 

important in understanding disease progression such as age of symptomatic onset, 

comorbidity with other allergic diseases (eczema and/or rhinitis), overall lung function, 

responsiveness to inhaled corticosteroids (ICS) and other treatments, as well as markers 

of airway eosinophilia such as fractional-exhaled nitric oxide (FeNO)
4
. These measures 

inform us about the pathophysiology of asthma, but there is also heterogeneity in the 

morbidity associated with asthma, such as frequency and severity of wheeze attacks, as 

well as when wheeze disturbs sleep, limits speech, or limits exercise
5
. Thus, it is of great 

importance to identify risk factors for the development, persistence, remission, and 

relapse of different asthmatic phenotypes
6
. 

Asthma Epidemiology: 

The prevalence of asthma varies by many demographic characteristics: age, sex, 

race, and socio-economic status (SES). The Centers for Disease Control and Prevention 

(CDC) showed that between 2008 and 2010, the average annual prevalence of asthma in 

the US tended to be higher in children than in adults, higher in females than males, higher 

in blacks compared to other races, higher among Hispanics compared to non-Hispanic, 

and higher among those in lower socio-economic groups
7
. The sex difference in asthma is 

age-dependent. Males typically have higher incidence and prevalence from birth through 
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puberty, then tend to exhibit higher rates of remission, whereas females tend to have 

higher incidence and prevalence as young adults
6
. Asthma severity parallels the same 

sex-age-dependent pattern with males having more severe asthma in childhood and 

females having more severe asthma in adulthood
6
. 

Asthma, as well as other allergic diseases, have been increasing in prevalence 

worldwide for decades and are some of the most common sources of chronic health 

issues
8,9

, the Global Asthma Network estimates that as many as 334 million people are 

affected by asthma
10

. Despite increasing global prevalence, region specific trends indicate 

that asthma prevalence in many high-income countries has recently peaked, whereas 

prevalence in low- or middle-income countries is still on the rise
11

. Despite the recent 

decline in incidence, mortality, and health care utilization, the prevalence of asthma 

symptoms remains high in high-income countries, ranging from 8.6-14.4%
11

. A recent 

study in the UK found that new diagnoses of asthma have plateaued, but that the lifetime-

prevalence is still increasing
12

. In the US, the prevalence of asthma, which was only 3% 

in the 1980s, steadily grew to 8.4% by 2010
7
. The American Lung Association reports 

that approximately 25.9 million people in the US had asthma in 2011 and an estimated 

13.2 million (51% of those with asthma) had at least one asthma attack within the 12 

months prior to the survey
13

. Asthma also generates a substantial burden on health-care 

systems and was responsible for 10.6 million physician office visits and 2.1 million 

emergency room visits in 2010 in the US alone
13

. 

The prevalence of asthma symptoms was highly variable in low- or middle-

income regions, but in many cases was higher than that of high-income countries, ranging 

from 6.8-21.7%
11

. In fact, the majority of persons affected by asthma are living in low- or 
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middle- income countries
10

. The increasing incidence of asthma in low- or middle-

income countries appears to be related to urbanization, which is expected to continue to 

expand in most of these countries
11

. So it is possible that the increasing incidence of 

asthma in low- and middle-income countries will actually accelerate in the years to come, 

further increasing the already heavy global burden of asthma. High prevalence worldwide 

and increasing prevalence in low- and middle- income countries means that millions of 

people will continue to chronically medicate in order to prevent or relieve asthma 

symptoms since there is no cure for this disease
14

.  

Asthma Etiology: 

Due to the increasing prevalence worldwide, research into asthmatic risk factors 

and underlying mechanisms of disease received substantial focus. Yet, the etiology of 

asthma is only partially understood, likely due to the multiple environmental and genetic 

risk factors implicated in its pathogenesis and its complex symptomatic presentation
2,15

. 

Although asthma is frequently defined by reversible airway obstruction, wheeze, 

bronchial hyper-responsiveness, and/or inflammation, individual cases of asthma may 

exhibit these characteristics and with varying frequency and severity
2
. Asthma has a large 

heritable component
16

; yet, known genetic variations and heritable risk factors only 

account for a small proportion of actual cases
15

. Also, identical twins are more likely to 

both be asthmatic than fraternal twins, yet most identical twins with an asthmatic co-twin 

are not affected by asthma, suggesting both genetic and non-genetic etiologies. Twin 

studies have also shown that approximately one-third of the variation in age at onset of 

asthma is due to genetic factors while the remaining two thirds are likely due to 

environmental factors
17

. Thus further studies are necessary to reveal key etiologic 
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elements in the pathogenesis of asthma, or its various phenotypes, which could then 

become the targets for prevention or treatment. 

Though it is well recognized that asthma has a multifaceted etiology, many of the 

underlying mechanisms associated with asthma risk factors are still convoluted. Indeed, 

many environmental and genetic components
6,18

 have been implicated as risk factors for, 

or associated with, asthma. However, the only confirmed “cause” of the “underlying 

asthma trait”, as opposed to triggers of asthmatic symptoms, is exposure to tobacco 

smoke, prenatally, in childhood or in adulthood
14

. Studies of other possible “causes” have 

produced conflicting evidence about their roles in the development of an underlying 

asthma trait. 

Potential environmental “causes” of asthma include pet ownership, living on a 

farm, mold in homes, and antibiotic or paracetamol exposure in early childhood. Persons 

with furry pets tend to have lower rates of asthma, though at least some of this 

association appears to be driven by selective avoidance of pet-ownership by persons with 

allergies
19,20

. Living on a farm has been observed as protective against the development 

of asthma and other allergic diseases, possibly due to greater frequency and diversity of 

microbial exposure leading to the development of a robust innate immune system ; 

however, this is a hypothesized mechanism, the details of which remain unclear
21

. Mold 

growth is more common in the homes of asthmatic children
22

, but most of these children 

do not exhibit an allergic response to fungal molds, thus obscuring how this mechanism 

could work
10

. Children that were exposed to antibiotics
23

 or paracetamol
24

 very early in 

life are more likely to develop asthma, but this association may be a product of reverse 

causation
23

. Both antibiotics and paracetamol are often administered to infants as 
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treatment for wheeze and infants with recurrent wheeze may already be pre-disposed to 

developing asthma later in life
23,25

. Thus many of the environmental exposures that are 

recognized as risk factors for asthma also have many questions surrounding whether or 

not they are causally related to asthma. 

Aside from possible environmental contributions to asthma risk, as many as 100 

genes have been implicated in asthma etiology
6,18

. Many of these were identified using 

genome-wide association studies (GWAS), which interrogate a large number potential 

genetic risk factors with no prior knowledge about their possible relationships with 

asthma
26

. Replication of these associations has been inconsistent and largely 

unsuccessful
18,26,27

. A likely reason for the lack of consistent replication among GWAS is 

that many of these studies were conducted within different populations which had 

different rates of genetic variation at identified loci
6
. It is also likely that poor replication 

could be due to lack of penetrance, in which some genetic causes may be necessary but 

not sufficient risk factors for asthma
27

. Similarly, a genetic risk factor may only influence 

the development of asthma under the correct environmental or epigenetic conditions as in 

gene-environment and gene-epigenetic interactions
18,26

. 

1.2 Epigenetics and DNA methylation: 

Epigenetic mechanisms, consisting of DNA methylation (DNA-M), histone 

modifications, and microRNAs (miRNA), are processes which influence gene-expression 

that are independent of variations to the genetic sequence. The majority of epidemiologic 

research into epigenetic mechanisms of disease has focused on DNA-M, the covalent 

addition of a methyl group to a carbon at the 5-position of a cytosine residue that is 

followed by a guanine residue (CpG site) within the DNA, due its stability and 
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technological advancement allowing for fairly rapid, accurate and affordable 

measurements
28

. Many of these studies utilize the Illumina 450K HumanMethylation 

array
29

 because of its high-accuracy, expansive interrogation, and affordability, though it 

is limited by biased measurement of CpG sites within promoter regions and CpG islands, 

and that despite having high-throughput scale, it still only measures < 2% of the 28 

million total CpG sites in human DNA
30

. Thus, studies with this array may be missing 

key elements of the DNA-M profile that may still be important in the diseases under 

study; however, this is currently the most appropriate array for conducting epidemiologic 

research of DNA-M across the genome
30

. As new technology becomes more affordable 

and more accurate, the field may switch toward sequencing technologies that measure 

methylation at more, or even all, CpG sites. 

Most early studies of DNA-M considered it to function as a silencer of gene 

expression, potentially through the inhibition of transcription factor (TF) binding
31

. Since 

its discovery as a regulator of expression, investigators have uncovered multiple effects 

of DNA-M on expression depending on where the methylation occurs within the gene
32

: 

(1) direct gene-silencing via promoter methylation, (2) interacting with or blocking DNA-

binding proteins, (3) repression of intragenic repetitive elements, and (4) influencing 

alternative splicing via differential methylation at intron-exon boundaries. Complicating 

the epigenetic landscape are the interactions between epigenetic mechanisms, and the 

interactions between genetic and epigenetic variation. For instance, methylation at 

particular sites can lead to histone modifications and vice versa
33

. Also, although 

epigenetic modifications do not alter the genomic sequence, they can be influenced by 

genetic variation and can be induced by environmental stimuli
18

 making for complex 
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multi-factor interactions. These interactions between genetic variation and levels of DNA 

methylation are referred to as methylation quantitative trait loci (methQTLs)
34–36

. Despite 

these complex interacting mechanisms, DNA-M has been shown to have independently 

important role in the regulation of gene expression and thus likely plays a role in many 

complex diseases.  

Role for Epigenetics in Asthma Etiology, a brief review: 

 Epigenetic mechanisms are known to play major roles in cellular differentiation 

and immune cell activation
33

. DNA methylation biomarkers have been implicated in 

airway inflammation
37

, immune cell fate, and asthma
33

. The majority of epidemiologic 

research in this area has focused on candidate regions of the genome known to be 

important in asthma pathogenesis, such as genes driving CD4
+
T cells toward Th2 rather 

than Th1 phenotypes, an important polarization that occurs in asthmatics
8
. Such research 

has shown that the loss of DNA-M, accompanied by histone modifications at Th2 

cytokine loci (IL4, IL5, and IL13), promote a Th2 response whereas the presence of 

DNA-M within the IL4 locus has been shown to promote a Th1 response
38

. Statistical 

interactions between genetic variants and DNA-M within the genes for the IL4-receptor 

(IL4R) and GATA Binding Protein 3 (GATA3), are also involved in Th2 polarization, 

contribute to asthma risk in a potentially age-dependent pattern
35,39

. The majority of 

strong associations between DNA-M and asthma have been observed within these and 

other genes involved in T-cell differentiation
40

, though investigators have also found 

associations related to specific characteristics of asthma such as FeNO and 

bronchodilator responsiveness. Higher levels of FeNO were associated with lower levels 

of DNA-M the arginase genes (ARG1 and ARG2)
41

, IL6, and iNOS
37

 implicating that 
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DNA-M plays an important role in the production of nitric oxide, which is an important 

marker of airway inflammation and eosinophilic asthma. Others have shown that higher 

levels of DNA-M within the promoter of the adrenoceptor β2, Surface (ADRB2), which 

can induce relaxation of smooth muscle in the airways, have been associated with 

decreased severity of dyspnoea and trended towards improved spirometry measures
42

. 

Taken together, these findings indicate that DNA-M plays many roles in regulating 

different biological pathways that are important in asthma etiology. 

1.3 Objectives: 

Purpose of the dissertation: 

The overarching goal of this dissertation was to identify novel genetic and 

epigenetic loci associated with asthma and complex wheeze phenotypes, and explore 

whether a novel set of genes associated with young adult wheeze could also be predictive 

of infant wheeze. We attempted to do this by conducting a genome-wide DNA-M study 

of physician-diagnosed asthma, a cross-sectional study of Th2-path genetic and 

epigenetic variations among complex wheeze phenotypes, and a prospective study of the 

expression and DNA-M of a novel gene-set and infant wheeze. 

Specific Aims: 

1. Aim 1: To identify CpG loci associated with prevalent asthma at age 18 from a 

genome-wide DNA methylation dataset with a two-stage design. 

Research Question 1.1: What parameters in the recursive Random Forest (RF) 

algorithm need to be changed from their default values? 

Research Question 1.2: Stage 1 – What epigenetic loci are selected via 

recursive RF feature selection? 
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Research Question 1.3: Stage 1 – Was the site selection from recursive RF 

feature selection confounded by cell-type proportions? 

Research Question 1.4: Stage 2 – Which sites selected from Stage 1 can be 

corroborated with multivariable logistic regression for their associations with 

asthma status? 

Research Question 1.5: Stage 2 – Are these sites associated with markers of 

lung dysfunction or allergic inflammation of the lung? 

Research Question 1.6: What are the biological functions of the genes that the 

selected CpG sites are in? 

2. AIM 2: To explore whether the combined genetic and epigenetic variation within an 

asthma-associated pathway (ie. the Th2 path) can improve our classification of 

asthmatic phenotypes at age 18. 

Research Question 2.1: Are specific genetic and epigenetic variations in the 

selected path able to classify different asthma phenotypes? 

3. AIM 3: To identify whether the gene-set associated with our top DNA-M findings 

from Aim 1 are differentially expressed in cord blood in relation to infant wheeze. 

Research Question 3.1: How are gene expression levels related within the 

selected gene-set? 

Research Question 3.2: Which genes within the gene-set are differentially 

expressed in cord blood samples in relation to wheeze within the one year of 

birth? 

Research Question 3.3: Which genes within the selected gene-set are 

correlated (positively or negatively) with DNA-M levels?
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CHAPTER 2 

GENOME-WIDE DNA METHYLATION ASSOCIATION STUDY OF ASTHMA 

2.1 Introduction: 

Asthma is a common chronic respiratory disease affecting around 334 million 

people worldwide
13

, causing substantial health care costs and morbidity-related 

absenteeism
14

. Over the previous two decades, many studies have sought to characterize 

the underlying mechanisms leading to the development and persistence of asthma. Yet, 

the etiology of asthma remains only partially understood, likely due to its complex 

physiology and the multiple environmental and genetic risk factors implicated in its 

pathogenesis
2,14

.  

Asthma is defined by multiple symptoms and characteristics such as airflow 

obstruction, bronchial hyper-responsiveness and airway inflammation. However, 

individual cases of asthma may exhibit only some of these characteristics and with 

varying frequencies and severities. This dynamic leads some to hypothesize that asthma 

is a diagnosis that encompasses multiple diseases, each of which may have its own 

unique etiology and pathophysiology
2,38

. Also, asthma has a substantial heritable 

component
14,16

, known genetic variations and heritable risk factors only account for a 

small proportion of actual cases
15

.  

Previous evidence suggests that asthma has no individual cause
27

; indeed, many 

environmental risk factors and as many as 100 genes
18

 have been implicated in studies of 

asthma. Epigenetic mechanisms, which control heritable variations in gene-
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expression not related to changes in genomic sequence
32

, have received recent attention 

in studies of asthma because these mechanisms are considered to be heritable and can be 

altered via environmental exposures, particularly exposures that occur in utero
14,38,43

. One 

of the most thoroughly studied epigenetic mechanisms is DNA methylation (DNA-M), 

which is the covalent addition of a methyl group to the DNA at a cytosine residue that is 

followed guanine (CpG site); this acts as an important regulator of gene transcription and 

may influence alternative splicing
32

. 

Recent work has shown that epigenetic mechanisms are important in regulating 

the expression of pro- and anti-inflammatory cytokines, which drive T-cell differentiation 

as well as the severity and duration of an inflammatory response
44

. Also a number of 

association studies have found variations in DNA-M associated with asthma status
40

, lung 

function
45

, and nitric oxide synthesis
41

. These studies have provided strong evidence that 

epigenetic mechanisms play key roles in the biological processes that result in asthmatic 

predisposition and the onset of symptoms. Thus further studies are necessary to reveal 

key epigenetic elements in the pathogenesis and persistence of asthma, or its various 

phenotypes, which can then become the targets for prevention or treatment. 

We conducted an exploratory study aimed at identifying novel DNA-M markers, 

from a genome-wide screening, which could be effective classifiers of current prevalent 

asthma and which may reveal some of the underlying role that DNA-M plays in the 

pathogenesis or persistence of asthma. Because asthma is heterogeneous condition, we 

were also interested in learning whether some these markers were more strongly 

associated with asthma among those with and without allergic sensitization, and for 
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specific phenotypic characteristics of asthma such as airway obstruction (FEV1/FVC 

Ratio), bronchodilator reversibility (BDR) and fraction of exhaled nitric oxide (FeNO). 

2.2 Methods: 

The Isle of Wight birth cohort 

The Isle of Wight (IOW) birth cohort was established to study the natural history 

of asthma and allergies in children born between January 1, 1989 and February 28, 1990 

in Isle of Wight, UK. The study was approved by the local research ethics committee 

(now named the National Research Ethics Service, NRES Committee South Central – 

Southampton B, 06/Q1701/34) and written informed consent was provided by the infants’ 

parents. Details about the birth cohort have been described in detail elsewhere
46,47

. After 

exclusion of adoptions, prenatal deaths and refusals, 1,456 children were enrolled, and 

followed-up at 1 (n=1,167; 80.2%), 2 (n=1,174; 80.6%), 4 (n=1,218; 83.7%), 10 

(n=1,373; 94.3%), and 18 (n=1,313; 90.2%) years of age. At each follow-up, participants 

were administered detailed questionnaires and evaluated for manifestations of allergic 

disease. Questionnaires included the International Study of Asthma and Allergies in 

Childhood (ISAAC)
5
 as well as study-specific questions about allergic disease and 

relevant risk factors. At the 18 year follow-up, questionnaire data was obtained via in-

person interview (n=864; 66%), by telephone (n=421; 32%), or by mail (n=28; 2%). 

Most of those who attended the follow-up visit in-person were also assessed via 

spirometry, BDR, FeNO, and skin prick tests (SPTs). At this 18-year follow-up a random 

subset of female (n=245) and male (n=125) participants were selected to take part in 

epigenetic screening. 

 



14 

Dependent Variables 

The primary dependent variable for this study was dichotomous prevalent asthma 

status (asthma vs. no asthma), determined by questionnaire. Participants were determined 

to have asthma if they had an affirmative answer to “Have you ever had asthma?”, as 

well as an affirmative response to either “Have you had wheezing in the last 12 months?” 

or “Have you had asthma treatment in the last 12 months?” 

Continuous measures of lung volume and airway obstruction were assessed via 

spirometry at age 10 and 18 years. Lung function measurements were performed using a 

Koko Spirometer and software with a desktop portable device (PDS Instrumentation, 

Louisville, USA), according to American Thoracic Society guidelines 
48,49

. Prior to lung 

function measurements children were required to be free from respiratory infection for 14 

days and to not be taking oral steroids. In addition, they were required to abstain from 

any beta-agonist medication for 6 hours and from caffeine intake for at least 4 hours. 

Forced expiratory volume in one second (FEV1) measured the volume of air (in liters) 

exhaled over the first second of a forced expiration done with maximal effort. Forced 

vital capacity (FVC) was the total volume of air that could be expired after full 

inspiration. The FEV1/FVC ratio was calculated by dividing FEV1 by FVC, and 

represents the proportion of the vital capacity that an individual can expire over one 

second, given maximal effort. BDR measured the percent change in FEV1, taken before 

and after administration of 600 ng/ml salbutamol, which is a bronchodilator. Percent 

change for BDR was calculated via pre-bronchodilator FEV1 minus post-bronchodilator 

FEV1 divided by the pre-bronchodilator FEV1 multiplied by 100. 
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Fraction of exhaled nitric oxide (FeNO) is a marker of airway inflammation. 

FeNO measurements (Niox mino, Aerocrine AB, Solna, Sweden) were obtained prior to 

spirometric assessments and in accordance with American Thoracic Society (ATS) 

guidelines. Expiratory flow against resistance was maintained at 50 ml/s to avoid 

contamination of the airways. Participants with a current infection, as well as those with 

asthmatic symptoms or treatment (with antibiotics or oral steroids) within the previous 

two weeks, were rescheduled for a later date. Because the distribution of FeNO was 

heavily positively skewed, all parametric analyses were performed with log-transformed 

FeNO, which better approximated a normal distribution. 

Atopy status, was assessed by skin prick tests (SPT) administered via a standard 

method
50

 with a battery of 11 allergens. Food allergens tested were cows’ milk, hens’ 

egg, peanut and cod. Inhalant allergens tested were house dust mite, cat, dog, Alternaria 

alternata, Cladosporium herbarium, grass pollen mix, and tree pollen mix. Histamine 

and saline acted as positive and negative controls, respectively (Alk-Abello, Horsholm, 

Denmark). Positive SPTs were defined as having a mean wheal diameter of 3 mm greater 

than the negative control; if the positive control yielded a diameter less than 3mm, the 

test was deemed inconclusive. Participants with at least one positive SPT were defined as 

atopic, while those with no positive SPTs were defined as not having atopy. 

Data Collection and DNA Methylation 

Blood samples for epigenetic screening were collected at the 18 year follow-up, 

DNA was extracted from whole blood using a standard salting out procedure 
51

. DNA 

concentration was determined by the PicoGreen dsDNA quantitation kit (Molecular 

Probes, Inc., OR, USA). One microgram of DNA was bisulfite-treated for cytosine to 
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thymine conversion using the EZ 96-DNA methylation kit (Zymo Research, CA, USA), 

following the manufacturer's standard protocol. Genome-wide DNA methylation was 

assessed using the Illumina Infinium HumanMethylation450K BeadChip (Illumina, Inc., 

CA, USA), which interrogates >484,000 CpG sites, regions of DNA where a cytosine 

nucleotides are followed by a guanine nucleotide, associated with approximately 24,000 

genes. The BeadChips were scanned using a BeadStation, and the methylation levels ( 

value, described below) were calculated for each queried CpG locus using the 

Methylation Module of BeadStudio software. Arrays were processed using a standard 

protocol as described elsewhere
52

, with multiple identical control samples assigned to 

each bisulphite conversion batch to assess assay variability and samples were randomly 

distributed on microarrays to control against batch effects.  

Data Cleaning 

The program for data cleaning was written in R (R Development Core Team, 

2012). Quality control (QC) measures were employed to improve the reliability of data 

prior to analysis. In our study, the detection P-value reported by BeadStudio (Illumina 

software to process raw intensities) was used as a QC measure of probe performance. 

Probes whose detection P-values > 0.01 in >10% of the samples were removed
53

. The 

methylation data were then preprocessed and technical variations removed via peak-

correction using the Bioconductor IMA (Illumina methylation analyser) package
54

. 

Dropping control probes and probes with poor detection P-values yielded 383,998 

remaining probes; since males and females were studied together, CpGs on sex-specific 

(X and Y) chromosomes were dropped. The arrays were processed in three different 

batches; batch number was recorded as a categorical variable which was used in ComBat 
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to adjust for inter-array variation
55

. A very conservative approach was utilized for 

addressing systematically biased probes. We also excluded all probes with SNPs that had 

a minor allele frequency (MAF) > 1.0% in European populations (or any population if 

European-specific MAF was not available) and within 10 nucleotides of, or directly at, 

single base extension via dbSNP137
56

, resulting in a final set of 248,336 CpGs for 

analysis. Dropping this large set of potentially biased probes was necessary because the 

variable selection method depends on a conditional variable importance metric, which 

means that the selection of biased probes could adversely affect the selection of other-

unbiased probes. 

Methylation levels for each queried CpG were calculated as beta () values. 

These represent the proportions of methylated probes for each specific CpG site and can 

be interpreted as percent methylation. The β values close to 0 or 1 tend to suffer from 

severe heteroscedasticity
57

. The β values were utilized for RF, described below, which is 

a non-parametric method and does not assume a normal distribution. However, for 

parametric statistical analyses, we utilized M-values which address the issue of 

heteroscedasticity and were calculated via log2(β / (1-β))
57

. Because M-values expand the 

distribution of the methylation levels, they may emphasize outliers; thus when using M-

values, strong outliers were recoded as missing. Potential outliers were identified using 

adjusted boxplots and a coefficient of 2.5 via the robustbase package in R. 

Random Sampling: Stage-1 vs Stage-2 

The epigenetic sample was randomly divided into two independent sub-samples. 

To create the stage-1 sample, 25% of participants with asthma and 25% of participants 

without asthma were randomly selected from the epigenetic sample (N=370), yielding a 
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discovery data set (nS1=91). The stage-2 validation data set (nS2=279) included all 

samples not selected into the discovery data set. To improve the likelihood that findings 

selected from stage-1 could be validated in stage-2, we compared the prevalence of 

asthma and gender, as well as the mean values for airway obstruction and inflammation 

across the two sub-samples. Differences in prevalence of asthma or gender, between the 

stage-1 and stage-2 samples, were assessed with Pearson’s Chi-squared tests. Students T-

tests were used to determine whether the mean values of continuous variables differed 

between the stage-1 and stage-2 samples. The specific analyses utilized within each stage 

are detailed below. 

Stage 1 (nS1=91) – Recursive RF feature Selection 

For stage-1 we conducted recursive RF feature selection 
58,59

 described below. RF 

is a non-parametric machine learning technique that can deal with substantially large 

numbers of predictors (p) relative to the number of samples (n), it is robust to outliers and 

noise, and it naturally incorporates conditional effects into the model via recursive binary 

partitioning without needing to specify interactions a priori 
60

. The RF algorithm has 

been thoroughly described elsewhere
60,61

. Briefly, this algorithm produces a series of 

classification trees, grown from bootstrapped training samples with replacement; each 

participant’s outcome status is predicted from the aggregate of all trees in which they 

were not part of the training sample. We used ‘balanced sampling’, by specifying by the 

sampsize parameter, to draw the same number of observations from the minority class 

and majority class for each bootstrap sample, so that each individual classification tree 

was grown from a balanced sub-sample
58

. We also altered the parameters for the number 

of predictors to test per node (mtry = 10% of all predictors available) and the number of 
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trees to grow in the forest (ntree = 7500) due to sparsity in the data and to produce stable 

VIMs, respectively. 

We effectively implemented the RF algorithm recursively as a means of reducing 

the size of the data
62

. For the recursive RF feature selection we (1) ran the RF algorithm 

on all available predictors via the randomForest package in R
63

, (2) extracted out-of-bag 

(OOB) misclassification rates and the variable importance measures, (3) sorted the 

predictors by their variable importance measures (VIMs), (4) excluded half of the 

predictors with the smallest VIMs, and (5) repeated the sequence until the stop criteria 

was met. Our stop criterion was a leveling-off of the asthma-specific misclassification 

rate; this would indicate that the predictors contributing noise to the RF classifications 

had been effectively excluded and the remaining predictors offered some ability to 

distinguish between asthmatics and non-asthmatics. Predictors that remained once the 

stop criteria were met were then annotated with relevant genetic information and 

analyzed for significant associations with asthma in the stage-2 validation sample. 

Stage 2 (nS2=279) – Validation Tests in Independent Sample 

The methylation levels for the selected CpGs were then converted to M-values as 

previously described, then tested for crude association with asthma status via logistic 

regression. The p-value distribution was then investigated via histogram, to determine 

whether small p-values from the validation tests were likely due to random chance. We 

generated q-values to estimate the false discovery rate (FDR)
64

 using the qvalue package 

in R
65

. Sites from the stage-2 analyses that were within a 10% FDR were then selected as 

our positive findings. We then validated that the direction (positive vs. negative) of the 

association, between methylation levels and asthma, was the same by plotting the 
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parameter estimates for the selected sites for both stage-1 and stage-2 logistic regression 

models. Any sites that did not show the same direction of association were excluded from 

our positive findings. 

Stage 3 (N=370) – Characterization of Findings 

Post-hoc analyses were then conducted on the positive findings from stage-2 

analyses, in the full sample. We assessed whether the odds of higher average methylation 

was greater among asthmatics compared to non-asthmatics using logistic regression. 

Potential confounders (sex and cell-type proportions from blood samples) were 

determined a priori. Due to logistical constraints, complete blood counts (CBC) were not 

possible for our participants, thus we predicted cell type proportions of CD8T cells, 

CD4T cells, natural killer cells, B-cells, monocytes, eosinophils and other granulocytes
66

 

using constrained projection
67,68

 via the minfi package in R
69

. To determine whether the 

observed associations with asthma were driven by any confounding factors, we produced 

three logistic regression models for each CpG site with asthma status as the dependent 

variable and M-values as the independent variable, while including: (1) no additional 

covariates for Model 1, (2) confounders associated with asthma status via t-tests as 

adjustment covariates for Model 2, and (3) all potential confounders identified a priori as 

adjustment covariates for Model 3. CpG sites that retained independent associations with 

asthma, after adjustment for confounders, were considered as our top findings. 

As a post-hoc analysis, we investigated whether our top findings between DNA-

M and asthma were also associated with some continuous measures of airway 

obstruction, reversible airway obstruction, and airway hyper-reactivity commonly used in 

the evaluation and management of asthma: FEV1/FVC, BDR, and FeNO, respectively. To 
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conduct these analyses, we implemented Model 1 (crude) and Model 3 (adjusted) linear 

regression models for each of the above dependent variables. Also, because the 

underlying biological mechanisms leading to airway obstruction may differ between 

those with allergic- versus non-allergic-asthma, we conducted a sensitivity analysis to see 

whether the observed associations differed between those with and without atopy. For 

these analyses we conducted Model 1 (crude) and Model 3 (adjusted) regressions 

(logistic for asthma status, and linear for FEV1/FVC, BDR, and FeNO), stratified by 

atopy status. Normal values of FEV1, FVC are dependent on age, sex, and height, thus all 

statistical analyses utilizing these, or combinations of these, measures included sex and 

height as adjustment covariates (all participants were matched on age by study design). 

Last, to understand the functionality of the selected CpG sites, pathway analysis 

was performed on the genes annotated to CpG sites that were internally validated in 

stage-2. Where a CpG site was annotated to more than one gene, all annotated genes were 

included in the list. Three CpGs were not annotated to any gene, so were not included in 

pathway analysis. The resulting list of 22 asthma-associated genes and their parameter 

estimate values was submitted to Ingenuity Pathway Analysis software (IPA, Qiagen), 

using default analysis parameters. The networks tool was used to find gene expression 

networks containing multiple differentially methylated genes. 

2.3 Results: 

All participants were 18 years old at the time of epigenetic screening for DNA-M 

and ascertainment of physician diagnosed asthma status. Within our sample, 13.9% 

(n=51) of participants were asthmatic, meaning they had received an asthma diagnosis 

from a physician at any point in their life and had asthmatic symptoms and/or took an 
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asthma medication within the previous 12 months. The majority of our sample was 

female (66.2%), and there was no difference in the proportion of males and females 

between asthmatics and non-asthmatics. Asthmatics had substantially higher prevalence 

of concurrent atopy, determined by SPTs, (66.0% vs 29.5%; χ2 P-value < 0.0001) (Table 

2.1). We also compared a number of lung function measures, markers of airway 

reactivity, and proportions of circulating cell-types, between asthmatics and non-

asthmatics. On average, there was no difference in FVC (means: 4.50 vs 4.48; T-test P-

value = 0.93), but asthmatics had lower FEV1 (means: 3.74 vs 3.94; T-test P-value = 

0.079), lower FEV1/FVC Ratio (means: 0.83 vs. 0.88; T-test P-value = 0.0006) greater 

BDR (means: 7.74 vs. 4.17; T-test P-value = 0.0004) and greater FeNO (medians: 21.0 vs 

14.0; T-test P-value = 0.0005). 

Because methylation measurements were obtained from peripheral blood samples, 

and persons with asthma likely have different circulating blood compositions than those 

without asthma, we also compared the proportions of cell types between asthmatics and 

non-asthmatics as estimated using the Houseman method 
67,68

. On average, those with 

asthma had significantly greater proportions of circulating B-Cells (0.053 vs 0.045; T-test 

P-value = 0.028) and eosinophils (0.043 vs 0.021; T-test P-value = 0.0007) when 

compared to those with asthma, but only minor differences for all other cell-types. 

To conduct the genome-scale DNA-M screening, this study first implemented a 

supervised feature selection on DNA-M sites from the Illumina 450K microarray (stage-

1), then validated associations between DNA-M and asthma status for the set of selected 

features (stage-2), and lastly tested the validated sites for their associations with asthma, 

and with measures of airway-obstruction and hyper-reactivity, while adjusting for cellular 
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heterogeneity and sex (stage-3). To implement this design, the full data set (N=370) was 

randomly divided into two independent sets: a stage-1 sample (nS1=91) used for feature 

selection and a stage-2 sample used for validation testing (nS2=279). Prior to running the 

stage-1 analyses, we compared the stage-1 and stage-2 samples to ensure that 

randomization was effective for important variables: prevalence of asthma, prevalence of 

female sex, average values for airway obstruction and airway hyper-reactivity, as well as 

average cell-type proportions (Table 2.2). Only BDR was significantly different between 

stage-1 and stage-2 samples (4.99 vs. 3.58; T-test P-value = 0.006). 

Stage 1 Results (nS1=91) – Recursive RF feature Selection 

The RF feature selection was implemented on the stage-1 sample, with a starting 

set of 248,336 CpG sites. This was a four step process which utilized RF to sort the 

predictors by their VIMs, then dropped least informative predictors in recursive 

iterations; each iteration reduced the set of predictors by 50%, until all uninformative 

predictors had been excluded. The overall forest’s ability to predict asthma in the 

discovery sample was tracked across all iterations. We observed a leveling-off of the 

misclassification rates at the 12
th

 iteration, corresponding to zero misclassification of 

asthmatics and 1% misclassification of non-asthmatics in the stage-1 sample (Figure 2.1). 

This iteration included 121 CpG sites as possible predictors, which were annotated with 

relevant genetic information and included in the supplemental materials. The forest 

grown in the 12
th

 iteration of stage-1 was then used to predict asthma status of stage-2 

participants, with very poor accuracy (Sensitivity=20.5% & Specificity=92.9%). 

The low sensitivity was likely due to the recursive RF data reduction over-fitting 

to the stage-1 sample, resulting in the inclusion of sites that were spuriously associated 
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with asthma and over-fitting the cut-points of truly associated sites used to distinguish 

asthmatics from non-asthmatics in the stage-1 sample. To determine which of the 

selected sites were likely to be truly informative for asthma, the selected sites were then 

tested for their crude associations with asthma status via logistic regression in the stage-2 

sample. 

Stage 2 Results (nS2=279) – Validation Tests in Independent Sample 

The p-values for the crude associations exhibited a strong left peak with positive 

skew (Figure 2.2), indicating that the small p-values were unlikely to be purely chance 

findings. Thus q-values were generated for the 121 crude tests, 24 of which were 

associated with asthma (P-value range: 0.000045 – 0.027) at a FDR of 10% (Table 2.3). 

For all of these 24 sites, the direction of the association was the same for stage-1 and 

stage-2 logistic regression models (Figure 2.3). The majority of these sites were 

negatively associated with probability of asthma: for 21 (87.5%) of the validated sites, 

asthmatics were more likely to have lower average methylation levels than non-

asthmatics; asthma was associated with higher average methylation for only 3 validated 

sites (12.5%). Given that these 24 sites were selected from stage-1 and validated in stage-

2, for both direction of association and statistically significant FDR q-values, they were 

selected as candidate CpGs for follow-up analyses to better understand their associations 

and potential roles in asthma. 

Stage 3 (N=370) – Characterization of Findings 

The remaining analyses utilized methylation data from all participants (N=370), 

to provide the most accurate estimates of the relationships between DNA-methylation at 

these candidate CpGs and asthma (Table 2.4). We first produced crude logistic regression 
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models (Model 1) for each of the 24 sites with asthma status as the dependent variable 

and M-values as the independent variable. As expected, all sites had strong crude 

associations with asthma (negative OR range: 0.09 to 0.34; positive OR range: 7.99 to 

9.51) and 95% CIs that excluded the null for all. 

Then we added the proportions of eosinophils and B-cells, which were present in 

greater proportions among asthmatics (T-test P-values = 0.0007 and 0.0396, 

respectively), as covariates to the regression models (Model 2) for each site. We found 

that the majority of the ORs attenuated towards the null and 14 (58.3%) of the confidence 

intervals crossed the null, indicating that these sites were not independently associated 

with asthma, and may instead represent markers of eosinophils or B-cells. However, 10 

sites retained independent associations with asthma after adjustment (negative OR range: 

0.13 to 0.35; positive OR range: 8.96 to 10.56). 

Last, we added in overall cellular heterogeneity (proportions of CD8T cells, 

CD4T cells, B-cells, monocytes, natural killer cells, eosinophils, and other granulocytes) 

and sex as covariates (Model 3). After adjusting for sex and proportions of all predicted 

cell-types, only one more site lost statistical significance: 15 (62.5%) of the 95% 

confidence intervals crossed the null. Given the potential dependence of associations 

between DNA-M and asthma on overall cellular heterogeneity
67,70

 and sex
71

, as well as 

the consistency of our results between Model 2 and Model 3, we considered the 9 sites 

that retained independent associations with asthma in Model 3 as our top positive 

findings. Lower average methylation levels were independently associated with increased 

probability of asthma at cg25578728 in CHD7 (Model 3 OR = 0.109 (0.034, 0.333)), 

cg16658191 in HK1 (Model 3 OR = 0.129 (0.032, 0.481)), cg00100703 in UNC45B 
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(Model 3 OR = 0.177 (0.059,0.502)), cg07948085 [intergenic] (Model 3 OR = 0.280 

(0.095, 0.784)), cg04359558 in LITAF (Model 3 OR = 0.352 (0.172, 0.694)), and 

cg20417424 in ST6GALNAC5 (Model 3 OR = 0.353 (0.118, 0.998)). Whereas higher 

average methylation levels were independently associated with increased probability of 

asthma at cg19974715 [intergenic] (Model 3 OR = 8.785 (2.536, 31.879)), cg01046943 

in NUP210 (Model 3 OR = 9.626 (2.229, 43.439)) and cg14727512 in DGCR14 (Model 

3 OR = 10.464 (3.021, 38.637)). One site, cg19232164 in REXO2, retained independent 

associations with asthma in Model 2 (OR = 0.254 (0.065,0.936)) but not in Model 3 (OR 

= 0.281 (0.073, 1.073)).  

To investigate which cell-types were the strongest confounders of our observed 

associations we generated two correlation matrices of: (1) pair-wise correlations of 

predicted cell proportions and the 9 sites with independent associations for Matrix 1 

(Figure 2.4), as well as (2) pair-wise correlations of predicted cell proportions and the 15 

sites that were confounded by cellular heterogeneity for Matrix 2 (Figure 2.5). 

Interestingly, although all 9 sites in Matrix 1 showed strong associations with asthma 

independent of cellular heterogeneity, methylation levels at some of these sites were still 

moderately or even strongly correlated with proportions of eosinophils. For instance, 

cg16658191 was moderate-to-strongly correlated with proportions of eosinophils (r= -

0.67) while cg07948085 (r= -0.54), cg20417424 (r= -0.46), and cg00100703 (r= -0.44) 

were moderately correlated with proportions of eosinophils. All other sites in Matrix 1 

only exhibited weak correlations (|r| < 0.40) with any cell proportions. Although 

proportions of B-cells differed between those with and without asthma, methylation 

levels at the 15 CpGs in Matrix 2 only exhibited very weak correlations with B-cell 
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proportions but all were strongly negatively correlated with eosinophil proportions. CpG 

sites in Matrix 2 exhibited very weak correlations with any of the other cell-type 

proportions, indicating that eosinophils were likely driving the majority of confounding 

from cellular heterogeneity. 

Because the underlying biological mechanisms leading to asthmatic symptoms 

may differ between those who have allergic hypersensitivity and those who do not, we 

conducted a sensitivity analysis to determine whether the associations between DNA-M 

and asthma differed between those with and without atopy among our top 9 findings. 

Persons with atopy were far more likely to be asthmatic than persons without atopy 

(26.2% vs. 7.1%). Also circulating cell-mixture showed larger differences between 

persons with and without asthma, among those with atopy: asthmatics had lower 

estimated proportions of natural killer cells (0.06 vs 0.08; T-test P-value = 0.0096) and 

higher estimated proportions of both B-cells (0.06 vs 0.05; T-test P-value = 0.0211) and 

eosinophils (0.05 vs 0.03; T-test P-value = 0.0027). However, among those without 

atopy, there were no significant differences for any estimated cell-type proportions 

between those with and without asthma. We also compared whether measures of airway 

obstruction (FEV1/FVC Ratio), reversible airway obstruction (BDR), and airway hyper-

reactivity (FeNO) were differed between those with and without atopy. As expected, 

higher log-FeNO was associated with asthma, but only among those with atopy (T-test P-

value = 0.006), whereas FEV1/FVC ratio and BDR were associated with asthma among 

participants with (T-test P-values: 0.0153 and 0.0045, respectively) and without (T-test 

P-values: 0.0094 and 0.043, respectively) atopy. 
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Crude logistic regression models, stratified by atopy status (Table 2.5), revealed 

that all sites were strongly associated with asthma among persons with atopy, except for 

cg01046943 in NUP210; while 6 of the 9 sites were associated with asthma among those 

without atopy. After adjusting for sex and cellular heterogeneity cg16658191 in HK1 

(ORAtopy = 0.09 (0.01,0.77)), cg04359558 in LITAF (ORAtopy = 0.29 (0.10,0.81)), and 

cg14727512 in DGCR14 (ORAtopy = 22.99 (3.43,194.38)) were only associated with 

asthma among persons with atopy; cg00100703 in UNC45B (ORNo-Atopy = 0.03 

(0.01,0.19)), cg07948085 [intergenic] (ORNo-Atopy = 0.15 (0.02,0.89)), and cg01046943 in 

NUP210 (ORNo-Atopy = 35.26 (3.32,444,37)) were only associated with asthma among 

persons without atopy; both cg25578728 in CHD7 (ORAtopy = 0.15 (0.02,0.82); and ORNo-

Atopy = 0.06 (0.01,0.35)) and cg19974715 [intergenic] (ORAtopy = 26.32 (3.57,251.98); and 

ORNo-Atopy = 8.32 (1.22,59.89)) were associated with asthma, irrespective of atopy status. 

Finally, cg20417424 in ST6GALNAC5 was not associated with asthma within either 

atopy-strata after adjustment for sex and cellular heterogeneity, though the CI only barely 

crossed the null among those with atopy (ORAtopy = 0.20 (0.03,1.06)). These findings 

provide evidence that there may be some shared epigenetic regulation (or dys-regulation) 

involved in asthmatic processes, but also that there are likely some epigenetic alterations 

that are unique to allergic and non-allergic asthma, respectively. 

We next investigated whether the top 9 sites were associated with various 

measures of overall airway obstruction (FEV1/FVC ratio), reversible airway obstruction 

(BDR), and airway hyper-reactivity (FeNO), stratified by atopy status (Table 2.6). 

Because the established normal values for FEV1 and FVC are dependent on age, height 

and sex, we included height and sex in all statistical models for FEV1/FVC ratio and 
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BDR. Higher average methylation levels at cg00100703 in UNC45B were associated with 

increased FEV1/FVC ratio (beta = 0.03 P-Value = 0.032), among those without atopy, 

and with decreased average log-FeNO (beta = -0.21 P-Value = 0.024) among those with 

atopy. Higher average methylation levels at cg07948085 [intergenic] were associated 

with lower FeNO (beta = -0.20 P-Value =0.028), but only among those with atopy. Also, 

higher methylation levels at cg14727512 in DGCR14 were associated with higher log-

FeNO (beta = 0.32 P-Value = 0.005) among those with atopy. Higher methylation levels 

at cg16658191 in HK1 were associated with lower BDR (beta = -4.91 P-Value = 0.036), 

but only among those with atopy. Higher methylation levels at cg19974715 [intergenic] 

were associated with increased BDR (beta = 4.89 P-Value = 0.016), only among those 

with atopy. Lastly, higher methylation levels at cg20417424 in ST6GALNAC5 were 

associated with increased FEV1/FVC ratio , both for those with (beta = 0.05 P-Value = 

0.022) and without (beta = 0.03 P-Value = 0.022) atopy as well as decreased BDR (beta = 

-2.41 P-Value = 0.017) only among those without atopy. 

The functional analyses for the 22 genes submitted to IPA revealed five 

statistically significant canonical pathways related to trehalose degradation II (P-value = 

3.41E-03), GDP-glucose biosynthesis  (P-value = 6.80E-03), glucose and glucose-1-

phosphate degradation  (P-value = 7.93E-03), UDP-N-acetyl-D-galactosamine 

biosynthesis II  (P-value = 1.02E-02), and CDP-diacylglycerol biosynthesis I  (P-value = 

1.80E-02). Interestingly, the top network associated with our gene list, Cell Morphology, 

Tissue Morphology, Cellular Development, (Figure 2.6) included 7 of the 22 genes from 

our list: HK1, LITAF, ALCAM, KCNH2, SIK2, ST6GALNAC5, and DGCR14. 
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2.4 Discussion: 

Asthma was prevalent in 13.8% of our epigenetic sub-sample; the majority of 

which had atopy (66%) and on average had normal FEV1/FVC (mean = 83%), though 

lower than non-asthmatics, high BDR (mean = 7.74 L), and high FeNO (median = 21.00 

log(ppb)). Using a unique feature-selection technique and two-stage design, we identified 

24 CpG sites within a 10% FDR associated with asthma-status at age 18; nine of which 

had associations with asthma, atopy-specific asthma, airway obstruction, reversible 

airway obstruction, and/or airway hyper-reactivity, independent of cellular heterogeneity 

and sex. Gene annotations for these nine sites (Table 2.7) revealed that all of our top 

findings were novel, as none of the genes encompassing these CpG sites had been 

previously implicated in studies of asthma; though many of them are involved in 

biological processes that may be important in asthma pathogenesis and persistence. Many 

of the top sites were within genes involved in a network that influences cell and tissue 

morphology. The present findings require replication in other cohorts with larger 

samples. 

Three of these CpG sites were most strongly associated with asthma among 

persons with atopy: cg16658191 within the body (or 1st exon) of hexokinase 1 (HK1), 

cg14727512 within the 3’UTR of DiGeorge Syndrome Critical Region Gene 14 

(DGCR14) and within the 1st exon of testis-specific serine kinase 2 (TSSK2), and 

cg04359558 within the body of lipopolysaccharide-induced TNF-α factor (LITAF). 

Among persons with atopy, methylation levels at cg16658191 were also associated with 

BDR, a measure of reversible airway obstruction, and methylation levels at cg1427512 

were associated with FeNO, a marker of airway inflammation. HK1 encodes for a 



31 

hexokinase-1 which is integral in glucose metabolism, provides resistance to TNF-

induced apoptotic signals
72

, and mutations within this gene have been associated with 

hemolytic anemia in mice
73

. Eosinophils of asthmatics not on corticosteroids
74

 and 

activated T-cells of atopic asthmatics
75

 have been shown to be resistant to apoptotic 

signals resulting in prolonged pro-inflammatory activity, though many aspects of the 

molecular mechanisms involved in this resistance are still unclear
75

. DGCR14 is thought 

to encode for a component of a spliceosome. Deletions at or near this gene have been 

implicated in the etiology of DiGeorge syndrome, a heterogenous developmental disorder 

that often is characterized by T-cell deficiency and/or craniofacial malformations
76

. Also 

of note, increased expression of DGCR14 has been shown to up-regulate IL17α, thus 

promoting Th17 cell differentiation
77

, and Th17 cells have been implicated for their roles 

in non-atopic and steroid-resistant asthma
78

. LITAF, which has primarily been studied in 

mouse models, encodes for a protein that is expressed in response to lipopolysaccharide 

(LPS) challenge, and forms a complex with STAT6B which then up-regulates the 

transcription of monocyte chemoattractant protein-1 (MCP-1)
79

 and tumor necrosis factor 

alpha (TNF-alpha)
80

. Both MCP-1 and TNF-alpha are pro-inflammatory cytokines, and 

thus over-expression could lead to prolonged inflammatory states
79,80

. 

Another three sites were most strongly associated with asthma among those 

without atopy: cg07948085 [intergenic], cg01046943 within the body of nucleoporin 

210kDa (NUP210), and cg00100703 within the 3’UTR of unc-45 homolog B (UNC45B). 

Interestingly, despite these sites being most strongly associated with asthma among 

persons without atopy, cg07948085 and cg00100703 were associated with FeNO among 

persons with atopy; whereas cg00100703 was associated with FEV1/FVC ratio among 
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persons without atopy. NUP210 encodes for a major component of the nuclear pore 

complex which is essential for transporting molecules between the nucleus and the 

cytoplasm; this particular component is involved in muscle cell differentiation and is 

integral for maintaining nuclear envelope/ER homeostasis
81

. NUP21 was also found to be 

up-regulated in multiple tumor cell lines
82

 and may have some anti-apoptotic effects
81

. 

The functions of the protein encoded by UNC45B are largely unknown, although it is 

thought to have a role in myoblast fusion and sarcomere organization
83

. However, 

UNC45B does lie within chromosomal region 17q12, which is within the asthma 

susceptibility region 17q12-21
71,84–86

. SNPs within 17q12-21 the genes ZPBP2, 

ORMDL3, GSDMA, and GSDMB have previously been associated with childhood asthma 

and with FeNO levels
85,87

. Berlivet et al (2012) recently found that promoter methylation 

within these genes was highly correlated with their expression levels, providing evidence 

for epigenetic-genetic interactions that may alter asthma risk
87

.  

One site, cg20417424 within the TSS1500 of (alpha-N-acetyl-neuraminyl-2,3-

beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-sialyltransferase 5 

(ST6GALNAC5), was associated with overall asthma, but not with either atopy-specific 

strata. Yet, methylation levels at this site were associated with FEV1/FVC ratio, among 

persons with and without atopy, and with BDR among persons without atopy. The 

protein encoded by ST6GALNAC5 is involved in modifying cell-surface proteins, 

influencing how they participate in cell-cell and cell-extracellular matrix interactions
88

.  

The final two sites, cg25578728 within the body of chromodomain helicase DNA 

binding protein 7 (CHD7) and cg19974715 [intergenic], were strongly associated with 

asthma both among those with and without atopy. And, cg19974715 was also associated 
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with BDR among persons with atopy. CHD7 encodes for a protein that is involved in 

chromatin remodeling, and thus may have widespread affects on gene-expression. Recent 

work with mouse models has shown that functional CHD7 is necessary for proper 

craniofacial development and formation of the airways during development and in 

humans may result in CHARGE syndrome
89

.  

Although none of the above genes, which contained our 9 identified CpG sites 

(within 100kb), have been previously implicated in studies of asthma, the roles that these 

genes play in inflammation, cell surface protein modifications, development of the 

respiratory tract, and peripheral airway restriction are all important mechanisms in 

asthma pathogenesis. Thus these may represent some under-studied candidate genes and 

CpG sites that could play important roles in asthma etiology. However, the above 

findings must be interpreted within the limitations of this study. 

Due to the cross-sectional design, measurements of DNA-M, asthma, spirometry, 

and FeNO were all obtained at the same point in time; thus, temporality between DNA-M 

and our different outcomes cannot be established. It is possible that these findings are a 

product of reverse causation, in which the observed variations in DNA-M were actually 

caused by asthma or asthma treatments. Follow-up studies with longitudinally collected 

DNA-M levels and asthma assessments could provide more insight into which of these 

variations might contribute to the development of asthma or the persistence of asthma, 

and which may come about as a result of asthma. Also, some may consider the use of 

questionnaire-based asthma determinations a limitation of this study. However, the 

questions used in our diagnosis came from the validated ISAAC questionnaire
5
. Also, 

despite the many different presentations of asthma, multiple studies have been successful 
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at replicating findings using general asthma-status as an outcome, which may support that 

there are some common molecular mechanisms driving the various asthmatic phenotypes. 

Also, we found that eight of our nine sites were associated with asthma stratified by atopy 

status and six of the nine sites were associated with airway obstruction (FEV1/FVC), 

reversible airway obstruction (BDR), and/or airway hyper-reactivity (FeNO). Lastly, 

although there were multiple functionally interesting genes identified in this study, we 

only evaluated variations in DNA-M at the identified CpG sites. Thus it is unclear 

whether the variations in DNA-M at these sites would result in any regulatory effect on 

the expression of any of these genes. However, current paradigms indicate that 

methylation within promoter regions typically leads to transcriptional silencing while 

methylation within the gene-body is more frequently associated with increased 

expression and alternative splicing
32

. Thus interesting follow-up work could involve 

investigations into whether variations in DNA-M at these sites are associated with 

corresponding variations in gene-expression, and if those variations in gene-expression 

are related to the frequency and severity of asthmatic symptoms, FEV1/FVC, BDR, or 

FeNO. 

In conclusion, we found that DNA-M variations at nine novel CpG sites were 

associated with prevalent asthma at age 18. For some of these sites, the association was 

strongest among persons with atopy (cg16658191 in HK1, cg04359558 in LITAF, and 

cg14727512 in DGCR14), some among persons without atopy (cg00100703 in UNC45B, 

cg07948085 [intergenic], and cg01046943 in NUP210), while others were associated 

with asthma regardless of their atopy status (cg25578728, cg01046943, and 

cg19974715). We also found that cg00100703 in UNC45B was associated with 
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FEV1/FVC and FeNO; cg07948085 [intergenic] was associated with FeNO; cg14727512 

in DGCR14 was associated with FeNO; cg16658191 in HK1 was associated with BDR, 

cg19974715 [intergenic] was associated with BDR; and cg20417424 in ST6GALNAC5 

was associated with FEV1/FVC.  
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Table 2.1: Comparison of lung function and cell-type distributions between those with 

and without asthma in the overall epigenetic sub-sample. 

 

  

Asthmatics 

(n=51) 

Non-Asthmatics 

(n=319) 

Asthma 

Comparison 

Categorical 

Factors n Percent n Percent 

χ
2 

Statistic 

P-

Value 

Female Sex 35 68.6 210 65.8 0.054 0.816 

Atopy 33 66.0 93 29.5 23.811 < 0.001 

Continuous 

Factors n Mean (SD) n Mean (SD) 

T-

Statistic 

P-

Value 

FVC 49 4.50 (0.874) 307 4.48 (0.857) -0.09 0.9307 

FEV1 49 3.74 (0.750) 307 3.94 (0.719) 1.78 0.0794 

FEV1/FVC Ratio 49 0.83 (0.088) 307 0.88 (0.064) 3.63 0.0006 

BDR 48 7.74 (6.243) 294 4.17 (4.802) -3.78 0.0004 

FeNO
†
 47 21.00 (35.37) 300 14.0 (17.67) -3.70 0.0005 

CD8T  51 0.075 (0.081) 319 0.072 (0.048) -0.27 0.7907 

CD4T  51 0.133 (0.048) 319 0.123 (0.045) -1.36 0.1755 

Natural Killer Cells 51 0.073 (0.058) 319 0.087 (0.061) 1.58 0.1193 

B Cells 51 0.053 (0.022) 319 0.045 (0.025) -2.21 0.0306 

Monocytes 51 0.080 (0.026) 319 0.082 (0.024) 0.57 0.5676 

Eosinophils 51 0.043 (0.043) 319 0.021 (0.023) -3.60 0.0007 

Other Granulocytes 51 0.536 (0.107) 319 0.563 (0.100) 1.74 0.0927 

FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; BDR, 

bronchodilator reversibility; FeNO, fractional-exhaled nitric oxide 
†
 Due to heavy positive skew of FeNO, medians were presented in the mean column, and 

log(FeNO) was used for computing the T-test.  
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Table 2.2: Comparison of stage 1 and stage 2 samples for asthma variables and cell 

proportions. 

 

 

Stage 1 Sample 

(ns1=91) 

Stage 2 Sample 

(ns2=279) 

Sample 

Comparison 

Asthma Prevalence n % n % 

Chi-

Statistic 

P-

Value 

Non-Asthmatic 79 86.81 240 86.02 0.0002 0.987 

Asthmatic 12 13.19 39 13.98     

Lung Function n Mean (SD) n Mean (SD) 

T-

Statistic 

P-

Value 

FVC 88 4.497 (0.801) 268 4.482 (0.877) 0.152 0.879 

FEV1 88 3.917 (0.688) 268 3.909 (0.739) 0.095 0.925 

FEV1/FVC Ratio 88 0.875 (0.075) 268 0.875 (0.068) 0.004 0.997 

BDR 83 5.933 (5.085) 259 4.269 (5.141) 2.773 0.006 

FeNO
†
 83 14.00 (17.46) 264 15.00 (23.50) -0.493 0.623 

Cellular 

Heterogeneity n Mean (SD) n Mean (SD) 

T-

Statistic 

P-

Value 

CD8T  91 0.074 (0.055) 279 0.071 (0.053) 0.458 0.647 

CD4T  91 0.128 (0.040) 279 0.123 (0.047) 1.006 0.316 

Natural Killer  91 0.085 (0.052) 279 0.085 (0.064) 0.072 0.942 

B Cells 91 0.049 (0.026) 279 0.045 (0.024) 1.093 0.276 

Monocytes 91 0.080 (0.024) 279 0.082 (0.024) -0.559 0.577 

Eosinophils 91 0.021 (0.024) 279 0.025 (0.029) -1.242 0.216 

Other Granulocytes 91 0.555 (0.090) 279 0.561 (0.105) -0.537 0.592 

FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; BDR, 

bronchodilator reversibility; FeNO, fractional-exhaled nitric oxide 
†
 Due to heavy positive skew of FeNO, medians were presented in the mean column, and 

log(FeNO) was used for computing the T-test. 
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Table 2.3: Stage 2 (ns2=279) – Crude logistic regression results for the sites within a 10% 

FDR. 

 

CpG ID β1 P-Val. Q-Val. Gene Gene Region 

cg16658191 -1.90 0.00004 0.003 HK1 Body;1stExon 

cg25578728 -1.83 0.00036 0.010 CHD7 Body 

cg00100703 -1.68 0.00049 0.010 UNC45B 3'UTR 

cg07948085 -1.49 0.00054 0.010   

cg09241885 -1.02 0.00102 0.015 C20orf118 TSS200 

cg11310939 -1.46 0.00120 0.015 MARCH3 5'UTR 

cg01069468 -1.69 0.00231 0.025 SYNGAP1 Body 

cg04359558 -1.03 0.00304 0.029 LITAF Body 

cg06866208 -1.44 0.00520 0.041   

cg13753183 -1.66 0.00529 0.041 APTX Body;1stExon;5'UTR 

cg06648780 -1.29 0.00728 0.051 ALCAM Body 

cg24491618 -1.34 0.00961 0.062 KCNH2 Body 

cg09597192 -1.23 0.01154 0.066 AGPAT1 5'UTR 

cg15344640 -1.39 0.01234 0.066 LMAN2 Body 

cg26252077 -0.93 0.01360 0.066 NFIA Body 

cg24368962 -1.17 0.01433 0.066 SIK2 Body 

cg09278187 -1.24 0.01453 0.066 FOXJ3 3'UTR 

cg20417424 -1.19 0.01610 0.068 ST6GALNAC5 TSS1500 

cg10704177 -0.70 0.01690 0.068 INADL 5'UTR 

cg14727512 1.53 0.01809 0.070 TSSK2;DGCR14 1stExon;3'UTR 

cg08940169 -0.85 0.01908 0.070 ZFPM1 Body 

cg01046943 1.75 0.02345 0.081 NUP210 Body 

cg19974715 1.51 0.02415 0.081   

cg19232164 -1.32 0.02681 0.086 REXO2 3'UTR 

β1 = parameter estimate for the effect of DNA-M on asthma status 

P-Val = p-value corresponding to the significance of β1 

Q-Val = FDR-adjusted p-values, adjusted for 121 regression models 
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Table 2.4: Pooled Sample (n=370) – Crude and adjusted ORs for M-values predicting 

asthma status.  

 

CpG ID 

Model 1 Model 2 Model 3 

Crud

e OR Crude CI 

Adj.* 

OR Adj. CI 

Adj.*

* OR Adj. CI 

cg16658191 0.098 (0.04, 0.23) 0.136 (0.04, 0.49) 0.129 (0.03,0.48) 

cg19232164 0.098 (0.03, 0.28) 0.254 (0.06, 0.94) 0.281 (0.07,1.04) 

cg13753183 0.109 (0.04, 0.31) 0.364 (0.08, 1.62) 0.347 (0.07,1.58) 

cg25578728 0.116 (0.05, 0.28) 0.163 (0.06, 0.44) 0.109 (0.03,0.33) 

cg01069468 0.118 (0.04, 0.31) 0.409 (0.09, 1.78) 0.486 (0.10,2.23) 

cg00100703 0.120 (0.05, 0.28) 0.190 (0.07, 0.52) 0.177 (0.06,0.50) 

cg06866208 0.137 (0.05, 0.34) 0.449 (0.11, 1.89) 0.532 (0.12,2.33) 

cg24491618 0.143 (0.06, 0.35) 0.500 (0.12, 2.06) 0.550 (0.13,2.31) 

cg15344640 0.148 (0.05, 0.39) 0.973 (0.19, 4.66) 1.095 (0.20,5.74) 

cg11310939 0.155 (0.07, 0.34) 0.378 (0.10, 1.35) 0.434 (0.11,1.57) 

cg06648780 0.157 (0.07, 0.36) 0.347 (0.09, 1.19) 0.365 (0.09,1.33) 

cg07948085 0.157 (0.07, 0.34) 0.308 (0.11, 0.82) 0.280 (0.09,0.78) 

cg09597192 0.158 (0.07, 0.37) 0.702 (0.16, 3.12) 1.010 (0.21,4.83) 

cg20417424 0.170 (0.07, 0.40) 0.359 (0.12, 0.99) 0.353 (0.12,0.99) 

cg24368962 0.174 (0.07, 0.39) 0.650 (0.16, 2.69) 0.489 (0.11,2.14) 

cg09278187 0.176 (0.07, 0.44) 0.574 (0.16, 1.96) 0.674 (0.19,2.35) 

cg04359558 0.233 (0.12, 0.42) 0.358 (0.18, 0.70) 0.352 (0.17,0.69) 

cg08940169 0.265 (0.14, 0.50) 0.990 (0.29, 3.40) 1.158 (0.31,4.30) 

cg26252077 0.277 (0.14, 0.53) 0.698 (0.25, 1.87) 0.710 (0.25,1.93) 

cg09241885 0.286 (0.16, 0.49) 0.513 (0.22, 1.17) 0.447 (0.18,1.08) 

cg10704177 0.340 (0.20, 0.57) 1.140 (0.39, 3.34) 1.608 (0.51,5.08) 

cg14727512 7.997 (2.58, 26.09) 10.562 (3.12, 37.97) 10.464 (3.02,38.64) 

cg01046943 9.464 (2.36, 39.32) 9.639 (2.25, 42.35) 9.626 (2.23,43.44) 

cg19974715 9.516 (2.99, 31.59) 8.968 (2.63, 31.92) 8.785 (2.54,31.88) 

OR, odds ratio; CI, 95% confidence interval; Adj., adjusted 

* Odds ratios adjusted for potential confounders strongly associated with asthma status: 

proportions of B-cells and eosinophils. 

** Odds ratios adjusted for sex and overall cellular heterogeneity (proportions of CD8T 

cells, CD4T cells, B-cells, monocytes, natural killer cells, eosinophils, and other 

granulocytes). Sites whose 95% CIs didn’t cross the null are emphasized with bold text. 
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Table 2.5: Crude and adjusted ORs for M-values predicting asthma status stratified by 

atopy status, among the top nine sites. 

 

Atopy (n= 126; 33 with asthma) 

 Crude OR Crude CI Adj** OR Adj CI 

cg16658191 0.10 (0.03,0.32) 0.09 (0.01,0.77) 

cg25578728* 0.13 (0.03,0.43) 0.15 (0.02,0.82) 

cg00100703 0.19 (0.06,0.58) 0.36 (0.07,1.61) 

cg07948085 0.21 (0.07,0.56) 0.27 (0.05,1.19) 

cg20417424 0.12 (0.03,0.41) 0.20 (0.03,1.06) 

cg04359558 0.18 (0.07,0.41) 0.29 (0.10,0.81) 

cg14727512 14.11 (2.71,86.41) 22.99 (3.43,194.38) 

cg01046943 5.61 (0.74,45.72) 3.85 (0.39,40.55) 

cg19974715* 20.76 (3.70,140.35) 26.32 (3.57,251.98) 

No Atopy (n=239; 17 with asthma) 

 Crude OR Crude CI Adj** OR Adj CI 

cg16658191 0.23 (0.04,1.17) 0.18 (0.02,1.41) 

cg25578728* 0.15 (0.04,0.62) 0.06 (0.01,0.35) 

cg00100703 0.09 (0.02,0.36) 0.03 (0.01,0.19) 

cg07948085 0.22 (0.05,0.85) 0.15 (0.02,0.89) 

cg20417424 0.61 (0.14,2.53) 0.59 (0.11,2.88) 

cg04359558 0.43 (0.15,1.15) 0.40 (0.13,1.16) 

cg14727512 7.14 (1.18,46.99) 5.45 (0.83,39.75) 

cg01046943 38.23 (4.20,390.06) 35.26 (3.32,444.37) 

cg19974715* 7.06 (1.14,44.18) 8.32 (1.22,59.89) 

OR, odds ratio; CI, 95% confidence interval; Adj., adjusted 

* Sites that were significantly associated with asthma in both strata, after adjusting for 

sex and cellular heterogeneity. 

** Odds ratios adjusted for sex and overall cellular heterogeneity (proportions of CD8T 

cells, CD4T cells, B-cells, monocytes, natural killer cells, eosinophils, and other 

granulocytes). Sites whose 95% CIs didn’t cross the null are emphasized with bold text. 
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Table 2.6: Parameter estimates from linear regressions for measures of airway obstruction (FEV1/FVC), hyper-reactivity (BDR) and 

airway inflammation (FeNO) for the top 9 sites, stratified by atopy status. 

 

CpG ID Strata 

FEV1/FVC BDR FeNO 

Crude P-Val Adj* P-Val Crude P-Val Adj* P-Val Crude P-Val Adj** P-Val 

cg00100703 
Atopy 0.04 0.031 0.01 0.627 -1.97 0.166 0.58 0.739 -0.37 <0.001 -0.21 0.024 

No Atopy 0.03 0.003 0.03 0.032 -0.98 0.251 -0.25 0.790 -0.04 0.255 -0.02 0.650 

cg01046943 
Atopy -0.02 0.555 -0.03 0.486 2.43 0.365 1.13 0.680 0.21 0.203 0.17 0.253 

No Atopy -0.03 0.191 -0.03 0.190 1.83 0.223 2.10 0.166 0.02 0.745 0.03 0.608 

cg04359558 
Atopy 0.01 0.317 -0.01 0.631 -1.14 0.219 0.32 0.772 -0.18 0.002 -0.04 0.484 

No Atopy 0.01 0.153 0.01 0.558 0.62 0.328 1.10 0.103 0.00 0.958 0.01 0.645 

cg07948085 
Atopy 0.03 0.043 0.02 0.480 -3.13 0.007 -2.88 0.087 -0.38 <0.001 -0.20 0.028 

No Atopy 0.02 0.179 0.01 0.649 0.87 0.322 1.54 0.138 -0.01 0.902 0.00 0.971 

cg14727512 
Atopy -0.02 0.448 -0.03 0.262 1.62 0.436 1.20 0.574 0.25 0.060 0.32 0.005 

No Atopy -0.01 0.547 -0.01 0.539 0.31 0.795 0.57 0.638 -0.08 0.146 -0.03 0.580 

cg16658191 
Atopy 0.04 0.021 0.05 0.135 -3.83 0.006 -4.91 0.036 -0.39 <0.001 -0.13 0.336 

No Atopy 0.02 0.101 0.01 0.558 -0.49 0.654 -0.44 0.740 -0.05 0.366 0.01 0.859 

cg19974715 
Atopy -0.04 0.215 -0.03 0.346 5.73 0.005 4.89 0.016 0.08 0.545 0.03 0.812 

No Atopy -0.02 0.281 -0.01 0.365 -0.57 0.661 -0.93 0.479 0.04 0.499 0.00 0.955 

cg20417424 
Atopy 0.07 <0.001 0.05 0.022 -3.70 0.012 -1.63 0.361 -0.29 0.001 0.01 0.920 

No Atopy 0.03 0.006 0.03 0.022 -2.18 0.020 -2.41 0.017 -0.06 0.171 0.01 0.877 

cg25578728 
Atopy 0.03 0.089 0.00 0.870 -1.91 0.176 0.78 0.665 -0.13 0.127 0.12 0.229 

No Atopy 0.01 0.305 0.00 0.787 -1.23 0.185 -0.68 0.512 -0.07 0.100 -0.03 0.530 

FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; BDR, bronchodilator reversibility; FeNO, fractional-exhaled 

nitric oxide 

* Parameter estimates adjusted for height, sex and overall cellular heterogeneity (proportions of CD8T cells, CD4T cells, B-cells, 

monocytes, natural killer cells, eosinophils, and other granulocytes). Sites with P-values < 0.05 are emphasized with bold text. 

** Parameter estimates adjusted for sex and overall cellular heterogeneity (proportions of CD8T cells, CD4T cells, B-cells, 

monocytes, natural killer cells, eosinophils, and other granulocytes). Sites with P-values < 0.05 are emphasized with bold text.  
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Table 2.7: Annotations and biological functions of genes associated with the nine CpG sites associated with asthma, independent of 

cellular heterogeneity and sex. 

 

CpG ID Ch 

Gene 

Region Gene ID Gene Name Gene Description 

cg00100703 17 3'UTR UNC45B unc-45 homolog B 
Encodes a protein that is involved in 

myoblast and sarcomere organization. 

cg01046943 3 Body NUP210 Nucleoporin 210kDa 

Encodes a protein that is a major 

component in the nuclear pore complex, 

which controls the flow of molecules 

between the nucleus and cytoplasm. 

cg04359558 16 Body LITAF 
Lipopolysaccharide-Induced 

TNF-α Factor 

Encodes a protein which promotes TNF-α 

factor expression. 

cg07948085 10 - - - N/A 

cg14727512 22 3'UTR DGCR14 
DiGeorge Syndrome Critical 

Region Gene 14 

Encodes a component of a spliceosome; 

deletions in this region associated with 

DiGeorge syndrome. 

cg16658191 10 
Body; 

1stExon 
HK1 Hexokinase 1 

Encodes a hexokinase involved in glucose 

metabolism; associated with anemia. 

cg19974715 17 - - - N/A 

cg20417424 1 TSS1500 ST6GALNAC5 

(alpha-N-acetyl-neuraminyl-

2,3-beta-galactosyl-1,3)-N-

acetylgalactosaminide alpha-

2,6-sialyltransferase 5 

Encodes a protein that modifies cell-

surface proteins that are important in cell-

cell or cell-extracellular matrix 

interactions. 

cg25578728 8 Body CHD7 
Chromodomain Helicase DNA 

Binding Protein 7 

Encodes a protein that is involved in 

regulating gene-expression via chromatin 

remodeling and loss-of-function results in 

CHARGE syndrome. 

Ch, Chromosome; TSS1500, transcription start site within 1500 base pairs; UTR, untranslated region 
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Figure 2.1: Tracking of the misclassification rates (y-axis) across iterations (x-axis) of the 

recursive RF feature selection. 
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Figure 2.2: Histogram of P-values from 121 regressions in the stage 2 analyses. 
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Figure 2.3: Comparison of parameter estimates from stage 1 and stage 2 logistic 

regression models, among the 24 sites within a 10% FDR in stage 2 analyses. 
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Figure 2.4: Correlation matrix of 9 CpGs associated with asthma, independent of cellular 

heterogeneity, and cell predicted cell proportions. 
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Figure 2.5: Correlation matrix of 15 CpGs associated with asthma, but confounded by 

cellular heterogeneity. 
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Figure 2.6: Cell and tissue morphology network, including seven genes with higher (red) 

or lower (green) methylation levels associated with asthma status.  
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CHAPTER 3 

EXPLORATORY STUDY OF GENETIC AND EPIGENETIC VARIATIONS ASSOCIATED 

WITH YOUNG ADULT WHEEZE CLUSTERS 

3.1 Introduction: 

Asthma and wheeze illness, defined by restricted airflow, encompass a wide array 

of symptoms and physiological characteristics including allergic hypersensitivity, 

impaired lung function and responsiveness to bronchodilators
1
. The frequency and 

severity of these symptoms are somewhat dependent on the time of onset and gender, and 

the combination of all these factors influence the management and prognosis of disease. 

Recent studies have made use of clustering to classify persons with asthma and/or 

wheeze based on clinical and demographic features such as race, gender, age of onset of 

illness, atopic status, obesity, comorbidities, severity of disease, and lung function
4,90–92

. 

Previous work within the Isle of Wight (IOW) birth cohort , an unselected population 

birth cohort in the United Kingdom, identified six distinct clusters of young adult 

wheeze, characterized by 13 important components of wheezing illness in 18 year olds
4
. 

Each cluster represented a group of individuals with recent wheeze or asthma symptoms, 

which were relatively homogeneous in gender, time of onset, allergic sensitivity, lung 

function, and levels of treatment. 

It has long been recognized that T-cell polarization towards a Th2 phenotype, 

which drive pro-inflammatory responses, was an important cellular component of allergy 

and allergic asthma
15,93

 and CD4
+
T cells tend to commit to type 2 helper (Th2) T 
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cells in response to an allergen among persons with atopy
8,94

. A set of cytokines, referred 

to collectively as the Th2 path, are largely responsible for Th2 commitment, have been 

associated with asthma
33,38,95

. Although early work primarily indicated Th2-polarization 

was important in allergic asthma, recent work has shown that Th2 cytokines are involved 

in the pathogenesis of both allergic and non-allergic asthma
3
. The transcription factor 

GATA-binding protein 3 (GATA3) is one of the most important regulator of Th2 

cytokines
3
, and has been found to be up-regulated in both atopic and non-atopic asthma

96
. 

Interleukin (IL)4 also drives naïve T cells towards a Th2 phenotype, while IL13 and IL4 

both promote IgE production which is involved in allergy and allergic asthma
3
. The 

similar functions of IL4 and IL13 are likely related to the fact that both have affinity for 

the IL4 receptor (IL4Rα)
97

. Also, signal transducer and activator of transcription (STAT)-

6 and IL4R are upregulated among both atopic and non-atopic asthma, although both 

appear to be more highly expressed in atopic asthma
96

. STAT6 expression is induced by 

IL13 and IL4 activation of IL4Rα, and has consistently been associated with high IgE and 

childhood asthma
97

. IL3, IL4 and STAT6 may also be involved the development of 

airway airway and hypertrophy of smooth muscle
98

. Recent research has found that IL13, 

but not IL4, may also be expressed from non-Th2 cells but still confer type-2-like 

immune response
99

. 

Genetic variations in IL4
95,100

, IL4R
100

, IL13
95

, STAT6
101

, and GATA3
102

 genes 

have previously been associated with asthma and allergic disease. More recently, DNA-

M variations within these genes (IL4, IL4R, IL13, STAT6, and GATA3)
1,35,103,104

 have 

been associated T-cell polarization and/or risk of asthma. We have also shown that the 

effects of DNA-M on risk of allergic disease can be dependent on genetic variations in 
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SNPs
35,36,103

, and that risk of asthma and asthma transitions were associated with 

interactions between CpG sites and SNPs in the Th2 pathway
104

. However, it is still 

largely unknown whether such variations within this pathway lead to an overall 

underlying asthma trait, or to specific clinical or physiological characteristics of asthma. 

We hypothesized that persons with clinically similar asthma and wheezing illness 

would share similar underlying genetic and epigenetic variations within the Th2 path. To 

test this hypothesis, we compared DNA-M levels and genotypes among selected CpG 

sites and SNPs within GATA3, STAT6, IL4, IL4R, and IL13 among those without wheeze 

and those within young adult wheeze clusters. Furthermore, we aimed to identify whether 

a subset of genetic and epigenetic variations that could most effectively distinguish 

between young adult wheeze clusters.  

3.2 Methods: 

The Isle of Wight birth cohort 

The Isle of Wight (IOW) birth cohort was established to study the natural history 

of asthma and allergies in children born between January 1, 1989 and February 28, 1990 

in Isle of Wight, UK. The study was approved by the local research ethics committee 

(now named the National Research Ethics Service, NRES Committee South Central – 

Southampton B, 06/Q1701/34) and written informed consent was provided by the infants’ 

parents. Details about the birth cohort have been described in detail elsewhere
46,47

. After 

exclusion of adoptions, prenatal deaths and refusals, 1,456 children were enrolled, and 

followed-up at 1 (n=1,167; 80.2%), 2 (n=1,174; 80.6%), 4 (n=1,218; 83.7%), 10 

(n=1,373; 94.3%), and 18 (n=1,313; 90.2%) years of age. At each follow-up, participants 

were administered detailed questionnaires and evaluated for manifestations of allergic 
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disease. Questionnaires included the International Study of Asthma and Allergies in 

Childhood (ISAAC)
5
 as well as study-specific questions about allergic disease and 

relevant risk factors . Most of those who attended the follow-up visit in-person were also 

assessed for spirometry, BDR, BHR, FeNO, and skin prick tests (SPTs). At the 18-year 

follow-up, a random subset of participants was selected to take part in epigenetic 

screening (n=368).  

Dependent Variables 

The primary dependent variable for young adult wheeze was a nominal variable 

with five levels; the details of the clustering used to create this variable are described in 

elsewhere
4
. Participants with asthma or wheezing illness at age 18 (n=309) were 

clustered on 13 variables via k-means clustering. Six distinct clusters were identified. 

Because cluster six (C6) was under-sampled during the random selection of the 

epigenetic sub-sample (described below), we selected clusters one through five for 

analysis in this study. 

DNA Methylation 

For epigenetic screening, blood samples were collected at the 18 year follow-up.  

DNA was extracted from whole blood using a standard salting out procedure 
51

. DNA 

concentration was determined by the PicoGreen dsDNA quantitation kit (Molecular 

Probes, Inc., OR, USA). One microgram of DNA was bisulfite-treated for cytosine to 

thymine conversion using the EZ 96-DNA methylation kit (Zymo Research, CA, USA), 

following the manufacturer's standard protocol. Genome-wide DNA methylation was 

assessed using the Illumina Infinium HumanMethylation450K BeadChip (Illumina, Inc., 

CA, USA), which interrogates >484,000 CpG sites, regions of DNA where a cytosine 



 

53 

  

nucleotides are followed by a guanine nucleotide, associated with approximately 24,000 

genes. The BeadChips were scanned using a BeadStation, and the methylation levels ( 

value, described below) were calculated for each queried CpG locus using the 

Methylation Module of BeadStudio software. Arrays were processed using a standard 

protocol as described elsewhere
52

, with multiple identical control samples assigned to 

each bisulphite conversion batch to assess assay variability and samples were randomly 

distributed on microarrays to control against batch effects. 

Data Cleaning 

The program for data cleaning was written in R (R Development Core Team, 

2012). Quality control (QC) measures were employed to improve the reliability of data 

prior to analysis. In our study, the detection P-value reported by BeadStudio (Illumina 

software to process raw intensities) was used as a QC measure of probe performance. 

Probes whose detection P-values > 0.01 in >10% of the samples were removed
53

. The 

methylation data were then preprocessed and technical variations removed via peak-

correction using the Bioconductor IMA (Illumina methylation analyser) package
55

. 

Dropping control probes and probes with poor detection P-values. The arrays were 

processed in three different batches; batch number was recorded as a categorical variable 

which was used in ComBat to adjust for inter-array variation
54

. Methylation levels for 

each queried CpG were calculated as beta () values. These represent the proportions of 

methylated probes for each specific CpG site and can be interpreted as percent 

methylation. 
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SNP Assessments 

We selected SNPs potentially related to asthma within five genes in the Th2 

pathway (IL4, IL4R, IL13, GATA3, and STAT6). Genotyping was conducted on DNA 

extracted from blood or saliva samples for 1,211 cohort subjects using GoldenGate 

Genotyping Assays (Illumina, Inc., CA, USA), the details of which are reported 

elsewhere
36

. In total, DNA methylation at 107 CpG sites and 42 SNPs were available: 72 

CpGs and 17 SNPs in GATA3, 12 CpGs and 13 SNPs in IL4R, 9 CpGs and 7 SNPs in 

IL13, 5 CpGs and 4 SNPs in IL4, and 9 CpGs and 1 SNP in STAT6.  

Statistical Analyses 

All statistical analyses were carried out in R. Due to the relatively small sample 

size and large number of potential predictors, we used unsupervised data-reduction 

techniques to reduce the number CpG sites and SNPs for analyses. For CpG sites, we first 

explored potential outliers; observations that appeared to be erroneous or substantially 

different from the distribution were recoded as missing. This resulted in 13 observations 

within 11 CpG sites being recoded to missing. Then we selected the most variable sites 

(standard deviation > 0.02), resulting in 21 CpG sites for analyses. For SNPs, we 

identified linkage disequilibrium (LD) blocks using Haploview
105

, and only included 

those SNPs that were not included in a block as well as one SNP from each block
35,103

 as 

a representative for that block. When applicable, we preferentially included SNPs from 

LD blocks that had been previously studied in relation to asthma, lung-function or 

allergic disease. 

We then explored whether methylation levels within GATA3 (10 CpGs), IL4R (3 

CpGs), STAT6 (1 CpG), IL13 (5 CpGs), and IL4 (2 CpGs) varied by wheeze-clusters via 
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ANOVA models. Prior to implementing the ANOVA models, we converted the 

methylation β values into M-values via log2(β / (1-β)) which more closely approximate a 

normal distribution
57

. We also explored whether genetic variation within GATA3 (8 

SNPs), IL4R (9 SNPs), STAT6 (1 SNPs), IL13 (4 SNPs), and IL4 (2 SNPs) differed by 

wheeze-cluster via χ
2
 tests. Then, to see whether there was consistency between wheeze 

cluster associations and wheeze vs non-wheeze associations, we collapsed clusters of 

wheeze (C1-C5) into a single group of persons with wheeze, and compared them to 

persons without wheeze at the same 24 SNPs and 21 CpG sites, using χ
2
 tests and t-tests 

respectively. 

Lastly, among the SNPs and CpG sites that showed differential variations among 

the wheeze clusters, we produced a conditional inference tree
106

 to explore whether a set 

of genetic and epigenetic loci, rather than individual loci, may be more effective at 

distinguishing between the different wheeze clusters. Many tree-based methods exist; we 

chose to use conditional inference trees (CTREE) over classification and regression trees 

(CART) or recursive partitioning and regression trees (RPART) because: 1) their variable 

selection process is based on tests of statistical significance rather than information, and 

2) their variable selection process is not biased towards selecting continuous predictors or 

predictors with more possible cut-points
107

. Nonetheless, as with other tree-based 

methods, conditional inference trees are biased towards correctly classifying the majority 

class in a highly imbalanced dataset. To minimize this bias, we excluded persons without 

wheeze at age 18 from our analysis. 
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3.3 Results: 

The five clusters represented unique combinations of physiologic, clinical, and 

symptomatic characteristics (Table 3.1). Cluster 1 (C1) represented a childhood-onset 

wheeze group with the best lung-function metrics. Cluster 2 (C2) was a childhood-onset 

wheeze group with intermediate lung function metrics and intermediate proportions 

allergic diseases. Cluster 3 (C3) was a mostly female, childhood-onset wheeze group with 

high prevalence of allergic disease (atopy, rhinitis, and eczema), the most impaired lung-

function, and high BDR and FeNO. Cluster 4 (C4) was a mostly female, latest-onset 

wheeze group with the low prevalence of atopy, and low BDR, IgE and FeNO. Cluster 5 

(C5) was a mostly female, late-childhood onset wheeze group with normal lung-function 

and intermediate allergic disease prevalence. 

Due to the small sample sizes within each cluster, we reduced the number of tests 

performed on SNPs by identifying blocks of SNPs in LD analyses. Then we only 

performed analyses on one SNP per block as well as SNPs outside of LD-blocks (Figure 

3.1, Figure 3.2, and Figure 3.3), resulting in 24 SNPs for analyses. In univariate results 

(Table 3.2), only one SNP (rs1058240) showed significant variation across the six groups 

(P-value = 0.0075), although this finding was not robust under Bonferroni adjustment for 

24 tests (α = 0.002). For these analyses, GG and AG were analyzed together as one class 

since there were only 9 participants with GG genotype, all of which were among those 

without wheeze. The clusters ‘C2’ and ‘C3’ had the highest proportions of GG/AG 

(52.6% and 71.4% respectively). Cluster ‘C5’, had the lowest proportion of GG/AG 

(9.1%). Clusters ‘C1’ and ‘C4’ had proportions of GG/AG (35.7% and 37.5%% 

respectively) similar to those without any wheeze at age 18 (32.7%). 
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We also reduced the number of CpG sites for analyses by only selecting the most 

variable CpGs (those with a standard deviation ≥ 0.02), resulting in 21 CpG sites for 

analyses. In univariate results (Table 3.3), seven CpG sites showed significant variation 

across the six groups: cg25368824 in the TSS200 of IL4 (P-value = 0.00005), 

cg12377972 in the 5’UTR of IL4 (P-value = 0.049), cg06584121 in the TSS200 of IL13 

(P-value = 0.0032), cg131993853 also in the TSS200 of IL13 (P-value = 0.0031), as well 

as three CpG sites with the body of GATA3 cg12181459 (P-value = 0.024), cg25630514 

(P-value = 0.023), and cg00463367 (P-value = 0.00029). Only cg25368824 and 

cg00463367 survived the Bonferroni adjustment for 21 tests (α = 0.0024). 

Among persons without wheeze at age 18 as a reference group, cluster ‘C4’ had 

the most unique epigenetic pattern. We found that cluster ‘C4’ was consistently different 

from those free of wheeze; it had significantly higher methylation at cg25368824 (P-

value = 0.0063), and significantly lower methylation levels at cg06584121 (P-value = 

0.0010), cg06967316 (0.0015), cg1218159 (P-value = 0.0015), cg25630514 (P-value = 

0.0013) and cg00463367 (P-value = 0.00004). 

Then we tested whether a set of the nominally significant (P-values < 0.05) CpGs 

and/or SNPs could distinguish between the five clusters of participants with wheeze using 

conditional inferences trees (Figure 3.4). We found that two predictors could significantly 

distinguish some, but not all, clusters. Among persons with wheeze, those with 

methylation levels ≤ 0.579 at cg25630514 (P-value = 0.019) were most likely to belong 

to cluster 4 (47%), whereas those with methylation > 0.579 at cg25630514 were most 

likely to belong to cluster 5 (51%) if they also had genotype AA at rs1058240 and most 
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likely to belong to cluster 2 (46%) if they had genotype GG or AG at rs1058240 (P-value 

= 0.021). 

Last, we investigated whether the same CpG sites and SNPs identified in the 

above analyses would have been identified if our outcome variable were a dichotomous 

measure of person with wheeze (combined C1-C5, n=75) vs. persons without wheeze at 

age 18 (n=293). Only one CpG site was found to have differential methylation between 

person with and without wheeze, whereas 3 SNPs were found to have differential genetic 

variation. Average methylation at cg12377972 within IL4 was lower among persons with 

wheeze compared to those without wheeze (mean and standard deviation = 0.906 (0.02) 

vs 0.913 (0.02), respectively; T-test P-value = 0.031). Three other SNPs, all within IL4R, 

did show nominal variation between those with and without wheeze. At rs1110470, 

persons with wheeze were less likely to have the minor allele compared to those without 

wheeze, AA (16.4% vs 23.7%, respectively) or AG (44.8% vs 52.6%, respectively) (χ
2
 P-

value = 0.04). At rs3024604, persons with wheeze were more likely than those without to 

have the minor allele GG or AG (23.2% vs 21.1%, respectively; χ
2
 P-value = 0.03). 

Lastly, at rs8832, persons with wheeze were more likely than person without wheeze (χ
2
 

P-value = 0.04) to be homozygous for the minor allele AA (32.4% vs 19.1%, 

respectively), similar for heterozygous AG (43.7% vs 47.7%, respectively), and less 

likely to be homozygous for the major allele GG (23.9% vs 33.2%, respectively). 

3.4 Discussion: 

  We found that there were epigenetic variations at three CpGs (cg12181459, 

cg25630514, and cg00463367) in the body of GATA3, one CpG (cg25368824) within 200 

base pairs (bp) of the transcription start site (TSS200) of IL4, one CpG (cg12377972) 
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within the 5’ untranslated region (5’UTR) of IL4, and two CpG (cg06584121 and 

cg06967316) within the TSS200 of IL13, as well as genetic variation at one SNP 

(rs1058240) within the 3’UTR of GATA3 that were dependent on the type of wheeze as 

determined by clustering on 13 clinical characteristics. Only cg25368824 and 

cg00463367 maintained statistical significance after Bonferroni-adjustment for multiple 

testing.  

 We also observed greater epigenetic variation when comparing the clusters to 

each other (7 CpG sites and 1 SNP were nominally significant) and greater genetic 

variation when comparing those with and without wheeze overall (3 SNPs and 1 CpG site 

were nominally significant). Additionally, only cg12377972 was statistically significant 

in both analyses, likely because those without wheeze had the highest methylation levels, 

while all of the wheeze clusters had varying levels of methylation but all lower than that 

of the non-wheeze group. For all other nominally significant sites, some wheeze clusters 

had higher average methylation when compared to non-wheeze while others had lower 

average methylation. These findings support the idea that asthma and wheeze are 

heterogeneous diseases with different symptomatic profiles which may result from 

various unique pathophysiology
2
. 

The cluster (C4) characterized by being mostly female, late-onset wheeze with 

low prevalence of allergic diseases and low levels for BDR, FeNO and serum IgE, was 

most different from the other clusters across the epigenetic loci. We did not have 

expression of these genes, but could assume that epigenetic regulation of expression at 

the nominally significant CpG sites follows the common paradigm: DNA-M is negatively 

correlated with expression in promotors and positively correlated with expression in gene 
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bodies
32

. Then we would expect persons in this cluster to have lower expression of IL4, 

higher expression of IL13, and lower expression of GATA3. IL4, IL13, and GATA3 all 

promote Th2 differentiation
108,109

, but differ somewhat in their activities. GATA3 is often 

referred to as the master regulator of Th2 differentiation, as it is a transcription factor that 

up-regulates the production of other pro-Th2 cytokines
110

. Though IL4 and IL13 are 

structurally similar and share the same receptor (IL4R), IL4 appears to be more important 

in the polarization of Th2 phenotype, while IL13 plays its role in the effector phase
109

. 

There is also new research showing that while IL13 and IL4 are both produced in Th2 

cells, but only IL13 is produced from type-2 innate lymphoid cells (ILC2)
110

, a cell type 

that has only recently been implicated and asthma and allergic disease
99

. Despite 

relatively few studies of the activity of ILC2s in humans, they have been suggested to 

play a role in both Th2-like asthma and severe asthma
99

. 

This has important implications for generalizing findings or for conducting 

validation studies of wheeze-illness in independent samples. As suggested by 

others
18,26,27

, the ability to replicate a finding likely depends on whether the asthmatics 

being studied have similar distributions of many characteristics (e.g., time of onset, 

measures of lung function, bronchial reactivity, amount of treatment being taken, and 

prevalence of allergic sensitization). 

Interestingly, our main finding among SNPs (rs1058240) has received some 

attention in previous studies of allergic disease. Within the IOW this SNP was associated 

with rhinitis and allergic rhinitis
111

 while others observed that increasing frequency of the 

minor allele was associated with decreased allergic sensitization and that presence of the 

major allele (G) was associated with susceptibility for asthma and atopic asthma (Slager 
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2010). More recently, Yang et al. showed that rs1058240 is at the binding site for three 

different microRNAs (miRNA), and that genetic variations at this SNP were associated 

with differential GATA3 expression, where AA variants had significantly higher 

expression when compared with either AG or GG variants
112

. This could be an example 

of genetic (SNP) and epigenetic (miRNA) interaction influencing disease. Interesting 

follow-up work could investigate the combined influence of miRNA expression, GATA3 

expression, and polymorphisms at rs1058240, on various wheeze phenotypes. 

These findings should be interpreted within the limitations of this study. This 

work was exploratory, and the observed associations are limited in their generalizability 

but should new hypotheses for further investigation. One limitation was the use of k-

means clustering on 13 characteristics to define the outcome variable. This would be 

difficult to reproduce within an independent cohort due to variations in such 

characteristics across populations. Second, the clusters within our epigenetic sample had 

small sample sizes (minimum cluster sample size = 7), and thus may not be very 

representative of persons with similar characteristics. Future studies in larger samples 

would provide stronger evidence on whether variations in Th2-path genes are indeed 

variable by sets of multiple physiologic, clinical and symptomatic characteristics. 

Because this analysis involved a sub-sample of the original data, we compared average 

levels and proportions of the clinical characteristics among persons with wheeze in our 

epigenetic sub-sample (n=75) to those in the full cohort (n= 279). Overall, the sub-sample 

was no different from the full sample for proportions of females, or prevalence of rhinitis, 

eczema, or atopy (χ
2
 P-values > 0.05), as well as for average measures of FEV1, FVC, 

FEV1/FVC, FEF2575, BDR, FeNO, total IgE, BTS Step, or age of onset (T-test P-values 
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> 0.05), so it is unlikely that selection of the epigenetic sub-sample biased the observed 

associations. Despite these limitations, we believe follow-up investigations of these 

findings are warranted given that phenotypic-heterogeneity of asthma, and the likely 

corresponding heterogeneity of underlying mechanisms, has been long recognized but 

often studied with individual characteristics of wheeze-illness rather than overall wheeze 

phenotype based on multiple characteristics. These findings suggest that using a complex 

outcome variable, such as young adult wheeze clusters, may lead to new findings but it is 

still unclear whether those findings can be generalizable and offer clinical utility. 

 In summary, we found that DNA-M varied based on different wheeze-illness 

phenotypes at cg25630514 in the body of GATA3 and at cg25368824 in the TSS200 of 

IL4, suggesting that epigenetic regulation of these cytokines differs among persons with 

wheeze that have different physiologic, clinical and symptomatic characteristics. We also 

found that genetic variation at rs1058240 in the 3’UTR of GATA3, which is at the binding 

site for several miRNAs, differed among persons with different wheeze phenotypes. 

Given that this study was exploratory, these associations should be investigated in 

independent study populations. 
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Table 3.1: Prevalence and average values of physiologic, clinical, and symptomatic 

characteristics of the five wheeze clusters (n=75). 

 

 C1 (n=14) C2 (n=20) C3 (n=7) C4 (n=9) C5 (n=25) 

Categorical Factors 

 

n (%) n (%) n (%) n (%) n (%) 

Female 7 (50.0) 12 (60.0) 6 (85.7) 8 (88.9) 18 (72.0) 

Rhinitis 12 (85.7) 10 (50.0) 7 (100.0) 5 (55.6) 12 (48.0) 

Eczema 3 (21.4) 3 (15.0) 2 (33.3.0) 1 (11.1) 3 (12.0) 

Atopy 12 (85.7) 9 (45.0) 6 (100.0) 2 (25.0) 12 (48.0) 

Continuous Factors 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

FEV1 4.57 (0.85) 3.58 (0.77) 3.33 (0.82) 3.12 (0.35) 3.96 (0.75) 

FVC 5.14 (1.10) 4.74 (1.10) 4.50 (0.84) 3.88 (0.35) 4.29 (0.62) 

FEV1/FVC 0.90 (0.10) 0.77 (0.11) 0.74 (0.08) 0.81 (0.12) 0.92 (0.11) 

FEF25:75 4.93 (0.62) 3.47 (0.61) 2.5 (0.84) 3.62 (0.52) 5.00 (1.35) 

BDR 4.57 (1.96) 6.96 (3.63) 12.45 (3.79) 2.76 (3.78) 2.62 (1.73) 

FeNO 64.29 (34.22) 26.22 (28.93) 64.33 (22.61) 13.38 (5.63) 26.17 (35.71) 

Serum IgE 810.2 (780.3) 217.5 (342.5) 439.0 (237.6) 84.8 (31.4) 257.1 (535.8) 

BTS Step 2.29 (0.95) 1.86 (0.69) 2 (0.71) 1.33 (0.58) 1.83 (0.75) 

Onset of 

Wheeze 
6.36 (5.53) 4.53 (4.65) 5 (3.85) 14.56 (2.35) 10.22 (5.84) 

FEV1: Forced expiratory volume (L) in one second (s). 

FVC: Forced vital capacity (L). 

FEV1/FVC: Ratio of FEV1 to FVC. 

FEF25-75%: Forced expiratory flow 25-75% (L/s). 

BDR: Bronchodilator reversibility; percent change in FEV1 post-salbutamol (600mg) 

challenge. 

FeNO: Log10 of fractional exhaled nitric oxide (ppb). 

Serum IgE: Log10 of total IgE. 

BTS Step: British Thoracic Society step of therapy (0-4), higher values reflect higher 

levels of treatment. 

Onset of Wheeze: Age (in years) when wheeze first appeared. 
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Table 3.2: Proportions of genetic variants among selected Th2 SNPs within young adult wheeze clusters. 

 

SNP Annotations Comparing genetic variation across 6 groups 

GATA3 

SNPs Genotype 

Total 

n (%) 

Wheeze-free 

n (%) 

C1 

n (%) 

C2 

n (%) 

C3 

n (%) 

C4 

n (%) 

C5 

n (%) P-Val. 

rs2229359 
AAorAG 47 (13.5%) 41 (14.6%) 0 (0%) 1 (5.6%) 2 (28.6%) 1 (12.5%) 1 (4.8%) 

0.28 
GG 302 (86.5%) 239 (85.4%) 14 (100%) 17 (94.4%) 5 (71.4%) 7 (87.5%) 20 (95.2%) 

rs3802604 

AA 144 (42.1%) 111 (40.7%) 4 (28.6%) 10 (52.6%) 1 (14.3%) 6 (75%) 12 (60%) 

0.16 AG 149 (43.6%) 121 (44.3%) 8 (57.1%) 7 (36.8%) 4 (57.1%) 1 (12.5%) 8 (40%) 

GG 49 (14.3%) 41 (15%) 2 (14.3%) 2 (10.5%) 2 (28.6%) 1 (12.5%) 0 (0%) 

rs568727 

AA 34 (10.5%) 30 (11.6%) 1 (7.7%) 1 (5.6%) 1 (16.7%) 0 (0%) 0 (0%) 

0.46 AC 142 (43.7%) 111 (43%) 8 (61.5%) 8 (44.4%) 4 (66.7%) 2 (28.6%) 9 (40.9%) 

CC 149 (45.8%) 117 (45.3%) 4 (30.8%) 9 (50%) 1 (16.7%) 5 (71.4%) 13 (59.1%) 

rs3802600 
AAorAT 115 (33.1%) 97 (35.1%) 6 (42.9%) 2 (10.5%) 3 (42.9%) 2 (25%) 5 (22.7%) 

0.19 
TT 232 (66.9%) 179 (64.9%) 8 (57.1%) 17 (89.5%) 4 (57.1%) 6 (75%) 17 (77.3%) 

rs422628 

AA 196 (56.3%) 156 (56.3%) 8 (57.1%) 9 (47.4%) 3 (42.9%) 5 (62.5%) 15 (68.2%) 

0.95 AG 134 (38.5%) 105 (37.9%) 6 (42.9%) 9 (47.4%) 4 (57.1%) 3 (37.5%) 7 (31.8%) 

GG 18 (5.2%) 16 (5.8%) 0 (0%) 1 (5.3%) 0 (0%) 0 (0%) 0 (0%) 

rs1058240 
GGorAG 114 (33.3%) 89 (32.7%) 5 (35.7%) 10 (52.6%) 5 (71.4%) 3 (37.5%) 2 (9.1%) 

0.0075 
AA 228 (66.7%) 183 (67.3%) 9 (64.3%) 9 (47.4%) 2 (28.6%) 5 (62.5%) 20 (90.9%) 

rs434645 
AAorAG 98 (28.6%) 73 (26.8%) 5 (35.7%) 9 (47.4%) 4 (57.1%) 2 (25%) 4 (18.2%) 

0.15 
GG 245 (71.4%) 199 (73.2%) 9 (64.3%) 10 (52.6%) 3 (42.9%) 6 (75%) 18 (81.8%) 

rs12412241 

AA 33 (9.6%) 30 (10.9%) 0 (0%) 1 (5.3%) 0 (0%) 1 (12.5%) 1 (4.8%) 

0.53 AG 138 (40%) 106 (38.5%) 4 (28.6%) 9 (47.4%) 5 (71.4%) 5 (62.5%) 8 (38.1%) 

GG 174 (50.4%) 139 (50.5%) 10 (71.4%) 9 (47.4%) 2 (28.6%) 2 (25%) 12 (57.1%) 
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Table 3.2: Proportions of genetic variants among selected Th2 SNPs within young adult wheeze clusters (cont’d). 

 

SNP Annotations Comparing genetic variation across 6 groups 

IL4R 

SNPs Genotype 

Total 

n (%) 

Wheeze-free 

n (%) 

C1 

n (%) 

C2 

n (%) 

C3 

n (%) 

C4 

n (%) 

C5 

n (%) P-Val. 

rs2057768 

AA 23 (6.6%) 15 (5.4%) 1 (7.1%) 4 (21.1%) 0 (0%) 0 (0%) 3 (13.6%) 

0.19 AG 151 (43.1%) 122 (43.7%) 7 (50%) 8 (42.1%) 3 (42.9%) 1 (12.5%) 10 (45.5%) 

GG 176 (50.3%) 142 (50.9%) 6 (42.9%) 7 (36.8%) 4 (57.1%) 7 (87.5%) 9 (40.9%) 

rs1110470 

AA 75 (22.3%) 64 (23.7%) 2 (14.3%) 4 (21.1%) 1 (14.3%) 2 (25%) 2 (11.1%) 

0.19 AG 172 (51%) 142 (52.6%) 7 (50%) 8 (42.1%) 4 (57.1%) 5 (62.5%) 5 (27.8%) 

GG 90 (26.7%) 64 (23.7%) 5 (35.7%) 7 (36.8%) 2 (28.6%) 1 (12.5%) 11 (61.1%) 

rs3024604 
GGorAG 49 (14.3%) 33 (12.1%) 3 (21.4%) 4 (21.1%) 2 (28.6%) 2 (25%) 4 (20%) 

0.21 
AA 293 (85.7%) 240 (87.9%) 11 (78.6%) 15 (78.9%) 5 (71.4%) 6 (75%) 16 (80%) 

rs3024622 

CC 38 (11.6%) 28 (10.6%) 1 (7.7%) 5 (29.4%) 0 (0%) 0 (0%) 4 (21.1%) 

0.28 CG 140 (42.8%) 114 (43.3%) 8 (61.5%) 7 (41.2%) 3 (50%) 3 (37.5%) 5 (26.3%) 

GG 149 (45.6%) 121 (46%) 4 (30.8%) 5 (29.4%) 3 (50%) 5 (62.5%) 10 (52.6%) 

rs4787423 
GGorAG 78 (22.3%) 61 (21.9%) 3 (21.4%) 4 (21.1%) 3 (42.9%) 1 (12.5%) 5 (22.7%) 

0.85 
AA 271 (77.7%) 217 (78.1%) 11 (78.6%) 15 (78.9%) 4 (57.1%) 7 (87.5%) 17 (77.3%) 

rs1805011 
CCorCA 74 (21.4%) 60 (21.7%) 3 (21.4%) 4 (22.2%) 2 (28.6%) 1 (12.5%) 4 (18.2%) 

0.99 
AA 272 (78.6%) 216 (78.3%) 11 (78.6%) 14 (77.8%) 5 (71.4%) 7 (87.5%) 18 (81.8%) 

rs8832 

AA 76 (21.8%) 53 (19.1%) 5 (35.7%) 9 (47.4%) 1 (14.3%) 1 (12.5%) 7 (31.8%) 

0.16 AG 163 (46.8%) 132 (47.7%) 7 (50%) 5 (26.3%) 5 (71.4%) 4 (50%) 10 (45.5%) 

GG 109 (31.3%) 92 (33.2%) 2 (14.3%) 5 (26.3%) 1 (14.3%) 3 (37.5%) 5 (22.7%) 

rs12102586 
AAorAG 59 (16.9%) 44 (15.8%) 5 (35.7%) 3 (15.8%) 1 (14.3%) 2 (25%) 4 (18.2%) 

0.45 
GG 290 (83.1%) 234 (84.2%) 9 (64.3%) 16 (84.2%) 6 (85.7%) 6 (75%) 18 (81.8%) 

rs16976728 

AA 64 (18.4%) 51 (18.3%) 2 (14.3%) 5 (27.8%) 0 (0%) 1 (12.5%) 5 (22.7%) 

0.69 AG 152 (43.7%) 118 (42.4%) 7 (50%) 7 (38.9%) 6 (85.7%) 3 (37.5%) 11 (50%) 

GG 132 (37.9%) 109 (39.2%) 5 (35.7%) 6 (33.3%) 1 (14.3%) 4 (50%) 6 (27.3%) 
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Table 3.2: Proportions of genetic variants among selected Th2 SNPs within young adult wheeze clusters (cont’d). 

 

SNP Annotations Comparing genetic variation across 6 groups 

STAT6 

SNPs Genotype 

Total 

n (%) 

Wheeze-free 

n (%) 

C1 

n (%) 

C2 

n (%) 

C3 

n (%) 

C4 

n (%) 

C5 

n (%) P-Val. 

rs1059513 
GGorAG 66 (19%) 52 (18.6%) 4 (28.6%) 5 (26.3%) 0 (0%) 1 (14.3%) 3 (14.3%) 

0.65 
AA 282 (81%) 227 (81.4%) 10 (71.4%) 14 (73.7%) 7 (100%) 6 (85.7%) 18 (85.7%) 

IL4R 

SNPs Genotype 

Total 

n (%) 

Wheeze-free 

n (%) 

C1 

n (%) 

C2 

n (%) 

C3 

n (%) 

C4 

n (%) 

C5 

n (%) P-Val. 

rs1881457 
CCorAC 119 (34.2%) 96 (34.7%) 5 (35.7%) 8 (42.1%) 2 (28.6%) 2 (25%) 6 (27.3%) 

0.94 
AA 229 (65.8%) 181 (65.3%) 9 (64.3%) 11 (57.9%) 5 (71.4%) 6 (75%) 16 (72.7%) 

rs1800925 
AAorAG 121 (34.9%) 97 (34.9%) 6 (42.9%) 9 (47.4%) 2 (28.6%) 1 (12.5%) 6 (30%) 

0.60 
GG 226 (65.1%) 181 (65.1%) 8 (57.1%) 10 (52.6%) 5 (71.4%) 7 (87.5%) 14 (70%) 

rs20541 
AAorAG 119 (34.1%) 99 (35.5%) 3 (21.4%) 6 (31.6%) 2 (28.6%) 3 (37.5%) 6 (28.6%) 

0.92 
GG 230 (65.9%) 180 (64.5%) 11 (78.6%) 13 (68.4%) 5 (71.4%) 5 (62.5%) 15 (71.4%) 

rs2243204 
AAorAG 63 (18.1%) 50 (17.9%) 2 (14.3%) 6 (31.6%) 1 (14.3%) 1 (12.5%) 3 (14.3%) 

0.75 
GG 286 (81.9%) 229 (82.1%) 12 (85.7%) 13 (68.4%) 6 (85.7%) 7 (87.5%) 18 (85.7%) 

IL4R 

SNPs Genotype 

Total 

n (%) 

Wheeze-free 

n (%) 

C1 

n (%) 

C2 

n (%) 

C3 

n (%) 

C4 

n (%) 

C5 

n (%) P-Val. 

rs2070874 
AAorAG 84 (24.3%) 73 (26.4%) 3 (21.4%) 2 (10.5%) 1 (14.3%) 2 (28.6%) 3 (14.3%) 

0.57 
GG 262 (75.7%) 204 (73.6%) 11 (78.6%) 17 (89.5%) 6 (85.7%) 5 (71.4%) 18 (85.7%) 

rs2243263 
GGorCG 64 (18.4%) 54 (19.5%) 2 (14.3%) 3 (15.8%) 2 (28.6%) 1 (12.5%) 2 (9.1%) 

0.81 
CC 284 (81.6%) 223 (80.5%) 12 (85.7%) 16 (84.2%) 5 (71.4%) 7 (87.5%) 20 (90.9%) 

SNP, single nucleotide polymorphism; C1, cluster 1; C2, cluster 2; C3, cluster 3; C4, cluster 4; C5, cluster 5; P-Val., p-value from a 

Fisher’s Exact test. 
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Table 3.3: Average DNA-M levels among selected Th2 CpGs within young adult wheeze clusters.  

 

CpG Annotations Mean (sd) within each wheeze cluster
¥
 

Gene CGs 
CpG  

Location 
P-val.

€
 

Wheeze-free 

(n=293) 
C1 (n=14) C2 (n=20) C3   (n=7) C4   (n=9) C5 (n=25) 

IL4 
cg25368824 TSS200 0.00005 0.86 (0.02) 0.84 (0.05) 0.85 (0.04) 0.82 (0.04) 0.88 (0.02) 0.87 (0.03) 

cg12377972 
5'UTR; 

1stExon 
0.049 0.91 (0.02) 0.90 (0.03) 0.90 (0.02) 0.89 (0.03) 0.91 (0.01) 0.91 (0.02) 

IL4R 

cg26937798 5'UTR 0.15 0.08 (0.02) 0.08 (0.02) 0.07 (0.03) 0.07 (0.02) 0.05 (0.01) 0.07 (0.02) 

cg16649560 5'UTR 0.076 0.19 (0.05) 0.17 (0.03) 0.17 (0.05) 0.18 (0.03) 0.24 (0.07) 0.18 (0.04) 

cg01165142 Body 0.42 0.69 (0.05) 0.69 (0.05) 0.70 (0.05) 0.71 (0.05) 0.72 (0.09) 0.69 (0.04) 

IL13 

cg04303330 TSS1500 0.82 0.29 (0.04) 0.29 (0.04) 0.29 (0.05) 0.29 (0.03) 0.31 (0.04) 0.30 (0.04) 

cg13566430 TSS1500 0.63 0.20 (0.03) 0.19 (0.02) 0.19 (0.02) 0.18 (0.03) 0.20 (0.02) 0.20 (0.03) 

cg06584121 TSS200 0.0033 0.89 (0.02) 0.89 (0.01) 0.89 (0.02) 0.88 (0.02) 0.86 (0.02) 0.90 (0.01) 

cg06967316 TSS200 0.0032 0.84 (0.02) 0.83 (0.02) 0.83 (0.03) 0.84 (0.02) 0.81 (0.05) 0.85 (0.02) 

cg11798521 3'UTR 0.52 0.83 (0.02) 0.83 (0.02) 0.83 (0.02) 0.84 (0.01) 0.82 (0.02) 0.83 (0.02) 

GATA3 

cg17124583 Body 0.11 0.04 (0.02) 0.05 (0.02) 0.06 (0.02) 0.04 (0.02) 0.04 (0.01) 0.04 (0.02) 

cg12181459 Body 0.023 0.39 (0.06) 0.41 (0.07) 0.40 (0.05) 0.40 (0.05) 0.32 (0.07) 0.39 (0.07) 

cg11430077 Body 0.16 0.11 (0.04) 0.12 (0.04) 0.12 (0.05) 0.12 (0.04) 0.08 (0.02) 0.11 (0.03) 

cg22770911 Body 0.79 0.52 (0.05) 0.54 (0.03) 0.52 (0.05) 0.51 (0.04) 0.53 (0.04) 0.51 (0.04) 

cg10163955 Body 0.13 0.74 (0.05) 0.75 (0.04) 0.75 (0.05) 0.71 (0.05) 0.76 (0.08) 0.74 (0.04) 

cg04492228 Body 0.33 0.19 (0.04) 0.19 (0.04) 0.19 (0.04) 0.18 (0.04 0.22 (0.08) 0.18 (0.03) 

cg17489908 Body 0.37 0.25 (0.04) 0.24 (0.04) 0.25 (0.05) 0.25 (0.04) 0.28 (0.06) 0.24 (0.04) 

cg22892607 Body 0.073 0.06 (0.02) 0.07 (0.02) 0.07 (0.02) 0.08 (0.04) 0.06 (0.01) 0.06 (0.02) 

cg25630514 Body 0.023 0.67 (0.06) 0.69 (0.07) 0.66 (0.08) 0.67 (0.03) 0.58 (0.10) 0.66 (0.05) 

cg00463367 Body 0.00029 0.19 (0.05) 0.22 (0.05) 0.20 (0.06) 0.21 (0.05) 0.13 (0.06) 0.18 (0.03) 

STAT6 cg07926491 3'UTR 0.91 0.94 (0.01) 0.94 (0.02) 0.93 (0.02) 0.93 (0.02) 0.94 (0.02) 0.93 (0.02) 
€
 ANOVA models used methylation M-values to test for significance of DNA-M variations. 

¥
 The mean and sd (standard deviation) were calculated using methylation β-values.  
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Figure 3.1: LD Plot for GATA3 
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Figure 3.2: LD Plot for IL4R 
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Figure 3.3: LD Plot for IL4 and IL13. 
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Figure 3.4: Conditional inference tree for classifying wheeze clusters with CpGs and 

SNPs that were nominally significant via ANOVA and Fisher’s Exact Tests. 
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CHAPTER 4 

CORD BLOOD EXPRESSION LEVELS OF THE NOVEL GENES, HK1 AND LITAF, 

PREDICT WHEEZE WITHIN FIRST OF LIFE  

4.1 Introduction: 

Wheeze, defined as a high-pitched whistle associated with narrowing of the 

airways, is common among infants
113

 and it is often the defining symptom of asthma at 

any age. However, many of the mechanisms which make infants particularly susceptible 

to wheeze, including a more compliant chest wall as well as differences in smooth muscle 

tone and tracheal cartilage composition, tend to improve as they grow older
113

. Thus, 

most infant wheeze resolves within the first year after birth, with the majority of these 

infants not being affected by asthma or recurrent wheeze later in life
114

. However, given 

that wheezing is an indicator of narrow or obstructed airways at any age, there are 

undoubtedly similarities between infant wheeze, particularly that which occurs without 

colds, and later-life wheezing-illnesses such as asthma
115

. In fact, childhood wheeze 

unrelated to cough or cold is an important criteria in the asthma predictive index (API), as 

well as later modifications of the API, which use parental and early-life characteristics to 

predict childhood diagnosis of asthma
116

. Thus, it is important to not only identify which 

phenotypic presentations of infant wheeze are predictive of later life asthma, but also to 

identify molecular mechanisms that are involved in both infant and later-life wheeze 

illnesses, as these may help us to distinguish which infants with wheeze are more likely 

to be affected by wheezing illnesses beyond infancy. 
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It is recognized that persons affected by asthma and wheeze-illness often have 

markers of immune dysregulation at birth, suggesting that prenatal factors likely 

contribute to the differences in immune-programming that predispose certain individuals 

to the development of asthma
117

. The intrauterine environment likely influences the 

development of the fetal immune system
118

 as well as modeling of the fetal airways given 

that pre-term and low birthweight babies are more likely to experience wheeze and/or 

develop asthma
119

. Previous studies have shown that cytokine levels in cord blood are 

associated with risk of wheeze or allergy in infancy and early childhood
120

. For instance, 

infants with lower levels of production of interleukin (IL)-13
121

, IL-10 and interferon 

(IFN)-γ
122

 at birth were more likely to develop atopic diseases during infancy or 

childhood 
121

 while higher levels of IL-4 and IFN-γ have been associated with decreased 

risk
123

 and higher levels of IL-8 with increased risk
120

 of asthma and wheeze in early 

childhood. Most of these cytokines are involved in influencing T-helper (Th)-1 or Th-2 

cell differentiation. However, it is likely that the expression of other genes involved in 

asthma and wheeze could be identified in cord blood as predictors of infant wheeze. 

Recently, we identified nine novel CpG sites that were differentially methylated 

in association with asthma at age 18 years in an epigenome-wide association study, seven 

of which were within novel genes (unpublished data): (alpha-N-acetyl-neuraminyl-2,3-

beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-sialyltransferase 5 

(ST6GALNAC5), DiGeorge Syndrome Critical Region Gene 14 (DGCR14), Nucleoporin 

210kDa (NUP210), Chromodomain Helicase DNA Binding Protein 7 (CHD7), 

Lipopolysaccharide (LPS) Induced TNF-α Factor (LITAF), unc-45 homolog B 

(UNC45B), and Hexokinase 1 (HK1). However, it was unclear whether the expression of 
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these genes was related to asthma and/or wheeze, and whether DNA-M at the identified 

CpG sites were functionally related to the expression of those genes. For the present 

study, we hypothesized that cord blood expression levels of these genes may predispose 

infants to wheeze within the first year of life, which is an early life risk factor for later 

being diagnosed with asthma. We also hypothesized that the expression of these genes 

would be correlated with DNA-M levels at the previously identified CpG sites: 

cg20417424 within 1500 base pairs (bp) of the transcription start sites (TSS1500) of 

ST6GALNAC5, cg14727512 within the three prime untranslated-region (3’UTR) of 

DGCR14, cg01046943 within the body of NUP210, cg25578728 within the body of 

CHD7, cg04359558 within the body of LITAF, cg00100703 within the 3’UTR of 

UNC45B, and cg16658191 within the 1
st
 exon of HK1. Therefore, in the present study we 

investigated whether the expression levels of these seven genes were associated with 

wheeze within the first 12 months of life in the IOW Third Generation cohort.  

4.2 Methods: 

The Isle of Wight birth cohort 

The Isle of Wight (IOW) birth cohort was established to study the natural history 

of asthma and allergies in children born between January 1, 1989 and February 28, 1990 

in Isle of Wight, UK. Ethical approval was obtained from the Isle of Wight Local 

Research Ethics Committee (now named the National Research Ethics Service, NRES 

Committee South Central—Southampton B) for the 18 years follow-up (06/Q1701/34) 

and NRES Committee South Central—Hampshire B (09/H0504/129) for the third 

generation study. Details about the birth cohort have been described in detail 

elsewhere
46,47

. The offspring of the original IOW birth cohort were recruited into the 
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Third Generation study, and were followed up at 3 months, 6 months and 12 months after 

birth. Genome-wide gene-expression and DNA-M levels were obtained from cord blood 

samples at birth. Information on wheeze and maternal smoking was obtained via 

questionnaires that were administered to parents of the infants at scheduled follow-up 

visits. Data on sex, birthweight, gestational age, birth date, and type of delivery were 

abstracted from medical records. Infants included in this study had information about 

wheeze during at least one of the infant follow-up visits, and were non-missing for gene-

expression and DNA-M for all of the selected mRNA and CpG probes (n=80). 

Dependent Variables 

The primary dependent variable for this study, wheeze, was a dichotomous 

variable defined as wheeze when the infant did not have a cough or cold, during at least 

one of the 3 infant follow-up visits. This was measured by an affirmative response to 

“Has your child had wheezing or whistling in the chest?” as well as an affirmative 

response to “Does your child wheeze in between cold or chest infection?”, reported at 

any of the 3 month, 6 month, or 12 month post-birth follow-up visits. Three alternate 

definitions of wheeze were utilized for sensitivity analyses. Any-wheeze was defined as 

wheeze (whether or not associated with a cough or cold) reported at any of the infant 

follow-up visits. Wheeze-frequency was defined as the number of follow-up periods 

during which an infant experienced wheeze (when the infant did not have a cough or 

cold). Any-wheeze-frequency was defined as the number of follow-up periods during 

which an infant experienced any-wheeze (whether or not associated with a cough or 

cold). 

 



 

76 

  

Gene Expression Arrays 

At birth, cord blood samples were collected with PAXgene RNA kits. RNA 

integrity was verified with the Agilent 2100 Bioanalyzer system. Genome-wide mRNA 

expression was assessed via one color (Cy3) experiments with the Agilent (Agilent 

Technologies, Santa Clara, CA) SurePrint G3 Human Gene Expression 8x60k v2 

microarray kits. Array content was sourced from RefSeq, Ensembl, UniGene, and 

GenBank databases and provides full coverage of the human transcriptome in 50,599 

biological features (including replicate probes and control probes). The oligos were 

60mer in length and each transcript was tagged at least once and some had multiple 

tagging oligos for genes with documented splice variants. Data QC indices and analyses 

were performed with Agilent GeneSpring software. 

For this study we selected a set of seven candidate probes measuring the 

expression of genes (Accession IDs): NUP210 (NM_024923), HK1 (NM_033500), 

ST6GALNAC5 (NM_030965), LITAF (NM_004862), CHD7 (NM_017780), UNC45B 

(NM_173167), and DGCR14 (NM_022719). 

DNA Methylation 

Blood samples for epigenetic screening were collected at birth from the cord 

blood; DNA was extracted using a salting out procedure described elsewhere
51

. DNA 

concentration was determined by the PicoGreen dsDNA quantitation kit (Molecular 

Probes, Inc., OR, USA). One microgram of DNA was bisulfite-treated for cytosine to 

thymine conversion using the EZ 96-DNA methylation kit (Zymo Research, CA, USA), 

following the manufacturer's standard protocol. Genome-wide DNA methylation was 

assessed using the Illumina Infinium HumanMethylation450K BeadChip (Illumina, Inc., 
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CA, USA), which interrogates >484,000 CpG sites, regions of DNA where a cytosine 

nucleotides are followed by a guanine nucleotide, associated with approximately 24,000 

genes. The BeadChips were scanned using a BeadStation, and the methylation levels ( 

value, described below) were calculated for each queried CpG locus using the 

Methylation Module of BeadStudio software. Arrays were processed using a standard 

protocol as described elsewhere
52

, with multiple identical control samples assigned to 

each bisulphite conversion batch to assess assay variability and samples were randomly 

distributed on microarrays to control against batch effects. 

Data Cleaning 

The program for data cleaning was written in R (R Development Core Team, 

2012). Quality control (QC) measures were employed to improve the reliability of data 

prior to analysis. In our study, the detection P-value reported by BeadStudio (Illumina 

software to process raw intensities) was used as a QC measure of probe performance. 

Probes whose detection P-values > 0.01 in >10% of the samples were removed
53

. The 

methylation data were then preprocessed and technical variations removed via peak-

correction using the Bioconductor IMA (Illumina methylation analyser) package
55

. The 

arrays were processed in six different batches; batch number was recorded as a 

categorical variable which was used in ComBat to adjust for inter-array variation
54

. 

Methylation levels for each queried CpG were calculated as beta () values. These 

represent the proportions of methylated probes for each specific CpG site and can be 

interpreted as percent methylation. For this study we selected a set of candidate probes 

we identified in a genome-wide DNA-M study for physician diagnosed asthma, that were 

within the body or regulatory region of the genes listed above (unpublished data): 
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cg00100703, cg01046943, cg04359558, cg14727512, cg16658191, cg20417424, and 

cg25578728. 

Statistical Analyses 

All statistical analyses were carried out in R, with statistical significance 

determined at an α of 0.05. Testing for differences in sex, type of delivery, maternal 

smoking and season of birth, between infants with and without wheeze, were done via χ
2
 

tests. Testing for differences in birth weight, gestational age and predicted cell-type 

proportions, between infants with and without wheeze, were done via T-tests. Robust 

regressions, which minimize the effects of outliers on the parameter estimates and 

standard errors, were fit to test for associations between mRNA transcripts and other 

variables. Robust logistic regression models were used to test the associations between 

expression levels of the seven mRNA transcripts and infant wheeze. Robust poisson 

regression models were used to test the associations between the seven mRNA transcripts 

and infant wheeze frequency; only infants that were non-missing for all three infant 

follow-up visits were included in these models. Robust linear regression models were 

used to test the associations between expression of each mRNA transcript and DNA-M at 

that gene’s selected CpG site. 

Signed weighted correlation networks of gene-expression between the seven 

mRNA transcripts were produced with the WGCNA package in R
124,125

. A soft threshold 

power of three and minimum-module size of two were used to identify whether the seven 

genes belonged to different modules. Eigengenes were produced to summarize the overall 

expression of each module. Pairwise spearman correlations were produced to describe 

how well each gene was represented by its corresponding eigengene. To observe whether 
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a particular module was associated with infant wheeze, we produced multivariable 

logistic regression models with infant wheeze as the outcome, module eigengenes as the 

predictors, and sex, season of birth, and predicted cell-proportions as adjustment 

covariates. 

4.3 Results: 

Infants in the IOW third generation study (n=80) consisted of similar proportions 

of males (47.5%) and females (52.5%), typically born in spring months of April, May or 

June (31.2%), primarily with normal delivery (69.2%), of normal average gestational age 

(mean = 39.4 weeks std = 1.6), and normal average birth weight (mean = 3482.4g std = 

531.3) (Table 4.1). In our sample, 76.3% of infants never experienced wheeze during the 

first year of life, while 23.7% experienced wheeze during at least one infant follow-up 

period. We then compared the distribution of a priori identified confounders between 

infants that experienced wheeze to those that did not. There were no significant 

differences in sex, season of birth, or predicted cell-type proportions from cord blood 

samples. We also compared whether characteristics of the pregnancy or the infants at-

birth that have been implicated as predictors of infant wheeze, such as cesarean 

delivery
126

, maternal smoking at pregnancy
119,127

, gestational age (pre-term birth)
119

, and 

birthweight
128

 differed between infants with and without wheeze. We observed no 

statistically significant differences in type of delivery, maternal smoking during 

pregnancy, gestational age, or birthweight. 

Among these infants, we tested whether gene-expression was associated with 

infant wheeze for seven candidate genes, within which DNA-M levels were previously 

identified as markers of young adult prevalent asthma (unpublished data). Robust logistic 
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regression models (Table 4.2) revealed that increased expression levels of HK1 in cord 

blood were associated with increased risk of infant wheeze (β1 = 1.114, P-value = 0.027). 

Although sex, season of birth, and predicted cell-proportions were not significantly 

associated with wheeze (Table 4.1), we adjusted for these in our models as they were 

identified a priori as potential confounders. Even after adjustment for sex, season of 

birth, and cell-type proportions, greater expression of HK1 (β1 = 1.80, P-value = 0.030) 

significantly increased the risk of infant wheeze, whereas lower expression of LITAF (β1 

= -1.563, P-value = 0.047) was associated with increased risk of infant wheeze. Also, 

lower expression of NUP210 was associated with infant wheeze after adjusting for sex 

and month of birth (β1 = -2.106, P-value = 0.037), but adjusting for cord blood cell-

mixture eliminated this association. Cord blood expression of ST6GALNAC5, CHD7, 

UNC45B, and DGCR14 were not associated with infant wheeze (P-values > 0.05). 

Our primary analyses included infants that were evaluated for wheeze during at 

least one of the three infant follow-up visits. However, those that attended all three 

follow-ups had greater opportunity to report wheeze. To evaluate the potential bias of 

missing follow-up visits, we conducted the same analyses as above, but only included 

those (n=61) that had answered the questionnaire for all three follow-up visits (45 

without infant wheeze and 16 with infant wheeze). After excluding those with any 

missing assessments for wheeze, high HK1 expression was still significantly associated 

with increased risk of wheeze (P-value = 0.049) and low LITAF expression was still 

significantly associated with increased risk of wheeze (P-value = 0.014) (Table 4.3). 

These findings suggest that missing one or two infant follow-ups did not substantially 

bias the observed associations.  
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Infant wheeze can also be transient, and recurrent wheeze, whether or not 

associated with a cough or cold, has been shown to increase the risk of being diagnosed 

with asthma later in life 
116

. Thus we also tested for associations between the expression 

of HK1 and LITAF with wheeze-frequency (45 never experienced wheeze, 9 experienced 

wheeze during one follow-up period, and 7 experienced wheeze during two-or-more 

follow-ups) and any-wheeze-frequency (27 never experienced any-wheeze, 11 

experienced any-wheeze during one follow-up period, 17 experienced any-wheeze during 

two follow-u periods, and 6 experienced any-wheeze during all three follow-up periods). 

However, lower levels of expression of LITAF were significantly associated with 

increased wheeze-frequency (P-value = 0.010) and any-wheeze frequency (P-value = 

0.006), while higher levels of expression of HK1 were marginally associated with 

increased wheeze-frequency (P-value = 0.071) and significantly associated with any-

wheeze-frequency (P-value = 0.007). We produced box plots to visualize the distribution 

of expression by any-wheeze-frequency. A dose-response relationship between HK1 

expression and any-wheeze frequency was not obvious (Figure 4.1), whereas LITAF 

expression does have an apparent inverse dose-response relationship with any-wheeze-

frequency (Figure 4.2). 

We then investigated whether there were linear associations between gene-

expression of the seven selected genes and DNA-M levels at the selected CpG sites. Only 

one CpG probe was significantly associated with that gene’s expression levels: higher 

methylation levels at cg16658191, which is within the first exon (or body), were 

associated with decreased expression of HK1 (β1 = -5.92 P-value = 0.049; adjusted for 

sex and month of birth). Also of note, higher DNA-M levels at cg14727512, which is 



 

82 

  

within the first exon (or 3’UTR), were marginally associated with increased expression of 

DGCR14 (β1 = 6.21 P-value = 0.089; adjusted for sex and month of birth). The linear 

associations for the five other CpG-gene pairs were not even marginally significant (P-

values > 0.10) indicating that these DNA-M sites were not involved in the up- or down-

regulation of the expression of the genes they are within, at least not in cord blood.  

We then investigated the expression patterns among the seven selected genes; 

pairwise correlations indicated that some of these genes may not be independently 

expressed in cord blood (Table 4.4). Nine of the 21 pairwise correlations had P-values < 

0.05, though most correlations were low-to-moderate (ρ < 0.50). Only CHD7 and 

NUP210 had at least a moderate-to-strong correlation (ρ = 0.50 P-value < 0.0001). Given 

the correlation structure among these seven genes, we explored whether a set (or sets) of 

correlated genes could be represented by eigengenes, and whether those eigengenes were 

predictive of infant wheeze. We identified two modules of genes with correlated gene-

expression via weighted gene co-expression network analysis (WGCNA). Six of the 

seven genes were moderately-to-strongly correlated (0.40 rho < 1.0 with P-values < 

0.0001) with the eigengene of either module (Table 4.5), while HK1 did not fit within 

either module. Eigengene 1 was primarily representative of the expression levels of 

ST6GALNAC5 (ρ = 0.82) and UNC45B (ρ = 0.74). Eigengene 2 was representative of 

NUP210 (ρ = 0.80), CHD7 (ρ = 0.73), DGCR14 (ρ = 0.54), and LITAF (ρ = 0.49). The 

eigengene values for these two modules plus the expression of HK1, the combination of 

which summarizes the overall variations across all seven genes, were then tested in 

association with infant wheeze in a multiple logistic regression model. After adjusting for 

sex, season of birth, and cell mixture, eigengene 2 was significantly associated with 
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infant wheeze (βE2 = -7.19 P-value = 0.039) while HK1 was marginally associated (βHK1 

= -6.76 P-value = 0.064) and eignengene 1 was not associated (P-value = 0.28) with 

infant wheeze. Also of note, in a multivariate poisson regression model that was adjusted 

for the same covariates, eigengene 2 was associated with wheeze frequency (βE2 = -5.88 

P-value = 0.0045), while HK1 and eigengene 1 were not (P-values = 0.70 and 0.14 

respectively).  

So, taking all results together, the expression of HK1 was the strongest individual 

predictor of infant wheeze, after adjusting for sex, season of birth, and cell-mixture. 

However, when considering the expression of all seven genes, the overall expression of 

DGCR14, NUP210, CHD7, and LITAF, as represented by eigengene 2, was the strongest 

predictor of infant wheeze and wheeze frequency.  

4.4 Discussion: 

 To the best of our knowledge, this was the first study to investigate whether cord 

blood expression levels of ST6GALNAC5, DGCR14, NUP210, CHD7, LITAF, UNC45B, 

or HK1 were associated with infant wheeze. We found that high levels of HK1 and low 

levels of LITAF in cord blood were related to risk of wheeze and any-wheeze-frequency 

in the first year of life, independent of sex, season of birth, and cellular heterogeneity 

within the cord blood sample. We also found that low levels of NUP210 were associated 

with increased risk of infant wheeze, though this association appeared to be driven by 

differences in cellular heterogeneity and not a significant predictor after adjusting for 

cell-type proportions. Cord blood expression levels of the four other genes tested 

(UNC45B, ST6GALNAC5, DGCR14, and CHD7) were not significant predictors of infant 

wheeze. Also of note, other potential predictors of infant wheeze that are established at or 
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before birth (type of delivery, maternal smoking during pregnancy, gestational age, and 

birthweight) were not associated with infant wheeze in our sample, suggesting that HK1 

and LITAF may be unique predictors of infant wheeze without cough or cold. These 

findings provide insight into previously unstudied molecular risk factors of infant 

wheeze. Also, since infant wheeze is an early life risk factor for later being diagnosed 

with asthma, and DNA-M variations at these sites have been associated with asthma at 

age 18, these findings may provide a potential link between infant wheeze and young 

adult asthma. 

 Although the expression of LITAF and HK1 were identified as novel predictors of 

infant wheeze in the present study, previous work has characterized some of their 

biological functions which are suggestive for how they may influence wheeze. Genetic 

variations within HK1 have been associated with retinitis pigmentosa
129

 and congenital 

hyperinsulinism
130

. Also, increased expression of HK1 has been observed in tumor cells 

131
 and HIV-infected macrophages

132
 which helps to stabilize the mitochondrial 

membrane allowing those cells to avoid apoptosis
72

, but has never previously been 

observed in association with infant wheeze. Yet, its functional roles make a biologically 

plausible link to wheeze-illness. The lifespan of pro-inflammatory cells, such as 

neutrophils, can be regulated via apoptotic signals and delayed response to such signals 

has been associated with inflammatory disease
133

; for instance, neutrophils of asthmatics 

appear to be resistant to CCL2-induced apoptosis
134

. 

 The functions of LITAF have primarily been studied in mechanistic animal 

models, and it has been shown to form a complex with STAT6B, then translocate into the 

nucleus resulting in the upregulation of multiple inflammatory cytokines
79

. LITAF and/or 
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STAT6B also promote the expression of VEGF is known to promote angiogenesis in the 

airways as well as the proliferation and differentiation of bronchial endothelial cells
135,136

 

and T-cells
137

. TNF-α is an important pro-inflammatory cytokine, and SNPs within TNF-

α have been associated with asthma and wheeze, which may mediate the risk of maternal 

smoking during pregnancy for wheeze or asthma
138

. Finally, LITAF has been suggested 

to play a role in p53-dependent apoptosis
139,140

 and treatment with Cipangopaludina 

chinensis-derived LITAF (CcLITAF) induced apoptosis in a human lung cancer cell 

line
141

. Overall, LITAF can promote apoptosis and is an up-stream regulator of both 

VEGF
79

 and TNF-α
139

, which influence multiple immune processes. Thus, the 

dysregulation of the expression of LITAF may play critical roles in inflammation, 

immune-cell-differentiation, angiogenesis and apoptosis, providing plausible links 

through which LITAF may make important, yet under-studied molecular contributions to 

wheezing among infants. 

We also found that lower levels of DNA-M at cg16658191 within the 1
st
 exon of 

HK1 were associated with increased expression of HK1. This provides evidence that 

methylation at this site may serve as a transcriptional repressor of this gene, though this 

should be validated in an experimental design. Given that DNA-M can be stable over 

time
28

,  HK1 epigenetic-programming at or before birth could prospectively influence the 

risk of wheeze over the first year of life and possibly later in life. Previously we observed 

that low levels of DNA-M at cg16658191 were associated with higher probability of 

having prevalent asthma at age 18 (unpublished data), and in the present study we have 

observed that low levels of DNA-M at the same CpG site were associated higher 

expression of HK1, and higher expression of HK1 was predictive of infant wheeze. 
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 We understand that our findings should be considered within the limitations of 

this study. First, the candidate genes were selected due to previously identified DNA-M 

associations in these genes with asthma at age 18. Although variations in DNA-M have 

been shown to have functional relationships to gene-expression, this relationship can be 

complex and sometimes inconsistent. Many factors other than DNA-M can increase or 

decrease the expression of a particular gene: chromatin remodeling factors, histone 

modifications, micro RNA activity, and transcription factor binding. Thus, it is possible 

that the previously identified DNA-M associations would not result in changes in gene-

expression that could then be associated with infant wheeze. Also, infant wheeze is a 

common condition that often resolves in infancy or early childhood
114

 and is likely quite 

distinct from young adult wheeze and asthma. Thus, gene-activity related infant wheeze 

may not be the same as gene-activity related to asthma at age 18. These differences may 

explain the lack of association between expression of DGCR14, UNC45B, CHD7, and 

ST6GALNAC5 infant wheeze. We may not have accounted for all confounders, which 

could have resulted in some residual confounding. Lastly, due to the small sample size in 

the present study, these findings should be confirmed in an independent cohort with a 

large sample. 

 Despite these limitations, this study was strong in many ways. First, its 

prospective nature eliminates the possibility of reverse causation for the observed 

associations. Second, we were able to adjust for cellular heterogeneity of the cord blood 

samples, despite the inability to collect blood cell differentials due to logistical 

constraints. Instead we utilized genome-wide DNA-M data to estimate the relative 

proportions of major leukocyte components (B-cells, NK cells, CD4+T cells, CD8+T 
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cells, monocytes, eosinophils, and other granulocytes)
67

. The inclusion of cell-

proportions in our statistical models allowed us to identify whether differences in gene-

expression were merely acting as markers of different cellular compositions, as appears 

to be the case with NUP210 in our sample. However, we understand that this method of 

predicting cell-type proportions also has its limitations. This method is currently the gold-

standard for predicting cell-type proportions from DNA-M and has been utilized in cord 

blood samples previously
142

, though the algorithm’s accuracy has only been validated in 

adult blood samples as of yet
68

. The adjusted analyses rely on the assumption that the 

algorithm performs as well with cord blood samples as it has with adult blood samples. 

To ensure that our top findings were not driven by any bias that may have been 

introduced by this limitation, we produced the adjusted regression models with and 

without cell-proportions as adjustment covariates (Table 2; Columns 3 and 2, 

respectively). Our two main findings (HK1 and LITAF) were not affected by these 

adjustments; however NUP210 was no longer a significant predictor of infant wheeze. 

Thus we emphasized the more conservative models, those adjusted for of estimated cell-

type proportions, for our top findings.  

In summary, we found that higher expression of HK1 and lower expression of 

LITAF in cord blood were predictive of infant wheeze, and that the expression of HK1 

may be regulated by DNA-M at cg16658191. Of greatest interest are the parallels that 

can be drawn between our findings and the evidence in the literature suggesting that up-

regulation of HK1
72,132

 and down-regulation of LITAF
140,141

 may both have anti-apoptotic 

effects; combined with the evidence that anti-apoptotic effects in pro-inflammatory cells 

results in prolonged inflammation
133

 and have been associated with asthma
134

. Thus our 
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observations of higher HK1 and lower LITAF in cord blood as predictors of infant 

wheeze may represent an anti-apoptotic predisposition for certain infants to experience 

wheeze within the first year of life. 
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Table 4.1: Distribution of risk factors for infant wheeze and asthma, stratified by infant 

wheeze occurring apart from a cough or cold. 

 

Variables 

 

Overall 

(n=80) 

No Wheeze 

w/o cough/cold 

(n=61) 

Wheeze 

w/o cough/cold 

(n=19) 

P-value 

Infant Sex n (%) n (%) n (%) χ
2
 Test 

Male 38 (47.5) 28 (45.9) 10 (52.6) 0.80 

Female 42 (52.5) 33 (54.1) 9 (47.4)  

Season of Birth n (%) n (%) n (%) χ
2
 Test 

Jan/Feb/Mar 19 (23.8) 13 (21.3) 6 (31.6) 0.19 

Apr/May/Jun 25 (31.2) 22 (36.1) 3 (15.8)  

Jul/Aug/Sep 19 (23.8) 12 (19.7) 7 (36.8)  

Oct/Nov/Dec 17 (21.2) 14 (23.0) 3 (15.8)  

Cell-Mixture mean (sd) mean (sd) mean (sd) T-test 

CD8
+
T 0.057 (0.031) 0.059 (0.028) 0.049 (0.039) 0.27 

CD4
+
T 0.134 (0.044) 0.132 (0.038) 0.142 (0.059) 0.46 

Natural Killers 0.059 (0.046) 0.053 (0.038) 0.076 (0.064) 0.16 

B-Cells 0.109 (0.034) 0.106 (0.029) 0.116 (0.046) 0.37 

Monocytes 0.108 (0.022) 0.108 (0.022) 0.106 (0.022) 0.66 

Eosinophils 0.049 (0.035) 0.046 (0.028) 0.061 (0.050) 0.23 

Other Granulocytes 0.506 (0.095) 0.516 (0.076) 0.473 (0.138) 0.21 

Delivery Type n (%) n (%) n (%) χ
2
 Test 

Normal 54 (69.2) 44 (73.3) 10 (55.6) 0.34 

Cesarean 16 (20.5) 11 (18.3) 5 (27.8)  

Other 8 (10.3) 5 (8.3) 3 (16.7)  

Smoke During 

Pregnancy 
n (%) n (%) n (%) 

χ
2
 Test 

No 50 (64.1) 40 (67.8) 10 (52.6) 0.36 

Yes 28 (35.9) 19 (32.2) 9 (47.4)  

Gestational Age mean (sd) mean (sd) mean (sd) T-test 

Weeks of Gestation 39.4 (1.6) 39.5 (1.5) 39.2 (1.9) 0.57 

Birth Weight mean (sd) mean (sd) mean (sd) T-test 

Birth Weight (grams) 3482.9 (531.3) 3481.2 (522.2) 3488.9 (576.3) 0.96 
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Table 4.2: Logistic regression results for cord blood gene-expression predicting wheeze 

within the first year of life. 

 

 
Crude Adjusted

*
 Adjusted

**
 

Gene β1 P-value β1 P-value β1 P-value 

NUP210 -1.024 0.219 -2.106 0.037 -0.585 0.596 

HK1 1.114 0.027 1.319 0.020 1.800 0.030 

ST6GALNAC5 0.207 0.625 0.380 0.492 0.372 0.587 

LITAF -0.741 0.108 -1.222 0.032 -1.563 0.047 

CHD7 -0.729 0.274 -1.146 0.129 -0.876 0.319 

UNC45B -0.471 0.312 -0.841 0.134 -0.765 0.236 

DGCR14 -0.959 0.183 -1.346 0.086 -1.594 0.103 
*
 Adjusted for sex and month of birth. 

**
 Adjusted for sex, month of birth and cell mixture (predicted proportions of CD4

+
T 

cells, monocytes, natural killer cells, B cells, eosinophils, and other granulocytes). 
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Table 4.3: Results from sensitivity analyses (excluding those with missing follow-up) and 

frequency of wheeze within the first year of life. 

 

 
Wheeze

¥
 Wheeze

¥,**,*
 

Wheeze-

Frequency
¥,*

 

Any-Wheeze-

Frequency
¥¥,*

 

Gene β1 P-value β1 P-value β1 P-value β1 P-value 

HK1 1.800 0.030 1.619 0.049 1.368 0.071 0.737 0.007 

LITAF -1.563 0.047 -2.693 0.014 -1.489 0.010 -0.818 0.006 
¥
 Wheeze unrelated to a cough or cold. 

¥¥
 Wheeze whether or not related to a cough or cold. 

*
 Only included infants that evaluated for wheeze at all three infant follow-up visits 

(n=61).  
** 

Because of the small number of cases and large number of adjustment covariates, this 

model could not be fit with robust logistic regression and instead a standard logistic GLM 

was used. 
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Table 4.4: Spearman pairwise-correlation matrix of gene-expression levels in cord blood 

(n=80). 

 

Rho 

(P-value) 

ST6GAL-

NAC5 HK1 LITAF UNC45B DGCR14 NUP210 CHD7 

ST6GAL-

NAC5 

- 0.04  

(0.74) 

-0.09  

(0.43) 
0.26  

(0.02) 

-0.18  

(0.11) 

-0.18  

(0.10) 
-0.39  

(<0.01) 

HK1 
 - -0.09  

(0.45) 

-0.19  

(0.08) 
-0.26  

(0.02) 

-0.09  

(0.44) 
-0.22  

(0.04) 

LITAF 
  - 0.27  

(0.02) 

0.17  

(0.14) 
0.23  

(0.04) 

0.17  

(0.15) 

UNC45B 
   - -0.01  

(0.95) 
0.29  

(<0.01) 

0.21  

(0.06) 

DGCR14 
    - 0.27  

(0.01) 

0.22  

(0.06) 

NUP210 
     - 0.50  

(<0.01) 

CHD7 
      - 
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Table 4.5: Pairwise correlations between gene-expression levels and eigengene values. 

 

Rho (P-value) Eigengene 1 Eigengene 2 HK1 

ST6GALNAC5 0.82 (< 0.0001) -0.29 (0.007) 0.04 (0.74) 

DGCR14 -0.13 (0.24) 0.54 (< 0.0001) -0.26 (0.02) 

NUP210 0.04 (0.74) 0.80 (< 0.0001) -0.09 (0.43) 

CHD7 -0.14 (0.20) 0.73 (< 0.0001) -0.22 (0.05) 

LITAF 0.07 (0.52) 0.49 (< 0.0001) -0.09 (0.45) 

UNC45B 0.74 (< 0.0001) 0.34 (0.003) -0.19 (0.08) 

HK1 -0.09 (0.41) -0.24 (0.03) 1 (< 0.0001) 
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Figure 4.1: Distribution of HK1 expression levels by any-wheeze-frequency. 
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Figure 4.2: Distribution of LITAF expression levels by any-wheeze-frequency. 
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CHAPTER 5 

CONCLUSIONS AND FINAL REMARKS 

Overall, this dissertation achieved its objectives by exploring genetic and 

epigenetic variations in the Th2-path associated with complex wheeze phenotypes (Aim 

2), identified novel epigenetic loci whose DNA-M levels were associated with physician 

diagnosed asthma (Aim 1), and related the expression of the genes encompassing the 

novel epigenetic loci to infant wheeze (Aim 3).  

Summary of Findings and Innovations (Aim 1 and Aim 3): 

From our genome-wide DNA-M association study, we found that nine epigenetic 

loci were differentially methylated in association with prevalent asthma at age 18: 

cg25578728 in the body of CHD7, cg16658191 in the 1
st
 exon of HK1, cg00100703 in 

the 3’UTR of UNC45B, cg07948085 [intergenic], cg04359558 in the body of LITAF, 

cg20417424 in the TSS1500 of ST6GALNAC5, cg19974715 [intergenic], cg01046943 in 

the body of NUP210 and cg14727512 in the 3’UTR of DGCR14. Interestingly, even 

though these were strongly associated with physician diagnosed asthma, they appear to 

drive different underlying aspects of asthma. For instance, DNA-M in HK1, LITAF, 

DGCR14 were more strongly associated with atopic asthma, DNA-M in NUP210 and 

UNC45B were more strongly associated with non-atopic asthma, whereas DNA-M within 

CHD7 was associated with both atopic and non-atopic asthma. We also observed varying 

degrees of association between the nine sites with lung function (FEV1/FVC), BDR, and 
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FeNO. These findings suggest that DNA-M at these nine sites influence different 

physiologic mechanisms which may influence asthma. For GWAS, replication has been a 

gold-standard for eliminating false-positives, overfitting, and other biases
30

; thus, a 

replication study in an independent cohort is currently underway. 

We then hypothesized that if the seven genes associated with our Aim 1 findings 

represented true underlying mechanisms that contribute to asthma, some of these genes 

could be differentially expressed in cord blood in association with infant wheeze. We 

found that the expression levels of both HK1 and LITAF were associated with risk of 

experiencing wheeze within the first year of life. Also, HK1 expression shared an inverse 

linear relationship with DNA-M levels at cg16658191 whereas expression of LITAF was 

not linearly associated with DNA-M levels at cg04359558. 

We did not have data on gene-expression in the young adults, so we compared our 

findings in Aim 1 with Aim 3 via currently accepted paradigms for how DNA-M relates 

to gene-expression. DNA-M in the promoter region or the 1
st
 exon is consistently 

associated with transcriptional repression, yet DNA-M within the gene-body is most 

frequently associated with promotion of transcription 
32

. Assuming these paradigms hold 

true, then low DNA-M at cg04359558 (body) is a marker of low expression of LITAF 

and low DNA-M at cg16658191 (1
st
 exon) is a marker of high expression of HK1, both 

of which were associated with increased odds of prevalent asthma at age 18. The 

relationships between expected expression levels and young adult asthma were consistent 

with the relationships between cord-blood expression levels and infant wheeze. 

Taken together, these analyses culminated in the discovery of novel genes (HK1 

and LITAF) that were under differential epigenetic regulation in young adults with 
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asthma, and whose expression levels in cord blood were predictive of infant wheeze. Up-

regulation of HK1 and down-regulation of LITAF in cord blood were associated with 

increased risk of wheeze within the first year of life. Despite wheeze-predictive 

expression patterns for HK1 and LITAF being present at birth, the establishment of DNA-

M within HK1 and LITAF appear to occur prenatally and after birth, respectively. These 

findings provide a direct link between our observations in Aim 1 and Aim 3, that 

increased HK1 and decreased LITAF expression increases the risk of wheeze and/or 

asthma, apparently independent of age. 

Not only did the findings for HK1 and LITAF from Aim 1 and Aim 3 complement 

each other, but they were consistent with plausible biological links to wheeze and asthma. 

Previous research as shown that up-regulation of HK1
72,132

 and down-regulation of 

LITAF
140,141

 can induce delayed apoptosis of some cells and it is well recognized that 

apoptotic-resistant pro-inflammatory cells produce prolonged inflammation
133

. Thus high 

levels of HK1 and low levels of LITAF in cord blood may produce, or be representative 

of, cells that are more resistant to apoptotic signaling, putting those infants at greater risk 

for wheeze illness within the first year of life. Given that these genes appear to be 

involved in wheeze and asthma in both infants and young adults, future studies should 

investigate whether cord blood expression patterns of HK1 and LITAF can improve upon 

current techniques for predicting which infants with wheeze will later be diagnosed with 

asthma, such as the modified asthma predictive index (mAPI)
116

. Improvement of such 

algorithms could allow for better prospective management of wheeze in infants and 

children. The discovery of these genes also provides new targets to study for potential 

therapeutic or preventive techniques. 
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Another innovation from Aim 1 of this dissertation was the use of recursive 

random forest (RF) as a data-reduction technique for an epigenome-wide dataset. High 

dimensional feature selection techniques are necessary for analyzing such large datasets 

as they compress these data into more manageable subsets
143

. RF has been utilized in 

multiple GWAS, but only infrequently utilized recursively
58,144–146

 and to our knowledge 

only implemented with large-scale epigenetic data in a few previous investigations of 

atopy
62

 and eczema
147

 in the IOW birth cohort. Also, despite the recommendation of Leo 

Brieman, the original author of RF
60

 to test multiple values for mtry and ntree then to 

pick the ‘best’ one
63

, many previous studies with RF simply utilized the default values. In 

our analyses, we found that altering the default values of ntree, mtry, and sampsize, were 

critical to stable selection of predictors from data-reduction process, emphasizing the 

need to carefully evaluate such parameters when implementing the RF algorithm, at least 

when used recursively for variable selection.  

Summary of Findings and Innovations (Aim 2): 

We explored whether persons with more homogenous wheeze-illness would share 

similar genetic and/or epigenetic variations within asthma candidate genes (IL4, IL4R, 

IL13, STAT6, and GATA3) from the Th2-path. From this study, we found that DNA-M at 

cg25630514 in the body of GATA3 and at cg25368824 in the TSS200 of IL4  

significantly varied based on different clinical characteristics among persons with 

wheeze, suggesting that epigenetic regulation of these cytokines differs among persons 

with wheeze or asthma that have different clinical characteristics. 

To our knowledge, no one has investigated whether combinations of genetic and 

epigenetic features within the Th2 pathway, one of the most heavily studied sets of genes 
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in asthma research, can distinguish between complex manifestations of asthma, such as 

those represented by the wheeze-illness clusters identified in the IOW birth cohort
4
. 

Multiple recent studies have used clustering techniques to identify groups of asthmatics 

that share similar physiologic or symptomatic characteristics
90–92

, though none of those 

studies have attempted to relate such clusters to genetic or epigenetic variations. Thus, 

the primary innovation from Aim 2 was that epigenetic variations, and likely other 

molecular mechanisms, differed in their association with complex wheeze phenotypes. 

Most interesting was cluster C4, characterized by being mostly female, late-onset 

wheeze with low prevalence of allergic diseases and low levels for BDR, FeNO and 

serum IgE, which differed substantially from the other clusters across many epigenetic 

loci. Assuming that epigenetic regulation of expression at the nominally significant CpG 

sites follows the same paradigm discussed above
32

, then we would expect persons in this 

cluster (C4) to have lower expression of IL4, higher expression of IL13, and lower 

expression of GATA3, which may be an indicator of IL13 expression from non-Th2 

cells
99

, though further human studies are needed to clarify the differential expression and 

activity of IL4 and IL13. Overall, these findings suggest that the underlying epigenetic 

profiles for wheeze-illnesses differ based on a multitude of characteristics, and emphasize 

the need to thoroughly characterize multiple symptoms and physiologic components of 

asthma to effectively compare asthma findings across different studies and different 

populations. However, given the exploratory nature and small sample size of this study, 

further studies are necessary to confirm our observed findings. 
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Final Remarks: 

 Advancements in epigenetic epidemiology are crucial to furthering our 

understanding of asthma etiology. With this dissertation we identified novel epigenetic 

and genetic loci that may clarify some of the underlying mechanisms involved in asthma 

etiology and observed differential directions of association in Th2 genes based on young 

adult wheeze clusters. Of particular note were the findings that high levels of HK1 

expression and low levels of LITAF expression increased the risk of wheeze/asthma in 

infants and young adults, and that DNA-M may regulate, or act as markers of, the activity 

of these genes. Based on current knowledge of HK1 and LITAF, the observed expression 

and/or DNA-M patterns may increase resistance to apoptotic signaling among pro-

inflammatory cells, though further functional research is needed to clarify such 

mechanisms. These genes offer promise as potential markers of asthma and wheeze, and 

could be investigated in future studies as targets for therapy or for inclusion into 

algorithms, such as the asthma predictive index, for predicting later-life-asthma from 

early-childhood characteristics. We also found that complex wheeze clusters differed in 

their epigenetic patterns within the Th2 path, suggesting that future studies of asthma 

carefully evaluate what symptomatic and physiologic traits are represented within their 

asthma cases when attempting to generalize findings or to conduct validation studies.  
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