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ABSTRACT 

Multiple population-period transient spectroscopy (MUPPETS) is a picosecond, time 

resolved experiment that uses a sequence of six laser pulses.  It was previously known 

that MUPPETS could measure heterogeneity in electronic-state decay.  This dissertation 

presents two projects that extend MUPPETS to new processes.  One process is the 

extension from 2-level system into 3-level system, another new process extends the 

kinetics from electronic decay to rotational decay.  In addition, a third, ongoing project 

on rotational dynamics in ionic liquids will also be discussed briefly.   

The first project consisted of two main parts.  The first part focused on the biexciton 

decay in semiconductor nanoparticles.  The power dependence of the excited state decay 

in nanoparticles has been attributed to biexcitons, but those measurements are easily 

contaminated with other species.  New theoretical work in excitonic systems shows that 

MUPPETS can measure biexciton decays free from contaminations.  Our experiments 

successfully isolate the biexciton decay of CdSe/ZnS core–shell nanoparticles.  The 

biexciton signal shows a highly dispersed, nonexponential dynamics, which is 

inconsistent with current theories of Auger recombination.   

The second part of the first project investigated the heterogeneity of exciton decay.  

There is a fast, nonradiative decay in the exciton decay of core–shell nanoparticles, which 

has been attributed to a subset of poorly passivated particles.  Using a new theory of 

multi-level systems, our MUPPETS experiments showed that such a subpopulation does 
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not exist.  We suggest that the early component in exciton decay is caused by surface 

relaxation. 

The second project probed heterogeneity in the local dynamics of polymers, as 

sensed by solute rotation.  The rotation of a solute in a small molecule solvent is 

exponential, but it becomes nonexponential in a polymer melt.  This nonexponential 

behavior may be explained by either variations in the local viscosity of the polymer—a 

heterogeneous model—or local anisotropy of the polymer structure—a homogeneous 

model.  To measure heterogeneity in rotation rates, we extended the original MUPPETS 

experiment to a polarized version.  The new method was demonstrated on the anisotropy 

decay of Pyrromethene 597 in poly(dimethylsiloxane) (PDMS).  The results show strong 

molecule-to-molecule variation in the rotation rate.  They are consistent with local, short-

length scale variations in viscosity within the polymer.  No evidence for local anisotropy 

was found. 

In the final projects, the rotational dynamics of a solute in ionic liquids was 

measured with 1D polarization experiments.  Experiments and simulations have 

suggested that heterogeneous microstructures exist in ionic liquids.  A new signal 

normalization channel was built to reduce noise, increase long term stability and improve 

the ability to detect nonexponential decay.  Rotational decays are measured for ionic 

liquids with different chain lengths and different mixture ratio with acetonitrile.  Weakly 

nonexponential decays were found for long chains, but none was found for short chains.  

Experiments and analysis are ongoing.    
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CHAPTER 1 INTRODUCTION 

 OVERVIEW 1.1

Nonexponential kinetics is common as the system studied becomes more complex.  

Instead of having a single kinetic rate, which can be described by an exponential function, 

the measured rates can have a broad dispersion.  This rate dispersion is generally 

attributed to two mechanisms: first is that each molecule can have differernt relaxation 

rate thus the ensemble average gives a nonexponential decay, this is called a 

heterogeneous mechanism.  Another explanation is that each molecule is inherently 

nonexponential, but decays for all the molecules are identical, this is known as a 

homogeneous model. 

The Berg group has pioneered two-dimensional methods to resolve this problem.  

Previously, MUPPETS was utilized in 2-level systems to detect heterogeneity in 

electronic state decay.  It distinguishes the cause of rate dispersion between 

heterogeneous and homogeneous mechanism.   

This thesis describes three new technical things. 1) showed how to isolate biexciton 

from exciton signal, 2) measured heterogenetity in multilevel system, 3) showed how to 

include polarization to measure heterogeneity in molecular rotation 

Using these new technics we discovered: 1) biexciton shows a biexponential form 

and its mechanism is undetermined, 2) nonradiative decay in core-shell nanoparticles is 

due to surface relaxation, 3) heterogeneity in local viscosity are formed inside polymer. 
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Five papers have been published based on the work in this thesis and correspond to 

Chapts 2-6.  Chapter 2 deals with the theoretic work that extends MUPPETS from 2-level 

to multi-level system.  It was published as Wu, H.; Berg, M. A., Journal of Chemical 

Physics 2013, 138 (3), 034201.  Chapter 3 focues on isolation the biexciton signal 

experimentally.  It was published as Sahu, K.; Wu, H.; Berg, M. A., Journal of the 

American Chemical Society 2013, 135 (3), 1002–1005.  Chapter 4 measures the cause of 

heterogeneity in nonradiative decay in core-shell nanoparticles.  It was published as Sahu, 

K.; Wu, H.; Berg, M. A., Journal of Physical Chemistry B 2013, 117 (49), 15257-15271.  

Chapter 5 discusses the effect of other processes in experiments such as thermal grating.  

It was published as Wu, H.; Sahu, K.; Berg, M. A., Journal of Physical Chemistry B 2013, 

117 (49), 15272-15284.  Chapter 6 investigates heterogeneity in rotational dynamics in 

polymer melt.  It was published as Wu, H.; Berg, M. A., Journal of Physical Chemistry 

Letters 2014, 5 (15), 2608–2612.  An additional paper on the theory of polarized 

MUPPETS is anticipated in the future. 

 MULTIPLE POPULATION-PERIOD TRANSIENT SPECTROSCOPY 1.2

Multiple Population-Period Transient Spectroscopy (MUPPETS) is a two-

dimensional (2D) time resolved spectroscopy.  It is two-dimensional because two 

evolving periods are involved.  Two excitation pulses are separated by a first evolving 

period τ1, the change in absorption due to both excitation pulses is measured in another 

evolving time τ2.  The first evolution period in MUPPETS is usually worked as a rate 

filter, it filters fast subensembles in a heterogeneous system.  And the dynamics of slow 

subensembles are probed at second evolution period.  Depending on the length of first 

evolving period, dynamics of assemble average versus selected groups can be extracted. 
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Although only three interactions are necessary in the MUPPETS experiment, six 

pulses are used in practice (Figure 1.1).  Lower order three beam or four beam signals are 

removed due to the unmatching of excitation and detection wave-vector.  Therefore, a 

unique MUPPETS signal is generated using this 6 beam geometry.  Two probes are 

detected by photodiodes, and the difference of the two signals was measured by lock-in 

amplifier.   

 

Figure 1.1.  Schematic of MUPPETS setup.  L1–L10 lenses, G1 and G2 transmission 
gratings, P1–P3 reflective prisms, D1–D3 delay lines, C chopper, ND neutral density 
filter, T1–T5 timing/phase plates, M1 and M2 masks, S sample, P pinhole, VND linear 
variable neutral density filter, PD1 and PD2 matched photodiodes, A‐B Differential 
inputs of a lock‐in amplifier. Different masks are used for 1D and 2D transient grating 
experiments.   

 NANOPARTICLE DYNAMICS MEASURED WITH MULTI-LEVEL MUPPETS 1.3

1.3.1 Biexciton Dynamics 

In nanoparticles, the nonradiative decay greatly impedes the applications that require 

strong emission such as light-emitting diodes (LEDs) 1-4, bio-imaging5, 6, and nanocrystal 

(NC) lasing.7, 8  One major process that decreases the efficiency of emission is biexciton 

decay9, 10.  Another process of nonradiative decay is through the surface trapping sites.   
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Previous measurements of biexciton decay were complicated by the possible 

presence of other species.  By extending the theory of MUPPETS from 2-level model to a 

3-level one, we predicted the possibility of isolating biexciton from other interferences. In 

this model, three energy states are used to represent ground state, exciton state and 

biexciton state, respectively.  Complete MUPPETS pathways are then expanded.  The 

amplitude for each pathway is calculated using a nonorthogonal basis set.  Two 2D 

correlation functions contribute to the MUPPETS signal.  Detailed discussion is covered 

in chapter 2. 

One of the significance of this theory is it predicts the sign of exciton and biexciton 

signal to be opposite.  MUPPETS is then used to look at biexciton decay in nanoparticles 

experimentally.  Since the biexciton decays in a faster time scale and has a negative sign 

compared to exciton, the total MUPPETS signal should have a rise feature at short time.  

A strong power dependent effect is observed in the MUPPETS result at τ1 = 0.  A linear 

regression technique decomposes this power dependent data into two components: a 

power-independent component repsents the component not changing with laser power 

and a power-dependent component corresponds to the part varying with power.  However, 

the rise feature of biexciton is not seen in MUPPETS data at any power.  It took us a 

while to realize that the rise feature will only be presented at very low power.  At high 

power, it will be obscured by the positive biexciton signal in power-dependent part.  

Finally, the negative biexciton amplitude is observed in MUPPETS at a very low power 

condition.  Subtracting power-independent MUPPETS result from the pump–probe result 

gives us the separated biexciton signal.   
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The biexciton signal is fitted to a biexponential function.  Biexciton decay is 

generally believed to have an Auger recombination mechanism.  However, the current 

explanation of Auger mechanism is a signle exponential decay.  Thus, either current 

theory on biexciton decay needs to be revised or new theory needs to be discovered to 

explain this phenomenon.   

1.3.2 Core-Shell exciton decay 

The cause of nonradiative decay in core-shell nanoparticles is still a mystery.  One 

explanation could be the defects on the surface, this could allow electrons to relax 

nonradiatively.  However, for these high quantum yield core-shell nanoparticles, most of 

the surface defects should have been passivated.  Another possibility is that the surface of 

the nanoparticle is undergoing a relaxation process during the excitation, for each 

electron, the decay is not in a constant rate, therefore, the ensemble decay is still 

nonexponential.   

We used multi-level MUPPETS to investigate the cause of heterogeneity in exciton 

decay.  The full set of 2D MUPPETS experimental data is reported for the first time.  

Depending on whether the exciton is homogeneous or heterogeneous dispersed and 

whether exciton/biexciton is correlated or not, four models can be established.  The two 

2D correlation functions that contribute to MUPPETS signal are then derived differently 

in these four models.  MUPPETS data at all τ1 matches best with the prediction of 

homogeneous exciton decay and uncorrelated exciton/biexciton model.  We suggest a 

surface relaxation mechanism is accounting for this nonexponential behavior.  The fact 

single exciton decay is not correlated with the biexciton decay suggests that the biexciton 

decay has an independent mechanism.  More detailed discussion is shown in chapter 4.   
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 LOCAL POLYMER DYNAMICS MEASURED WITH POLARIZED MUPPETS 1.4

Our third new technique investigated the rotational behavior in different 

solvents/fluids.  In small molecule solvents, the rotational dynamics of a solute is usually 

exponential.  However, in polymers, the anisotropy decay becomes nonexponential.  It is 

still unknown the cause of this nonexponential behavior.  One possible explanation is that 

local viscosity is developed in the polymer melts.  Therefore, molecules in different local 

regions are sensing different viscosity and rotate differently, but each single rate is an 

exponential one.  Another explanation argues the existence of anisotropic local structure 

created by long chain solvents.  On a faster time scale, solutes are wobbling around this 

local anisotropy axis, on a slower scale, both the solute and solvent molecules are rotating 

together.  Here, for each solute, the rotation is nonexponential.   

Polarized MUPPETS was developed to address this problem.  In 1D polarization 

experiments, the rotational dynamics is decomposed into two correlation functions, a 

rotational component C{2}(τ1) and an electronic component C{0}(τ1).  The 1D rotation can 

be easily obtained from these two correlation functions.  In MUPPETS experiments, four 

2D correlation functions are generated, depending on whether electronic decay or 

rotational decay is measured in τ1 and τ2.  The one measures rotational dynamics during 

both τ1 and τ2 is of most interest to us.  However, it is nontrivial to measure this 

correlation function.  As all six pulses in MUPPETS are polarized, even if there are two 

choices of polarization for each pulse, as much as 64 different combinations can be 

generated.  Not to mention geometries with other polarization choices.  Fortunately, using 

our methods discussed in previous reference11, we found a set of two measurements can 

be used to extract the 2D rotational component in polarized MUPPETS experiments. 
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During implementing the optical setup for polarized MUPPETS, we encountered 

several problems.  In order to adjust the polarization for each pulse, three sets of half 

wave-plates were put in between delaylines.  In order to improve the delayline moving 

stability, we replaced a reflective mirror on one delayline into a corner cube.  This 

accompanies another problem, that is, the corner cube will always change the polarization 

of input pulse.  Therefore, another quarter wave-plate was put in to compensate the 

change brought by the corner cube.  Finally, an extinguish ratio of 1000:1 is achieved in 

current setup for all pulses.   

Polarized MUPPETS was then used to investigate the cause of heterogeneity in 

rotational decay in polymer melt.  Measurements were done at two polarization sets 

mentioned above at varies τ1.  At τ1 = 0, 2D rotation is identical to the 1D rotation, which 

indicates that the rate filter is off.  By increasing filtering time τ1, the measured 2D 

rotational rate is becoming slower and more single exponential.  This indicates the 

filtering of rapid relaxation molecules, suggests the existence of regions with different 

local viscosity.  At τ1 = 500 ps, the 2D rotation is found to be nearly single exponential.  

This further confirmed the prediction of heterogeneous mechanism.  Complete 

description of this topic in covered in chapter 6.   

 NONEXPONENTIAL SOLUTE ROTATION IN IONIC LIQUIDS 1.5

One additional work I’ve also done is to understand the cause of heterogeneity in 

rotational decay in ionic liquids.  The rotational decay in these ionic liquids is also found 

to be dispersed.  Simulations on molecular dynamics have speculated the microstructure 

of these liquids, i.e., polar and nonpolar regions separated in those liquids.12  The 

solvation response studies have found that the nonexponential behavior in diffuse part is 
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due to the existence of spatial heterogeneity in these liquids.  Thus, the study of 

heterogeneity in rotations experimentally would also be a great complement to these 

researches. 

Two sets of 1D polarization experiments were done to explore the rotational 

dynamics of these liquids.  In one set, probes were dissolved into imidazolium ionic 

liquids (IL) with different alkyl side chain mixed with acetonitrile (xIL = 0.2), it is found 

the rotational decay slows down as the alkyl chain lengthen.  The shape of rotational 

decay becomes stretched exponential in these ionic liquids, which might be due to the 

development of local heterogeneous microstructure.  But this change in the shape of 

decay is not as obvious as we expected.  In the second series, Probe molecules were 

dissolved into one mixture of ionic liquid and acetonitrile, but the molar fraction of ionic 

liquids is varying.  In that set, the decay time increases as the amount of ionic liquids 

increase, but again no obvious change in the shape of decay is found. 
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CHAPTER 2 MULTIPLE POPULATION-PERIOD TRANSIENT 

SPECTROSCOPY IN EXCITONIC SYSTEMS 

 INTRODUCTION 2.1

Kinetic measurements are a major subset of physical chemistry and take on many 

different forms appropriate to different processes and timescales.  Nonetheless, almost all 

are one dimensional (1D): a single period of time exists between a single perturbation of 

the system and a later detection of its evolved state.  Our group has been exploring 

multidimensional kinetics in which there is more than one perturbation, and thus, more 

than one period of time evolution.11, 13-21  We have called our approach, which uses weak 

optical perturbations, multiple population-period transient spectroscopy (MUPPETS).  So 

far, its focus has been on nonexponential relaxation (rate dispersion) in two-level 

systems.  In those systems, MUPPETS can separate homogeneous and heterogeneous 

contributions to rate dispersion.  This paper lays a theoretical foundation for MUPPETS 

in multilevel systems and especially in excitonic systems—those with equally spaced 

levels and optical transitions and relaxations that occur in single steps.  The most 

important new features are the ability to accurately separate exciton and biexciton 

dynamics and to measure correlations in the rate dispersion of exciton and biexciton 

relaxation.  Related experimental results on exciton and biexciton dynamics in CdSe 

nanoparticles will be published in the near future. 22, 23 
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The concept of MUPPETS is illustrated in Fig. 1.  A total of six pulses are used: 

three (1–3) simultaneous pairs (a and b) separated by two times, τ1 and τ2.  Each pair 

causes an incoherent transition, i.e., a transition from one quantum mechanical population 

to another.  Any coherences are assumed to be quenched by rapid dephasing.  The novel 

aspect of MUPPETS is that the correlated relaxation of the population during two time 

periods is measured.  Ensemble averaging or relaxation of the molecule does not occur 

between these periods, so different processes are accessible than in experiments with only 

one relaxation time.  Understanding the resulting multidimensional correlation functions 

when several population states are accessible is a primary aim of this paper. 

The  pulses in each pair come from different directions, so the populations consist of 

spatial gratings.24-26  Detection is by diffraction of pulse 3a from the final population 

grating and heterodyning the diffracted light with pulse 3b.  (Practical detection schemes 

also account for diffraction in the opposite direction.15)  As Fig. 1(a) suggests, it is 

possible to arrange the phase-matching geometry such that diffraction only occurs from 

planes created by the combined action of all four excitation pulses.  These more technical 

aspects of the experiment will not be treated here.  It is only important to know that it is 

practical to isolate a signal that is confined to exactly one electric-field interaction with 

each of the six pulses. 
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Figure 2.1.  Schematic of the MUPPETS experiment.  (a) The upper and lower panels 
represent rapidly and slowly relaxing subensembles within the sample.  Two  
simultaneous pulses (1a and 1b) from different directions intersect in the sample to create 
a spatial grating of excited-state molecules (red).  After a time τ1, a second pair of pulses 
(2a and 2b) create a second grating of excited molecules (blue).  The slow subensemble 
now contains vertical diffraction planes formed by regions that have interacted twice 
(black), once (red and blue) and never (white).  After an additional time τ2, pulse 3a is 
diffracted from these planes and is combined with pulse 3b for heterodyne detection.  The 
diffraction isolates the signal unique to one interaction with the first excitation and one 
interaction with the second excitation.  (b) An accurate representation of the pulse 
directions used in the experiment: tan–lens, orange–sample. 

As with 1D kinetics, theoretical concepts transcend the various experimental 

implementations needed for different timescales and processes.  In existing experiments, 

MUPPETS has focused on electronic-state relaxation on subnanosecond timescales.   

However, the theoretical ideas developed here are equally applicable to any timescale.  

With modest modification, they can also find application to other types of perturbation 

and other relaxation processes. 

MUPPETS has strong parallels to multidimensional coherence spectroscopy 

(MDCS).  MUPPETS measures multiple periods of incoherent evolution (kinetic rates), 

whereas MDCS measures multiple periods of coherent evolution (spectral frequencies).  

MDCS began with two-level systems, in which they give “echo” phenomena.27, 28  These 

experiments separate homogeneous and inhomogeneous contributions to spectral 
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linewidths, just as MUPPETS of two-level systems separates homogeneous and 

heterogeneous rate dispersion.  When MDCS was extended to multilevel systems, it 

became various forms of spectral correlation spectroscopy, which reveal coupling 

between different spectral transitions.29-33  MDCS is well established in NMR29, 30 and, 

more recently, has been extended to electronic31 and vibrational32, 33 transitions.  In the 

latter two forms, it has been especially valuable in excitonic systems,34-40 where the 

transitions are strongly overlapped in one-dimensional (1D) spectra.  By analogy, one 

anticipates that MUPPETS in multilevel systems will probe correlations in the relaxation 

of different transitions and will be especially relevant in excitonic systems, where 

spectral discrimination of different transitions can be difficult.   

One goal of the paper is to clarify the meaning of the intertransition correlations that 

we anticipate.  Another is to illustrate the interplay of the intertransition and 

intratransition contributions to the total experimental signal.  To tackle these problems, 

we first develop simplified methods for calculating multidimensional incoherent signals 

in excitonic systems and then use them to calculate results for several simple, limiting 

models.   

In two-level systems, it is common to reduce the dimensionality of the problem by 

changing the basis set.  The total population is invariant, and only the dynamics of the 

population difference need to be calculate.  The primary simplifications in the current 

calculations come from extending this idea to multilevel systems.  A nonorthogonal 

coordinate system is required, but this feature is easily handled by the Hilbert-space 

formalism that we introduced previously.16, 17  The primary new difficulty in multilevel 

systems is the possibility of cross-relaxation between basis states.  Fortunately, this effect 



 

13 

is minimized when higher excitons relax faster than lower excitons.  This situation is 

common due to processes that are called exciton−exciton annihilation in molecular 

systems or Auger relaxation in semiconductors.  Approximations for this case are found.  

Section 2.1 develops the general formalism, and then Sec. 2.2 looks in more detail at two-

dimensional (2D) MUPPETS for several different energy-level schemes. 

These results lead to several useful results that are explored in Sec. 2.3.  Separating 

exciton and biexciton kinetics can be difficult when the spectral exciton shift is small.  

MUPPETS is a sensitive and robust method for separating exciton and biexciton 

dynamics that does not rely on spectral separation.  It is also insensitive to the formation 

of photoproducts, which can complicate power-dependent measurements.  In general, the 

level of coupling between zero-order chromophores needed to create an exciton for 

purposes of MUPPETS (an incoherent exciton) is much lower than that needed to create 

an exciton for purposes of coherent spectroscopy (a coherent exciton).  Thus, MUPPETS 

can be useful for studying weakly coupled systems. 

Example calculations are presented on four model systems with identical 1D kinetics 

in Sec. 2.4.3.  These models mix homogeneous and heterogeneous exciton relaxation 

with biexcitons that are either correlated or uncorrelated with the exciton relaxation.  

Despite having identical one-dimensional (1D) kinetics and despite the overlap of intra- 

and inter-transition features, each model produces very different 2D results and would be 

readily distinguishable in a 2D MUPPETS experiment.  Rate correlation between 

different transitions is shown to be analogous to homogeneous kinetics on a single 

transition.  Correlation between exciton and biexciton relaxation is possible whether or 

not the individual transitions are homogeneous or heterogeneous.  Intertransition rate 
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correlations indicate a shared feature in the two relaxation mechanisms such as 

dependence on a common bath mode.   

Real MUPPETS experiments detect not only the resonant signal due to the 

chromophore, but also see solvent heating due to chromophore relaxation.18  These 

thermal effects are the multidimensional extension of thermal-grating spectroscopy.24-26  

They are both a complication to measuring the resonant signal and a potential route to 

measuring nonradiative relaxation between spectroscopically dark states.  The theory 

needed to calculate thermal effects in multilevel MUPPETS experiments is developed in 

Sec. 2.5.   

 THEORY FOR MULTI-STATE SYSTEMS 2.2

The Hilbert-space pathway formalism for calculating multidimensional incoherent 

experiments has been discussed in detail previously.16, 17, 21  In this formalism, as the 

number of states in the system increases, the number of pathways increases 

combinatorially.  This section seeks to simplify such calculations.  Section 2.1 

summarizes previous Hilbert-space results in a convenient notation.  Section 2.2 

introduces a new basis set to simplify these calculations in a general multi-state system.  

Section 2.3 then specializes to excitonic systems, which will be the focus of the 

remainder of the paper.   

2.2.1 Review of incoherent Hilbert-space calculations 

The signal from an N-dimensional heterodyned experiment is the change in fluence 

of the (N+1)th (local oscillator) beam δIN+1(Φ) relative to its total fluence IN+1, as a 

function of the local-oscillator–probe phase difference Φ.   This change can be expressed 

as an absorbance A(N)(Φ; N,,…, 1), 
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  ( ) 1
1

1

( )
( ; , , ) 1 NN N

N
N

I
A

I

  




   , (1) 

where n is the time interval between pulses n and n + 1.  Fourier transforming the phase-

dependence extracts a complex absorbance A(N)(N,,…, 1), which obeys a generalized 

Beer’s law,18, 21 

   ( )
1( , , ) 1

NN
N DA L     σ . (2) 

This expression contains the detection cross-section operator σD, the number density of 

solute molecules , and the length of the sample L.   

The expectation value of σD is calculated as a matrix element in the incoherent 

Hilbert space, 

 1[ | | ( , , )]D D N   σ σI f , (3) 

where [I| is the identity state [see Eq. (17)] and |f] is the final state of the system at the 

time of detection.  The degree sign indicates that the calculations are done without the 

phase factors for the excitation fields.18  The phase convention for the complex 

absorbance is the same as for the complex cross-section: real parts correspond to 

absorption; imaginary parts correspond to index-of-refraction.  The final state |f] is 

obtained from the initial, equilibrium state |eq] by successive operators Tn, representing 

optical transitions due to the nth excitation, and G(tn, tn-1), representing evolution 

between times tn−1 and tn, 

 1 1 1 0 1| ( , , )] ( , ) ( , ) | ]N N N Nt t t t     G T G Tf eq . (4) 
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Throughout the paper, absolute times will be denoted tn, and time intervals will be given 

by 

 1n n nt t   . (5) 

The equation of motion for an arbitrary state |P] contains the rate operator R(t): 

 | ] ( ) | ]
d

P t P
dt

 R . (6) 

For nonexponential relaxations, the rates are time dependent.  The Green’s operator G(tn, 

tn-1) is then nonstationary:  

 2

1
2 1( , ) exp ( )

t

t
t t t dt

   
 G R , (7) 

where the exponential is time ordered.41 

The optical-transition operator n
T  is given by 

  , , ,
, { , }

n n ij T n ij n ij
i j a b

I


   
T σ K M . (8) 

The nth excitation consists of two pulses labeled a and b (see Fig. 1), and in Eq. (8), the 

sum runs over the four permutations of these pulses.  The effective fluence of the pair In,ij 

is the geometric mean of the fluences of the two pulses, In,i and In,j:  1/2
, , ,n ij n i n jI I I .  

The transition cross-section operator T is constructed from the absorption cross-sections 

of the electronic transitions of the system.  Unlike the detection cross-section D, which 

is complex, T has only real elements.  The dipole-moment tensor 

M  and the polarization 

tensors ,n ij


 are required to calculate the effects of chromophore rotation, but will be 
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neglected in this paper.  The phase-matching conditions are generated by the grating-

vector operator Kn,ij.  We assume that one combination of pulses is perfectly phase 

matched, and all others are poorly phase matched.   

With these assumptions, the equation for the signal reduces to  

  

 ( ) ( )
1 1

1 0

( , , ) 1 [ | ( , )

( , ) | ]

NN N
N D N N

T T

A LI t t

t t

    



 σ G

σ G σ

I

eq , (9) 

with 

 ( )
, 1,

N
N ab abI I I   (10) 

representing the total excitation fluence from N pulse pairs.  In the case where every 

pulse has the same fluence I, I(N) = I N.  The next step is to introduce complete sets of 

states between each pair of operators in Eq. (9).  The results are more compact if we 

adopt the notation 

 [ | | ] m
nOOn m  (11) 

for the matrix element of an operator O between states [n| and |m].  Assuming summation 

over repeated indices, Eq. (9) reduces to  

 

   

   

( )
1

1( )

1 0

( , , )
1 ( , )

( , )

N
N n mN

D n N NIN

j eqi
T j Tk i

A
G t t

LI

G t t

  


 

 



 

. (12) 

Each term in the implied sum represents one Hilbert-space pathway.  This sum is 

calculated for a single chromophore before averaging over the ensemble, as indicated by 

the angular brackets. 
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If the optical cross-sections are independent of time, the time dependence and 

relative weight of each pathway can be separated:  

  
( )

, , , , ,1
, , 1, , ,( )

( , , )
1 ( , , )

N
N n j eq m iN

n j NI k iN

A
B C

LI

   


   


  . (13) 

Each pathway is defined by the set of intermediate states {i, …, n}.   The dynamics 

associated with a pathway are given by the correlation-function matrix 

 , ,
, , 1 1 1 0( , , ) ( , ) ( , )m i m i

n j N n N N jC G t t G t t  
   . (14) 

Each element of this 2N-dimensional matrix is an N-time-interval correlation function.  

Each correlation function is the ensemble average of N time-evolution operators.  The 

relative weight of each pathway is given by  

      , , ,
, , ,

n j eqn l eq
I m i D T TI k i

B   
  . (15) 

Because two of its indices are fixed, this matrix also has 2N dimensions.  Each element 

gives the total cross-section of the corresponding element of the correlation-function 

matrix.  The scalar product of these two matrices in Eq. (13) sums the correlation 

functions from all the pathways with their appropriate cross sections. 

2.2.2 Basis set to reduce the dimensionality of the problem 

Here, we consider the general problem of a good basis set for pathway calculations 

in a system with  optical levels, {|0], |1], …, |−1]}.  It is desirable to have the initial, 

equilibrium state |eq] as one member of the basis set.  If the state spacing is large, only 

the lowest state is occupied in equilibrium: |0] = |eq].    It is also desirable to have the 
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identity state [I| as a member of the basis set.  Thus, in the new, primed basis set, {|0′], 

|1′], …, |−1′]}, we require 

 | 0 ] | ] | 0]eq    (16) 

and 

 
1

0
[0 | [ | [ |

n




   I n


. (17) 

With these conditions, all pathways begin with |0′] and end with [0′| [see Eqs. (9) and 

(12)]. 

An orthogonal basis set cannot satisfy both Eqs. (16) and (17).  However, in a 

nonorthogonal basis, bras and kets need not be identical: they are described by different, 

dual basis sets.42  In such a nonorthogonal system, the nonzero kets must be orthogonal to 

[0′|: 

 0,[0 | ] [ | ] nI    n n . (18) 

Because the identity state measures the total population of a state,16 Eq. (18) means that 

the nonzero primed kets do not have any net population: they consist only of population 

differences.  As a result, the rate operator R(t) cannot connect the zero and nonzero kets 

without changing the total population of the system.  These two sets of states, zero prime 

and nonzero prime, are the irreducible sets resulting from the law of population 

conservation.  In addition, |0′] =|eq] cannot decay; it is unaffected by R(t).  Thus, it is 

possible to reduce the dimensionality of the rate matrix ( )i
jR t
  by eliminating its 0′ row 

and column. 
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The exact form of the nonzero states has not been specified.  We choose the first 

excited state [1′| so it is the only nonzero transition out of |0′]: 

  0
1 1

[ | | 0 ]T n T  
    σn . (19) 

The transition cross-section acts on a general state |P] in a perturbative fashion:17 

   | ] | ] | ]T T   1 σ σP P P . (20) 

By the conservation of population, σT acting on any state can only create a new state with 

no population, that is, a superposition of nonzero primed states.  Thus, 

 [0 | | ] 0T  σ n . (21) 

With Eqs. (19) and (21), the transition cross-section matrix  i
T j

  can also be reduced in 

dimension by eliminating its 0′ row and column.   

This procedure drops one nonzero element  0
1T

  which occurs on the first step in every 

pathway.  The effect of this element will be included in a new detection vector [σD|, 

which is defined by 

 
 
 

0
1

0
0

[ | [0 |
Re

T
D D

D











 σ . (22) 

Because all pathways end on [0′|, the detection matrix and final state can be replaced by 

this vector.  Because there are no transitions into |0′], the first element of element of the 

detection matrix only occurs in static (N = 0) spectroscopy: 

  0(0)
0DA L  
 . (23) 
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For all higher order measurements, the n = 0 element of (σD)n′ can be dropped, and the 

detection vector can be reduced in dimension.  The term  0
0

Re D 
  is included in the 

definition of [σD| for convenience: Using Eq. (23), the Nth-order absorbance will scale 

explicitly with the static absorbance (0)A . 

Equation (13) can now be re-expressed as 

 
( )

( ) , , , , , ,11
, , 1, , ,(0)

( , , )
( , , )

N
N n l j m kN

j Nm k n l
A

I C
A

         
   


 
 

  , (24) 

for N  0.  The total cross-section,  

        , , ,
,, 1

N n l jn l j
D T Tm k m k

       
    
  , (25) 

gives the relative weight of each pathway, but is a lower dimensional matrix than 

, , ,
, , ,

n j eq
I k iB 
  [Eq. (15)].  It contains N cross-sections to match the N fluence factors in I(N).  

The correlation function is also simplified relative to Eq. (14), because its first index is 

now fixed.  Equation (24) generalizes a familiar expression for the fractional population 

change in a pump–probe experiment, 

 
0 0

( ) ( )
( )

A
I C

A

    


 
  


. (26) 

The indices in Eq. (24) only run over nonzero values.  Thus, in the primed basis set, the 

entire calculation is restricted to nonzero intermediate states, and the problem is reduced 

by one dimension.  The reduction is possible because of the restrictions implied by 

population conservation. 

For a two-level system, Eqs. (16) and (18) completely determine the primed basis 

set, 
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  

| 0 ] | 0]

1
|1 ] |1] | 0]

2

 

   , (27) 

and its dual basis set, 

 

[0 | [1| [0 |

[1 | 2[1|

  

  . (28) 

It is also possible to include population conservation in a two-level system by using an 

orthogonal basis set.17  Either approach is viable, but the current one generalizes to 

multilevel systems. 

2.2.3 Application to excitonic systems 

For more than two states, Eqs. (16) and (18) do not completely define the higher 

basis states.  Choices can be made to further simplify the transition and rate matrices, but 

more detailed knowledge of the structure of these matrices is needed.  We specialize to 

excitonic systems, which are defined as a set of equally spaced states or groups of nearly 

degenerate states that undergo optical transitions and relaxation in increments of one 

“quantum” at a time.  The transition and rate matrices of an excitonic system are 

simplified if the nonzero primed basis kets are chosen to be differences of neighboring 

states, 

  1
| ] | ] | 1] , 1

2
n    n n n , (29) 

with the dual states 

 [ | 2 [ |, 1
i n

n
  n i


. (30) 
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The remainder of the paper focuses on 1D and 2D experiments.  These experiments 

cannot access states higher than |3], so four-level schemes will be sufficient.  The 

standard basis set for such schemes is {|3], |2], |1], |0]} (triexciton, biexciton, exciton and 

ground states, respectively).  The same rate matrix applies for all schemes, 

 

( ) 0 0 0

( ) ( ) 0 0
( )

0 ( ) ( ) 0

0 0 ( ) 0

t

i t b
j

b e

e

k t

k t k t
R t

k t k t

k t

 
  
 
 

 

. (31) 

where kt(t) is the triexciton-to-biexciton rate, kb(t) is the biexciton-to-exciton rate, and 

ke(t) is the exciton-to-ground-state rate.  When transformed to the primed basis set, the 

rate matrix becomes 

 

( ) 0 0 0

( ) ( ) 0 0
( )

0 ( ) ( ) 0

0 0 0 0

t

i b b
j

e e

k t

k t k t
R t

k t k t



 
  
 
 
 

, (32) 

which can be reduced in dimensionality to  

 

( ) 0 0

( ) ( ) ( ) 0

0 ( ) ( )

t
i
j b b

e e

k t

R t k t k t

k t k t




 
   
  

. (33) 

In addition, the total signal given by Eq. (24) simplifies because the first excited state 

defined by Eq. (19) is also the lowest state in the relaxation scheme given by Eq. (33), 

that is, j =1′:   
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Thus, the signal is calculated as a product of two 2(N−1)-dimensional matrices, one 

dimension lower than in Eq. (13). 

Off-diagonal elements in the rate matrix add complexity to the calculations.  It is not 

generally possible to diagonalize the rate matrix with any coordinate transformation.  

However, in the primed basis set, the off-diagonal terms becomes small if each higher 

exciton relaxes rapidly compared to lower excitons.  As discussed in Sec. 2.4.2 below, 

this limit can be regarded as one of strong incoherent coupling.  In the current example, 

 

( ) 0 0

( ) 0 ( ) 0

0 0 ( )

t b e

t
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 

  . (35) 

 

Figure 2.2.  Three energy-level schemes for an excitonic system.  Red arrows are allowed 
optical transitions with each arrow indicating a factor of σ in cross-section.  Blue arrows 
indicate nonradiative transitions; dashed arrows are fast relaxations. 

The transition and detection cross-section matrices depend on the spectroscopic 

details of the system. Three examples are shown in Fig. 2.  They have been chosen to 

illustrate important limiting behaviors in the final signal.  Scheme A represents an exciton 

consisting of many coupled chromophores (M → , see Sec. 2.4.2).  The ground-to-

exciton transition has the same cross-section as the exciton-to-biexciton and biexciton-to-
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triexciton transitions: σ01 = σ12 = σ23 = σ.  In addition, the downward transitions have the 

same cross-section as the upward transitions: σ01 = σ10, σ12 = σ21 and σ23 = σ32.   

Alternatively, the exciton levels may not be eigenstates.  They may have internal 

structure or dynamics within a band of nearly degenerate eigenstates.  Scheme B is an 

example. Absorption to a bright state is followed by rapid relaxation to a state with zero 

emission cross-section: σ10 = σ21 = 0.  The ground-to-exciton and exciton-to-biexciton 

transitions still have the same strength: σ01 = σ12 = σ.  No triexciton state is included. 

Scheme C is similar to scheme B, in that it has no triexciton and no emission (σ10 = 

σ21 = 0).  However, it consists of few coupled chromophores, so the exciton-to-biexciton 

transition has a lower cross-section than the ground-to-exciton transition.  We choose 

σ01= 2σ12 = 2σ (M = 2, see Sec. 2.4.2).  CdSe nanoparticles with band-edge excitation are 

a real system approximated by model C.22, 23, 43   

  For scheme A in the standard basis set, the transition matrix is 

  

1 1 0 0

1 2 1 0

0 1 2 1

0 0 1 1

i
T j

 

 
  
 
 

 

, (36) 

and the detection matrix is 

  

1 1 0 0

1 0 1 0

0 1 0 12

0 0 1 1

j
D i



 
  
 
 

 

, (37) 

where the prime indicates the real part of the complex cross-section.  In the primed basis 

set, these matrices become 
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  

2 1 0 0

1 2 1 0

0 1 2 2

0 0 0 0

i
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 
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    
  
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 (38) 

and 

  

2 1 0 0

3 0 1 0

2 1 0 22

2 0 2 2

i
D j

 


 
     
 
   

. (39) 

Reducing the dimensionality of the matrices yields 

  
2 1 0

1 2 1

0 1 2

i
T j

 


 
   
  

. (40) 

and 

    1 0 1
i

D     . (41) 

To evaluate the total signal for scheme A, Eqs. (40) and (41) are inserted into Eq. 

(25) and evaluated by standard matrix methods to yield the relative cross-section of each 

pathway , , ,1
,,

n l
km   



 .  The correlation function for each pathway , , ,1

, 1 1, , ( , , )m k
Nn lC    

 

   is 

evaluated by putting Eq. (33) into Eqs. (7) and (14).  These components are put into Eq. 

(34) to give the experimental signal.  Examples of this procedure are given in the next 

section. 
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 PATHWAY CALCULATIONS IN EXCITONIC SYSTEMS 2.3

2.3.1 Cross-sections 

In the standard basis set, Eq. (13) yields three pathways with nonzero amplitude for 

1D experiments and 16 pathways for 2D experiments.  In the primed basis set using Eq. 

(34), the number of pathways is reduced to one for 1D experiments and three for 2D 

experiments.  These pathways are shown on the right-hand side of Fig. 3.  Each pathway 

is represented as a series of transformation from the initial state on the right to the final 

state on the left.  Each transformation is represented as an arrow and contributes a matrix 

element of the operator governing the transformation, which is shown below the 

pathways.  The final state of each pathway is detected by forming the product with the 

detection vector [σD|.  The strong selection rules in the primed basis set allow the one to 

quickly enumerate the pathways with nonzero amplitude on such diagrams. 

The correlation function corresponding to each pathway is shown on the left-hand 

side of Fig. 3.  It is formed from the matrix elements of the time-evolution operator of the 

corresponding pathway through Eq. (14).  The steps in the pathways are labeled above 

the solid line with the indices used in our equations. 
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Figure 2.3.  Pathways for the calculation of one-dimensional (1D) and two-dimensional 
(2D) signals.  The right-hand side shows the allowed pathways between states |n′] in the 
primed basis set.  The operators responsible for each transition are given below the 
arrows: G, the time-evolution operator, and σT, the optical transition operator.  The 
indices corresponding to each level in the pathway are indicated above the solid line.  The 
final state in each pathway is detected by taking the product with the detection vector [σD|.  
The total cross-section for each pathway is given in the center of the figure for each of 
the energy-level schemes shown in Fig. 2.  The correlation function for each pathway is 
given on the left.  Pathways (i) and (iii) have only diagonal relaxation and dominate when 
the biexciton decay is faster than the exciton decay.  Pathway (ii) (gray) involves cross-
relaxation and is a minor contribution. 

In the case where biexciton relaxation is faster than exciton relaxation, pathway (ii), 

which is in gray, has only a small contribution.  That pathway will be discussed in Sec. 

2.3.3.  For now, we only consider the two dominant 2D pathways.  Note that the 

triexciton state contributes to the detection cross-section in scheme A, but |3′] cannot 

occur as an intermediate state in a 2D experiment. 

The total cross section for each pathway is calculated from the matrix elements of 

the cross-section operators, σT and σD, according to Eq. (34).  The exact cross-section for 

each pathway and, in particular, the relative contributions of exciton and biexciton 

dynamics, depend on the details of the state scheme.  Results for the three schemes of 

Fig. 2 are shown in the center of Fig. 3.  Scheme A is a limiting case (see Sec. 2.4.2 
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below) where excitons are detectable and biexcitons are not.  The only pathway involving 

biexciton dynamics, pathway (i), has a cross-section of zero.  Scheme B is in the opposite 

limit: biexcitons are directly detectable and excitons are not.  Scheme B gives no signal in 

a 1D experiment, and 2D pathway (iii) has a cross-section of zero.  However, 2D 

pathway (i) has a nonzero cross-section and can be measured in Scheme B.  Information 

on both exciton and biexciton dynamics are available from this pathway. 

Scheme C is an intermediate case where pathways ending with either excitons or 

biexcitons contribute to the signal.  The notable feature is that the two pathways (i) and 

(iii) have opposite signs.  Generally, the biexciton relaxes faster than the exciton, and the 

signal will initially rise as the negative biexciton signal decays.  This feature allows 2D 

MUPPETS to cleanly separate exciton and biexciton dynamics, as will be illustrated in 

Sec. 2.4.1. 

To summarize, the relative contributions of exciton and biexciton dynamics to a 2D 

experiment vary with the transition cross-sections of the system of interest.  These cross-

sections determine both the relative signs and magnitudes of the correlation functions that 

are measured, and thus, the type of dynamical information that is available. 

2.3.2 Diagonal correlation functions 

The reduction in the number of pathways in the primed basis set not only simplifies 

the calculation of amplitudes; it also reduces the number of correlation functions to a 

minimum.  Figure 3 shows that a 1D experiment is described by a single correlation 

function 1
1 1( )C  .  This correlation function is diagonal in the sense that in one time 

period it only measures survival of one basis state.  In this case, the notation can be 
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simplified: 1 1( ) ( )i
i iC C  .  This type of correlation function is normalized to one at the 

time origin. 

Using Eqs. (7), (14) and (33), the exciton decay measured in a 1D experiment is 

given by  

 1

0

1
1 1 1 1 0( ) ( , )

exp ( )
t

et

C G t t

k t dt

 
 

   
  . (42) 

A similar correlation function,  

 1

0

2
2 1 2 1 0( ) ( , )

exp ( )
t

bt

C G t t

k t dt

 
 

   
  , (43) 

defines the biexciton decay, but it cannot be measured in a 1D experiment. 

The 2D signals are dominated by diagonal correlation functions.  The exciton–

exciton correlation function, 

 2 1

1 0

1 1
1 1 2 1 1 2 1 1 1 0( , ) ( , ) ( , )

exp ( ) ( )
t t

e et t

C G t t G t t

k t dt k t dt

   
   

    
   , (44) 

occurs in pathway (iii) of Fig. 3.  It is essentially similar to the 2D correlation function 

previously studied in two-level systems.14, 19, 21  If the decay is nonexponential due to 

homogeneous causes, the 2D correlation function is the product of 1D correlation 

functions, 

 1 1 2 1 1 2 1 1( , ) ( ) ( )C C C       . (45) 
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If the decay is heterogeneous, the 2D correlation function is equal to the 1D correlation 

function of the sum of the time variables, 

 1 1 2 1 1 2 1( , ) ( )C C       . (46) 

Thus, with 2D MUPPETS in an excitonic system, it is possible to distinguish 

homogeneous and heterogeneous mechanisms of rate dispersion of the exciton decay, just 

as it is in a two-level system. 

A new feature of MUPPETS in multilevel systems is the possibility of cross-

correlations between different relaxations.  For example, pathway (i) in Fig. 3 has an 

exciton–biexciton correlation function, 

 2 1

1 0

2 1
2 1 2 1 2 2 1 1 1 0( , ) ( , ) ( , )

exp ( ) ( )
t t

b et t

C G t t G t t

k t dt k t dt

   
   

    
   . (47) 

Although two transitions are involved, the correlation is still diagonal during each time 

interval.  When τ1 = 0, this function gives access to the biexciton decay [Eq. (43)], 

 2 1 2 2 2( , 0) ( )C C    . (48) 

More generally, 2 1 2 1( , )C     is sensitive to correlations between exciton and biexciton 

dynamics.  These correlations are an important new feature in multilevel MUPPETS and 

are illustrated with examples in Sec. 2.4.2. 

2.3.3 Off-diagonal correlation functions 

In addition to the diagonal correlation functions just discussed, multilevel systems 

also have correlations involving relaxation between basis states during one of the time 
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periods.  These correlation functions involve off-diagonal elements of the rate matrix.  

For example, pathway (ii) in Fig. 2.3 has the correlation function 

 2 2 1
1 1 2 1 1 2 1 1 1 0( , ) ( , ) ( , )C G t t G t t   
    , (49) 

which involves relaxation from |2′] to |1′] during τ2.  The Appendix [see Eq. (A214)] 

shows that the off-diagonal time evolution can be calculated exactly once a dynamic 

model for the diagonal elements is specified: 

 2

1

2 1 2
1 2 1 1 2 1 2 1( , ) ( , ) ( ) ( , )

t

t
G t t G t t k t G t t dt  

        . (50) 

However, it is difficult to make general statements about the full correlation function 

from this exact expression. 

Fortunately, the primed basis set makes the cross relaxation small when biexciton 

relaxation is faster than exciton relaxation.  In this case, the relaxation of the standard 

basis state |2] is biphasic: first |2] decays to |1], and then |1] decays to |0].  In the primed 

basis, this decay is represented by a sum of 2
2 2 1( , )G t t
  and 1

1 2 1( , )G t t
 .  However, this 

sum contains a small error: the decay of |1] does not start immediately as it does in 

1
1 2 1( , )G t t
 ; the start of its decay is delayed by the time needed for the biexciton to decay.  

This correction is isolated as the off-diagonal time evolution 2
1 2 1( , )G t t
 .  If the decay of 

the exciton during the biexciton lifetime is small, the correction is small.  The Appendix 

shows that in this limit, the off-diagonal time evolution can be approximated by 

  2 2 1
1 2 1 2 2 1 1 2 1( , ) ( , ) 1 ( , )G t t G t t G t t  
    . (51) 
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The cross-relaxation correlation function cannot be calculated until the correlation 

between exciton and biexciton dynamics are specified.  However, its properties can be 

illustrated with the case of uncorrelated dynamics.  In that case, the 1D and 2D 

correlation cross-relaxation correlation functions can be expressed in terms of the 

diagonal correlation functions, 

  

2 2
1 1 1 2 1

2 1 1 1

( ) ( , )

( ) 1 ( )

C G t t

C C



 

 
 

 



  , (52) 

and 

  2
1 1 2 1 2 2 1 1 1 1 1 2( , ) ( ) ( ) ( , )C C C C     
       . (53) 

Cross-relaxations are not normalizable: they are zero at the time origin.  Their 

contribution to the signal must be judged not by their cross-section, as given in Fig. 3, but 

by their maximum size.  The 2D function 2
1 1 2 1( , )C  
   is zero whenever τ2 = 0.  Its 

maximum lies along τ1 = 0, where it is equal to the 1D cross-relaxation function, 

 2 2
1 1 2 1 2( ,0) ( )C C  
   . (54) 

It rises slowly in τ2 with the exciton decay C1′(τ2), but is cut-off by the rapid biexciton 

decay C2′(τ2) [see Eq. (52) and Fig. 4(a)].  If the dynamics can be characterized by 

average rate constants, the maximum value of 2
1 2( )C   is approximately ke/kb. 
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 EXAMPLES OF NEW EFFECTS 2.4

2.4.1 Separating exciton and biexciton dynamics 

This section will present calculations of 2D-MUPPETS results for several simple 

models of the dynamics.  All the models are based on state scheme C in Fig. 2, where all 

pathways are active.  The 1D correlation functions for all the examples will be the same: 

  1 2
1 1 1 0( ) expC   

    
 (55) 

for the exciton and 

  1 2
2 1 1 0( ) exp 10C   

    
 (56) 

for the biexciton.  These two decays are similar, 

 2 1 1 1( ) ( )C C c   , (57) 

with the biexciton decaying ten times faster (c = 10) than the exciton.   

The decays are stretched exponentials in time and are shown in Fig. 4(a).  The cross 

relaxation 2
1 1( )C   in the uncorrelated limit [Eq. (52)] is also shown in Fig. 4(a).  As 

expected, the large difference between exciton and biexciton decay times makes this term 

small. 

In addition to the time-domain decays, it is useful to look at rate spectra.  The rate 

spectrum ˆ ( )C y  of a correlation function C(τ) is defined implicitly by  

  0
ˆ( ) ( ) exp /yC C y e dy  




  . (58) 
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Figure 2.4.  The 1D kinetics used in the example calculations (Figs. 5–7), which are 
identical for all the models.  (a) Time decays: exciton decay C1′(τ) [upper, red curve, Eq. 

(55)], biexciton decay C2′(τ) [middle, blue curve, Eq. (56)], and cross-relaxation 2
1 1( )C   

[lowest, green curve, Eq. (52)].   (b) Rate spectra: Exciton spectrum 1
ˆ ( )C y  (rightmost, 

red curve) and  biexciton spectrum 2
ˆ ( )C y  (leftmost, blue curve)with y = ln(κτ0). 

The rate spectrum is essentially the inverse Laplace transform of the time decay 

expressed on a logarithmic scale, y = ln(κτ0), where κ is the Laplace rate.  More detail on 

the properties and calculation of rate spectra can be found in Ref. 2.  The rate spectrum 

1
ˆ ( )C y  of the stretched exponential in Eq. (55) is shown in Fig. 4(b). Applying the 

transform in Eq. (58) twice, a 2D time function C(τ2, τ1) can be expressed as a rate-

correlation spectrum 2 1
ˆ( , )C y y .   

The experimental signal in a 1D experiment is directly related to the 1D exciton 

correlation function, 
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 (1) (1) (0)
1 1 1( ) 2 ( )A I A C   . (59) 

The other 1D correlation functions cannot be observed in a 1D experiment, but they can 

be accessed in a 2D experiment.  The full 2D signal is 

 




(2) (2) (0) 1
2 1 1 1 2 1 2 1 2 12

21
1 1 2 12

( , ) 2 ( , ) ( , )

( , )

A I A C C

C

      

 

   


 

  

 . (60) 

Along the τ2 = 0 axis, the 2D experiment simply duplicates the information in the 1D 

experiment: 

 (2) (2) (0) (1)1
1 1 1 2 12

(0, ) ( ) ( )A I A C I A        . (61) 

Along the τ1 = 0 axis, the 2D absorbance reduces to a sum of the three 1D correlation 

functions, 

 (2) (2) (0) 11 1
2 1 2 2 2 2 22 2( ,0) 2 ( ) ( ) ( )A I A C C C          . (62) 

These two cuts through the 2D signal are shown in Fig. 5 as solid curves.  Because 

they are related to 1D correlation functions, they contain no new information on rate 

heterogeneity or correlation.  Nonetheless, they contain new information on the biexciton 

decay that is not available from 1D measurements. 
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Figure 2.5.  Two zero-time cuts through the 2D MUPPETS signal.  Red (upper) curve: 
2A(2)(0, τ1), which is equivalent to the exciton decay measured in a 1D experiment.   Blue 
(lower) solid curve: A(2)(τ2, 0), which has a negative biexciton signal superimposed on the 
positive exciton signal.  The dashed blue curve neglects the cross-relaxation [Eq. (53)].  
The curves are normalized to the same amplitude at long time, so the difference between 
these cuts measures the biexciton decay [Eq. (63)].   

In a two-level system, these two cuts are identical.11, 19, 21  Thus the asymmetry in τ1 

and τ2 is diagnostic of a biexciton contribution to the signal.  Because the two 

contributions have opposite signs, the cut along τ1 = 0 may not be monotonic: it can rise 

as the negative biexciton contribution decays.  This feature is also a unique to a 

multilevel system.    The effect is weak for the parameters chosen here, but it can persist 

under other conditions. 11,12  It is more clearly seen in the dashed blue curve in Fig. 5, 

which leaves out the effects of cross relaxation.   

This feature gives MUPPETS a unique potential to separate exciton and biexciton 

dynamics.  Subtracting the two zero-time cuts [Eqs. (61) and (62)] gives the biexciton 

decay: 

 
(2) (2)

11 2
2 2 2 2(2) (0)

2 (0, ) ( ,0)
( ) ( )

A A
C C

I A

   



 


 

 
. (63) 

The small cross-relaxation term can be approximated with Eq. (52) and removed. 
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 In many systems, the exciton shift is too small to spectrally separate exciton and 

biexciton dynamics.  If there is a significant difference in their decay rates, 1D 

experiments give a power-dependent change in kinetics that can be identified as the 

contribution of biexcitons.  Unfortunately, a long lived photoproduct with a fast exciton 

decay has exactly the same properties and can be mistaken for a biexciton.44  In a 2D 

MUPPETS experiment, a photoproduct with a fast exciton lifetime contributes to C1′(τ) 

and is eliminated in Eq. (63).  This experiment distinguishes between species that existed 

before the pulse sequence (photoproducts) and species created during the pulse sequence 

(biexcitons).  This idea is illustrated in more detail by model III below (Sec. 2.4.3.c).  It 

will also be demonstrated experimentally in future papers.22, 23  

This mechanism fundamentally discriminates between exciton and biexciton signals.  

If a photoproduct is present and its biexciton decay differs from the biexciton decay of 

the primary species, the measured C2′(τ) will contain a mixture of both signals.  An 

extrapolation to zero average power is still needed to eliminate this possibility.  The 

forthcoming papers will also explore the power dependence of the MUPPETS signal in 

more detail and demonstrate the necessary extrapolation.22, 23 

The sign change between exciton and biexciton signals is dependent on having a net 

absorption from the exciton state (excited-state absorption minus stimulated emission) 

that is weaker than the absorption from the ground state.  This condition is satisfied in 

most real excitonic systems.   

2.4.2 Coherent versus incoherent excitons 

Any discussion of excitonic systems faces a potential paradox.  Any set of zero-

order, two-level chromophores can be grouped to form a multilevel system.  To avoid a 

paradox, all multiexciton effects must disappear in the absence of a suitable interaction 
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between the zero-order chromophores.  The number of zero-order chromophores to 

consider is non-trivial in many systems: How many electron–hole pairs in a 

semiconductor? How many molecules in a dye aggregate? How many “segments” in a 

conjugated polymer?  

Firstly, one cannot define an excitonic system that is overly large.  If M zero-order 

chromophores with an absorption cross-section σ are included, the ground-to-exciton 

cross-section is Mσ, the exciton-to-biexciton cross-section is (M−1)σ, and so on.  In the 

limit as M becomes large, Scheme A (Fig. 2) is reached as a limit.  In this scheme, the 

pathways involving multiple excitons have zero amplitude (Fig. 3).  The reason is that 

absorption saturation is lost as M becomes large.  Without  nonlinear absorption, there 

can be no signal in a multidimensional experiment. 

Secondly, one must consider the nature of the interaction between chromophores.  In 

spectral correlation spectroscopy, the interaction must perturb the zero-order 

spectroscopy of the system, either splitting the transitions or transferring absorption 

strength between exciton and biexciton transitions.  This relatively strong coupling is 

sufficient, but not necessary, to create multiexciton effects in MUPPETS.   

We focus on the more difficult case where the zero-order spectra and cross-sections 

are not perturbed and an exciton would not be seen in spectral measurements:  

    0 1
/ /1 2

( ) 2 ( )D T D T    
  . (64) 

This equation requires that both the integrated cross-sections and the cross-section at each 

frequency are not perturbed, that is, there is no coherent coupling.  Even without spectral 

interactions, there can be an interaction that perturbs the rates, for example, one that 

causes exciton–exciton annihilation.  This interaction constitutes an incoherent coupling.  
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This coupling expresses itself primarily through the cross-relaxation function, which we 

previously calculated in the limit of strong incoherent coupling, kb >> 2ke, Eq. (51).   In 

the limit of no coupling, statistics cause the biexciton rate to be twice the exciton rate, 

 ( ) 2 ( )b ek t k t , (65) 

or the biexciton decay to be the square of the exciton decay, 

  22 1'
2 1 0 1 1 0( , ) ( , )G t t G t t
  . (66) 

Putting this zero rate-coupling limit into Eq. (A217) gives  

 2 1 2
1 2 1 1 2 1 2 2 1( , ) ( , ) ( , )G t t G t t G t t  
    . (67) 

The relevant 2D cross-relaxation function [Eq. (47)] is then 

 2
1 1 2 1 1 1 2 1 2 2 2 1( , ) ( , ) ( , )C C C     
       . (68) 

In the absence of spectral perturbations, the relative cross-sections for the three 2D 

pathways are those of Scheme C (Fig. 3).  With Eq. (68), the cross-relaxation pathway 

(ii) partially cancels the exciton–exciton pathway (iii), but completely cancels the 

exciton–biexciton pathway (i).  Thus, all multiexciton effects disappear from MUPPETS 

unless there is an incoherent coupling that violates Eq. (65).  Conversely, any deviation 

from Eq. (65) creates excitonic effects that are detectable in MUPPETS.  However, a 

coherent coupling that violates Eq. (64) is not required.  Thus, a system may need to be 

treated as an incoherent exciton in MUPPETS, even when it does not need to be treated 

as a coherent exciton in spectral correlation spectroscopy.   
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  The difference between incoherent and coherent excitons is one of degree, not of 

kind.  Consider the interaction energy coupling the zero-order chromophores.  The 

inverse of this energy gives an interaction time that describes the rate of energy transfer 

between the chromophores.  To have a coherent coupling that is detectable in coherent 

spectroscopy, the interaction time must be on the order of or shorter than the dephasing 

time, i.e., there must be coherent energy transfer.  If the interaction is weaker, it can still 

induce incoherent energy hopping that leads to exciton–exciton annihilation.  So long as 

the annihilation time is on the order of or shorter than the population decay time, an 

incoherent coupling will perturb the rates and will be detected by MUPPETS.  If the 

population decay time is longer than the dephasing time, a system may constitute an 

incoherent exciton, even when it is too weakly coupled to form a coherent exciton.   

2.4.3 Measuring exciton−biexciton correlations 

The full 2D-MUPPETS signal, A(2)(τ2, τ1) with both τ1 and τ2 varying, depends on 

correlations in the kinetics.  The exciton−exciton correlation C1′1′(τ2, τ1) reports on 

whether the dispersion in C1′(τ1) is due to a homogeneous [Eq. (45)] or a heterogeneous 

[Eq. (46)] mechanism.  This idea has been thoroughly discussed in two-level systems.11, 

14, 19-21  The new feature in excitonic systems is the exciton−biexciton function 

C2′1′(τ2, τ1), which reports on correlations between two different transitions.  To illustrate 

the behavior of this function, we will calculate the 2D-MUPPETS signal for four limiting 

models: homogeneous or heterogeneous exciton kinetics combined with either correlated 

or uncorrelated exciton–biexciton kinetics.   
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Figure 2.6.  The total 2D-MUPPETS time decays A(2)(τ2, τ1) for models I (homogeneous 
exciton, uncorrelated biexciton), II (heterogeneous exciton, uncorrelated biexciton), III 
(heterogeneous exciton, uncorrelated biexciton) and IV (homogeneous exciton, correlated 
biexciton).   (a) The signal versus τ1 for various values of τ2 normalized at τ1 = 0.  In 
model I, all curves overlap.  (b) The signal versus τ2 for various values of τ1 normalized at 
τ2 = 0.  All models have the same 1D decays (Fig. 4). 

The time-domain representation of the final signal for each model is shown in Fig. 6.  

As discussed in Sec. 2.4.1, the decays in τ1 and in τ2 are not symmetric, a characteristic of 

a multilevel system.  All the models have identical 1D decays (Fig. 4), but the 2D decays 

in Fig. 6 are quite different.  On an empirical basis, 2D MUPPETS can distinguish 

different levels of exciton heterogeneity and different levels of exciton−biexciton 

correlation.   

A more rational discussion of the different results is possible using the 2D rate 

spectra of the total signal and the components contributing to it (Fig. 7).  In two-level 

systems, the diagonal of a 2D rate spectrum is always the square of the 1D rate spectrum 
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and is the same for all models.11  The spectra also have reflection symmetry about the 

diagonal.  In multilevel systems, these features remain in the exciton–exciton components 

[Fig. 7(I.a–III.a)] but are lost in the total spectra [Fig. 7(I.c–III.c)]. 

 

Figure 2.7. 2D-MUPPETS rate spectra for models I (homogeneous exciton, uncorrelated 
biexciton), II (heterogeneous exciton, uncorrelated biexciton) and III (heterogeneous 

exciton, uncorrelated biexciton).  (a) The exciton−exciton component, 1 1 2 1
ˆ ( , )C y y  , with 

y = log10(κτ0). (b) The negative of the exciton−biexciton component, 2 1 2 1
ˆ ( , )C y y  .  (c) 

The total signal, 21 1
2 1 1 1 2 1 2 1 2 1 1 1 2 12 2

ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , )A y y C y y C y y C y y
        .  Delta 

functions have been broadened by a Gaussian with a width of 0.3 decades.  Contours are 
linear with red/orange positive, yellow zero, green/blue negative. 

2.4.3.a Model I: Homogeneous exciton and uncorrelated biexciton 

In model I, all the particles are identical, i.e., there is no heterogeneity.  The exciton 

decay of any single chromophore is dispersed due to a complex relaxation mechanism, 



 

44 

i.e. the dispersion is homogeneous.  In this case, the exciton−exciton correlation function 

in time is given by Eq. (45).  The corresponding rate spectrum, 

 1 1 2 1 1 2 1 1
ˆ ˆ ˆ( , ) ( ) ( )C y y C y C y    , (69) 

is shown in Fig. 7(I.a).  The amplitude along the diagonal is the square of the 1D exciton 

spectrum in Fig. 4(b).11  In this model, the off-diagonal amplitude takes on its maximum 

value everywhere.  If the decays were modeled with discrete rates instead of continuous 

distributions, the off-diagonal amplitude would appear as cross peaks linking rates lying 

on the diagonal.11  The off-diagonal amplitude shows that the corresponding diagonal 

rates are components of a single, complex relaxation process: the diagonal rates “co-

exist” on the same chromophore. 

Model I additionally assumes that the exciton and biexciton relax by independent 

and unrelated mechanisms.  Thus, the exciton and biexciton kinetics are uncorrelated: 

 2 1 2 1 2 2 1 1( , ) ( ) ( )C C C       . (70) 

The negative of the corresponding rate spectrum, 

 2 1 2 1 2 2 1 1
ˆ ˆ ˆ( , ) ( ) ( )C y y C y C y    , (71) 

is shown in Fig. 7(I.b).  The spectrum is no longer centered on the diagonal, but rather on 

a shifted, parallel line.  The spectrum shows strong amplitude off this line, just as the 

exciton–exciton spectrum shows strong off-diagonal amplitude.  Thus, rate homogeneity 

of a single transition [Eqs. (45) and (69)] is analogous to a lack of correlation in the rates 

of two transitions [Eqs. (70) and (71)].  In either case, knowing that a rate is observed on 

a given chromophore in one measurement does not give any additional information on 



 

45 

whether a different rate will be observed on the same chromophore in a second 

measurement. 

The identifying characteristic of fully homogeneous/uncorrelated kinetics is that the 

2D signal is separable in the two time variables or in the two rate variables.  This 

separability extends to the cross-relaxation [Eqs. (45) and (53)] and thus, to the total 

signal.  In the time decays of Figs. 6(I.a) and 6(I.b), separability causes all the curves in 

either plot to overlap after normalization.  In the rate spectra, it is this separability that 

leads to a maximal spread along the anti-diagonal direction.   

Figure 7(I.c) shows the rate spectrum of the total signal, including the cross-

relaxation.  There is strong overlap of the exciton–exciton and exciton–biexciton 

components, but enough information remains to identify the important features of each 

component.  A horizontal node is formed by cancellation between the exciton–exciton 

and exciton–biexciton components.  The horizontal node reflects the separability of the 

total signal and, thus, is an identifying feature of a homogeneous and uncorrelated 

system.   

2.4.3.b Model II: Heterogeneous exciton and uncorrelated biexciton 

 In model II, each chromophore has a simple, exponential exciton decay, i.e., there is 

no homogeneous dispersion.  The dispersion of the ensemble decay [Eq. (55)] is only due 

to differences in the decay rates of different chromophores, i.e., the dispersion is due to 

heterogeneity.  In this case, the exciton−exciton correlation function is given by Eq. (46).  

The corresponding rate-correlation spectrum, 

 1 1 2 1 1 1 1 2
ˆ ˆ( , ) ( ) ( )C y y C y y y    , (72) 
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is shown in Fig. 7(II.a).  The diagonal amplitude is identical with that of model I [Fig. 

7(I.a)].  However in model II, there is no off-diagonal amplitude.  The lack of off-

diagonal amplitude indicates that different rates do not “co-exist” on a single 

chromophore: each rate is associated with a different chromophore. 

As with model I, model II assumes that the exciton and biexciton decay by 

independent mechanisms.  In particular, the exciton heterogeneity has no effect on the 

biexciton decay.  As a result, Eqs. (70) and (71) still hold for the biexciton−exciton 

correlation function, and Eq. (53) holds for the cross-relaxation.  The biexciton−exciton 

spectrum [Fig. 7(II.b)] is unchanged from model I [Fig. 7(I.b)].  However, the total 

spectrum [Fig. 7(II.c)] is quite distinct from that of model I [Fig. 7(I.c)].   

The corresponding results in the time domain can be interpreted by regarding one 

time period as a rate-based filter to select a subensemble whose decay is measured in the 

other time period.  Figure 6(II.b) shows the decay in τ2, which measures the sum of 

exciton and biexciton decays.  As τ1 increases, the first time period progressively removes 

chromophores with a fast exciton decay.  The exciton component during τ2 slows as τ1 

increases.  However, the biexciton component is unaffected by filtering based on the 

exciton decay time.  As these two components become separated in time, the signal rise 

due to biexciton decay becomes visibly distinct from the slower exciton decay. 

Figure 6(II.a) shows the decay in τ1, which measures only the exciton decay.  When 

τ2 = 0, all chromophores are measured.  As τ2 increases, the second time period 

progressively selects for chromophores with well separated exciton and biexciton 

lifetimes, as these have less signal cancellation.  With no correlation between exciton and 



 

47 

biexciton lifetimes, these are the chromophores with a long exciton lifetime.  Thus, the 

exciton decay in τ1 slows as τ2 increases. 

2.4.3.c Model III: Heterogeneous exciton and correlated biexciton 

We now introduce exciton–biexciton correlation.  Whereas lack of correlation 

always produces the same result regardless of the mechanistic details, models with 

correlation require a more detailed specification of how the correlation is produced.  

Model III assumes that the exciton and biexciton decays of an individual chromophore 

are both exponential, that is, 

  1 0( )1
1 1 0( , ; ) ek t t

G t t e
  

   (73) 

and 

  1 0( )2
2 1 0( , ; ) bk t t

G t t e
  

  . (74) 

Dispersion in the ensemble decay is only due to heterogeneity.  In Eqs. (73) and (74), the 

rate is constant in time, but varies with θ, a static or slow bath variable that varies from 

chromophore to chromophore.  This variable has a probability distribution D(θ), giving 

the 1D correlation functions 

 ( )
1 ( ) ( ) ekC D e d   
    (75) 

and 

 ( )
2 ( ) ( ) bkC D e d   
   . (76) 

As in model II, Eqs. (46) and (72) give the heterogeneous exciton−exciton time decay 

and rate spectrum [Fig. 7(III.a)]. 
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In model I, the exciton and biexciton rates depended on different, independent bath 

coordinates, ke(θe) and kb(θb), and so their dynamics are uncorrelated.  In model III, 

correlation occurs because the exciton and biexciton rates depend on the same bath 

variable [Eqs. (73) and (74)].  The exact nature of the common dependence must also be 

specified.  For purposes of illustration, we choose  

 ( ) ( )b ek ck  , (77) 

which is consistent with the similarity of the exciton and biexciton decay shapes that we 

have already assumed [Eq. (57)].  The biexciton−exciton correlation function [Eq. (47)], 

 2 1
2 1 2 1 2 2 1 1 1 0( , ) ( ) ( , ; ) ( , ; )C D G t t G t t d      
     , (78) 

reduces to 

 2 1 2 1 1 2 1 2 2 1( , ) ( ) ( / )C C c C c            . (79) 

When c = 1, this equation reduces to the exciton−exciton result for pure heterogeneity 

[Eq. (46) ].  Thus, pure heterogeneity on a single transition is analogous to perfect 

correlation between two transitions.  In a purely heterogeneous sample, one measurement 

of the exciton rate on a chromophore gives perfect knowledge of the biexciton rate that 

will be found in a subsequent measurement. 

The corresponding exciton−biexciton rate spectrum, 

 2 1 2 1 1 1 1 2
ˆ ˆ( , ) ( ) ( ln )C y y C y y y c     , (80) 

is shown in Fig. 7(III.b).  The spectrum traces out a curve in the y2−y1 plane.  With 

the simple correlation defined by Eq. (77), the curve is a straight line.  Others forms 

would generate more complex curves.  In general, an experimental result in the form of a 
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one-dimensional curve is diagnostic for correlated heterogeneity, and the form of the 

curve allows the form of the correlation to be inferred. 

The total rate spectrum and time decay are shown in Fig. 7(III.c) and Fig. 6(III.a−b), 

respectively.  These include the cross relaxation, 

 2
1 1 2 1 1 2 1 1 2 1( , ) ( ) (( 1) )C C c C c     
        , (81) 

which is calculated from Eqs. (49) and (51), and its rate spectrum, 

 


 

2
1 1 2 1 1 1 1 2

1 2

ˆ ˆ( , ) ( ) ( ln )

( ln 1 )

C y y C y y y c

y y c






    

     . (82) 

In this figure, the node of the rate spectrum lies parallel to the diagonal, reflecting the 

simple linear form of Eq. (77).  More generally, the node will reflect the shape of the 

exciton–biexciton correlation function and, thus, the form of the correlation.  

The interpretation of the time decays is similar to that for model II.  In Fig. 6(III.b), 

as τ1 increases, chromophores with fast relaxing excitons are eliminated from the 

measurement.  In this model, the remaining chromophores have both a slower exciton 

and a slower biexciton decay.  Both the rise and fall of the signal are delayed as τ1 

increases.  Figure 6(III.a) shows the converse effect.  As τ2 increases, only chromophores 

with slow decays (either exciton or biexciton) reach the detection phase of the 

experiment.  The exciton decay of the selected chromophores is measured during τ1 and 

slows as the selection criterion becomes stricter. 

2.4.3.d Model IV: Homogeneous exciton and correlated biexciton 

Model I considered the case of purely homogeneous dispersion in the exciton and 

biexciton decays.  More precisely, each chromophore had a time dependent rate ke(t) and 

kb(t) for the exciton and biexciton, respectively.  Underlying this time-dependence is a 
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bath variable (t) that is relaxing to a new value in the excited state.  In model I, the 

exciton and biexciton rates depend on different, independent bath coordinates, ke(e(t)) 

and kb(b(t)), and so their dynamics were uncorrelated.  Model IV makes the same basic 

assumptions, 

 1

0

1
1 1 1 1 0( ) ( , ; ) exp ( )

t
et

C G t t k t dt  
 

    
  ( )  (83) 

and 

 1

0

2
2 1 2 1 0( ) ( , ; ) exp ( )

t
bt

C G t t k t dt  
 

    
  ( ) , (84) 

but assumes that the exciton and biexciton decays depend on the same bath property, and 

so are perfectly correlated.   

In the absence of heterogeneity, the exciton−exciton correlation function is the same 

as in model I [Eqs. (45) and (69)].  The biexciton−exciton correlation function is 

calculated without ensemble averaging, i.e., from  

 2 1
2 1 2 1 2 2 1 1 1 0( , ) ( , ) ( , )C G t t G t t   
    , (85) 

but more information on the dynamics of (t) is needed.  We make the simple assumption 

that the dynamics of (t) are the same in the exciton and biexciton state.  In this case,  

 

2 1
2 2 0 1 1 0

2 1 2 1 2
2 1 0

2 2 1 1 1

2 1

( , ) ( , )
( , )

( , )

( ) ( )

( )

G t t G t t
C

G t t

C C

C

 

  


 
 

  


 






 . (86) 

This result can be interpreted by writing it as  
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  2 1 2 1 2 1 2 2 1 1( , ) 1 ( , ) ( ) ( )C Z C C          . (87) 

with 

 2 2 1
2 1

2 2 2 1

( )
( , ) 1

( ) ( )

C
Z

C C

  
 


 


  . (88) 

The function  Z(τ2, τ1) measures the rate dispersion of C2′(τ).  When C2′(τ) is an 

exponential, Z(τ2, τ1) = 0 everywhere.  When C2′(τ) is not exponential, Z(τ2, τ1) is still zero 

along the τ1 = 0 and τ2 = 0 edges of its domain, but it is nonzero in the middle: positive if 

the rate slows with time, and negative if the rate increases with time.  Thus, Eq. (87) has 

the maximum deviation from the uncorrelated result [Eq. (45)] allowed by the dispersion 

of C2′(τ).  For the our model functions, this deviation is a positive one for large values of 

τ1 and τ2.  Under certain conditions, this deviation can give a signal that rises with delay 

in some regions, for example in Fig. 6(IV.b).  Rate spectra for this model are difficult to 

calculate and are not easy to interpret and so are not presented. 

 THERMAL SIGNALS IN MULTILEVEL SYSTEMS 2.5

1. General formalism 

Heterodyned experiments are not only sensitive to resonant absorption from the 

solute; they are also sensitive to index-of-refraction changes in the solvent due to the heat 

released by non-radiative decay.  In 1D, these effects are called thermal gratings.24-26  

(The total thermal response can be separated into a pure thermal and an acoustic 

component, but that distinction will not be needed here.)  In Ref. 18, we showed how to 

incorporate thermal effects into pathway calculations of multidimensional experiments.  

Here that treatment is extended to multilevel systems.   
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The system states must be expanded to include not only the electronic state of the 

solute P, but also the energy density of the solvent ε, that is, the state must have the form 

|P ε].  The energy density is measured at the same (suppressed) k-vector as the electronic 

state.  The response to the solvent energy is linear, so |P ε1] + |P ε2] = |P ε1+ε2].  It will be 

convenient to shift from ε, the heat per volume of solvent, to nε, the number of photons of 

energy converted to heat per solute molecule, 

 n






. (89) 

An important result of Ref. 18 is that in a multidimensional experiment, only the thermal 

signal formed by the last excitation is detectable.  Thus, the expanded states are only 

needed at the end of the pathways (see Fig. 8). 

The generalized absorption due to thermal effects ( )
1( , , )N

NA    adds to the 

resonant absorption ( )
1( , , )N

NA    [Eq. (9)] and can be expressed in an analogous 

form, 

 

 

1

( ) ( )
1

1

1 0

( , , ) 1 [ |

( ) ( , )

( , ) | ]

N

N

NN N
N D

t
N Nt

T T

A LI

d
C t t t t dt

dt
t t

 

 

  




 

   










σ

G

σ G σ

I

eq . (90) 

The thermal detection cross-section operator σDε can be expressed in terms of nε, the 

operator that measures the value of nε, 

 D i   σ n . (91) 

Because the thermal response is a change in the index-of-refraction, the operator is 

imaginary.  Its magnitude is 
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2

1
1 s s

s ss

dn d

c d dn


 
 

            
 , (92) 

where ns is the solvent index-of-refraction, and ρs is the solvent density.  This quantity 

has the units of a cross-section and is normally real and positive.  The time-evolution 

operator for the electronic state ( , )t tG  is expanded to ( , )t t G , the time-evolution 

operator of the combined electronic–thermal state, for the last time period.   

The detection is not of the energy itself, but of the resulting change in index-of-

refraction.  In Eq. (90), the energy deposition is convolved with Cε(τ), the time-evolution 

of thermal energy into an index-of-refraction change.  Sophisticated expressions for Cε(τ) 

valid over a wide time range are available.25, 45-48  For purposes of illustration over short 

times, 

 ( ) 1 cos(2 / )C       (93) 

is an adequate expression.18  This thermal correlation function is zero when τ = 0 and 

reaches a maximum of two at the half the acoustic period Γ due to interference between 

the slowly decaying pure thermal response and the more rapidly oscillating acoustic 

response. 

The convolution in Eq. (90) can be removed, if the decay of the electronic state is 

much faster than the acoustic period.  If the decay is not complete within the acoustic 

period, but only times Γ/2 are treated, this approximation can be pushed farther.  The 

fraction that decays before Γ/4 (halfway to the maximum) is treated as decaying 

instantaneously, and the fraction that decays after Γ/4 is treated as never decaying.  This 
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approximation is rough when the solute relaxation has a single timescale, but becomes 

more reasonable when the decay is highly dispersed in time.  In this approximation,  

 

 ( ) ( )
1

1 1

1 0

( , , ) 1 [ | ( )

( / 4 , )

( , ) | ]

NN N
N D N

N N

T T

A LI C

t t

t t

  



   

 

 

  






σ

G

σ G σ

I

eq . (94) 

The primed basis set for electronic states can be introduced for the thermal pathways, 

as they were for resonant pathways in Sec. 2.2.2.  The thermal absorption is then written 

[compare to Eq. (24)] 

 

 

 

( )
0 , , ,( )1

0, ,(0)

0, , ,1
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  
 

  
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












 . (95) 

The final two indices are expanded to include the thermal variables.  The total thermal 

cross-section is given by [compare to Eq. (25)] 

          , , ,
00, ,

1
n p l j n pN l j

D T Tm km k         
    

  . (96) 

The full operator σDε has been reduce by one dimension and converted to a vector as in 

Eq. (22), 

 
 
 

0
1

0
0

[ | [0 |
Re

T
D D

D

p 










 σ , (97) 

with the result that 

   02
n p

D ni p   
   . (98) 
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Because σDε is diagonal in the electronic state, only the n′ = 0 elements are nonzero.  The 

multidimensional correlation function in Eq. (95), which corresponds to the one in Eq. 

(14), is 

 

 

 

0, ,
10 , ,

0
1 1 1 00

( , , ) ( )

( / 4 , ) ( , )

m i
N Np j

m i
N N jp
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G t t G t t

 


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 

 
 



  


 

 . (99) 

The time evolution in the last time period is now governed by the thermal response, 

rather than by solute dynamics. 

2.5.1 Results for excitonic systems 

 

Figure 2.8.  Pathways for the calculation of thermal signals in one-dimensional (1D) and 
two-dimensional (2D) experiments [see Fig. 3].  The final two states of the pathways are 
expanded to |P nε] to show both P, the electronic state, and nε, the number of quanta of 
thermal energy deposited in the solvent. 

 In an excitonic system, the number of pathways is severely limited.  As with the 

electronic signal, the primed basis set yields the minimum number of pathways.  Figure 8 

shows the allowed pathways for N = 1 and N = 2.  Only two elements of Gε(t′, t) are 

needed.  In calculating them, we allow nonradiative decay that leads to long lived, high 

energy states (“trap” states) without the immediate release of heat.  The fractional yield 
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of heat for the biexciton-to-exciton and exciton-to-ground transitions are Q2 and Q1 

respectively.  The required matrix elements are then 

 

   
   

1 0 11
10 1

2 0 2 22 1
2 10 1

( , ) 1 ( , )
2

( , ) 1 ( , ) ( , )
2 2

Q
G t t G t t

Q Q
G t t G t t G t t





 


  
 

  

     . (100) 

In the primed basis set when the cross relaxation is small, each thermal pathway is 

dominated by the relaxation of a single electronic transition. 

Combining Eqs. (95)–(100) with the pathways in Fig. 8 yields expressions for the 

thermal signals, 
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The results for the different models in Fig. 2 differ in only minor ways; model C has been 

used for specificity.  The 1D result is consistent with previous work.24-26  The 2D result is 

new.  It allows the thermal effects to be calculated from the correlation functions already 

discussed in Sec. 2.4.  The thermal cross-section in the 2D expression can be obtained 

from 1D experiments.  The only new information in the 2D thermal signal is the quantum 

yield of heat for the biexciton decay.  Thus, 2D experiments have the potential to 

measure this quantity. 
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 CONCLUSIONS 2.6

This paper has laid the theoretical foundation for MUPPETS in multilevel systems, 

especially excitonic systems.  The calculations were simplified by introducing a 

nonorthogonal basis set.  By using population conservation, the number of states to be 

considered was reduced by one.  In an excitonic system, the number of pathways and 

correlation functions are reduced further.  An unavoidable complication of multilevel 

systems is cross-relaxation between basis states.  However, suitable approximations were 

found in the limits of either strong or weak exciton−exciton interaction.  Methods for 

calculating thermal effects in multilevel systems were also presented. 

Using these methods, the new information available from MUPPETS was 

demonstrated.  MUPPETS was shown to be very sensitive to chromophore interactions.  

First, it was shown that much weaker interactions are needed to observe kinetic effects, 

that is, to form an incoherent exciton, than are needed to observe spectral effects, that is, 

to form a coherent exciton.  In an incoherent exciton, chromophores interact by 

incoherent energy hopping followed by exciton−exciton annihilation.   Secondly, it was 

shown that MUPPETS is a sensitive method for detecting incoherent exciton formation.  

Any asymmetry in the decays along the two time axes is a sign of an incoherent exciton.  

The difference between these decays is a direct route to the biexciton decay rate and, 

thus, to the strength of exciton−exciton interactions.  Exciton−exciton annihilation can 

also be measured by power-dependent 1D experiments, but these measurements can be 

confounded by the build-up of long-lived photoproducts with short exciton lifetimes.  

MUPPETS is immune to this problem. 
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Away from the time axes, MUPPETS offers additional information for systems with 

rate dispersion.  Both exciton rate heterogeneity and correlations between exciton and 

biexciton dynamics are available.  Example calculations suggest that there is sufficient 

information to allow a unique separation of these two effects in most cases.  Rate 

heterogeneity is a concept that has been explored in previous MUPPETS studies of two-

level system; the concept of correlated rates between two transitions is a new one.  When 

the rates of two transitions are correlated, the MUPPETS results are similar to those for 

heterogeneous rates on a single transition.  Correlation indicates that the relaxation 

mechanisms of the two transitions are linked.  Correlation is possible whether the 

individual relaxations are heterogeneous or homogeneous.  In the heterogeneous case, 

individual particles relax either faster or slower than  average for both transitions.  In the 

homogeneous case, the relaxations of both transitions depend on the relaxation of a 

common bath mode. 

The practicality of these ideas will be demonstrated in a future paper.22, 23  The 

results in this paper provide a basis for both a qualitative and quantitative interpretation 

of those results. 
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CHAPTER 3 RATE DISPERSION IN THE BIEXCITON DECAY 

OF CDSE/ZNS NANOPARTICLES FROM MULTIPLE 

POPULATION-PERIOD TRANSIENT SPECTROSCOPY 

The lifetime of a biexciton is important in many optoelectronic applications of 

semiconductor nanostructures.49-51  Early on, Auger recombination was identified as a 

likely decay mechanism.43, 52  Properties of the core were seen as primary in controlling 

the rate.  As a one-step relaxation, it should have an exponential decay on a single 

particle, and as a core-based mechanism, it should have a relatively uniform rate from 

particle to particle.  Thus, the ensemble biexciton decay has often been assumed to be 

exponential.  Observations of nonexponential decay are easily attributed to additional 

contributions from higher excitons or photoproducts.  In this communication, a six-pulse, 

multidimensional spectroscopy is used to separate the biexciton decay from other 

potential contributions.  The biexciton decay is found to be highly dispersed, i.e., 

nonexponential, and the form of the rate dispersion is accurately measured. 

In many experiments on semiconductor nanoparticles, excitons, biexcitons and 

higher excitons are created simultaneously.  Isolating the biexciton contribution is not 

simple.  The separation between exciton and biexciton transitions is small, making their 

spectral resolution difficult.53  Decomposing the fluence dependence is complicated by 

saturation combined with spatial variation of the light intensity within the sample.  

Because of these problems, the identification of biexcitons and the quantification of their 
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properties has often relied on the decomposition of kinetic traces into exponential 

components.43, 44, 52, 54, 55  Slow, fluence-independent components are identified as 

excitons and fast, fluence-dependent components are identified as multiexcitons.  The 

explicit assumption of exponential decay has been used to decompose the faster, fluence-

dependent component into bi-, tri- and higher excitons.52, 54  This approach has been 

widely used to study the biexciton decay mechanism43 and to identify multiple exciton 

generation from single photons.44, 55      

However, recent investigations make the form of the biexciton decay less certain and 

change it into an important experimental question.  Challenges to the Auger mechanism 

have been raised,56-58 opening the possibility of a multistep mechanism and/or 

mechanisms with greater particle-to-particle variation.  Even within the Auger model, an 

important  role for the surface is being recognized.59  Bawendi and coworkers have 

argued that surface heterogeneity can translate into a distribution of biexciton decay 

rates.60   Single-particle experiments have found particle-to-particle variation in the 

biexciton quantum yields that support this idea.60, 61   

It has also been appreciated that long lived, but reversible, photoproducts can mimic 

biexcitons in a kinetic analysis.44, 51, 62  Various experiments; single-particle blinking,50, 63 

transient absorption,64 and photobleaching;65  suggest the existence of one or more such 

photoproducts with a low quantum yield of emission, i.e., a fast exciton lifetime.  A 

charged exciton is a leading candidate for such a photoproduct, but the topic is still 

unresolved.  The photostationary concentration of a photoproduct scales with the 

excitation fluence, as the biexciton concentration does, and the photoproduct has a fast 
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decay, as the biexciton does.  If such a photoproduct contaminates a measurement, a 

multiexponential decay could be falsely attributed to the biexciton. 

We use multiple population-period transient spectroscopy (MUPPETS) to measure 

the form of the biexciton decay in CdSe/ZnS core–shell nanoparticles free from these 

complications.  MUPPETS is a two-dimensional form of ultrafast kinetics: two excitation 

pulses are separated by a time t1, and the change in absorbance due to both pulses A(2)(t2, 

t1) is measured after an additional time t2.
21  The phase-matching condition creates a 

double difference between the four possibilities of absorption or no absorption from each 

of the two excitations.  The resulting signal isolates the effects due to an interaction 

between the two excitations.  To create the required phase-matching condition, each of 

the excitations and the final measurement consist of two simultaneous pulses entering the 

sample from different directions.  Thus, the experiment uses a total of six pulses and 

measures an incoherent component of the χ(5) response of the sample. 

Previously, MUPPETS has been used in systems with only two electronic levels to 

measure heterogeneity in the rate of the electronic decay.21  A recent theoretical analysis 

has revealed a new feature of MUPPETS in multilevel systems—the ability to 

discriminate between biexcitons and photoproduct excitons.66  In pump–probe and other 

one dimensional experiments, the signals from excitons and biexcitons have the same 

sign, but in MUPPETS they have opposite signs.  Starting from the ground state, the first 

excitation always creates an exciton and reduces the band-edge absorption by 

approximately one-half.  The second excitation has two possibilities.  In one pathway, a 

biexciton is created, reducing the band-edge absorption to zero.  In our sign convention, 

this increased bleach is negative.  In the other pathway, the second excitation again 
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creates excitons from ground-state particles, also bleaching the total absorption.  

However, due to the initial depletion of the ground state by the first pulse, the second 

pulse has a reduced effect.  The effect unique to combining the two excitations is a 

smaller bleach, which has a positive signal in our sign convention. 

Consider a sample with normal particles, which have a slow exciton and a fast 

biexciton decay, and a fluence-dependent, steady-state concentration of a photoproduct, 

in which both exciton and biexciton decays are fast.  In the low fluence limit, a χ(3) 

pump–probe experiment measures only the slow exciton decay of the normal particles.  

The first-order fluence dependence is a χ(5) term that contains the fast biexciton decay of 

the normal particles and the fast exciton decay of the photoproduct, both with the same 

sign.  As a χ(5) experiment, MUPPETS contains all these contributions, even in the low 

fluence limit.  However, the normal and photoproduct excitons both give a positive 

signal, whereas the normal biexciton gives a negative signal.  This sign change allows the 

normal biexciton to be distinguished from a potential photoproduct. 

Huxter and Scholes previously used a related χ(5) experiment to study biexciton 

dynamics,67 but this communication is the first to demonstrate and exploit the sign 

difference of exciton and biexciton signals.  The separation of exciton and biexciton 

signals requires only the t1 = 0 cut through the MUPPETS data.  The additional 

information available from the full two-dimensional data set will be analyzed in 

Reference.23 

The samples were commercial (NN-Labs) CdSe/ZnS core–shell nanoparticles in 

toluene with an OD of 0.4 in the 1 mm sample cuvette at the band-edge absorption peak 

of 520 nm.  To reduce the concentration of photoproducts, the sample was flowed 
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through the cuvette with a peristaltic pump and was kept under a nitrogen atmosphere.  

Excitation fluences are reported as the energy per pulse at the sample in an approximately 

200 μm diameter spot size.  All pulses wavelengths (527 nm) were near the band edge.  

Pulse widths were approximately 300 fs, but results are only reported after 1 ps, when 

fine structure relaxation is complete.68  The details of the instrument are reported 

elsewhere.21 

 

Figure 3.1.  Fluence-dependent, band-edge pump–probe results.  (A) Solid: Decays at 
various pulse energies normalized to match at long times.  (An additional four energies 
are shown in Figure 5 in the Supporting Information.)  Dots: Data reconstructed from the 
results in (B).  (B) Linear regression at each time point reduces the data of (A) to two 
components: a low-fluence limit (intercepts, green) and a linear, fluence-dependent 
component (slopes, blue).  The fluence-dependent component is fit to two exponentials 
(black).  Other fits are shown in Figure 4 in the Supporting Information.  The fit to the 
fluence-independent component (black) shows substantial rate dispersion in the exciton 
as well.23  

Fluence dependent pump–probe experiments are reported in Figure 3.1A.  This 

method is conventional for measuring biexciton yields and dynamics.43  The data have 
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been normalized at long times, when only the exciton remains.  The early, fluence-

dependent decay component may be due to biexcitons or photoproducts.  Higher 

multiexcitons also create absorbance at the band edge, although the mechanism is not 

well understood.52, 54  With excitation at the band edge, we hope to avoid creating higher 

excitons in the first place.  The underlying fluence-independent component is assigned to 

the exciton.  The exciton has a strong radiative decay component near 20 ns, but also has 

decay components throughout the picosecond time range.55   The origin of rate dispersion 

in the exciton decay is discussed in Reference.23 

To avoid any assumptions about the form of either the exciton or biexciton decay, 

the data have been analyzed by linear regression at each time point.  The intercepts (green 

curve, Figure 3.1B) form the fluence-independent (exciton) decay; the slopes (blue curve, 

Figure 3.1B) form the fluence-dependent (biexciton/photoproduct) decay.  The linearity 

of the fluence dependence was verified by reconstructing all 11 of the original data sets 

from these two components (dots, Figure 3.1A) and verifying that there is no systematic 

deviation. 

The fluence-dependent component is distinctly nonexponential.  This dispersion 

could be attributed to inadvertent creation of a triexciton.  A three-fold ratio the biexciton 

and triexciton rates has been reported.54  This ratio is roughly consistent with the data, 

although the use of band-edge excitation and the linearity of the fluence dependence both 

argue against this interpretation.  Alternatively, the dispersion could be attributed to 

accumulation of a photoproduct.  The decay rate of the most likely photoproduct, a 

charged particle, is predicted to have a four-fold ratio with the biexciton rate.69  Again, 

this ratio is roughly consistent with the data, but the use of a flowing sample argues 
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against this interpretation.  Finally, the dispersion could be inherent to the biexciton itself, 

despite the lack of a mechanistic justification.   

The difficulties in interpreting the pump–probe result are resolved by the MUPPETS 

data shown in Figure 3.2.  The MUPPETS data have been recorded as a function of 

fluence and extrapolated to the low fluence limit as the pump–probe data were.23  The 

magnitude of the complex signal at t1 = 0 is given as the red curve.  This data is the sum 

of a positive exciton decay and a negative biexciton decay.  As the negative biexciton 

contribution decays, the net signal rises.  This rise in the signal confirms of the theoretical 

prediction in Reference 66 of opposite signs for the exciton and biexciton signals. The 

initial value of 0.5 is consistent with the biexciton absorption cross section being one-half 

the exciton cross section,23 as predicted by simple, one-electron models.43  

The biexciton decay is isolated by matching fluence-independent (exciton) data from 

the pump–probe experiment (green, Figure 3.2A) at long times and subtracting the 

MUPPETS data  from it.  The result is the red curve in Figure 3.2B.  Because this result 

is derived from low fluence limiting data, it is free of higher multiexcitons.  It is 

compared to the fluence-dependent decay from pump–probe measurements, which may 

contain contributions from a photoproduct.  No modeling or fitting of the data is involved 

in this comparison. 

The biexciton decay found from MUPPETS is identical to the fluence-dependent 

component of pump–probe measurement.  This agreement is direct evidence that the 

precautions taken to eliminate other contributions to the pump–probe–probe experiment 

have been sufficient and that the rate dispersion is intrinsic to the biexciton decay.  The 

degree of rate dispersion is large enough that it must be accounted for in the kinetic 
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separation of multiexciton decays.  It also demands a revision or extension of the 

biexciton decay mechanism that can account for the dispersion. 

 

Figure 3.2.  (A) Magnitude of the MUPPETS data versus t2 at t1 = 0 (red) and the 
fluence-independent component from pump–probe measurements (green, Figure 3.1B).  
(B) The difference between the curves in (A) gives the biexciton decay (red).  It is 
identical to the fluence-dependent component of the pump–probe measurement (Figure 
3.1B, blue).  

Quantifying the rate dispersion depends on the mechanism assumed.  The dispersion 

could be due to (1) a multistep relaxation of the biexciton, (2) a relaxation in the 

environment (e.g., movement of surface species) in response to the creation of the exciton 

or biexciton that causes the decay rate to slow as a function of time,  or (3) a distribution 

of rates among the particles.  A biexponential fit (Figure  3.1B), which is consistent with 

mechanism (1), gives a 7-fold ratio of rates.  Assuming a time dependent rate, which is 

consistent with mechanism (2), gives a 25% drop in rate in 40 ps.  A fit to a continuous 

distribution of rates, which is consistent with mechanism (3), gives a distribution with a 
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five-fold range of rates at the half-width of the distribution (Figure 3.3).  A stretched 

exponential, which is often used to describe complex dynamics, gives a stretching 

parameter of β =0.5.  Regardless of the description used, the rate dispersion is substantial.  

(More detail on fits are given in the Supporting Information, SI.) 

The biexciton decay rate is known to depend on the particle radius,43 but the 

hypothesis that simple size heterogeneity is responsible can be rejected.  A 5-fold 

variation in rate would require a 1.7-fold variation in radius. This variation would also 

cause a range of 160 nm in the band-edge position,70 which is not observed 

spectroscopically.  Thus, mechanism (3) requires surface heterogeneity that affects the 

biexciton decay. 

  

Figure 3.3.  Lifetime distributions of the biexciton decay.  The bars represent the 
biexponential fit.  The solid curve is a continuous distribution from a maximum entropy 
fit.  For other possible fits, see SI. 

Nair, et al. have recently shown that single particle (SP) photon-correlation 

measurements yield the ratio of biexciton to exciton quantum yields.60  Using this 

method, Park et al. reported a four-fold spread in biexciton quantum yields from particle 

to particle, but in a rather different system—CdSe with a thick CdS shell.61  Nair et al.’s 

measurement on CdSe/CdZnS nanoparticles, also showed particle-to-particle variation in 
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the biexciton quantum yields, but with less than a factor of two variation.60  These results 

suggest that heterogeneity accounts for part of the rate dispersion seen here, but might not 

account for all of it. 

Several differences between SP measurements and MUPPETS may account for the 

apparent difference in results.  First, SP measurements average over ~100 s of data 

collection time.60  If a heterogeneity fluctuates during this time, it will be seen by 

MUPPETS, but not by SP measurements.  Second, a homogeneous source of rate 

dispersion, such as mechanisms (1) or (2), would not be evident in the SP quantum yield.  

Thirdly, although both techniques seek the limit of low peak powers, the average powers 

differ by three orders-of-magnitude:  30 W/cm2 on a static sample for SP measurements, 

0.030 W/cm2 on a flowing sample for MUPPETS measurements.  Thus, the issues 

presented by photoproducts can be quite different in the two experiments.   

The results in this work confirm the recent theoretical treatment of MUPPETS in a 

general excitonic system66 and indicate the potential for similar applications of 

MUPPETS to many other such systems.  The biexciton decays measured here is 

analogous to exciton–exciton annihilation in conjugated polymers, quantum wells, dye 

aggregates, and photosynthetic systems.  MUPPETS has the potential to contribute to 

understanding exciton transport and exciton–exciton interactions in all such systems. 
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CHAPTER 4 MULTIPLE POPULATION-PERIOD TRANSIENT 

SPECTROSCOPY OF CDSE/ZNS NANOPARTICLES. I. 

EXCITON AND BIEXCITON DYNAMICS 

 INTRODUCTION 4.1

The nonradiative decay of semiconductor nanoparticles is complicated.  For 

example, the kinetics often have a strongly nonexponential (dispersed) shape.  Much of 

the complexity in these kinetics is due to the important role of surface states.  These 

states have no direct spectral signature, but are observable only through their strong effect 

on the kinetics of the bright states.  MUPPETS (multiple population-period transient 

spectroscopy) is a new method that separates contributions to kinetics, not using spectral 

properties, but using the kinetics themselves to define the components.11, 13-15, 18-22, 66  To 

separate these components, two time periods are used, i.e., it is a two-dimensional (2D) 

measurement, in contrast to more conventional pump–probe and transient-grating 

measurements, which are one-dimensional (1D).  Different species are “labeled” by their 

kinetics during the first period and are then measured separately during the second 

period.  Because kinetics are the main window into surface states, MUPPETS has the 

potential to add several new types of information about these states in nanoparticles.   

In its first uses, MUPPETS was applied to systems that could be modeled as two 

levels.11, 13, 14, 19-21  In those cases, it distinguished between rate dispersion due to 

heterogeneity between chromophores, i.e., heterogeneous dispersion, and rate dispersion 

due to a complex mechanism present on every chromophore, i.e., homogeneous 
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dispersion.  However, the band-edge states in CdSe/ZnS nanoparticles form an inherently 

multilevel system.  This paper is the first full report of MUPPETS applied to such a 

multilevel system.  An initial letter highlighted one important result that required only the 

magnitude of the τ1 = 0 slice of the full 2D MUPPETS trace—the existence of strong rate 

dispersion in the biexciton decay.22  With the addition of new transient-grating data, both 

the magnitude and phase of the MUPPETS data are treated here.  In addition, data in the 

full τ1–τ2 plane are analyzed for the first time. 

The interpretation of this paper’s data is dependent on a recent extension of the 

theory of MUPPETS to multilevel, excitonic systems.66  That theory predicts four 

important results are obtainable from MUPPETS: (1) it can report on heterogeneity in the 

exciton decay, (2) it can separate biexciton dynamics from interfering exciton signals, (3) 

it can detect connections between the exciton and biexciton decay mechanisms, and (4) it 

can measure the yield of long-lived trap states.  The experiments will be analyzed for all 

four phenomena.  In addition, the potential for three experimental interferences will be 

tested: (5) thermal effects, which are responsible for (4) if properly analyzed, but can 

distort the results if not properly accounted for, (6) reversible photoproducts of the 

CdSe/ZnS nanoparticles, which a number of experiments suggest accumulate under 

typical experimental conditions,44, 49-51, 62-64, 71-74 and (7) higher multiexcitons, which have 

properties similar, but not identical, to those of biexcitons.43, 52-54, 75-78  

To deal with this complex set of phenomena, this paper is divided into two parts.  

Chapter 4 deals with the basic 1D and MUPPETS spectroscopy of the nanoparticles.  It 

yields conclusions about the exciton and biexciton dynamics (issues 1–3 and 6).  Chapter 

5 deals with additional thermal and fluence-induced phenomena.79  They must be 
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understood to avoid misinterpreting the data, but go beyond the core MUPPETS theory.  

New theory for the fluence dependence of MUPPETS signals is presented and used to 

verify that a three-level model of the band-edge is sufficient (issue 7).  Chapter 5 will 

also show that thermal effects have not distorted the conclusions of this paper (issue 4), 

but that current experimental methods are not stable enough to detect biexciton trap 

yields in this system (issue 5).   

MUPPETS is an extension of transient-grating spectroscopy24-26, 41, 46, 80 to six pulses. 

The pulses are grouped into simultaneous pairs: two excitation pairs (1 and 2) and one 

detection pair (3).  Each pulse in a pair (a or b) enters the sample from a different 

direction (Figure 4.1).  The phase-matching condition selects signal resulting from 

exactly one electric-field interaction with each pulse.  Thus, there are two periods of time 

evolution, τ1 and τ2.  The same is true in 2D coherent spectroscopy,31, 41, 81, 82 which has 

also been applied to semiconductor nanoparticles.37, 83-92  However in MUPPETS, the two 

periods are spent in population states, not coherent states.  Nevertheless, MUPPETS can 

be schematically represented by ladder diagrams reminiscent of those used in coherence 

spectroscopy (Figure 4.2).   These diagrams are an intuitive summary of results that are 

more rigorously derived in ref 66. 
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Figure 4.1.  Schematic representation of the pulse timing and directions in MUPPETS.  
Six pulses are grouped into three pairs (1–3).  The pulses (green) in each pair (a and b) 
are simultaneous in time, but enter the sample (orange) from different directions to meet 
the phase-matching condition.  The time between the two excitation pairs (1 and 2) is the 
first evolution period τ1; the time between the second excitation pair (2) and the detection 
pair (3) is the second evolution period τ2.  Two detectors (PD1 and PD2) are used for 
differential heterodyne detection.15 

The nanoparticle is represented by three states with equal spacing: ground (0), 

exciton (1) and biexciton (2) states.  On the left of each diagram in Figure 4.2, the 

population is in the ground state and is represented by a filled circle.  This population 

gives the χ
(1)

 response of the system, i.e., the static absorption spectrum.  The first pair of 

pulses (1a and 1b; solid, red arrows) creates excitons (filled circle) and depletes the 

ground state (open circle).  These circles represent only the first-order perturbative 

change due to the excitation and predicts the χ
(3)

 response of the sample, i.e., an 

absorption bleach.  During the first evolution period τ1, excitons decay back to the ground 

state at a rate ke (black, wavy arrow). 
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Figure 4.2.  Ladder diagrams for MUPPETS in CdSe/ZnS nanoparticles, which can be 
modeled as a three-level system.  Each pulse causes one electric-field interaction (red 
arrows), and time runs from left to right.  Each pair consist of a bra (solid) or ket (dashed) 
interaction, either in the order shown or reversed.   Population changes at each order of 
interaction are shown as filled (excess) and unfilled (deficit) blue circles.  The 
populations decay (black, wavy arrow) at the rates ke for the exciton and kb for the 
biexciton.  The emitted signal field 3s is heterodyned with pulse 3b.   (A) Exciton–
exciton pathway.  (B) Cross-relaxation pathway.  (C) Exciton–biexciton pathway.   

The second pair of pulses can have different effects, which are represented in the 

three diagrams in Figure 4.2.  In diagram A, the second pair (2a and 2b) also acts on the 

ground-to-exciton transition, but the net effect is to reverse the populations, such that the 

depletion is now in the excited state, and the excess population is in the ground state.  

These population changes represent the second-order response of the sample in 

perturbation theory, i.e., the difference between the two excitations acting in concert and 

the effect of the two acting independently.  The depletion of the ground state by the first 

pair reduces the bleach induced by the second pair.  Thus, the two pairs acting together 

leaves more population in the ground state and transfers less to the excited state relative 

to the two pairs acting independently.  The χ
(5)

 response comes from probing this 

difference. 
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During the second evolution period τ2, the population difference again decays at a 

rate ke.  At the end of this period, a detection pulse (3a) is diffracted into a signal field 

(3s, dashed, red arrow).  In our experiments, the signal field is heterodyned with the 

second pulse of the detection pair (3b).  (In practice, both pulses of the pair are detected, 

and diffraction in both directions is accounted for.15  This differential heterodyne 

detection eliminates artifacts due to propagating the local oscillator through a sample 

undergoing a time dependent absorption change.)  

The dynamics of pathway A are essentially the same as those of a two-level system 

and have been discussed and demonstrated in several previous studies.11, 13, 14, 19-21  This 

pathway detects rate heterogeneity within the sample.  For a subensemble of rapidly 

relaxing particles, the population difference disappears when τ1 exceeds its lifetime, and 

this subensemble will not contribute to the final signal.  In contrast,  subensembles with 

lifetimes longer than τ1 will survive until the second excitation.  Varying τ2 measures ke 

of this subensemble.  A complete measurement of signal versus τ1 and τ2 yields the 

separated dynamics of every kinetic subensemble in the sample or, conversely, reveals 

the absence of such subensembles.  This decomposition is possible even if the kinetics of 

the individual subensembles are not exponential.  Such homogeneous rate dispersion 

within a subensemble can be caused by a multistep decay mechanism or by relaxation of 

the environment around the excited state. 

In CdSe/ZnS nanoparticles, the radiative contribution to ke is approximately 20 ns,93 

nearly negligible on the timescale of our experiments, which extends from 1 ps to 2 ns.  

In an earlier study,20 we looked at core-only particles, where ke is dominated by rapid 
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trapping of the conduction-band electron.94, 95  (That study was confined to times after the 

biexciton decay, so the particles could be treated as two-level systems.)  In the current 

CdSe/ZnS particles, the shell suppresses this mechanism and enhances the emission 

quantum yield.96, 97  Nonetheless, a significant decay of the transient-absorption signal 

still occurs in less than a nanosecond.55  This decay could be due to a subset of particles 

with passivation defects.  Pathway A should detect the decay of these particles as a 

separate kinetic subensemble.  Alternatively, one could hypothesize that surface 

relaxation in response to formation of the exciton is affecting the relaxation kinetics.  

Such a mechanism would cause homogeneous rate dispersion. 

The pathway in Figure 4.2C is a new feature of a multilevel system.  The second 

excitation pair (2a and 2b) creates a population difference on the exciton–biexciton 

transition.  The exciton population is reduced, and the biexciton is populated.  This 

population difference decays during the second evolution period τ2 at the biexciton decay 

rate kb.  (The formalism of ref 66 shifts the subsequent decay across the ground–exciton 

transition into diagram A, so it does not need to be considered explicitly.)   

The third pathway, shown in Figure 4.2B, represents a cross-relaxation from the 

biexciton transition to the exciton transition during τ2.  Simply summing an exciton decay 

and a biexciton decay causes a small error.  The excitons that are formed from biexciton 

decay do not begin their decay at τ2 = 0; their decay should start at approximately the 

biexciton lifetime.  The cross-relaxation pathway is a correction for this error.  Its size is 

approximately proportional to ke/kb; it is small when the biexciton decays much faster 

than the exciton. 
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In both diagrams A and C, the surviving population is detected as an absorption 

change resulting from the depletion of one state and the filling of another.  The exciton–

exciton pathway in Figure 4.2A has an induced absorption due to increased population in 

the ground state and depletion of the upper state, whereas the exciton–biexciton pathway 

in Figure 4.2C has an absorption bleach due to increased population in the exciton state 

and depletion of the biexciton state.  Thus, pathways A and C produce signals of opposite 

sign.   

This sign change is useful in distinguishing between the biexciton decay of a normal 

particle and the exciton decay of a photoproduct.  A common way to distinguish between 

the biexciton and exciton decay of a normal particle is to rely on the much faster decay of 

the biexciton.  However, several experiments—transient absorption,44, 49, 51, 62, 64, 71 single-

particle blinking,50, 63, 72 and photobleaching73, 74—suggest that CdSe nanoparticles have 

one or more reversible photoproducts with a low quantum yield, and thus, a short 

lifetime.  The spectral shift between the normal exciton and the biexciton is small,53, 75, 76 

and the spectrum of the photoproduct is uncertain.  Thus, spectral resolution of the 

species is difficult.  Both the biexciton and a photoproduct have a concentration that 

scales with the excitation fluence, and so they cannot be distinguished on that basis 

either.   

In our earlier letter, the sign difference between MUPPETS pathways A and C was 

used to distinguish between these two species.22  A biexciton decay with a more than 

five-fold range of rates was observed.   For the reasons just discussed, the possibility that 

the dispersion was an artifact due to a mixed signal from the biexciton and a 
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photoproduct exciton was excluded.  Existing theories for biexciton relaxation do not 

have an obvious means to account for the observed dispersion. 

That letter neglected a number of potential complicating factors that are addressed 

here.  Section 4.2 describes the data collection and analysis, including our method for 

extracting low-fluence limits from complex data.  This extrapolation is needed to exclude 

any contamination of the biexciton signal by higher excitons.  Section 4.2 also describes 

the calibration of the absolute phases of our measurements, which are needed for 

modeling complex data.  Section 4.3 combines the previously reported pump–probe data 

with new transient-grating data to build a complete model for the 1D kinetics of our 

sample, including the phases of the exciton and biexciton transitions.   

In section 4.1, this model is compared to the τ1 = 0 MUPPETS data.  The phase of 

MUPPPETS decay varies with time, which is shown to be consistent with the 1D data.  

The only adjustable factor is the ratio of ground-to-exciton and exciton-to-biexciton 

cross-sections.  This ratio is found to be exactly the value predicted by the generally 

accepted uncorrelated-electron model.  This section demonstrates the self-consistency of 

our measurements and provides confidence for more advanced analysis. 

Section 4.2 revisits the separation of exciton and biexciton dynamics by combining 

1D and MUPPET measurements.  In contrast to our previous report,22 which used only 

signal magnitudes, this analysis uses the full, complex data.  In addition, the contribution 

from cross-relaxation, which was neglected before, is considered here.  Fortunately, 

adding these features does not change our previous conclusions.  

Our previous letter22 used and section 4.4 of this paper uses only the τ1 = 0 cut 

through the 2D MUPPETS data.  Section 4.5 analyzes MUPPETS data in the full τ1–τ2 
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plane.  The pathway in Figure 4.2C is sensitive to correlations between the dynamics of 

the exciton and the biexciton decay.  The first evolution period τ1  filters the molecules 

based on their exciton decay rate; the second evolution period τ2 measures the biexciton 

decay of the subensemble surviving this filter.  If the decay mechanisms of the exciton 

and biexciton are fully independent, no correlation exists, and the value of τ1 will have no 

effect on the decay with τ2.  Correlations can be created by a feature common to both 

decay mechanisms, whether those mechanisms are heterogeneous or homogenous.  For 

example, if a surface defect on a subset of particles accelerates both exciton and biexciton 

decay, there will be correlated, heterogeneous kinetics.  Alternatively, if there is a surface 

relaxation of the excited particle that affects both the exciton and biexciton, there will be 

correlated homogeneous kinetics. Reference 66 has a more in-depth discussion of the 

nature of rate correlations. 

The full MUPPETS data is also sensitive to heterogeneity in the exciton decay.  The 

data set is compared to several models to show that it should have enough sensitivity to 

resolve both effects.  We find no correlation between the exciton and biexciton decays, 

which is in line with expectations, but also find no heterogeneity of the exciton decay, 

which is unexpected.  Section 4.6 discusses these findings. 

 MEASURING COMPLEX ABSORBANCES 4.2

The apparatus used to generate the pulse configuration of Figure 4.1 has been 

describe in detail in other publications.18, 21  Briefly, ultrafast pulses at 527 nm were 

generated by summing the output of a white-light-seeded optical parametric amplifier 

with 800 nm pulses from a 1 kHz amplified Ti:sapphire laser.  Pulse energies are reported 
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as the energy in one excitation pulse at the sample.  The beam diameter in the sample was 

approximately 200 μm.  All pulses had equal energies, except in the 2D experiments, 

where the probe pair was attenuated by a factor of ten.  The same apparatus was used for 

pump−probe, 1D-transient-grating and 2D-MUPPETS measurements by blocking and 

unblocking the appropriate beams.21  The pulse was dispersion broadened to ~300 fs at 

the sample.  To avoid the complications of fast intraband relaxation, results are not 

reported below 1 ps.  No effort has been made to improve or correct for the pulsewidth.  

Differential detection is used to eliminate the bleaching signal from the chopped beam 

(1a).15 

The sample consisted of CdSe nanoparticles with a ZnS shell and octadecylamine 

surfactant (NN-Labs) dissolved in toluene.  The particles had a well-resolved band-edge 

peak at 520 ± 10 nm (4.2 nm diameter) [Figure C1 in the Appendix C].  The 

concentration was adjusted so the absorbance at this peak was OD = 0.4 (A′
(0)

 = 0.9) in 

the 1 mm sample cuvette.  To minimize the role of photoproducts, the sample was flowed 

through the cuvette with a peristaltic pump.  The sample was kept under a dry, N2 

atmosphere.   

All measurements made here; pump–probe, transient-grating and MUPPETS; are 

heterodyned measurements and are reported as a generalized, base-e absorbance A
(N)

:18 
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The number of excitations is N: N = 2 for MUPPETS, N = 1 for pump–probe and 

transient-grating experiments, and N = 0 for static absorbance.  The change in the local-
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oscillator energy Ilo due to interaction with the probe pulse of energy Ipr is δIlo.  The 

phase difference between the local oscillator and the probe is Φ.  In general, this 

absorbance is complex, with the real part representing energy loss (absorption) and the 

imaginary part representing phase delay (index-of-refraction).  The results will usually be 

given as the magnitude and phase of the absorbance.  If the phase has a weak time 

dependence, the magnitude tracks changes in population, while the phase reflects changes 

in the spectral shape.  This generalized absorbance reduces to the static, base-e 

absorbance when N = 0.  Pump–probe experiments measure the real part of the N = 1 

absorbance A′
 (1)

(τ1).   

Complex signals are susceptible to misinterpretation if data are collected at only one 

or two phases.18  Analyzing such data requires the phase of the signal to be time 

independent, which is not generally true.  Here, a complete phase dependence is collected 

by “phase cycling” Φ through a full 360° (Figure 4.3A).  A Fourier analysis yields real, 

imaginary and DC components (Figure 4.3B).18  The DC component consists of artifacts 

(primarily unbalanced bleaching of the probe beams21) and is discarded.  The real and 

imaginary parts give the correct magnitude and relative phase versus time, but 
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Figure 4.3.  Extracting a complex absorbance from a phase-dependent signal.  (A) 
MUPPETS absorbance versus phase Φ, A

(2)
(τ2, 0; Φ)/A′

(0)
, for 11.7 nJ pulses with τ1 = 0 

(solid).  (B) Fourier decomposition of the data in (A) yields cosine (red), sine (blue) and 
DC (black) components.18  Reconstructing the data in (A) from the components in (B) 
gives the dots shown in (A).    The cosine and sine components must be rotated to the 
correct absolute phase to obtain the real and imaginary parts of the absorbance (see 
Figure 4.8A—B).  Also see Figure C2 in the Appendix C. 

the entire phase trace is shifted by an arbitrary constant.  The size of the signal (|A
(2)

(0, 

0)|/A′
(0)

 = 0.06) in this example suggests that approximately 6% of the particles 

contribute effectively to the MUPPETS signal at this fluence, i.e., 6% interact with all six 

fields.  (See Figure A in the Appendix C for a similar example of transient-grating data.) 
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Figure 4.4.  Calibration of the absolute phase with an external standard.  The transient-
grating signals A

(1)
(τ1) of azulene in toluene (blue) and CdSe/ZnS in toluene (red) were 

measured contemporaneously and with the same excitation energy (10.6 nJ/pulse):  (A) 
magnitudes (azulene magnified three times) and (B) phases.  The azulene phase at late 
times is due to a purely nonresonant thermal effect and has a known phase of 90°.  (The 
phase at early times is fortuitously near 90°.)  The absolute phase for all CdSe 
measurements in the 100–300 ps range, Φe = 44°, was determined from this measurement 
by the phase difference shown in black.  The magnitudes are used in chapter 5 to measure 
the thermal cross-section (see Figure 5.7).   

Knowing the absolute phase of the signal is important for comparing pump−probe 

and heterodyned signals and for detecting thermal-grating contributions to the signal.  A 

small correction to the differential-detection signal also requires knowledge of the 

absolute phase.15  (The value of this phase is not easy to predict or interpret.  It measures 

the size of the nonresonant response of the transition, which is an integral of absorbance 

changes over a broad frequency range.)  The phase was calibrated by comparing CdSe 

measurements with an external standard, azulene in toluene, measured on the same day 

(Figure 4.4).  The excited state of azulene decays nonradiatively within a few 
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picoseconds.  The released heat causes a thermal grating to develop,48, 98 and its signal 

builds to a maximum near the end of the scan.   

The azulene signal was assumed to be a purely nonresonant (90°) thermal grating 

after 300 ps.  [The signal during the first few picoseconds is also nearly nonresonant 

(83°) at this wavelength because of cancellation of the absorption bleach by excited-state 

absorption.99] The absolute phase of the contemporaneous CdSe measurement is then 

known.  The data presented below will show that during the time before 100 ps, both 

excitons and biexcitons are present.  After 300 ps, the potential for a thermal contribution 

must be considered.  Between 100 and 300 ps, only the exciton contributes to the signal, 

and its phase is constant.  Thus, the measured phase of CdSe in this range, Φe = 44°, was 

transferred to all other CdSe measurements.   A correction for a small difference in 

sensitivity to real and imaginary signals was then applied.15  All phase measurements in 

this paper are on this absolute scale. 

Pump−probe measurement of nanoparticles are known to be sensitive to the 

excitation fluence at short times,52, 54, 55, 100, 101 and all of our data show the same 

sensitivity.  To characterize the fluence dependence, we made measurements over a range 

of low to moderate fluences I.  Similar pump–probe data are typically normalized to the 

same size at long times.  We extended this procedure by normalizing our complex decays 

at an intermediate time τI: 

 
(1)

(1) 1
1 1(1)

( ; )
( ; ) ( )

( ; )
ei

I
I

A I
A I e C

A I

 



  (104) 



 

84 

 

Figure 4.5.  Normalization of heterodyned results versus fluence (left) and their 
decomposition into low-fluence and fluence-induced components (right) illustrated using 
transient-grating results.  (A–B) Solid curves: The absorbances at various pump energies 
I have been matched in magnitude and phase at intermediate times (boxes, eq 104) to 

give (1)
1( ; )A I .  Dots: Values reconstructed from the reduced results in (C–D).  (C–D) 

Linear regression at each delay time reduces the data in (A–B) to two components: a low-

fluence component (1)
10 ( )A   (red) and a fluence-induced component (1)

11 ( )A   (blue).  

Black: Fits to eqs 107 and 108 in (C) and to Φe = 44° and Φ12 = 67° in (D).  A similar 
method is used for the MUPPETS data (Figure 4.8). 
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Because thermal signals can contribute at long times (see chapter 5), the region for 

normalization was chosen to be τI = 100–300 ps.  As discussed above, only the exciton 

contributes to the signal in this region.  The first terms in eqs 104 and 105 match the 

magnitudes and phases of the scans at τI.  The complex exponential rotates the phase to 

its absolute value using the value of Φe found in Figure 4.4.  The normalized correlation 
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functions that describe the material relaxation, C1′(τ1) and C1′1′(τ2, τ1), are described more 

completely later in the paper.  Their values at τI renormalize the signals to one at time 

zero.  (The final renormalization with these factors, as shown in the figures, is only 

possible after C1′(τ1) and C1′1′(τ1, τ1) have been fit.)  This procedure normalizes the scans 

to the same number of ground-to-exciton transitions.  It corrects for saturation of the 

ground-to-exciton transition and depletion of the exciton by additional excitation to the 

biexciton.  An example of this normalization is shown in Figure 4.5A–B. 

Separate Linear regression of the real and imaginary components of the normalized 

data yield intercepts and slopes.  We will call the intercepts, (1)
10 ( )A   and (2)

2 10 ( , )A   , 

the low-fluence components.  Although they contribute to the signals at all fluences, they 

represents the extrapolated shape of the decay at zero fluence.  We will call the slopes, 

(1)
11 ( )A   and (2)

2 11 ( , )A   , the fluence-induced components.  They represent the 

processes that give rise to the fluence dependence of the total signal.  (See sections 2.2 

and 2.3 of chapter 5 for more detail.)  An example using transient-grating results is 

shown in Figure 4.5.  (Also see Figure 4.8 below.)  To check the validity of the linear 

regression, the original data scans were regenerated from (1)
10 ( )A   and (1)

11 ( )A  .  The 

results are shown as dots in Figure 4.5A–B.  Deviations were typically dominated by 

small errors in the excitation energy of an entire scan.  Deviations systematic with 

excitation energy due to higher-order saturation terms were not detected.  
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 1D KINETICS  4.3

4.3.1 Pump–Probe Results.   

Transient-absorption measurements of the band-edge in CdSe/ZnS core–shell 

nanoparticles have been reported several times in the past.64, 94, 100  Fluence-induced 

measurements on our samples were reported in ref 22 and are repeated in Figure 4.6.  The 

results at various pulse energies (Figure 4.6A) are decomposed into a low-fluence 

component and a linear fluence-induced component (Figure 4.6B).  The decomposition is 

by linear regression as describe in section 4.2, so there are no assumptions about the 

forms of the two decays.  The moderate amplitude decay dispersed over the 

subnanosecond range is a common feature of both transient absorption and 

photoluminescence at low fluence.55, 64, 94, 101, 102  The change in the decay over the first 

100 ps with increasing fluence has also been seen previously with either technique and 

either with55 or without52, 54, 55, 100, 101 a ZnS shell.   

These data can be interpreted using the simple, standard model for the CdSe 

nanoparticle band edge shown in Figure 4.7A.43  The ground state 0 is excited to a doubly 

degenerate exciton level 1.  The complex transition cross-section to an individual exciton 

state is σ01, so the total absorption to the doubly degenerate level is 2σ01.  Relaxation 

within the exciton fine structure (including additional dark states) is fast relative to our 

time range,68, 91 so the exciton can be regarded as a single kinetic level.  However, this 

relaxation greatly reduces the emission cross-section,43 so stimulated emission from the 

exciton and biexciton will be neglected.  The exciton can be further excited to a biexciton 

state 2 with a transition cross-section σ12.  Because absorption can only come from a 

single initial state, the net absorption cross-section from the exciton is σ12.  In the 



 

87 

uncorrelated-electron model, the state-to-state cross sections are equal: σ01 = σ12.  Thus, 

the band-edge absorption is reduced by approximately one-half when the exciton is 

excited and is eliminated entirely when the biexciton is formed.  In CdSe, the biexciton-

to-triexciton transition requires more energy than these transitions do.  With band-edge 

excitation, higher excitons should not be formed.   

 

Figure 4.6.  Decomposition of pump–probe results versus pulse energy I into low-fluence 
and fluence-induced components.  (A) Solid curves: The normalized absorbance 

(1)
1( ; )A I  at various pulse energies.  An additional four energies are not shown to 

improve clarity (see ref 22).  Dots: Values reconstructed from the reduced components in 

(B).  (B) The low-fluence (1)
10 ( )A   (red) and fluence-induced (1)

11 ( )A   (blue) 

components of the data in (A).  Black: Fits to eqs 106 and 107.  (Adapted from ref 22.) 

The dynamics of this model are described by two primary correlation functions: 

C1′(τ), which describes the decay of the exciton to the ground state, and C2′(τ), which 

describes the decay of the biexciton.  (The primes indicate a change of basis state so the 

functions refer to population differences.66  Thus, C2′(τ) include the decay of a biexciton 
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to an exciton, but not the subsequent decay of the product exciton to the ground state.)  

The low-fluence component of the pump–probe data (1)
10 ( )A   (Figure 4.6B) is assigned 

to the exciton decay.  For modeling purposes, an empirical fit was made to  

    
 

0.31(1)
1 1 1 10

1

( ) 0.635exp 4.9 ns 0.365

exp 20 ns

A C  




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 

   (106) 

 

Figure 4.7.  The complex cross-sections for the CdSe/ZnS  model.  (A) The exciton state 
1 is doubly degenerate with rapid equilibration.  Two complex absorption cross-sections 
(red), σ01 and σ12, apply to the ground-to-exciton (0-to-1) and exciton-to-biexciton (1-to-
2) transitions, respectively.  (B) The cross-sections (red) represented on the complex 
plane are converted to practical parameters (blue).  The ratio of real parts of the cross 
sections is measured by δ (eq 110).  The phases of the two transitions are Φ01 and Φ12.  
The phase Φ01 is not directly observed.  Instead, the population in the exciton state is 
detected at the phase Φe (eq 111).  The combined 1D and MUPPETS data are fit to δ = 0 
(σ′01 = σ′12), Φ12 = 67°, and  Φe  = 44° (Φ01 = 59°). 

The final factor represents the radiative decay; the factor in curly brackets is the 

nonradiative decay.   

The fluence-induced component in Figure 4.6B is also distinctly nonexponential.  It 

has been fit to a biexponential: 

    (1)
1 1 11 ( ) 0.635exp 6 ps 0.365exp 40 psA         (107) 
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It is equally consistent to assume a continuous distribution of decay times.  For 

example, a rate spectrum shows a five-fold variation of rates at the half-width.22   

These fits highlight the issues that will be addressed in this paper.  The first is the 

origin of the highly dispersed, nonradiative decay at low fluence (eq 106).  CdSe 

nanoparticles without a shell have a low quantum yield and substantial subnanosecond, 

nonradiative decay,20, 64, 94, 95, 103, 104 which is attributed to trapping of the excited electron 

at the unpassivated surface.94, 95  This decay is highly dispersed, and MUPPETS 

measurements showed that the rate dispersion is due to particle-to-particle variation in the 

electron-trapping rate.20 

The nonradiative decay is distinctly different with a ZnS shell, which acts to 

passivate surface traps.  Both hole and electron trapping rates are greatly reduced, 

increasing the quantum yield of luminescence.  Nonetheless, a significant drop in signal 

(40% in the observed time range, 63% extrapolated from the fit in eq 106), dispersed over 

the 1 ps to 2 ns time range, still occurs (Figure 4.6).  A similar drop in luminescence 

intensity is seen, even in well prepared, high quantum-yield samples.55  This drop could 

be assigned to electron trapping to residual passivation defects.  The form of the fit used 

in eq 106––a stretched exponential plus a constant—is arbitrary, but it is consistent with a 

subensemble of well passivated, high quantum-yield dots represented by the constant 

along with a set of lower quantum-yield dots with a broad distribution of nonradiative 

relaxation rates due to a variety of passivation defects.  In this case, the rate dispersion is 

heterogeneous.  Alternatively, the dispersion may be due to relaxation of the particle or 

its surface in response to creating the exciton.  In this scenario, the dispersion is 
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homogeneous.  MUPPETS measurements in section 4.5 will determine if the exciton 

decay is homogeneous or heterogeneous. 

The second issue is the cause of the dispersion in the fluence-induced component (eq 

107).  This decay has conventionally been assigned to Auger relaxation of biexcitons.43, 

52, 54, 69  However, this mechanism, in its basic form, predicts an exponential decay.  In 

previous measurements, rate dispersion has been attributed to the creation of higher 

excitons with faster relaxation rates.52, 54  In fact, the presumption of exponential decay 

has been used isolate the biexciton signal.52, 54  Following this reasoning, the 40 ps 

component of (1)
11 ( )A   is the biexciton decay, and the 6 ps component is a triexciton 

decay.  However, unlike many previous experiments, we use band-edge excitation.  

Because the band edge is completely bleached upon forming a biexciton, we do not 

expected to create higher excitons.  This expectation will be confirmed by the MUPPETS 

measurements, both at low fluence in section 4.1 below and at high fluence in section 2.4 

of chapter 5. 

More recently, it has been recognized that a long-lived photoproduct with a fast 

exciton lifetime, for example, a charged nanoparticle, could also contribute to this 

signal.44, 51, 62  The fit in eq 107 is also consistent with the hypothesis that the dispersed 

decay is due to a combination of two exponential decays, one from the biexciton and 

another from a photoproduct.  In a letter using initial data, we claimed that comparing 

MUPPETS and pump-probe data excluded this idea.22  The more detailed discussion of 

the full data set in section 4.2 confirms that claim.   

The third issue is whether the two decays in Figure 4.6B are both dispersed for the 

same reason.  This type of kinetic correlation can be detected by the MUPPETS 
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measurements presented in section 4.5.  The simplest possibility is that there are two 

types of particle: one responsible for the fast component of both eqs 106 and 107; the 

other responsible for both slow components.  The fits in eqs 106 and 107 were chosen to 

allow consideration of this simple type of correlation; each has two components with 

equal amplitudes.   Neither fit is unique, and the components of these fits should not be 

assumed to represent distinct physical processes without further evidence. 

4.3.2 Transient-Grating Results.   

One-dimensional transient-grating measurements on the same sample are shown in 

Figure 4.5.  (Also see Figure C2 in the Appendix C.)  Unlike the previously reported 

pump–probe results,22 these new transient-grating measurements give a complex 

absorbance.  The real part should be identical to the pump−probe measurements.  The 

addition of the imaginary part allows the phase of the absorbance to be measured, which 

will be important for interpreting the complex MUPPETS data.  The imaginary part of 

the absorbance may also contain thermal effects, which are not present in pump–probe 

measurements.  That possibility will be ignored until chapter 5.79 

The phase of the transient-grating data is time-dependent, and both the magnitude 

and phase vary with fluence (Figure 4.5A–B).  After these data are decomposed into low-

fluence and fluence-induced components (Figure 4.5C–D), the phase of each component 

is constant with time.  The apparent dependence on time and fluence in the original data 

is only due to the changing ratio of these two components as they decay at different rates.  

The constant phases in Figure 4.5D suggest that the decomposition is cleanly separating 

two distinct processes.   

The magnitude of the low-fluence component (Figure 4.5C) is fit by 
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The magnitude of the fluence-induced component (1)
11 ( )A   is well matched by the 

fit to the fluence-induced pump–probe data (eq 107, Figure 4.5C).  

Many ways to represent complex signals have been used since transient-grating 

spectroscopy was developed.24-26, 41, 46, 80  We find that complex absorbances and cross-

sections are intuitive and extend well to higher dimensions.18  The CdSe/ZnS model is 

characterized by two complex cross-sections, σ01 and σ12 (Figure 4.7A).  For fitting 

experimental data, it is useful to introduce a practical set of four real quantities.  Two are 

simply the phase Φ12 and real part of  the exciton-to-biexciton cross-section σ12 

 1212
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In the uncorrelated-electron model, 01 12   .  (The imaginary parts are strongly 

influenced by transitions away from the band-edge and are more difficult to predict.)  

Thus, we introduce δ 
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which measures the deviation from this model, as the third fitting parameter.  The 

ground-to-exciton cross-section σ01 never appears by itself in the fitting.  Population of 

the exciton always causes a combination of a bleach of this transition along with 

increased absorption on the exciton-to-biexciton transition.  Thus, we define an exciton 

cross-section σe by 

12
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 01 122 ei
e e e        (111) 

The phase of this cross-section Φe is the fourth and final fitting parameter.  The 

relationship between  these quantities is illustrated in Figure 4.7B. 

A theoretical analysis of the fluence dependence of the complex absorbance in 

chapter 5 yields the following expressions in terms of these parameters:79  

 (1)
1 1 10 ( ) ( )eiA e C 

  (112) 

and 

 12(1) 212
1 2 1 1 11

cos 1
( ) ( ) ( )

cos 1
eii

e

A e C e C
  



 

 
 

 
 (113) 

Taking the real parts of these equations serves to interpret the pump–probe data (eqs 106 

and 107).  Although the biexciton decay C2′(τ1) is detected with the phase of the exciton-

to-biexciton transition Φ12, the exciton decay C1′(τ1) is not detected at the phase of the 

ground-to-exciton transition Φ01.  As anticipated above, it is detected at Φe defined in eq 

111.  The cross-relaxation function 2
1 1( )C   represents the process shown in Figure 

4.2B.66  It accounts for a delay in the decay of excitons that are created by the decay of 

biexcitons and is expected to be small (see section 4.5 and Figure 4.9 below). 

To interpret the MUPPETS data, complete models for the cross-sections and 1D 

kinetics are needed.  Initial models are developed by neglecting various potential 

complications, including cross-relaxation, thermal effects and photoproducts.  As the data 

is analyzed, each of these effects will be shown to be minor, so no further refinement will 

be needed.  Equation 112 shows that the phase of (1)
10 ( )A   (Figure 4.5D) is Φe = 44°.  
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Neglecting cross-relaxation, eq 113 shows that the phase of (1)
11 ( )A   (Figure 4.5D) is Φ12 

= 67°.  Determining the value of δ requires τ1 = 0 MUPPETS data (section 4.1).  Again 

neglecting cross-relaxation in eq 113, the fit in eq 107 is used for the biexciton decay 

C2′(τ1).  With a time-independent phase, eqs 106 and 108 should be identical and both 

should represent the exciton decay.  Section 4.3 in chapter 5 discusses this discrepancy.  

For the current model, eq 106 is used for C1′(τ1).   

 ANALYSIS OF COMPLEX MUPPETS DATA  4.4

In our earlier letter, the phase of the MUPPETS signal was not considered.22  With 

the addition of the transient-grating data and the full model of the complex 1D signal 

from section 4.3, an analysis of the complex MUPPETS signal will be carried out in this 

section.  The effects of cross relaxation will also be considered.  Two issues are primary 

and are dealt with in two subsections.  In subsection 4.1, the MUPPETS signal, including 

its time-dependent phase, is shown to be consistent with the 1D data.  The fitting will 

yield the ratio of cross-sections for the exciton and biexciton transitions.  In the earlier 

letter, the difference between the MUPPETS magnitude and the real pump–probe signal 

was presented as a measure of the biexciton decay.22  In subsection 4.2, the difference of 

complex 1D and 2D signals is taken to obtain the complex biexciton signal.  Both topics 

require only the τ1 = 0 cut through the MUPPETS data.  The full τ1–τ2 dependent data are 

discussed in section 4.5. 

4.4.1 Measuring Exciton and Biexciton Cross-Sections.   

A key result from the theoretical analysis of MUPPETS in excitonic systems is that 

exciton–exciton (Figure 4.2A) and exciton–biexciton (Figure 4.2B) pathways have 
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opposite signs.66  Because the biexciton decay is faster than the exciton decay, the total 

signal along τ2 should initially rise as the negative biexciton signal decays.   

Experimental MUPPETS data with τ1 = 0 are shown in Figure 4.8.  The raw, phase-

cycled data are reduced to a complex signal (Figure 4.3).  The results for different 

excitation fluences have been normalized according to eq 105 and are shown in Figure 

4.8A–B.  There is a strong fluence dependence to the shape of the signals, with the 

predicted rise of the signal seen only at the lowest fluences.  This behavior will be 

explained in section 5.2 of chapter 5.79  For now, we focus on the low-fluence limit.  

Because the signal-to-noise ratio deteriorates as this limit is approached, it is particularly 

important to extrapolate to zero fluence.  Results are shown in Figure 4.8C–D (red).  The 

measured decay with the lowest fluence is similar to the extrapolated low-fluence signal 

(2)
20 ( , 0)A  .  This component has a delayed maximum in the magnitude, as expected, but 

it also has a time-dependent phase that must be explained. 
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Figure 4.8.  MUPPETS τ
1
 = 0 results.  Decomposition of the signal versus pulse energy I  

(left) into low-fluence and fluence-induced  components (right).  (A–B) Solid curves: The 

normalized absorbance (2)
2( , 0; )A I  at various pump energies.  Dots: Values 

reconstructed from the reduced results in (C–D).  (C–D) The low-fluence (2)
20 ( , 0)A   

(red) and fluence-induced (2)
21 ( , 0)A   (blue) components of the data in (A–B).  Black: 

Fits to eq 114 and to eq II.168 with δ = 0. 

Unlike 1D measurements, the biexciton contribution is intrinsic to MUPPETS, even 

in the low-fluence limit.  Moreover in this limit, the ratio of these two contributions is 

fixed by the cross-sections of the chromophore.  The theoretical expression for the 

complex, low-fluence MUPPETS absorbance with τ1 = 0 is 
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 (114) 

The results of ref 66 have been adapted to the CdSe system defined in Figure 4.7.   The 

exciton C1′(τ2) and biexciton C2′(τ2) contributions dominate the signal.  In the simplest 
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case of σ01 = σ12 (δ = 1 and Φe = Φ12), the biexciton contribution is exactly one-half the 

exciton signal.  However, the 1D spectroscopy has already indicated that these phases are 

unequal, so a more detailed approach is needed. 

The τ1 = 0 cut of the MUPPETS data is almost entirely determined by quantities 

measured by 1D experiments.  Most of the quantities in eq 114 have already been found 

in section 4.3: Φe, C1′(τ2), Φ12, and C2′(τ2).  The only undetermined quantity is δ.  A fit to 

eq 114 with δ = 0 is shown in Figure 4.8C–D (red).  The cross-relaxation 2
1 2( )C   is 

small, but has been included (see eq 120 below).  This value correctly reproduces the size 

of the peak in the magnitude.  It simultaneously reproduces the time dependence of the 

phase.  The phases of the individual transitions are constant; the time dependence of the 

total signal is due to the changing ratio of the different pathways in Figure 4.2.  The 

consistency of the 1D and MUPPETS results increases our confidence in both the theory 

and the data.  Knowing that δ = 0, i.e., σ′01 = σ′12 (eq 110), the previously known values 

of Φ12 and Φe allow us to calculate that Φ01 = 59° (see Figure 4.7).   

A zero value for δ is predicted by the uncorrelated-electron model, which has been 

widely used to interpret results in CdSe nanoparticles.43  However, Franceschetti and 

Zhang have suggested that electron correlation causes strong deviations in the cross-

sections that can lead to misinterpretations of fluence-induced data.105  They calculated δ 

= 1/3 at 300 K.  It should be noted that there is a small, but non-negligible, shift between 

the ground–to–exciton and exciton–to–biexciton transitions.  Our pulses have a wide 

bandwidth (see Figure C1 in the Appendix C), but any failure to cover both transitions 

equally would introduce a systematic error in our measurement of δ, which is defined by 

spectrally integrated cross-sections.  We have also neglected any simulated emission 
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from either the exciton or biexciton.  Detailed calculations including stimulated emission 

(unpublished) show no new effects other than to perturb the effective cross-sections and, 

thus, to alter the measured value of δ.  However, stimulated emission is known to be 

small and red-shifted from the band edge.49, 71  Even recognizing these limitations, our 

results do not support a strong electron-correlation effect on the cross-sections.  Overall, 

the agreement between 1D measurements and MUPPETS at τ1 = 0 paves the way for 

analysis of the full MUPPETS data in sec 4.5.  

4.4.2 Separating Biexcitons from Long-Lived Photoproducts.   

We also need to consider the possibility that the excitation produces not only 

excitons and biexcitons, but also creates a long-lived, reversible photoproduct that builds 

up a steady-state population in the sample.  The exciton lifetime of the photoproduct is 

assumed to be short and, thus, easily confused with the biexciton lifetime of the normal 

particles.  Two possibilities are a concern.  The first is that the photoproduct is produced 

at high fluences, similar to those needed to create the biexciton, and as a result, the 

photoproduct will contribute to the fluence-induced components of our signals.  The 

second possibility is that the photoproduct accumulates even at low fluences, so that our 

nominally low-fluence components still contain a photoproduct contribution.  To model 

both possibilities, the total exciton decay C1′(τ) is written as sum of contributions from 

the normal species C1′,n(τ) and the photoproduct C1′,p(τ) 

  1 1 , 1 ,( ) ( ) ( )n p pC C I C          (114) 

The fraction of photoproduct at low fluence is α.  The fluence-induced increase in 

photoproduct concentration is given by σ′p, an effective cross-section, and I, the average 



 

99 

excitation fluence.  The photoproduct concentration is always taken to be small enough to 

be treated perturbatively.  

 

Figure 4.9.  Deriving the biexciton signal.  The low-fluence,  τ1 = 0 MUPPETS signal 
(2)
0 ( ,0)A   [(A) green, from Figure 4.8C–D] is subtracted from the low-fluence transient-

grating signal (1)
0 ( )A   [(A) red, from Figure 4.5C–D] to yield the biexciton signal Ab(τ) 

[(B) orange] (see eq 115).  The biexciton signal is compared to the fluence-induced 

transient-grating signal (1)
1 ( )A   [(B) blue, from Figure 4.5C–D] to show that a fast 

relaxing photoproduct is not present (eq 118).  The calculated cross-relaxation term 
2
1 ( )C   (eq 120, black, magnified three times) is negligible. 

Because the biexciton and exciton signals have opposite signs in MUPPETS, ref 22 

argued that the difference of the real pump–probe signal and the MUPPETS magnitude 

would eliminate exciton signals (including photoproduct excitons) and leave only the 

biexciton decay.  Here, we more precisely define a “biexciton” signal Ab(τ) as the 

difference of complex absorbances 
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The 1D and 2D low-fluence absorbances were originally normalized to the exciton 

populations as described by eq 104 and 105; the constants in eq 115 renormalize the 

biexciton signal to one at time zero.  Experimental results using the transient-grating data 

for (1)
0 ( )A   are shown in Figure 4.9. 

The theoretical expression for the biexciton signal is derived by putting eq 114 into 

the original expression for the absorbance, normalizing according to eqs 104 and 105, 

analyzing the fluence dependence and subtracting according to eq 115 to give  
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The fluence-induced photoproduct has been removed by taking the low-fluence limit, and 

the low-fluence photoproduct has been eliminated in the subtraction.  Thus, the argument 

of ref 22 continues to hold for complex signals, but the presence of a small cross-

relaxation term should also be taken into account. 

Reference 22 also argued that the biexciton signal derived from MUPPETS Ab(τ) and 

the fluence-induced component of 1D measurements (1)
1 ( )A   should differ only due to 

the effects of a photoproduct.  Re-evaluating eq 113 using eq 114 gives 
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As expected, this signal contains both contributions from the biexciton decay of normal 

particles C2′,n(τ1) and from the exciton decay of the photoproduct C1′,p(τ1).  Comparing 

eqs 116 and 117 shows that the difference between the biexciton signal and the fluence-

induced 1D signal is only due to the presence of a photoproduct 
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This conclusion holds even when cross-relaxation is included.   

The experimental comparison of Ab(τ) and (1)
1 ( )A   is shown in Figure 4.9B.  The 

decays before 300 ps are identical, in both magnitude and phase.  The long time portion 

of the decays are discussed in chapter 5, section 4.3.  We neglect the unlikely possibility 

that the biexciton and photoproduct decay shapes are indistinguishable and conclude that 

there is no detectable photoproduct under our experimental conditions.   

This discussion has assumed that the normal and photoproduct biexciton decays are 

the same.  If the photoproduct is created at high intensity, its biexciton decay would only 

appear in processes of higher order than those that are included in Ab(τ) and (1)
1 ( )A  .  

Section 4.4 of chapter 5 will analyze the fluence-induced MUPPETS signal, which is of 

the correct order, but will find no evidence for a new species.  A photoproduct created at 

low fluence would contribute to 2 ( )C   in both eqs 116 and 117.  In this case and 

neglecting cross-relaxation, the biexciton signal would be 

  12
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Under the same conditions, the exciton decay would also consist of two parts

1 1 , 1 ,( ) ( ) ( )n pC C C       , in other words, the exciton decay would be heterogeneous.  

This possibility is tested in section 4.5, and is not supported by the data.  Once again, we 

conclude that a photoproduct is not affecting our results and is not causing the rate 

dispersion observed in the biexciton decay. 

The role of the cross-relaxation term in eq 116 also needs to be addressed.  A general 

argument can be made that this term is small whenever the exciton lifetime is much 

longer than the biexciton lifetime.  However in our system, the exciton decay is spread 

over multiple timescales.  Some decay occurs even before the biexciton has fully decayed 

(Figures 4.5 and 4.6).  A more quantitative calculation of the size of 2
1 ( )C   for this 

particular situation is needed. 

We previously showed that the cross-relaxation 2
1 ( )C   can be calculated once 

C1′(τ2) and C2′(τ2) are known.
66

  When 2
1 ( )C   is small and the exciton and biexciton 

dynamics are uncorrelated, it can be approximated by  

  2
1 2 1( ) ( ) 1 ( )C C C  
     (120) 

The calculated curve is shown in Figure 4.9B.  Its magnitude is quite small, and 

Ab(τ2) can be taken to be the biexciton decay.  In systems where it is larger, eq 120 can be 

used to correct measurements of the biexciton decay. 

Overall, this section has shown that the analysis of ref 22 was simplified by the use of 

real data and neglect of cross-relaxation.  However, those simplifications have no 

significant effects in this system.  In other systems, the more complete analysis presented 

here may be important.  Reference 22 reported eq 107 as one possible fit to the biexciton 
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decay, along with several alternatives.  Those fits do not need to be altered as a result of 

the current re-analysis.  

 EXCITON HETEROGENEITY AND EXCITON–BIEXCITON CORRELATION 4.5

Section 4.4 considered only the τ1 = 0 cut through the MUPPETS data, which can be 

expressed entirely in terms of 1D correlation functions.  The full expression for the 

MUPPETS signal as a function of both τ1 and τ2  is66 
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 (121) 

Photoproducts are neglected here and in the remainder of the paper.  Equation 121 

contains three 2D correlation functions corresponding to the three pathways in Figure 

4.2: the exciton–exciton correlation function C1′1′(τ2, τ1) (pathway A), the cross-

relaxation function 2
1 1 2 1( , )C  
   (pathway B), and the exciton–biexciton correlation 

function C2′1′(τ2, τ1) (pathway C).  The precise definitions and detailed discussions of 

each of these functions can be found in ref 66. 

The exciton–exciton correlation C1′1′(τ2, τ1) is sensitive to whether rate dispersion in 

the exciton decay is heterogeneous or homogeneous.  This correlation function appears in 

both excitonic and two-level systems.  Its behavior in two-level systems has been 

demonstrated in several previous papers.11, 13, 14, 19-21  If the sample is heterogeneous, and 

the exciton decay rate for a given particle is above (below) average during the first 
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interval, the rate will also be above (below) average during the second interval.  One can 

show that the result is 

 1 1 2 1 1 2 1( , ) ( )C C        (122) 

On the other hand, if the sample is homogeneous, knowing the exciton decay during the 

first interval gives no new knowledge about the decay during the second interval, with 

the result that 

 1 1 2 1 1 2 1 1( , ) ( ) ( )C C C        (123) 

Thus, there is a qualitative difference between these two cases. 

In the current system, the exciton has a pronounced rate dispersion.  Almost all the 

decay observed in our time range is faster than the main radiative decay, and the decay 

within our time range fits a stretched exponential (eq 106 and Figure 4.6B).  This early 

decay has been attributed to a subset of particles with defective surface passivation.55  

Single-particle experiments often identify particles in various nonfluorescent states, 

which presumably have fast nonradiative decay.50, 63, 72  Thus, one can hypothesize that 

the decay is dispersed because the sample is heterogeneous and that eq 122 will apply to 

our data. 

The exciton–biexciton correlation function C2′1′(τ2, τ1) is unique to excitonic systems 

and has not been measured before.  Our recent theoretical paper discussed this function in 

detail.66  It determines whether knowing the exciton decay rate of a particle, which is 

measured in the first time interval, predicts the biexciton rate, which is measured in the 

second.  Such a correlation implies a shared feature in the relaxation mechanisms of both 
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the exciton and biexciton.  On the other hand, if the exciton and biexciton relax through 

independent mechanisms, the exciton and biexciton decays are uncorrelated, and 

 2 1 2 1 2 2 1 1( , ) ( ) ( )C C C        (124) 

In our system, fast exciton decay is usually attributed to trapping of the conduction 

electron at a surface defect,20, 94, 106 whereas the biexciton decay is attributed to Auger 

recombination.43, 52, 54, 69  Originally, these mechanisms were viewed as unconnected, and 

no exciton–biexciton correlation would be expected.  More recently, it has been 

suggested that the surface has a significant role in Auger recombination.59, 107  If the 

surface defects that trap electrons also facilitate Auger recombination, the exciton and 

biexciton decays could be correlated. 

The 2D cross-relaxation function 2
1 1 2 1( , )C  
   also varies with the nature of the 

correlation.66  Formulas are given in the SI and are used in the calculations below.  

However, it is always small and does not affect the interpretation of the results. 

At this point, we can identify one case that is particularly easy to analyze—

homogeneous exciton decay and no exciton–biexciton correlation.  In this case, the decay 

in τ2 is separable from the decay in τ1 for both C1′1′(τ2, τ1) and C2′1′(τ2, τ1) (eqs 123 and 

124).  The separability also extends to the cross-relaxation function 2
1 1 2 1( , )C  
  .66  Thus,  
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 (125) 

As a result, different cuts of the full signal at fixed τ1 should have the same shape.  
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Our data are tested for this condition in Figure 4.10.  Both magnitude and phase for 

all values of τ1 overlap within the experimental noise.  Thus, the model of a 

homogeneous exciton decay and an uncorrelated biexciton decay is sufficient to explain 

our data. 

 

Figure 4.10.  2D MUPPETS results at various values of the first delay 1 : (A) magnitude 

and (B) phase.  The low-fluence component (2)
2 10 ( , )A    has been extracted from the 

signal versus pump energy (see Figure 4.8).  The  curves have been normalized to show 
the lack of a shape change as τ1 increases. 

However, we also need to ask about the sensitivity of the results: Do alternative 

models change the predictions enough to be detected above the experimental noise?  

Figure 4.11 addresses this question.  The magnitudes of the data are compared to four 

models combining the choices of purely homogeneous or purely inhomogeneous exciton 

decay with biexciton decays fully correlated or fully uncorrelated with the exciton.  In 

each case, the model for the 1D correlation functions developed in section 4.3 have been 
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used.  When the 1D results are combined with each of the four sets of dynamical 

assumptions, an independent prediction of the MUPPETS signal can be made.  Only the 

amplitude of the experimental data is scaled in the comparison.   

Model one combines a homogeneous exciton decay (eq 123) and an uncorrelated 

biexciton decay (eq 124) to generate the full signal (eq 117).  This is the model that was 

tested in Figure 4.10.  It produces the red curves in Figure 4.11, and as expected, it fits 

the data well for all values of τ1. 

 

Figure 4.11.  Measured low-fluence MUPPETS magnitudes (2)
2 10 ( , )A    (black) 

compared to four models for the dynamics at (A) τ1 = 0 ps,  (B) τ1 = 10 ps,  (C) τ1 = 100 
ps,  and (D) τ1 = 1 ns.  Red: Homogeneous exciton decay and no exciton–biexciton 
correlation.  Blue: Homogeneous exciton decay and full exciton–biexciton correlation. 
Orange: Heterogeneous exciton decay and no exciton–biexciton correlation.  Green: 
Heterogeneous exciton decay and full exciton–biexciton decay correlation. 

Model two has a heterogeneous exciton decay (eq 122), while keeping the 

uncorrelated biexciton (eq 124).  It gives the orange curves in Figure 4.11.    The effect of 

the first time interval is to remove particles with a fast relaxing exciton from the 

measurement.  During the second time interval, the exciton decay of the remaining 

particles lacks the early decay components.  Because the biexciton decay is uncorrelated 
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with the exciton, it is unchanged.  The net result is that the peak in the signal that results 

from competition between positive exciton and negative biexciton decays becomes larger 

and is delayed.  The effect is small for short values of τ1, but for the larger values, the 

effect clearly falls outside the experimental noise. 

The third and fourth models include exciton–biexciton correlation.  Additional 

assumptions are needed to describe this correlation.  In model three, the ensemble is 

assumed to have two subensembles, a and b, corresponding to the two terms in the fits of 

eqs 106 and 107.  Thus, the 1D correlation functions are sums of two terms 

 1 1 1( ) ( ) ( )a bC aC bC       (126) 

and 

 2 2 2( ) ( ) ( )a bC aC bC       (127) 

with a = 0.635 and b = 0.365.  In subensemble a, both the exciton and the biexciton 

decay rapidly, whereas in subensemble b, both decays are slow.   With this model, the 

exciton and biexciton rates are fully correlated, and 
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 (128) 

Subensemble a has a stretched-exponential exciton correlation function C1′a(τ1).  In 

model three, the exciton decay is heterogeneous, so eq 122 still holds.  However, all 

particles have the same biexciton decay C2′a(τ1). 
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The total signal for model three is given in Figure 4.11 as the green curves.  It is only 

slightly different from model two, which lacks the exciton–biexciton correlation (orange 

curves).  The maximum effect of the correlation occurs when τ1 is between the exciton 

lifetimes of the two subspecies, in this case, between 4.9 and 20 ns.  Thus, our time range 

is not well suited to measuring this correlation in the case of a heterogeneous exciton 

decay. 

Fortunately, neither model based on a heterogeneous exciton decay matches the data 

well.  Thus, the exciton rate dispersion must be homogeneous.  This implies that the 

creation of the exciton initiates some relaxation in the local environment.  The relaxation 

of the environment then causes a time-dependent rate of exciton decay. 

Model four retains the homogeneous dispersion of the exciton (eq 123), but assumes 

that the exciton and biexciton decays are correlated though a common dependence on the 

environment.  We also assume that the environment relaxes in the same way in both the 

exciton and biexciton states.  With these assumptions,66 

 2 2 1 1 1
2 1 2 1

2 1

( ) ( )
( , )

( )

C C
C

C

   


 
 




  (129) 

In our system, the instantaneous biexciton rate changes over a narrow range of times, and 

the instantaneous exciton rate changes only slightly over that range.  Thus, this model 

requires that the biexciton rate be much more sensitive to the environment than the 

exciton rate is. 

The MUPPETS results are compared to model four in Figure 4.11  (blue curves).  

The effect on the biexciton portion of the decay is quite dramatic and inconsistent with 
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the data.   Thus, the model with a homogeneous exciton decay and an uncorrelated 

biexciton decay is the only one that matches the data. 

Although the data do favor model one, better data could make a stronger case.  

Greater discrimination between the models could come from reducing the experimental 

noise, but just as important is increasing the experimental time range.  Figure 4.11 gives 

an example of the general conclusion that there is no discrimination when τ1 = 0, and the 

level of discrimination increases as τ1 increases.  The important parameter is the ratio of 

noise to the difference between models.  Because the signal has not fully decayed in our 

experiments, increasing τ1 further would increase that difference with little increase in 

noise.  Ideally, the experimental time range should cover all the relevant decay times, i.e., 

another one to two orders-of-magnitude longer in this system.  The current limitation is 

the use of optical delay lines, which become increasing difficult to align as they become 

longer.  Pulse timing based on electronics would allow access to the longer delays needed 

to more fully exploit the MUPPETS experiment. 

 SUMMARY AND CONCLUSIONS 4.6

A complete MUPPETS data set on an excitonic system has been analyzed for the 

first time.  Accomplishing this analysis required progress in several directions.  The first 

was systematizing the treatment of complex data.  MUPPETS data is inherently complex, 

and complex transient-grating data was collected to assist in the analysis.  An external 

standard was used to determine the absolute phase of the absorbances.  Expressions for 

both transient-grating and MUPPETS data in terms of practical parameters allowed 

systematic fitting of the complex data and transfer of parameters between the two 
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experiments. Assumptions that the solute absorbance is real or that all transitions have the 

same phase or magnitude were avoided and clearly do not apply to this system.  

  A second direction was making a detailed comparison of 2D and 1D data.  Along 

the τ1 = 0 cut, the MUPPETS data should be almost entirely determined by quantities 

measurable by 1D methods.  Using the heterodyned transient-grating data, the MUPPETS 

results, including its time-dependent phase, were explained.  The only adjustable 

parameter was the ratio of ground-to-exciton and exciton-to-biexciton absorption cross-

sections.  The fit value is exactly what is expected from an uncorrelated-electron model, 

which is widely used for CdSe nanoparticles.43  Overall, this fit verifies the theory and 

execution of the MUPPETS experiment and shows that the simple spectroscopic model 

used here captures all relevant species and transitions. 

The complex τ1 = 0 data provide a more rigorous test of the conclusions of our 

earlier letter.22  We confirmed the original conclusion that the biexciton decay is highly 

disperse.  This finding challenges existing theories for the biexciton decay and the 

standard methods of extracting biexciton decays from fluence-induced experiments.  

Biexciton decay has been explained by extending the theory of Auger recombination in 

bulk semiconductors to nanoparticles.43, 52, 54, 69  This theory predicts a single exponential 

decay, in contrast to the dispersed decay found here.  Previously, dispersed decays were 

attributed solely to the involvement of higher excitons.  In fact, the assumption of 

exponential decay has been used to decompose such data into components due to 

different numbers of excitons.52, 54  Photoproducts have also been implicated as 

mimicking biexciton decay.44, 62  The concerted analysis of fluence-induced transient-

grating and MUPPETS data has shown that the observed dispersion is not due to higher 
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excitons or photoproducts, but rather is inherent to the biexciton decay.  This finding 

joins several recent challenges to the existing theory of decay by Auger recombination.56-

58  The ability of the surface to modify the biexciton decay has been documented and may 

provide a route to resolving the current discrepancies.59, 107   

Reference 66 showed that MUPPETS in excitonic systems should involve a cross-

relaxation term (Figure 4.2B) in addition to pure exciton and biexciton dynamics.  This 

paper showed that it is experimentally feasible to gather sufficient information to 

calculate these terms and included them in a quantitative analysis.  In the current system, 

these terms are quite small. 

Going beyond the τ1 = 0 cut provided information on dispersion in the exciton decay 

and correlations between the exciton and biexciton decays.  The extent of nonradiative 

decay is large: 40% within 2 ns was observed directly, and 64% was extrapolated from 

fitting.  The nonradiative component is highly dispersed; it fits a stretched exponential 

with β = 0.3.  Similar results have been seen by others.55, 64, 94, 102  The most obvious 

interpretation is that the surface passivation is still incomplete.  Thus, the decay should be 

heterogeneous due to particle-to-particle variation in the number and activity of the 

remaining passivation defects.  Surprisingly, the MUPPETS measurements contradict this 

explanation.  They find a homogeneous relaxation, that is, one driven by a relaxation 

initiated by the creation of the exciton. 

Given this conclusion, we can speculate about the mechanism.  There are various 

charged species at the surface of the particle: lattice defects, charged surfactants, and 

counterions.  Thermal fluctuations in the properties of nanoparticles seen in single-

particle measurements suggest that at least some of these species are mobile and therefore 
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polarizable.50, 63, 72  The exciton is also more polarizable than the ground state.  Upon 

excitation, the exciton and surface should relax to a mutually polarized state.  The Stokes 

shift of the exciton is small, so the resulting change in transition energies must be small.43  

However, the polarized exciton would also have a reduced electron–hole overlap, which 

would reduce the absorption cross-section.   Thus, surface polarization would cause a loss 

of signal, but not population decay.  Both a large signal decay and a high quantum yield 

would occur.  This mechanism provides at least one physically plausible explanation for 

the MUPPETS result. 

The biexciton decay was found to have substantial dispersion, but to be uncorrelated 

with the exciton decay.  The fact that the biexciton decay is much faster than the exciton 

already suggests a different decay process, so the lack of correlation is not surprising.  

Current ideas about biexciton decay are focused on Auger recombination, but with an 

influence from the surface.59, 107  Thus, the dispersion in the biexciton could reflect 

surface heterogeneity.  The MUPPETS experiments discussed here do not directly 

comment on the heterogeneity of the biexciton decay.  (The possibility of addressing this 

question is discussed in chapter 5.79)  However, a homogeneous exciton relaxation and a 

heterogeneous biexciton decay would be consistent with the lack of correlation found by 

MUPPETS.  

Overall, the data in this paper have shown the features of MUPPETS in excitonic 

systems that were predicted in ref 66.  Chapter 5 of this paper79 will discuss potential 

interferences that are encountered in real experiments, but that go beyond the basic theory 

of MUPPETS, as developed in ref 66 and used here.  It will confirm that the conclusions 

of this paper are sound, even when these effects are considered.
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CHAPTER 5 MULTIPLE POPULATION-PERIOD TRANSIENT 

SPECTROSCOPY OF CDSE/ZNS NANOPARTICLES. II. 

EFFECTS OF HIGH FLUENCE AND SOLVENT HEATING 

 INTRODUCTION 5.1

In chapter 4 of this paper,108 the dynamics of excitons and biexcitons in CdSe/ZnS core–

shell nanoparticles were analyzed with multiple population-period transient spectroscopy 

(MUPPETS).  MUPPETS is a form of two-dimensional (2D) kinetics, i.e., it contains 

two, variable time intervals.  In systems with complicated kinetics, MUPPETS provides 

information about the heterogeneity of the system and the connections between the 

relaxation of different transitions.  MUPPETS is a six-pulse experiment, and as a result, 

the core theory for MUPPETS focuses on the χ(5) response of the chromophores.16, 17, 21, 66  

This theory was used in chapter 4.  However in real experiments, other processes must be 

considered, in particular, higher order responses of the chromophores and the thermal 

response of the solvent.  This part of the paper presents new methods for analyzing these 

secondary effects and applies them to the data presented in chapter 4. 

Chapter 4 confirmed the prediction that the MUPPETS signal has a negative 

biexciton component in the low-fluence limit.  However, this feature was rapidly lost 

with modest fluence increases and was replaced with a similar positive feature.  One 

concern is that another, unexpected species is involved, such as a photoproduct or higher 

exciton, with unforeseen effects on the nominally low fluence data.   

This problem is addressed by extending the calculation of the signal to include χ(7) 

“saturation” terms.  We show how the Hilbert-space pathway formalism16, 17 for 
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calculating MUPPETS can be extended to include these processes.  The calculation 

readily explains all the observed fluence effects.  Concerns about unknown species are 

alleviated, and the conditions needed to avoid saturation are quantified.  

Solvent thermal effects in MUPPETS are an extension of the thermal gratings and 

thermal lenses seen in lower order experiments.109-112    The relaxation of the excited state 

of a solute typically heats the surrounding solvent.  The resulting change in index-of-

refraction of the solvent can be detected optically by diffraction or deflection of the probe 

beam.  The size of this signal from the solvent is often similar to the change in solute 

absorption.  We have observed strong thermal effects in MUPPETS experiments in other 

systems.18  Detailed theory and experimental data showing thermal effects in MUPPETS 

with two-level chromophores have been reported before,18, 19 and the basic theory for 

thermal effects in excitonic systems has been presented recently.66  In general, thermal 

effects present a hazard if they are not correctly separated from the resonant signals.   

On the other hand, in one-dimensional (1D) experiments, thermal effects have been 

useful in measuring the heat released in chemical processes, which is otherwise 

spectroscopically unobservable.45, 48, 113-115  In a similar manner, thermal effects in 

MUPPETS might yield information on trap states—long-lived, optically dark states that 

do not release heat to the solvent.  In CdSe nanoparticles, such traps are sometimes 

invoked as the final state for exciton and biexciton relaxation.   

A particular example is the biexciton signal measured in chapter 4 of this paper 

(Figure 4.9B).108  It shows an unexplained signal recurrence at long times that is 

qualitatively consistent with a thermal effect.  Does this signal isolate the biexciton 

thermal effect as it isolates the biexciton resonant effect?  Does the size of the signal 

provide a measure of the yield of trap states?  

Answering these questions requires an independent calibration of the expected size 

of the thermal effects.  We will show that it is possible to use an external standard to 

determine the ratio of thermal to resonant signal sizes.  The calibration shows that the 
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thermal effects should be small in this system and do not affect the conclusions of chapter 

4.  Unfortunately, their small size also makes them comparable to systematic errors in the 

data.  In the experiments, it is difficult to draw firm conclusions about the yield of trap 

states. 

In general, the additional analysis in this part of the paper will not change any of the 

conclusions about the dynamics of excitons or biexcitons drawn in chapter 4.  However, 

it provides the theory for secondary processes in MUPPETS experiments and a practical 

example of how to control for them. 

 FLUENCE-INDUCED SIGNALS  5.2

We introduced a Hilbert-space pathway method for treating incoherent experiments with 

N time dimensions, including 2D-MUPPETS experiments.16, 17, 21, 66  This method has 

been used previously only to calculate the low-fluence limit of these experiments.  This 

section shows how this approach can be extended to include the first-order fluence 

dependence, both in the case of a general N-dimensional experiment and in the specific 

case of 2D-MUPPETS on an excitonic system.  Section 5.2.1 summarizes the method and 

notation in the low-fluence case.  Section 5.2.2 introduces fluence-induced calculations 

and illustrates their use in the more familiar case of 1D measurements.  New results for 

2D-MUPPETS are produced in section 5.2.3.  They are then compared to the 

experimental data of chapter 4 in section 5.2.4. 
5.2.1 Standard Pathway Method.   

The method associates every incoherent state (quantum-mechanical population state) 

with a vector |P] in a Hilbert-space.  (The analogy with quantum Hilbert-space vectors |ψ 

is intentional and well-defined.16)  The signal is calculated as the generalized, complex 

absorbance of the (N+1)th pulse-pair A(N) (eq. 103).  It is found by taking the product of 

the detection cross-section vector [σD| with the final-state vector |f (N)] 
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  ( ) ( )1 [ | ]
NN N

DA L f    (130) 

The density of chromophores is ρ, the length of the sample is L.  Because the states 

represent the entire sample, not a single molecule, an ensemble average is implied by the 

vector product.   

The final state is created from the initial, equilibrium state |eq] by N optical 

transitions alternating with periods of free time evolution. In MUPPETS, each excitation 

is created by a pair of pulses, each pulse contributing one electric-field interaction.  The 

nth optical excitation at time tn is represented by the transition operator Tn, and the 

evolution between transitions is represented by the operator G(tn+1, tn).  The operator 

G(tn+1, tn) refers to the dynamics of a single chromophore.  For nonexponential decays, it 

depends on the time from the first excitation tn, as well as the time interval, τn = tn − tn−1.  

Thus, the signal is calculated from 
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In a system without significant polarization effects, and in an experiment in which 

only one pulse combination is well phase-matched, the transition operator Tn is a simple 

product of In, the geometric-mean fluence of the nth pulse-pair, and the optical transition 

cross-section operator σT 

 n n TIT σ  (132) 

For simplicity, all the excitation pulses will be assumed to have the same fluence.  Both 

the transition cross-section operator σT and the detection cross-section vector [σD| are 

constructed from a model of the system’s spectroscopy (e.g., Figure 4.7A), but the two 

are not identical. 
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Pathways are generated by selecting a basis set and using it to enumerate all possible 

intermediate states in eq 131.  Our model of the electronic states of CdSe nanoparticles 

(Figure 4.7A) defines three states: the ground state |0], the exciton |1] and the biexciton 

|2].  (The fast relaxing fine structure within the exciton and biexciton states are 

incorporated into an effective optical-transition cross-section operator σT for the 

system.17)  The number of pathways in the calculation can be minimize by switching to a 

basis set with strong selection rules on σT and G.  For an excitonic system the best basis 

set is nonorthogonal: |0′] = |0], |1′] = (|1]−|0])/ 2  and |2′] = (|2]−|1])/ 2 .66  

The notation is more compact if the matrix elements of an operator O are written 

 [ | | ]i
jO j i O  (133) 

and those of a vector |P] are written 

 [ | ]iP i P  (134) 

or 

 [ | ]iP P i  (135) 

 (Because a nonorthogonal basis set is used, bras and superscripts are not equivalent to 

kets and subscripts.42)  Starting with eq 132 and inserting complete sets of states between 

all the operators in eq 131 yields 
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 (136) 

The convention of summation over repeated indices is used.42  Each term in the implied 

sum is one pathway. 
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Collecting all the time-evolution terms and averaging them over the ensemble creates 

an N-dimensional correlation function 

 , ,
, , 1 1 1 0( , , ) ( , ) ( , )m i m i

n j N n N N jC G t t G t t  
    (137) 

  Equation 136 becomes 
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where the static absorbance of the sample is A′(0) = ρL  0
1T

 .  We have used the facts 

that at equilibrium, all the molecules are in the ground state, |0′] = |eq], and that the first 

intermediate state i is always |1′] when the exciton basis set is used.66  Each pathway in 

eq 138 consists of a correlation function and a weight represented by the term in square 

brackets. 

The application of this general formalism to the specific cases of 1D and 2D 

experiments, (1)
1( )A   and (2)

2 1( , )A    respectively, in the CdSe system is illustrated in 

Figures 5.1 and 5.2.  The low-fluence contributions, (1)
1A ( )A   and (2)

2 1A ( , )A   , are due to 

the pathways in Figures 5.1A and 5.2A.  The relevant sequence of operators from the 

expressions 

  (1)
1 1 0 1A ( ) [ | ( , ) | 0 ]DA L t t     G T  (139) 

and  

 (2)
2 1 2 1 2 1 0 1A ( , ) [ | ( , ) ( , ) | 0 ]DA L t t t t     G T G T  (140) 

 (cf. eq 131) are given on the top of each panel.  Immediately below are labels for the 

intermediate states used to define the pathways in the expressions 
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 (cf. eq 138).   

 

Figure 5.1.  Pathways used to calculate the resonant signal in 1D (pump–probe and 
transient-grating) experiments, including the fluence dependence.  The population states 
|P] are transformed by a sequence of optical transitions (red), which are governed by the 
operator T, and free evolution in time (blue), which is governed by the operator G.  The 
final state is measured by taking the product of the final state with the detection vector 
[σD|.  On the far left, each pathway is labeled with its relative weight, which is 
determined by the product of transition and detection matrix elements (red).  The relative 
weights are shown here for the simple case σ01 = σ12 = 1.  On the near left, each pathway 
is labeled by its correlation function Cx, which is determined by the product of time-
evolution matrix elements (blue).  (A) Pathways with no fluence dependence.  (B) 
Pathways with fluence dependence due to two interactions with the excitation pulses.  (C) 
Pathways with fluence dependence due to two interactions with the detection pulses.   
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Figure 5.2.  Pathways used to calculate the of the resonant signal in 2D (MUPPETS) 
experiments, including the fluence dependence.  The format is explained in the caption to 
Figure 5.1.  (A) Pathways with no fluence dependence.  (B) Pathways with fluence 
dependence due to saturation of the excitation pulses.  (C) Pathways with fluence 
dependence due to saturation of the detection pulses.   
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Non-zero pathways contributing to these sums are listed below the solid lines.  The 

basis set has been chosen to impose strong selection rules to limit the number of 

pathways.66  The only allowed transition out of the initial state |0′] is to |1′], and its cross-

section is included in A′(0).  Subsequent transitions in the CdSe system are governed by66 

   12 12

010 2
i

T j

 



  

   
 (143) 

The initial state |0′] never appears as an intermediate state.  As a result, eq 143 (and eq 

144 below) are written in the reduced basis set {|1′], |2′]}.  Time-evolution never takes a 

state to one with a higher index.  For 1D measurements, these restrictions leave only one 

pathway (Figure 5.1A).  In 2D measurements, they leaves three pathways (Figure 5.2A), 

which are described more loosely by the ladder diagrams in Figure 4.2. 

The correlation function for each pathway is constructed from the time-evolution 

steps of each pathway (eq 137).  These are given on the left-hand sides of Figures 5.1 and 

5.2.  The weight for each pathway (bracketed term in eq 138) is given on the far left of 

Figures 5.1 and 5.2.  Their calculation requires the detection cross-section vector for the 

CdSe system,66 

    12
i

D e     (144) 

with 

 01 122e     (145) 

The figures gives only the simple case of σ01 = σ12 = σ.  The full expressions without this 

simplification are 
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and 
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 (147) 

For simplicity, a repeated subscript and superscript on a correlation function are only 

written once, e.g., 1
1C 
  = C1′.  After normalization (eqs I.104 and I.105) and rewriting the 

complex cross sections in terms of practical fitting parameters, these equations give the 

expressions for the low-fluence, 1D  and 2D  absorbances used in chapter 4 (eqs I.112 

and I.121, respectively).108 
5.2.2 Calculating 1D Fluence-Induced Signals.   

The extension of the pathway calculations to fluence-induced signals is illustrated for 1D 

experiments in Figure 5.1B.  Two interactions occur with the excitation pulse pair, giving 

the additional absorbance 

 (1)
B 1 1 1 1( ) [ | ( , 0) | 0 ]DA L      G T T  (148) 

(cf. eq 139).  The double interaction is treated as a sequence of incoherent transitions.  

This approach is appropriate when the excitation pulses are substantially longer than the 

dephasing time of the transition.  In this case, pathways with a population state as an 

intermediate dominate.  For very short excitation pulses, a single operator including two-

quantum coherences would need to be derived from first principles.17 

Expanding into pathways over intermediate states gives 
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(cf. eq 141).  The allowed pathways in this sum are enumerated in Figure 5.1B, as are the 

corresponding correlation functions. 
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The term ε2 is included in eq 149 to account for the degeneracy in the phase-

matching conditions associated with a double interaction.  The phase-matching condition 

for the low-fluence term is 

    1 1 2 2 0a b a bk k k k   
   

 (150) 

where xyk


 is the k-vector for pulse y  {a, b} of the xth pulse-pair.  By assumption, the 

experiment is designed to allow one and only one phase-matched combination of pulses.  

The double degeneracy from multiplying this equation by minus one is already included 

in the definition of the cross-section.  Thus there is no degeneracy for the low-fluence 

experiment.   

However, the phase-matching condition for the pathways in Figure 5.1B is  

      1 1 1 1 2 2 0a b a a a bk k k k k k     
     

 (151) 

There is a two-fold degeneracy from swapping the first and second terms in parentheses 

and another two-fold degeneracy from transforming a to b in the second set of 

parentheses.  Thus, the total degeneracy for a double interaction of T is ε2 = 4.  This 

degeneracy is included in the pathway weights listed in Figures 5.1 and 5.2. 

Using the cross-sections from our system (eqs 143 and 144) in eq 149 gives the total 

absorbance due to a double interaction with the excitation pulse, 

 

 
(1)

2 2B 1
01 1 1 12 1 1(0)
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  


 



    
   (152) 

The effects are as expected.  The first term represents saturation of the ground-to-exciton 

transition.  The third term is due to the creation of biexcitons.  The second term is the 

cross-relaxation term needed to correct the decay of excitons derived from biexcitons 

relative to the decay of directly created excitons.   
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We also consider a double interaction with the probe pulse-pair in Figure 5.1C.  An 

optical transition between states T2 occurs immediately before the detection of the final 

state, giving a contribution to the absorption of 

 (1)
1 2 1 1C ( ) [ | ( , 0) | ]DA L eq     T G T  (153) 

(cf. eq 139).  When this equation is expanded into pathways, the general expression is 

    
(1)

2 11C
2 2 1(0)

( )
( , )

k j
D T jk

A
I C

A


     


 (154) 

There are only two nonzero pathways, as shown in Figure 5.1C.  For the CdSe system 

(eqs 143 and 144), these pathways give  

  
(1)

21C
01 12 12 1 1(0)

( )
4 2 ( )e

A
I C

A


         

 (155) 

(cf. eq 141).  Biexcitons are created too late to contribute to the dynamics; they only alter 

the effective cross-section of the exciton dynamics.  The net effect is to suppress the 

signal from the excitons.   

In many 1D experiments, the probe fluence is attenuated relative to the excitation 

fluence.  Equations 152 and 155 show that the saturation effects of the probe and 

excitation are quite similar in size.  If the excitation is attenuated sufficiently to avoid 

fluence effects, there is no fundamental need to attenuate the probe further than the 

excitation.  In our 1D experiments, the excitation and probe had the same fluences. 

chapter 4 of the paper normalized data at different fluences and extracted low-

fluence and fluence-induced components, (1)
10 ( )A   and (1)

11 ( )A  , respectively.  To 

calculate these quantities, all sources of signal, (1)
1A ( )A  , (1)

B 1( )A  , and (1)
1C ( )A  , must be 

added and the result normalized according to eq. 104 to give (1)
1( )A  .  This quantity is 
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truncated to first order in I and then divided into low-fluence and fluence-induced 

components   

 (1) (1) (1)12
1 1 12 10 1( ) ( ) 4 ( )

e

A A I A


   


   (156) 

The low-fluence component (1)
10 ( )A   is simply related to (1)

1A ( )A  , giving eq 112.  The 

result is the same as a calculation without fluence-induced terms.  All the terms 

containing the exciton decay are removed by the normalization, leaving the fluence-

induced component   

 12(1) 2
1 2 1 1 11

12

( ) ( ) ( )i eA e C C
  



 

 
  

 
 (157) 

with only biexciton decay C2′(τ1) and cross-relaxation 2
1 1( )C   terms.  Rewriting the 

cross-sections in terms of practical parameters gives eq 113.  Although the phenomena 

involved in the fluence-induced 1D experiments are familiar, we are not aware of a 

previous derivation that includes the complex cross-sections and phase effects needed to 

describe a heterodyned transient-grating experiment. 
5.2.3 Calculating 2D Fluence-Induced Signals.   

The fluence-dependence of the MUPPETS signal is calculated using the same approach 

used in section 5.2.2.  There are three places where an extra interaction can create 

additional absorbances: during the first excitation, 

 (2)
B 2 1 2 1 2 1 0 1 1( , ) [ | ( , ) ( , ) | 0 ]DA L t t t t     G T G T T  (158) 

during the second excitation,  

 (2)
2 1 2 1 2 2 1 0 1C ( , ) [ | ( , ) ( , ) | 0 ]DA L t t t t     G T T G T  (159) 

or during the detection 
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 (2)
D 2 1 3 2 1 2 1 0 1( , ) [ | ( , ) ( , ) | 0 ]DA L t t t t     T G T G T  (160) 

(cf. eq 140).  In our MUPPETS experiments, the probe pulse was attenuated by a factor 

of ten, primarily to simplify the current calculations by making (2)
D 2 1( , )A    small.  Thus, 

we will drop (2)
D 2 1( , )A    for the remainder of the paper, although it can be treated with 

similar methods. 

When the other two processes are expanded in pathways, we get 

      
(2)

13 ,B 2 1
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

 (161) 

and  

      
(2)

3 , 12 1C
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D T T m jl k
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 
     


 (162) 

(cf. eq 142).  The allowed pathways are illustrated in Figure 5.2B–C.  The k-vector 

degeneracies are still those for pairs of interactions, i.e., ε2 = 4.   

The full results are quite complicated, with eight pathways for (2)
B 2 1( , )A    and five 

for (2)
2 1C ( , )A   .  However, chapter 4 of the paper has already shown that cross-relaxation 

in our system is negligibly small.  Thus, we drop all pathways whose correlation function 

contains a 2
1G 
  term.  Only three pathways remain for (2)

B 2 1( , )A    (i, iii and viii) and for 

(2)
2 1C ( , )A    (i, iii and v).  They evaluate to 

 

 

 

 

(2)
23B 2 1

01 1 1 2 1(0)

12 12 01 2 1 2 1

2
12 12 2 2 2 1

( , )
4 2 ( , )

2 ( , )

( , )

e
A

I C
A

C

C

     

    

   

 

 

 

   

 




 (163) 

and 
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 (164) 

The first pair of terms in eqs 163 and 164 are the same.  They have the same shape as the 

low-fluence signal (eq 147 with cross-relaxation neglected), but the opposite sign.  These 

terms represent simple saturation of the signal size without a change in shape.  The last 

terms of both eqs 163 and 164 are due to the creation of extra biexcitons at high fluence.  

In particular, eq 163 contains a biexciton–biexciton correlation function C2′2′(τ2, τ1) that 

has not appear previously. 

For comparison to the experimental data, (2)
2 1A ( , )A   , (2)

B 2 1( , )A   , and (2)
2 1C ( , )A    

(eqs 147, 163, and 164) are summed and normalized to the exciton–exciton decay (eq. 

105) to give (2)
2 1( , )A   .  This expression is expanded in powers of I and truncated at 

first order to give 
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 (165) 

The expression for the low-fluence component (2)
2 10 ( , )A    has already been used to 

analyze data in chapter 4 (eq 121) and is no different than if the fluence dependent terms 

had been neglected from the start.  The normalization removes all the simple, size-

reducing contributions to the fluence-induced component (2)
2 11 ( , )A    and leaves only 

the last, shape-changing terms in eqs 163 and 164: 

  12(2) 1
2 1 2 2 2 1 2 1 2 11 2( , ) ( , ) ( , )iA e C C     

      (166) 
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5.2.4 Analyzing 2D Fluence-Induced Data.   

The MUPPETS data has a strong fluence dependence that changes the early, rising signal 

into a decay (Figure 4.8A–B).  This behavior can now be explained.  Focusing on the τ1 = 

0 cut through the data is sufficient.  Neglecting cross-relaxation and thermal effects and 

using our current notation, the τ1 = 0 low-fluence data should fit 
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( ,0) ( ) ( )
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A e C e C
 
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
 (167) 

(cf. eq 114).  The initial rise in the signal is due to the decay of the negative biexciton 

signal.  The same cut of the fluence-induced data has now been predicted to be (eq 166) 

 12(2)
2 2 21 ( ,0) ( )iA e C 

  (168) 

Comparing eqs 167 and 168, as the fluence is increased, the negative biexciton signal will 

be reduced, canceled and eventually replaced by a positive biexciton contribution.  This 

is exactly the pattern seen in Figure 4.8A–B, and these equations fit the data well using 

the parameters already determined in chapter 4.  Thus, the qualitative behavior of the 

MUPPETS at high fluence is explained. 

On a quantitative basis, the fluence-induced MUPPETS signal (eq 168) is predicted 

to be exactly the same as the fluence-induced 1D signal (eq 113, neglecting cross-

relaxation and thermal effects): 

 (2) (1)
2 21 1( ,0) ( )A A   (169) 

The comparison between MUPPETS and transient-grating data is shown in Figure 5.3.  

The two signals are identical, as predicted.  No new information is gained, but the 

agreement indicates that no unanticipated states, species or phenomena are accessed in 

the MUPPETS experiments under the current experimental conditions, even at the 

highest fluences. 
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Figure 5.3.  Fluence-induced component of the MUPPETS data at τ1 = 0, (2)
1 ( ,0)A   (blue, 

from Figure 4.8C–D) compared to the fluence-induced transient-grating data (1)
1 ( )A   

(red, from Figure 4.5C–D).  Both experiments are predicted to give the biexciton decay 
C2′(τ) and are in good agreement. 

Huxter and Scholes reported biexciton lifetimes of CdSe nanoparticles using a high-

order grating technique.67  Their technique is similar to MUPPETS with τ1 fixed to zero, 

and they also used band-edge excitation to avoid creating triexcitons.  They did not 

specifically comment on the fluence dependence of their results or the relative signs or 

amplitudes of the components assigned to excitons and biexcitons.   However, the results 

found here show that these factors have little effect on the time constants measured.  The 

biexciton decay is the only new component added, whether saturation occurs or does not.  

Expanding our scope to include τ2 > 0 brings the new biexciton–biexciton correlation 

function C2′2′(τ2, τ1) into play (eq 166).  The biexciton and exciton have already been 

shown to be uncorrelated, C2′1′(τ2, τ1) = C2′(τ2)C1′(τ1) (chapter 4, section 4.5), so the two 

limiting possibilities are that the biexciton dispersion is homogeneous, C2′2′(τ2, τ1) = 

C2′(τ2)C2′(τ1), and 

  12(2) 1
2 1 2 2 2 1 1 11 2( , ) ( ) ( ) ( )iA e C C C    

     (170) 

or the dispersion is heterogeneous, C2′2′(τ2, τ1) = C2′(τ2 +τ1), and 
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  12(2) 1
2 1 2 2 1 2 2 1 11 2( , ) ( ) ( ) ( )iA e C C C     

      (171) 

These two cases are only distinguishable when τ1 is near the biexciton half-life τb.  If τ1 

 τb, then eq 168 holds.  On the other hand, if τ1  τb, then 2 2 2 1( , ) 0C     , and eq 166 

reduces to 

 12(2) 1
2 1 2 1 2 1 11 2

( , ) ( , );i
bA e C     

    (172) 

Either limit is insensitive to the heterogeneity of the rate dispersion. 

Our data are shown in Figure 5.4A.  No change in shape with τ1 is evident, a result 

that is consistent with eq 170.  However, only the data set with τ1 = 10 ps is in the 

sensitive range, and the biexciton–biexciton correlation is diluted by averaging with the 

biexciton–exciton correlation function (eq 166).   

To judge the expected effects, calculations for the data assuming biexciton 

heterogeneity (eq 171) and the 1D functions measured in chapter 4 are shown in Figure 

5.4B.  If the biexciton relaxation were homogeneous (eq 170), all the curves in this figure 

would be identical.  With an assumption of heterogeneity, there is a difference, and it is 

largest for τ1 = 10 ps, as expected.  However, the effect is quite small, and the current 

data cannot comment on the heterogeneity of the biexciton decay.  Although we do not 

gain any new information from Figure 5.4, it does further confirms the completeness of 

the theory. 
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Figure 5.4.  Fluence-induced component of the MUPPETS data at various values of τ1.  

These data are governed by biexciton dynamics.  (A) Magnitude of (2)
2 11 ( , )A   .  (The 

phases given in the Supporting Information.)  (B) Calculations corresponding to (A) with 
the assumption of a heterogeneous biexciton decay.  A homogeneous decay would give 
identical curves.  The experiments are consistent with theory, but must be redesigned to 
extract meaningful new information. 

Although this data set is not ideal for measuring biexciton–biexciton heterogeneity, 

these calculations show how the measurements could be improved.  More data should be 

taken over the range of τ1 corresponding to the biexciton decay.  In addition, the fluence 

of the second excitation should be kept low and only the fluence of the first should be 

increased.  In this case, the set of pathways in Figure 5.2C, which contribute C2′1′(τ2, τ1) 

to eq 166, would be eliminated, and only those in Figure 5.2B, which create C2′2′(τ2, τ1), 

would be retained. 
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 THERMAL EFFECTS: THEORY 5.3

The analysis of in chapter 4 of the paper ignored any signal from heating of the solvent, 

but in principle, all of the transient-grating and MUPPETS measurements at long times 

could be perturbed by  thermal effects.  Some measurements (e.g., Figure 4.9B) appear to 

have a thermal signal; others are more ambiguous.  This section develops the theory, 

methods and analysis needed to quantify the thermal effects in all these measurements. 

Methods to extend the pathway formalism to thermal signals have been developed 

for two-level systems18 and also for excitonic systems.66  These methods and notation are 

reviewed in subsection 5.3.1 to set-up the calculations in subsection 5.3.2, the extension 

to fluence-induced data in subsection 5.3.3 and the comparison to data in section 5.4.   
5.3.1 Including Thermal Signals in Pathways.   

The calculations are greatly simplified by the linearity of the solvent thermal 

response.  As a result, only heat generated in the final time period is detectable.18  The 

generalized absorbance due to thermal effects  is calculated from66 
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
G T G T  (173) 

and adds to the fully resonant absorbance (eq 131).  The solute time evolution between 

times tN-1 (the time of the final excitation) and tN (the time of the probe) G(tN, tN-1) is 

replaced by a product of the thermal-response function Cε(τN ) and the thermal yield 

Gε(¼Γ+tN-1, tN-1).  The operator Gε(t1, t0) measures the total amount of heat deposited in 

the solvent at time t1 from electronic states populated at time t0.    

The thermal-response function Cε(τN ) gives the change in index-of-refraction of the 

solvent at time τN due to heat deposited at time zero.  It consists of a purely thermal 

component, which decays slowly on our timescale, and an acoustic component with a 

period Γ.  Over short times, it is sufficient to use the simple approximation18  

( )
1( , , )N

NA  
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 ( ) 1 cos( / )N NC      (174) 

The acoustic period is calculated from the experimental geometry and the speed-of-sound 

of the solvent.  In our system, ¼Γ = 1.27 ns.  Thus the biexciton decay is nearly 

instantaneous compared to the thermal response, but the exciton decay is not. 

Equation 173 makes the approximation that any heat deposition before ¼Γ (half way 

to the first maximum) is instantaneous and any heat deposited after ¼Γ has no effect.  

This approximation is reasonable for the CdSe/Zn exciton decay, which has significant 

components before and after ¼Γ, but only a small decay in the region near ¼Γ.  Under 

this approximation, Gε(¼Γ+tN-1, tN-1) does not contribute to the time evolution of the 

signal, and convolutions are avoided. 

In eq 173, the states describing the system must be expanded to |P nε].  The 

electronic state of the solute is P, as before.  The added variable nε measures the change 

in solvent energy as the number of excitation photons of frequency ω that are converted 

to heat per solute.66  Because thermal effects are only created over the last time period, 

the variable nε can be suppressed during earlier periods (see, for example, Figures 5.5 and 

5.6). 

The other new element in eq 173 is the thermal-detection vector [σε|.
66  It has 

components 

   02
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       (175) 

where i is the solute electronic state in the exciton basis set.  It is purely imaginary, as 

expected for a nonresonant process.  The magnitude of the thermal signal is determined 

by the thermal cross-section σε′′, which is defined by 
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where ns is the solvent index-of-refraction, and ρs is the solvent density.  Although σε′′ is 

a property of the solvent, it has the units of a cross-section and plays a role analogous to a 

solute absorption cross-section.   

Equation 173 can be expanded into pathways by inserting sets of states between the 

operators.  The result is 
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(cf. eqs 137 and 138).  Where double indices occur, the first refers to the solute electronic 

state and the second to the solvent energy.   

In the exciton basis set, the selection rules on   1 0( , )
mp
nq

G t t  are quite restrictive.  

The only nonzero elements are  

    1 0 11
1 0 1 1 00 1

( , ) 1 ( , )
2

Q
G t t G t t

 
   . (178) 

and 

    2 0 2 22 1
1 0 2 1 0 1 1 00 1

( , ) 1 ( , ) ( , )
2 2

Q Q
G t t G t t G t t

  
     . (179) 

In our model, we have allowed for the possibility that the exciton or biexciton may decay 

to a high energy “trap” state, and thus, does not release heat to the solvent.  The fraction 

of the energy released as heat is Q1 or Q2 for the exciton or biexciton respectively.  The 

derivation of eqs 178 and 179 is given in the Supporting Information.   
5.3.2 Calculating Low-Fluence Thermal Signals.   

The sequence of operators that creates the low-fluence, 1D thermal absorbance is 
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1 1 0 0 1A ( ) [ | ( ) (?, ) | ]A L C t t eq         G T  (180) 

There is only one allowed pathway (Figure 5.5A) just as there is only one low-fluence, 

fully resonant pathway (Figure 5.1A and eq 139).  This pathway gives a contribution to 

the absorption of 
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 (181) 

(c.f. eq 146).   

 

Figure 5.5.  Pathways used to calculate the thermal signal in 1D (pump–probe and 
transient-grating) experiments, including the fluence dependence.  The format is 
explained in the Figure 5.1 caption.  The time dependence (blue) is governed by the 
solvent thermal-response operator Cε.  The yield of solvent energy is given by Gε.   The 
relative weights (left) are shown here for the simple case σε′′ =  1 and Gε = 1.  The indices 
on each pathway (right) indicate the corresponding resonant pathways in Figure 5.1.  The 
later states |P nε] are expanded to include the number of photons converted to solvent heat 
nε.  (A) Pathways with no fluence dependence.  (B) Pathways with fluence dependence 
due to two interactions with the excitation pulses.  (C) Pathways with fluence dependence 
due to two interactions with the detection pulses.   
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Figure 5.6.  Pathways used to calculate the thermal signal in 2D (MUPPETS) 
experiments.  The format is explained in the captions to Figures 5.1 and 5.5.  The indices 
on each pathway indicate the corresponding resonant pathways in Figure 5.2.  (A) 
Pathways with no fluence dependence.  (B) Pathways with fluence dependence due to 
two interactions with the excitation pulses.  (C) Pathways with fluence dependence due to 
two interactions with the detection pulses.   

The sequence of operators  that creates the low-fluence, 2D thermal absorbance is 

 

(2)
2 1 2 1 1 2A

1 0 1

( , ) [ | ( ) (? ,

( , ) | ]

A L C t t

t t eq
        



G T

G T  (182) 

It is expanded to two pathways in Figure 5.6A, whereas the corresponding fully resonant 

signal (2)
2 1A ( , )A    has three pathways (Figure 5.2A).  However, eq 179 has two terms 

for the detection of the biexciton state, the first associated with diagonal biexciton decay 

and the second with cross-relaxation.  When the thermal pathways are evaluated, they 

give three terms, 
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An important result of this calculation is that for each resonant pathways in Figure 

5.2A there is a corresponding thermal term in eq 183.  During τ2, the first terms in both 

eqs 147 and 183 concern exciton dynamics, the second terms involve cross-relaxation, 

and the last terms deal with biexciton dynamics.  The correspondence between resonant 

and thermal pathways is indicated in Figures 5.5 and 5.6 by labeling with the 

corresponding indices from Figures 5.1 and 5.2. 
5.3.3 Calculating Fluence-Induced Thermal Signals.   

Following the methods of section 5.2, the calculation of thermal effects can by extended 

to the first-order, fluence-induced signals.  In 1D, the first excitation can have a double 

interaction, leading to a thermal contribution to the absorbance  

 (1)
B 1 1 0 0 1 1( ) [ | ( ) (?, ) | ]A L C t t eq         G T T  (184) 

This term expands into two pathways (Figure 5.5B).  Evaluating those pathways leads to 

three terms in the thermal absorbance 
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A factor of ε2 = 4 to account for phase-matching degeneracy is included in eq 185 and in 

the weights given in Figures 5.5 and 5.6. These three terms are in one-to-one 

correspondence with the corresponding resonant absorbance (eq 152).  Because the 

thermal-grating signal requires time to develop, there is no effect from two interactions 

with the detection pulses, i.e., no analog of the pathways in Figure 5.5C.   
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A similar approach in 2D generates signals due to double interaction of the first 

pulse  

 (2)
B 2 1 2 2 1 0 1 1( , ) [ | ( ) ( ,  ) | ]A L C t t eq        G T G T T  (186) 

or with the second pulse 

 (2)
2 1 2 2 2 1 0 1C ( , ) [ | ( ) ( ,  ) | ]A L C t t eq        G T T G T  (187) 

These correspond to the expressions for saturation of the 2D resonant signal (2)
B 2 1( , )A    

and (2)
2 1C ( , )A    (eqs 158 and 159).  Expansion of eqs 186 and 187 leads to the pathways 

shown in Figure 5.6B and 5.6C, respectively.  The number of terms is large, so we make 

a detailed evaluation in limits that apply to our system: any term involving cross-

relaxation is dropped, and the biexciton relaxation is fast relative to Γ.  Evaluating them 

gives 

    

   

   

(2)
3B 2 1

2(0)

2
01 1 1 1 1 1 1

12 01 2 1 1 2 1 1

2
12 2 2 1 2 2 1

( , )
4 ( )

2 ( ) (? , )

2 ( ) (? ,

( ) (?, )

A
i I C

A

Q C C

Q C C

Q C C


 

   

  

   

  

  

  

  




   
   

  


 (188) 

which is based on pathways i, iii, and viii, and 
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which is based on pathways i, iii, and v. 
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 THERMAL EFFECTS: COMPARISON TO DATA 5.4

5.4.1 Including Thermal Signals in the Fit-Free Analysis.   

Chapter 4 of this paper drew a number of conclusions based on direct comparisons 

between different sets of data, without any fitting required.108  In this section, we examine 

whether including thermal effects changes the validity of those comparisons.  The 

analysis is aided by following the correspondence between fully resonant and thermal 

terms.  

We first consider the comparison of MUPPETS decay slices in τ2 at different values 

of τ1 (Figure 4.10).  The discussion is simplified by introducing three functions that 

represent the size of the thermal effects associated with the three resonant MUPPETS 

pathways: 
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and 
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The first function d1′1′(τ1) is associated with the exciton–exciton pathway (Figures 5.2A.i 

and 4.2A), the second 2
1 1d 
  (τ1) is associated with the cross-relaxation (Figures 5.2A.ii and 

4.2B), and the third d2′1′(τ1) is associated with the exciton–biexciton pathway (Figures 

5.2I.iii and 4.2C).   

After the fully resonant (eq 147) and thermal signals (eq 182) are added, the total is 

normalized (eq 105), and the low-fluence component is taken (eq 165), the result is  
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Each resonant term (the first term within each set of parentheses) has an associate thermal 

term (the second term in each set of parentheses) with a similar size and sign.  The 

thermal cross-relaxation 2
1 1 1( )d 
   will be small whenever the resonant cross-relaxation 

2
1 1 2 1( , )C  
   is small (eq 191).  (The 2

1 (0)C 
  = 0 term is only included to show 

symmetry.)  Also, the signs of the exciton–exciton and exciton–biexciton thermal terms, 

d1′1′(τ1) and d2′1′(τ1) respectively, have opposite signs, just as the resonant terms do. 

The thermal terms in eq 193 are always separable in τ1 and τ2.  In general, this result 

will complicate the interpretation of the MUPPETS data, because in many models (for 

example, Figure 4.11B–D), the resonant terms are not separable.  In those cases, detailed 

modeling of the thermal effects is necessary to correctly interpret the data.   

However, in one case, when the exciton decay is homogeneous and the biexciton 

decay is uncorrelated with the exciton decay (see Figure 4.11A), the resonant terms are 

separable in τ1 and τ2, and thus, the total signal is as well.  In this case, the slices along τ2 

of the MUPPETS data at different values of τ1 have identical shapes.  Thus Figure 4.10 

remains a valid, fit-free test for this model, regardless of the size of any thermal effects.  

The conclusions of chapter 4 are unchanged. 

Section 4.4 in chapter 4 showed that important conclusions can be obtained from the 

τ1 = 0 cut of the MUPPETS data by itself.  To discuss this case, three constants, d1′, 
2
1d 
  

and d2′, are defined as the τ1 = 0 limits of the three functions in eqs 190–192: 

 (0)j j
i id d  (194) 
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They are also be associated with 1D exciton, cross-relaxation and biexciton pathways 

(Figure 5.2A.i–iii, respectively).  With these definitions, the τ1 = 0 slice of the MUPPETS 

signal (eq 193) becomes 
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For comparison, the 1D, low-fluence absorbance is derived from eqs 146, 181, I.104 

and 156: 

 (1)
1 1 1 1 10 ( ) ( ) ( )eiA e C id C  

    (196) 

In both eqs 195 and 196, the correspondence between resonant and thermal terms is 

maintained.  The low-fluence, 1D signal (eq 196) isolates both the resonant and thermal 

effects of exciton decay.  In the MUPPETS signal (eq 195), the thermal effects of exciton 

and biexciton decay cancel as the resonant signals do.  As a result, the thermal signal is 

smaller MUPPETS than in 1D measurements.   

We next look at the biexciton signal Ab(τ), which is extracted as the difference 

between the low-fluence 1D signal and the τ1 = 0 slice of the MUPPETS data 
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 (197) 

(cf eq 115).  In section 4.2 of chapter 4, the biexciton signal was interpreted as isolating 

the biexciton decay from the exciton decay, including the exciton decay of photoproducts.  

A small cross-relaxation term also contributes (see eq 116).  When thermal effects are 

included by putting eqs 196 and 195 into eq 197, the correspondence between resonant 

and thermal terms is maintained: 
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Equation 198 extends the interpretation given in chapter 4.  The biexciton signal also 

isolates the component of the thermal signal that is attributable to the biexciton decay d2′.  

The small cross-relaxation term also brings along its small thermal signal 2
1d 
 .  The 

exciton thermal effects are eliminated along with its resonant signal. 

Chapter 4 directly compared the biexciton signal Ab(τ) to the fluence-induced 

component of the 1D signal (1)
1 ( )A   (Figure 4.9B).  How this comparison survives the 

addition of thermal effects depends on the energy of the probe pulses.  If the probe pulses 

are substantially weaker than the excitation pulses, the pathways in Figure 5.1C can be 

neglected.  Adding the absorbances due to the remaining pathways (Figures 5.1A–B and 

5.5A–B),  normalizing (eq 104), and taking the linear, fluence-induced term (eq 156) 

gives  
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The correspondence between resonant and thermal terms still holds.  In the absence of 

photoproducts,  Ab(τ)  = (1)
1 ( )A  . 

However, the experiments in chapter 4 were done with  the probe-pulse fluence 

equal to that of the excitation pulses.  This condition does not alter the low-fluence signal, 

even with the thermal signal included (eq 196).  However, it adds the pathways in Figure 

5.1C to the fluence-induced signal.  Recalculating eq 199 with these terms included gives 
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The last set of terms in parentheses is new.  These terms do not change the shapes of 

either the resonant or thermal signals.  However, they do perturb the ratio of resonant- to 

thermal-signal sizes.  Part of the biexciton decay is paired with a thermal effect due to 

excitons: the strict correspondence between resonant and thermal terms is lost.  It is lost 

because resonant detection is subject to saturation, whereas the nonresonant detection of 

thermal effects is not.   

Fortunately, in our system the timescales of the biexciton decay and the thermal 

signal are distinct.  The direct comparison of Ab(τ)  and (1)
1 ( )A  , as in Figure 4.9B, is still 

valid at times before the thermal signal rises (< 300 ps).  At later times, the sizes of the 

thermals signals may not be identical.  In well characterized system, eq 200 allows this 

effect to be calculated.  However, using low energy probe pulses in the 1D measurements 

would have allowed direct comparison of the two results without calculations.  
5.4.2 Measuring the Thermal Cross-Section.   

Further analysis of the thermal contributions to the data requires fitting to detailed 

models.  The shape of the thermal response under a wide range of conditions has been 

discussed previously.116-118  Here, a simple short-time approximation (eq 174) will be 

sufficient.  The acoustic period, Γ = 5.08 ns, is known from the speed of sound in 

toluene119 and the angle between zero- and first-order diffraction, α = 2.28º.18  However, 

it is not practical to accurately predict the absolute size of the thermal response in the face 

of numerous experimental imperfections.  Fortunately, the results of section 5.3 allow 

calibration of the relative thermal cross-section σε′′/|σe| from the data already used to 

calibrate the phase of our signals (Figure 4.4). 
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Figure 5.7.  Calibration of the thermal cross-section with an external standard.  The 
magnitude of the transient-grating signal A(1)(τ1) of azulene in toluene (blue) and 
CdSe/ZnS in toluene (red) were measured contemporaneously and with the same 
excitation energy (10.6 nJ/pulse) (from Figure 4.4).  The parameters T, E and B are 
determined from global fits, but the labels indicate the regions that most clearly 
determine their values.  The fit of late azulene data to eq 201 (black circles) yields the 
thermal amplitude T.   The fit of CdSe/ZnS data to eq 202 (black triangles) yields the 
exciton amplitude E.  The difference between the initial data and EC1’(τ1) (black solid 
curve) yields the biexciton amplitude B.  These three fit parameters are sufficient to 
determine the ratio of thermal and resonant cross-sections (eq 203). 

Those data are repeated in Figure 5.7.  It consists of transient-grating results from 

CdSe/ZnS nanoparticles and azulene, each in toluene, taken on the same day with no 

changes to the apparatus.  In this analysis of the data, the focus is on the magnitudes of 

the absorbances, (1)
az 1( )A   and (1)

1CdSe ( )A   for azulene and CdSe/ZnS, respectively, 

rather than on their phases.  The data for azulene (blue) has a resonant component only 

before 10 ps, because of the rapid decay of the excited state.48, 98  After this time, the 

signal is only due to thermal effects, and the data are described by  
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(eq 181 with Q1 = 1 and C1′(¼Γ) = 0).  Using eq 174 for Cε(τ1), the thermal amplitude T 

is fit.   
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The CdSe/ZnS data before thermal effects (<300 ps) and neglecting cross-relaxation 

is described by  
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(eqs 146, 152 and 155).  Because CdSe has a larger absorption cross-section than azulene, 

we had to use a pulse energy that created some biexcitons in the CdSe sample to get a 

strong signal from the azulene solution.  Thus, eq 202 contains terms for both saturation 

of the exciton and formation of the biexciton.  The data is fit using the forms for C1′(τ1) 

and C2′(τ1) found in chapter 4 (eqs I.106 and I.107)  The exciton magnitude E is well 

determined by the data near 300 ps, after C2′(τ1) has fully decayed and before any 

potential thermal effects begin.  The number of biexcitons is measured by B.  It is 

determined primarily by the increase of the initial signal size over that expected from E.  

Using eqs 201 and 202, one can solve for the ratio of thermal and exciton cross-sections 

in terms of the fitting parameters 
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This measurement is robust.  The pulse energies and various instrumental factors 

cancel in taking the ratio of the two measurements.  Only the static absorbances A′(0) of 

the two samples are needed to match their properties.  Knowledge of the cross-sections in 

the system is only needed to calculate the small deviation from one of the factor in 

parentheses.   
5.4.3 Modeling Thermal Effects in the Data.   

A notable result from chapter 4 is that good fits to the data were possible without 

including thermal effects.  The absence of thermal effects could imply that the exciton 
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and biexciton decay to relatively high energy trap states without releasing heat.  Such a 

conclusion requires a comparison of the size of predicted effects to the error level of the 

data.  We will show that the thermal signals should exceed the random noise of the 

experiment, but that systematic errors prevent a firm conclusion. 

 

Figure 5.8.  Comparison of the calculated biexciton thermal signal with Q2 = 1 (black) to 

various measurements.  (A) The fluence-induced transient-grating magnitude (1)
1 ( )A   

(blue, from Figure 4.5C) does not show a thermal signal at long times.    (B) The 
biexciton signal derived from MUPPETS measurements changes with the 1D decay used 
in the calculation.  Using transient-grating data (red, same as Figure 4.9B) is consistent 
with a strong thermal signal.  Using the pump–probe-based model of chapter 4 (green) is 
not. 

The absence of a thermal signal is clearest in the fluence-induced transient-grating 

data (1)
1 ( )A   (Figure 5.8A).  According to eq 200, the biexciton decay at short time 

should be accompanied by a long-time signal from the heat released by the biexciton 

decay.  However, the data show no signal at long time.  Figure 5.8A also shows the 

predicted thermal signal (eq 200) if Q2 = 1, i.e., if all the biexciton energy were released 
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as heat.  Although the predicted size is smaller than the resonant signal, it should be 

visible above the experimental noise.  These data imply that Q2  0. 

In contrast, the biexciton signal Ab(τ), shown previously in Figure 4.9B and repeated 

in Figure 5.8B (red), does show a pronounced long time signal.  Calculations with Q2 = 1 

(eq 198) are consistent with its size and shape.  (The calculations for Ab(τ) and (1)
1 ( )A   

are different due to probe saturation.  This effect is not sufficient to explain the difference 

between these data sets.)   

That biexciton signal was calculated by using the transient-grating data to represent 

(1)
0 ( )A   in eq 197.  It is also possible to use the model for C1′(τ) defined in section 4.3.2 

of chapter 4.  This calculation yields the green data in Figure 5.8B.  In this version of the 

biexciton signal, the thermal signal is missing, again suggesting Q2  0. 

 

Figure 5.9.  Comparison of low-fluence 1D measurements: real pump–probe (green, from 
Figure 4.6B) and complex transient-grating (blue, from Figure 4.5C–D) data.  The 
transient-grating magnitude can be accounted for by adding an imaginary, thermal 
component to the pump–probe results (black curves), but in that case, the phase of the 
transient-grating should not be constant. 

The difficulty in measuring the heat yield from the biexciton decay Q2 is mirrored by 

a difficulty in measuring the heat yield from the exciton decay Q1.  Both problems 

originate in a discrepancy between the pump–probe and transient-grating data at long 

times.  These two 1D data sets are compared in Figure 5.9.  The pump–probe 
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measurement should be the real part of the complex transient-grating signal.  The pump–

probe data and the transient-grating magnitude are the same at early times, and the 

transient-grating phase is constant.  These early data are consistent with each other.  At 

long times, the pump–probe data and the transient-grating magnitude diverge.  This 

difference could be accounted for by including an imaginary thermal signal, which would 

only affect the transient-grating data.  A calculation using the pump–probe fit (eq 106) 

for C1′(τ1) and Q1 = 1 for the thermal effect (eq 196) is shown, and it matches the 

transient-grating magnitude quite well.  Unfortunately, the thermal-grating phase is 

constant at long times, which is inconsistent with a significant, imaginary thermal 

contribution, as shown in Figure 5.9.  Thus, the transient-grating phase implies Q1 = 0, 

whereas the comparison of pump–probe and transient-grating magnitudes suggest Q1 = 1.  

The ambiguity in the 1D data also translates into the calculation of the biexciton signal 

(Figure 5.8) and thus into determining the thermal yield from the biexciton Q2. 

The last set of data to consider is the MUPPETS data by itself.  As argued above, the 

qualitative interpretation of the MUPPETS data (e.g., Figure 4.10 ) is independent of the 

size of the thermal contribution.  However, quantitative modeling depends on the 1D 

response, including its thermal component.  In chapter 4, a hybrid model was used to fit 

the MUPPETS data: the magnitude of C1′(τ1) was taken from the pump–probe fit, but the 

phase was taken as a constant, as given by the transient-grating experiments.  The 

constant-phase assumption  correctly accounts for the MUPEPTS phase and magnitude 

(Figure 4.11).  The lack of a thermal contribution to the MUPPETS phase means that 2Q1 

= Q2 and implies that Q1 < 0.5, at least. 

It is also possible to model the MUPPETS data using Q2 = 1 along with the model in 

Figure 5.9 that reconciles the pump–probe and transient-grating magnitude (Q1 = 1).  The 

magnitude of the MUPPETS data can be fit correctly this way, but the predicted phase is 

no longer correct (not shown), as with the 1D data in Figure 5.9.   
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In conclusion, the discrepancy between pump–probe and transient-grating data is not 

large enough to affect any of the conclusions about the exciton and biexciton conclusion 

in chapter 4.  However, they create enough uncertainty to prevent a conclusion regarding 

the role of trap states in the decay.  

  The inconsistency between pump-probe and transient-grating measurements 

persisted despite repeated measurements of both.  It must be attributed to an unresolved 

instrumental error.  We point out that this problem would not be noticed without a 

complete measurement of both pump–probe and phase-resolved transient-grating data 

with calibrated, absolute phases.  These measurement may appear to be redundant, but 

their comparison is an important control for systematic errors.   

 SUMMARY  5.5

This paper has looked at secondary processes that have the potential to interfere with the 

interpretation of MUPPETS experiments, specifically saturation and solvent heating.  It 

serves three different ends: it derives the theory needed to calculate these effects, it shows 

that these effects do not alter the conclusions of chapter 4 of the paper,108 and it provides 

a specific example of these effects to aid in designing and analyzing future experiments. 

The incoherent-pathway formalism16, 17 has been extended to allow a systematic 

calculation of fluence-induced effects, thermal effects and even fluence-induced thermal 

effects in MUPPETS experiments.   Although these processes are well understood in 1D 

experiments, the methods presented here provide a convenient method for calculating 

them.  It is particularly useful in heterodyned experiments on multilevel systems, where 

multiple transitions with different phases must be considered.   

In contrast, the calculation of fluence-induced effects in MUPPETS is new.  The 

change in sign of the biexciton signal with increasing fluence was satisfactorily 

explained.  The ability to quantitatively model this χ(7) experiment increases our 

confidence that our model for CdSe is complete and that no unexpected species, such as 
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triexcitons or photoproducts, occur under our conditions.  In general, understanding 

fluence-induced effects is important in high order spectroscopies such as MUPPETS, as 

high fluences are often needed to obtain sufficient signal size. 

A new correlation function C2′2′(τ2, τ1), which has information on the heterogeneity 

of the biexciton decay, is accessible, in principle, by deliberately creating and measuring 

a fluence-induced signal.  Although the current data set addresses this point poorly, the 

theory suggests methods for improving the experimental design to address this quantity. 

In the calculations, processes detected through solvent heating were placed on the 

same footing as resonantly detected processes.  This approach led to a robust method of 

predicting the size of thermal signals using an external standard.  In principle, this 

method can lead to the identification of spectroscopically dark, trap states.  The low ratio 

of thermal to resonant cross-sections in this system along with small inconsistencies in 

the 1D data undermined this approach here.  However, the obstacles that must be 

overcome are now well defined. 
Overall, none of the interpretations of chapter 4 are altered by these effects.  For example, 

the comparison of 1D and MUPPETS data to separate exciton and biexciton dynamics is 

still valid, if we understand these dynamics to include the thermal effects attributable to 

relaxation across each transition.   However, in many cases thermal effects were 

unimportant only because of specific features of the nanoparticle system studied.  For 

example, the MUPPETS modeling is unaffected by thermal effects only because there is 

no evidence for exciton heterogeneity or exciton–biexciton correlation.  More generally, 

modeling of thermal effects is important for the quantitative interpretation of MUPPETS 

results.  This paper makes that modeling possible.
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CHAPTER 6 TWO-DIMENSIONAL ANISOTROPY 

MEASUREMENTS SHOWING LOCAL HETEROGENEITY IN A 

POLYMER MELT 

In low viscosity, small-molecule solvents, the anisotropy decay of a solute is usually 

exponential and yields a well-defined rotation rate.120, 121 In complex fluids, including 

polymer melts, the anisotropy decay of a small solute is nonexponential, and the rotation 

rates are dispersed.122-132 Standard, one-dimensional (1D) experiments are silent on 

whether or not this rate dispersion is due to heterogeneity or anisotropy in the local 

structure of the solvent. We have developed two-dimensional (2D) methods that 

distinguish between heterogeneous and homogeneous causes of rate dispersion, and we 

have called them MUPPETS (multiple population-period transient spectroscopy).11, 13, 16, 

17, 21  Up to this time, they have been limited to measuring electronic-state decay. This 

Letter demonstrates a polarized version of MUPPETS that measures heterogeneity in 

anisotropy decays and applies this new method to the problem of small-molecule rotation 

in a polymer melt. 

The rotation of solutes in small-molecule solvents has been extensively studied by 

polarized 1D spectroscopies, such as pump–probe or time-resolved fluorescence.120, 133 

These experiments have a single excitation and a single period of evolution before the 

final signal detection. The change in absorbance A
(1)

(τ1; θ) is measured at a time delay τ1 

between the excitation and detection pulses and with an angle θ between their linear 

polarizations. The standard, 1D anisotropy decay r
(1)

(τ1) is defined by 
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Theory relates this quantity to the ratio of two correlation functions.  In our notation, 

these two are C
{2}

(τ1), which measures the product of the excited-state population and the 

second Legendre polynomial P2(x) of the cosine of the angle change of the transition 

dipole Ω(τ1), and C
{0}

(τ1), which measures the excited-state population free of rotational 

dynamics (the 0th Legendre polynomial of the angle change). Thus,  
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If rotation and electronic-state decay are independent, the latter cancels in the ratio, 

leaving only the rotational dynamics shown on the right-hand side of eq 205. 

In small-molecule solvents, hydrodynamic descriptions of solute rotation work 

well.120, 121 The rotation is diffusive, and the associated friction is proportional to the 

macroscopic viscosity. Hydrodynamic models allow for a multiexponential decay of an 

anisotropic solute, but in practice, deviations from exponential decay are often hard to see 

in simple solvents. As the solvent molecules become longer, the anisotropy decay can 

become nonexponential, i.e., dispersed. The shape of the decay changes as the solvent 

changes, a result incompatible with simple hydrodynamic models. Extending anisotropy 

measurements to 2D—two excitation pulses and two periods of evolution—will yield 

information on the cause of this dispersion. 

Other complex fluids and other processes also show rate dispersion. Ediger used 

photobleaching to explore rotational-rate heterogeneity on the seconds timescale close to 

the glass transition.134 On shorter timescales, Yang and Richert used temperature 
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dependent fluorescence linewidths to show that heterogeneity in solvation rates exists in a 

supercooled liquid (1.15–1.4 Tg) in the 1–10 ns time window.135  Heterogeneity in the 

rate of isomerization in ionic liquids has been inferred from the excitation-wavelength 

dependence of fluorescence lifetimes and spectra.136-138  In an ionic liquid, Fruchey and 

Fayer used rotational measurements to show that two different solutes have different 

local environments.139  In comparison to these methods, a full 2D measurement allows 

not just the detection of heterogeneity, but a quantitative assessment of the relative 

contributions of heterogeneous and homogeneous mechanisms to the total dispersion.  

We previously studied the 1D anisotropy decay of anthracene in solvents whose chain 

length ranged between the small-molecule and high polymer limits.128, 129 As the solvent 

molecules lengthen, the solvent’s viscosity increases dramatically. However, once the 

solvent length exceeds the solute length, the rotational friction decouples from the 

viscosity. We also found a transition from exponential to nonexponential decay that 

occurs when the polymer becomes more than ~4 monomers long. The shape of the decay 

is then constant as the polymer lengthens further. Other observations of nonexponential 

rotation fit into this scheme.123-127  
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Figure 6.1. 1D measurements of PM597 rotation in toluene and in polymer melts 
(PDMS) of varying chain length, all at 25 °C. (a) Optical anisotropy decays, 
r

(1)
(τ

1
)/r

(1)
(0), (solid curves) and stretched-exponential (exp[−(τ

1
/T)β]) fits (points). (b) Fit 

parameters from (a) versus macroscopic viscosity η. The rotation time T falls below the 
linear dependence (red line) of hydrodynamic models. Dispersion appears and saturates 
as the polymer chain length and viscosity grow.  Error estimates fall within the symbols. 
The blue curve is a guide to the eye showing the trend found in Refs. 9,10.  Inset: 
pyrromethene 597 (PM597). 

Figure 1 briefly confirms that the general phenomena found in Refs. 9,10 also apply 

to the specific system studied here: pyrromethene 597 (PM597) in 

poly(dimethylsiloxane) (PDMS). Figure 1a shows 1D anisotropy decays (SI), and Figure 

1b shows the results of stretched-exponential fits. The rotation time is nearly linear with 

viscosity for the three smaller solvents, but for the largest, the rotation time no longer 

increases with the viscosity. In toluene, the decay is well fit by a single exponential (β = 

1), showing that the anisotropy of PM597 is minimal.  However  in the polymer samples, 

rate dispersion appears (β < 1) due to solvent interactions.  
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Two explanations for the rate dispersion are possible. One is development of 

microheterogeneity.134, 140, 141 The polymer structure around different solute molecules 

varies significantly and exerts different levels of rotational friction. In this case, the 

anisotropy decay of each individual solute molecule is exponential, but averaging over 

the ensemble of different rates yields a nonexponential decay. 

Alternatively, the solvent may develop an anisotropic local structure as its molecules 

lengthen and, as a result, develop an anisotropic rotational-friction tensor.122, 124-127 In one 

such picture, the solute “wobbles” rapidly over a limited cone of angles around a local 

director determined by the solvent, causing partial decay of the anisotropy.142 On a longer 

timescale, the director reorients, completing the anisotropy decay. The combination of 

these two processes, one fast and one slow, causes the observed rate dispersion. This 

mechanism is homogeneous. Every solute molecule undergoes the same two phases of 

relaxation and has an identical, but nonexponential, anisotropy decay.  

One-dimensional experiments cannot distinguish between homogeneous and 

heterogeneous causes of rate dispersion, but 2D methods can. The 2D MUPPETS 

experiment (Figure 2) uses six, femtosecond optical pulses organized in three 

simultaneous pairs.21 The first pair (1a and 1b) excites the entire ensemble in a spatial 

grating. During the first evolution period τ1, the fast subensembles decay. A second pair 

of pulses (2a and 2b) attempts to create a second grating, but its formation is perturbed by 

the grating of surviving molecules. Signal detection is by heterodyned diffraction from 
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Figure 6.2. Schematic of the set-up that generates the 6-pulse MUPPETS sequence. Three 
input pulses (1–3, green) with time delays τ1 and τ2 have their polarization adjusted by 
waveplates (WP) before they are split into simultaneous pairs (a and b) by transmission 
grating G2. The beams are refocused in the sample S (orange). The two polarization 
conditions used to measure the 2D anisotropy r(2)(τ

2
, τ

1
) are shown in the cross sections at 

the top. 

the resulting spatial pattern by the third pulse-pair (3a and 3b). The phase-matching 

conditions are selected to create a double-difference measurement that isolates the decay 

during τ2 of molecules that survive τ1, i.e., the decay of slowly relaxing molecules. By 

varying τ1, the distribution of rate heterogeneity is mapped out. In the absence of distinct 

rate subensembles, the value of τ1 has no effect on the decay during τ2. 

We previously analyzed rotational dynamics in MUPPETS using irreducible-tensor 

methods.16, 17 Four irreducible correlation functions C
{ℓ2,ℓ1}

(τ2, τ1) occur, differing by 

whether rotation does (ℓn = 2) or does not (ℓn = 0) affect the decay during each evolution 

period τn. The 2D anisotropy r
(2)

(τ2, τ1) that measures rotational-rate heterogeneity is 
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(cf. eq 205). The other two correlation functions, C
{2,0}

(τ2, τ1) and C
{0,2}

(τ2, τ1), measure 

correlations between electronic and orientational relaxation and are not relevant here. In 

one limit, the rotational-rate dispersion is solely due to heterogeneity. In this case, 

 (2) (1)
2 1 2 1( , ) ( )r r     . (207) 

In the other limit, dispersion is purely due to homogeneous mechanisms, and 

 (2) (1) (1)
2 1 2 1( , ) ( ) ( )r r r    . (208) 

Combinations of homogeneous and heterogeneous mechanisms produce intermediate 

results. 

Using the methods of Refs. 16, 17, we find that the 2D anisotropy can be measured by 

combining MUPPETS signals from two polarization configurations:143 

(2) (2)
(2) 2 1 2 1

2 1 (2) (2)
2 1 2 1

( , ; , ) ( , ; , )
( , )

5 ( , ; , ) 7 ( , ; , )
m m m m

m m m m

A A
r

A A

        
       

 


 
 (209) 

(cf. eq 204). All polarizations are linear, and the pulses within each simultaneous pair 

have the same polarization. The MUPPETS signal is an absorbance change 

A
(2)

(τ2, τ1; θ32, θ21), with θ21 being the angle between pairs 2 and 1, and θ32 being the 

angle between pairs 3 and 2 (see Figure 2). The magic angle, θm = 54.7°, is the one 

familiar from 1D measurements.  
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With the configurations in eq 209, the polarization-control optics can be placed 

before the phase sensitive region of the set-up, that is, before grating G2 (Figure 2). Both 

quarter- and half-wave plates were used to correct for ellipticity introduced by corner 

cubes in the delay lines. The resulting pulses had extinction ratios of >1000:1 after the 

sample. The sample consisted of PM597 (Exciton) dissolved in methyl-terminated PDMS 

(Gelest) with an average molecular weight of 5970 g/mol (η = 100 cP, n = 76 monomers) 

at 25 °C. Light pulses were at the first absorption peak (527 nm) and had a duration of 

less than 300 fs, which is too short to affect our data. Although the MUPPETS 

experiment is heterodyned, and its signal has a phase.  In this system, the phase is 

constant with delay time (SI). Only the magnitude is reported. 

Results for the two polarization configurations needed to calculate the 2D anisotropy 

are shown in Figure 3a for several values of τ1. The anisotropy is seen as the difference 

between these configurations at early times, which disappears as τ2 exceeds the rotation 

time (400 ps). The size of the initial anisotropy also decreases as τ1 exceeds the rotation 

time, as expected. The isotropic decay C
{0,0}

(τ2, τ1) derived from the sum of the two 

configurations is consistent with an uncomplicated decay of the excited-state population 

(SI). 
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Figure 6.3. Polarized MUPPETS results in PDMS (n = 76). (a) The 2D absorbance at two 
polarizations, A(2)(τ

2
, τ

1
; θm, θm) (upper) and A(2)(τ

2
, τ

1
; −θm, θm) (lower), for several 

values of τ
1
. (b) The 2D anisotropy r(2)(τ

2
, τ

1
) calculated from the data in (a) is 

represented by several cuts through the full 2D surface. For comparison, the 1D 
anisotropy r(1)(τ

2
) from Figure 1(a) is shown in black. (c) 2D anisotropies for various 

values of τ
1
 plotted against τ

1
 + τ

2
 fall on a common curve and that curve matches the 1D 

anisotropy (MEM fit from Figure 4, black).  

The 2D anisotropy r(2)(τ2, τ1) is calculated using eq 209.   The full 2D surface is most 

easily understood by comparing selected cuts, as shown in Figure 3b. For short τ1, the 2D 

anisotropy is the same as the 1D anisotropy, as it should be. The maximum observed 

anisotropy, r(2)(1 ps, 1 ps) = 0.07 is below the theoretical value of 0.11. Part of the deficit 
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may be due to the finite angle between the beams (4.6°), which is not included in the 

theory. 

If there were no rotational heterogeneity, eq 208 would hold. After normalizing their 

amplitudes, the cross-sections in τ2 would have shapes independent of τ1. Figure 3b 

shows that this prediction is not true, so heterogeneity does exist. In the presence of 

heterogeneity, fast decaying subensembles are removed from the measurement as τ1 

increases, and the average decay of the remaining subensembles becomes slower and less 

disperse. The data in Figure 3b show this behavior. Thus, heterogeneity in the local 

rotational friction is a significant contribution to the observed dispersion. 

This analysis by itself does not prove that homogeneous dispersion is absent; a 

combination of homogeneous and heterogeneous mechanisms may be operating. Figure 

3c provides one test of this question. The cross-sections from Figure 3b are replotted 

versus τ1 + τ2. The data from different values of τ1 fall onto a common curve. This result 

holds only if the decay of each subensemble is exponential (eq 207), that is, if there is no 

homogeneous contribution to the dispersion.  

Equation 207 also holds that the common curve should be the same as the 1D decay.  

To represent the 1D data (Figure 1a), a standard maximum-entropy method (MEM) fit to 

the 1D data is shown in Figure 3c. (The MEM produces a smooth fit without assuming a 

specific functional form.144, 145) The fit is good. Through eq 207, this curve is a complete 

fit to both the 1D and 2D data, under the assumption that there is no homogeneous 

contribution to the dispersion.  
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Figure 6.4. 2D anisotropy results expressed as rate spectra. Solid, black: Rate spectrum of 
the 1D anisotropy. Solid, colored: Spectra predicted from the 1D data, assuming no 
homogeneous dispersion. Dashed: Spectra from MUPPETS data, biased to minimize 
homogeneous dispersion. Dotted: Spectra from MUPPETS data, biased to maximize 
homogeneous dispersion.  

A useful perspective is gained by examining the rate spectra of these results. In the 

case of heterogeneous dispersion, these spectra give the relative populations of the 

subensembles versus the log of their rate constants.11 The rate spectrum of the 1D 

anisotropy decay has been calculated by the maximum-entropy method (MEM) and is 

shown in Figure 4 as the black curve.  (The same fit shown in the time domain in Fig. 

3c.) For ease of comparison to the time plots, the inverse rate (time constant) is used. The 

resulting distribution of rates is not only broad at the half-maximum, it also has a long tail 

extending toward fast rates and short time constants.  One should be cautious about over 

interpreting the details of shape in rate spectra, but this asymmetry appears to be real. 

The effect of the MUPPETS experiment is illustrated by the solid curves in Figure 4. 

The MUPPETS rate spectra (transforming along τ2 for each value of τ1) are predicted 

from the 1D rate spectrum under the assumption of only heterogeneous dispersion.146 

These predictions are shown as colored, solid curves in Figure 4a. The fast subensembles 

is preferentially suppressed as τ1 increases, causing the left-hand side of the spectra to be 
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progressively removed.  If there were only homogeneous dispersion, its amplitude would 

drop, but the shape and position of the spectrum would be unchanged.   

The rate spectra of the data need to be calculated and compared to these predictions.  

However, extracting a rate spectrum from data does not give a unique answer. A diverse 

family of spectra all fit the data within its noise.  In the MEM, the fit is selected that also 

comes closest to a “prior” spectrum.144, 145  The standard MEM uses a flat prior to find the 

spectrum that both fits the data and also is as broad and smooth as possible.  We alter the 

MEM to find spectra that both fit the data and are biased toward either maximum or 

minimum amounts of heterogeneity.  In the first case, the spectra predicted by assuming 

only heterogeneous dispersion are used as the prior (dotted curves in Figure 4).  In the 

second case, spectra predicted assuming only homogeneous dispersion are used as the 

prior (dashed curves in Figure 4).  In both cases, the fit has been refined to similar values 

of χ-squared. 

To summarize, the black curve in Figure 3c and the solid curves in Figure 4 are one 

model that fits the data acceptably well, whereas the dashed and dotted spectra in Figure 

4 define the range of models that can fit the data.  This error range is small.  It is also 

much closer to the heterogeneous-only model (Figure 4, colored solid curves) than to the 

homogeneous-only model (Figure 4, unchanging black curve). The data cannot show that 

the homogeneous dispersion is zero, but it does show that it is small compared to the total 

dispersion. 

The development of local rate heterogeneity upon approaching the glass transition has 

been widely predicted by computer simulations of small-molecule liquids.141 Experiments 

to verify these predictions have often been conducted on polymers within a few degrees 
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of their glass transition temperatures Tg, where solute rotation times are on the 

millisecond or seconds timescales.122, 130, 134, 140 In contrast, our polymer sample is 155 K 

above its glass-transition temperature,147 i.e., 2.1Tg, and has a rotational time of only 400 

ps. It appears that the heterogeneity in this polymer is more closely related to its 

conformational flexibility than to its glass transition. Clarifying the relationship between 

these two mechanisms for local rate heterogeneity in polymers is an important direction 

for future research. 



 

165 

CHAPTER 7 ONE-DIMENSIONAL ANISOTROPY 

MEASUREMENTS IN IONIC LIQUIDS WITH DIFFERENT 

ALKYL CHAIN AND MOLAR FRACTION 

 INTRODUCTION 7.1

Dynamics in ionic liquids have attracted intense attention for several reasons: (1) 

They dissolve a wide range of polar or nonpolar molecules, making them great solvents 

for organic and inorganic reactions; (2) Even though ionic liquids are liquids, they have 

negligible vapor pressure; (3) they have high ionic conductivity.  The best studied ionic 

liquids consist of imidazolium cations and anions such as PF6
- or BF4

-.   

In addition to the large amount of work focused on the physical properties and 

solvent characteristics of ionic liquids, one particular interest is the microscopic 

heterogeneity of these liquids.  Ionic liquids may not be a uniform system, but consist of 

micro-structured regions that are called local heterogeneity.  Maroncelli and coworkers 

have measured the rotational correlation function of several dyes in [BMIM+][PF6
-] and 

found a stretched exponential decay for all the probes.148  This non-exponential decay 

form should be characteristic of supercooled liquids or polymers, not conventional simple 

solvents.  Other evidence comes from the research done by Samanta and coworkers, in 

which they observed excitation-wavelength-dependent shift of fluorescence spectra.149, 150  

Lopes and Padua did MD simulations on two common ionic liquids and observed the 

nanostructure of separated polar and nonpolar regions in those liquids.12  Their work 
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demonstrated the possible existence of heterogeneity theoretically.  The polar region has 

the structure of a tridimensional network of ionic channels, whereas the nonpolar domain 

is either dispersed or continuous depending on the alkyl side chain.  Kim and coworkers 

calculated the rotational correlation functions for a diatomic solute in [EMI+][PF6
-] and 

found that the rotational decay can be well fitted by a stretched exponential function.151  

They attributed this nonexponential behavior to the heterogeneous dynamics in 

[EMI+][PF6
-].   

In this chapter, we measured the rotational decay of pyrromethene 597 (PM597) in a 

series of ionic liquids, 1-alkyl-3-methylimidazolium tetrafluoroborate [CnMIM+][BF4
-] 

mixed with acetonitrile.  We conducted two sets of experiments.  In one of them, we 

fixed the volume fraction between ionic liquids and acetonitrile but varied the alkyl chain 

length in ionic liquids.  In another set, we used only one type of ionic liquid but changed 

the volume fraction of ionic liquid.  Nonexponential rotational decays were observed for 

all samples from alkyl chain of ethyl (C2) to dodecyl (C12).  This result shows a clear 

deviation from the Stokes-Einstein-Debye model. 

 EXPERIMENTAL DETAILS 7.2

All of our ionic liquids were purchased from IoLiTec at 98+% grade and kept in a 

desiccator before using.  Pyrromethene 597 (PM597) dye was ordered from Exciton and 

used directly without further processing.  The ionic liquids were mixed with the required 

amount of acetonitrile, and then PM597 was dissolved into the mixed solvent to get an 

optical density of 0.4 in a 1 mm silica cuvette.  Although no evidence of photoproducts 

was observed during our experiments, a flow system was used to ensure against any 

accumulation of them.   
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The experiments were conducted with a two beam pump–probe polarized setup.  A 

1000 Hz, 527 nm, 300 fs pump pulse excited the sample.  After a time delay, a probe 

pulse a passed through the sample, and the intensity of a was detected by a photodiode.  

A reference pulse b, which has the same origin as pulse a, but does not pass through the 

sample, was measured by another detector.  The difference between two detectors was 

then measured to cancel the fluctuations in probe intensity.  The noise from fluctuations 

in the pump intensity was reduced by directing a sample of the pump pulse to a home-

made, 300 ms time-constant photodiode.  The signal from this photodiode went into the 

auxiliary channel of the lock-in amplifier.  The raw intensity from the difference of the a 

and b detectors is normalized by the square of this auxiliary intensity to get the final 

signal.  For each sample, pump–probe data were measured in both parallel and 

perpendicular polarizations. In polarization experiments, the rotational dynamics are 

measured by the anisotropy decay.  According to the Eq. (204) in chapter 6, the 1D 

anisotropy decay r
(1)

(τ1) is calculated from two absorbances, measured by setting the 

polarization of pump and probe to be either parallel or perpendicular to each other.   

 RESULTS AND DISCUSSION 7.3

In the first series of measurements, solvent mixtures were used to keep the entire 

decay within our experimental time range.  We fixed the molar fraction of ionic liquids 

[CnMIM+][BF4
-] at xIL = 0.2 and varied the alkyl chain length n.  Figure 7.1 shows the 

individual absorbance at 0 and 90 polarizations for PM597 in all ionic liquids.  The 

curves were manually adjusted to match with each other at long time. 
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Figure 7.1.  1D polarization experiments of PM597 in different ionic liquids 
[CnMIM+][BF4

-]  mixed with acetonitrile. (a) n = 2, (b) n = 4, (c) n = 8, (d) n = 12 

Figure 7.2 (a) shows the results of anisotropy decay for all ionic liquids.  As shown 

in the figure, the rotational time increases with increasing alkyl-chain length from ethyl 

(C2) to dodecyl (C12).  This result is consistent with the increase of viscosity as the alky 

chain increases.152   

Besides, the rotational decay is sometimes nonexponential, and all were fitted by 

stretched exponential functions in the form of S(t) = exp[−(t/T)].  Fitting parameters are 

tabulated in Table 7.1.  Nonexponential decay might be caused by the heterogeneous 

microstructure that mentioned in other studies.139, 153  The anisotropy decay of pure 

acetonitrile, which can be well fitted into a single exponential decay function, is shown in 

the figure (orange) for reference.  The time axis of each plot is then transferred to a 

normalized scale in Figure 7.2 (b).  The timescale for each solvent has been divided by 
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the rotational time constant, from the fitting.  Slight, but distinguishable, differences in 

the shape of the decay can be observed. 

Table 7.1.  Fit parameters and physical properties of solvents: molecular weight M, 
length of alkyl chain n, molar fraction of ionic liquid x, and stretched-exponential fit 
parameters T and β. 

 M (g/mol) n x T  (ps) β 

CH3CN 41 -  33.4 1 

EMIM+ BF4
-/ CH3CN 198 2 0.2 93.6 0.91 

BMIM+ BF4
-/ CH3CN 226 4 0.2 132.2 0.86 

C8MIM+ BF4
-/ CH3CN 282 8 0.2 230 0.82 

C12MIM+ BF4
-/ CH3CN 338 12 0.2 252.8 0.79 

 

Figure 7.2.  1D polarization experiments of PM597 in different ionic liquids mixed with 
acetonitrile. (a) Anisotropy decay results in ionic liquids with different alkyl chain length 
(xIL = 0.2) and in pure acetonitrile (orange). (b) Anisotropy decays plotted versus 
normalized time scale (Time/r). 
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On the other hand, if we fix the chain length at 12 and change the ratio between the 

ionic liquids and acetonitrile, the results are shown in figure 7.3.  The ionic liquid we 

used is [C12MIM+][BF4
-].  With the increase of ionic-liquid molar fraction, the decay 

becomes slower.  However, the stretched-exponential parameter β changes little, alwasy 

around 0.83.  Bring them to a normalized time scale make three curves overlap [Fig. 7.4 

(b)]. 

 

Figure 7.3.  1D polarization experiments of PM597 in [CnMIM+][BF4
-]  at different molar 

fraction. (a) x = 0.2, (b) x = 0.4, (c) x = 0.6  

Overall, the rotational decays have a detectable nonexponentiality, but it is much 

smaller than is seen in solvation expeirments.131, 148, 154, 155  Our group is currently 

studying the origin of nonexponential decay in ionic-liquid solvation.  These studies of 

rotation provide a useful contrast to those studies. 
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Figure 7.4.  1D polarization experiments of PM597 in [C12MIM+][BF4
-] mixed with 

acetonitrile. (a) Anisotropy decay results at different [C12MIM+][BF4
-] molar fraction. (b) 

Anisotropy decays plotted versus normalized time scale (Time/r). 

Table 7.2.  Fit parameters and physical properties of solvents: ionic liquid molar 
fraction x, stretched-exponential fit parameters T and β. 

 x T  (ps) β 

C12MIM+ BF4
- /CH3CN 0.2 263 0.81 

C12MIM+ BF4
-/ CH3CN 0.4 871 0.83 

C12MIM+ BF4
-/ CH3CN 0.6 1375 0.81 
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APPENDIX A – SUGGESTING MECHANISMS FOR BIEXCITON 

DECAY 

The biexciton decay S(t) shown in Figure 2B of the main text can be fit with various 

forms, each suggesting a different mechanism.  Several forms are shown in Figure S1.  In 

each case, the amplitudes of the data and fit have been matched. 

Biexponential.  S(t) = 0.635 exp(−t/6 ps) + 0.365 exp(−t/40 ps).   The fit to the data 

is shown in Figure 1B of the main paper. 

Stretched Exponential.  S(t) = exp[−(t/6.5 ps)0.48].  The fit to the data is shown in 

Figure S1A. 

Gaussian Distribution of Barriers.  The rate distribution on a log-lifetime scale (for 

example, Figure 3) is assumed to be a Gaussian.  A Gaussian distribution of barrier 

heights in an Arrhenius process is an example of this model.  The lifetime at the peak of 

the Gaussian is 7.7 ps and the standard deviation is 0.6.  This standard deviation 

corresponds to a 26-fold variation in the rate distribution at its half-width.  The fit to the 

data is shown in Figure S1B. 

Maximum-Entropy Method.  This method is a standard one for fitting a continuous 

distribution of lifetimes of arbitrary shape.144, 145, 156  The distribution is shown in Figure 

3.  The fit to the data is shown in Figure S1C. 

Time-Dependent Rate.  The signal decays with a rate k that is time dependent: k(t) 

= 0.025 ps-1 + 0.07 ps-1 exp[−(t/40 ps)].  The fit to the data is shown in Figure S1D. 



 

179 

 

Figure A1.  Other possible fits to the biexciton decay.  The red and blue curves are 
MUPPETS and fluence-dependent data from Figure 2B, respectively. The black curves 
are the fits: (A) stretched exponential,  (B) Gaussian distribution of rates,  (C) maximum-
entropy method, and (D) time-dependent rate.  The fit to a biexponential is shown in 
Figure 1B. 

  

Figure A2.  Additional data not shown in Figure 1A. 



 

180 

APPENDIX B – OFF-DIAGONAL TIME EVOLUTION  

The calculation of the off-diagonal elements of the Green’s function starts by 

dividing the time evolution between two times, t1 and t2, by M intermediate times t′a: 

 2 1 2 1 1 1( , ) ( , ) ( , ) ( , )M a at t t t t t t t     G G G G . (A210) 

Taking matrix elements gives  

 2 2
1 2 1 1 2 1 1 0( , ) ( , ) ( , ) ( , )n k

M l a a iG t t G t t G t t G t t   
         , (A211) 

where the indices i, …, n run over all nonzero states.   Because relaxation is only 

downward, all but one of these matrix elements must be diagonal.  The only remaining 

terms are 

 
12 1 2 2

1 2 1 1 2 1 1 1 2 11
( , ) ( , ) ( , ) ( , )

N
a a a aa

G t t G t t G t t G t t
   

    
     , (A212) 

where sequences of diagonal elements have been recombined.  The limit M  　  and dt′ 

= t′a+1− t′a  0 can now be applied.   Equation 　 (7) provides the infinitesimal Green’s 

operator 

 ( , ) 1 ( )t dt t t dt   G R , (A213) 

resulting in 

 2

1

2 1 2 2
1 2 1 1 2 1 2 1( , ) ( , ) ( ) ( , )

t

t
G t t G t t R t G t t dt   

        . (A214) 

Using Eq. (32) for the rate matrix element gives Eq. (50) of the main text. 
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We now use the specific structure of an excitonic rate matrix [Eq. (32)] to replace the 

off-diagonal rate with a diagonal element: 

 2

1

2 1 1 2
1 2 1 1 2 1 2 1( , ) ( , ) ( ) ( , )

t

t
G t t G t t R t G t t dt   

        . (A215) 

Because relaxation is only downward, Eq. (7) also applies to diagonal matrix elements 

and yields  

 2

1

2 1 2
1 2 1 1 2 2 1( , ) ( , ) ( , )

t

t

d
G t t G t t G t t dt

dt
  
  

       . (A216) 

Integration by parts gives 

 2

1

2 2 1
1 2 1 2 2 1 1 2 1

1 2
1 2 2 1

( , ) ( , ) ( , )

( , ) ( , )
t

t

G t t G t t G t t

d
G t t G t t dt

dt

  
  

 
 

 

       . (A217) 

This form can be used directly to derive Eq. (67) in the limit of zero incoherent coupling 

[Eq. (66)]. 

To look at the opposite limit of strong coupling, we define a change in occupation of 

|1′], 

 1 1
1 1 1 1( , ) 1 ( , )G t t G t t  
   , (A218) 

which is assumed to be small over the biexciton lifetime.  The term in Eq. (A217) can be 

written 

 
1

1 1 2 1
1 2 1

1 1

( , )
( , )

1 ( , )

G t t
G t t

G t t


 
 






. (A219) 
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Putting a power series expansion of Eq. (A219) into Eq. (A217) and integrating the first 

term leads to 

  

2

1

2

1

2 2 1 2
1 2 1 2 2 1 1 2 1 2 2 1

1
1 1 2

21
1 1 2

( , ) ( , ) ( , ) ( , )

( , ) ( )

1
( , ) ( )

2

t

t

t

t

G t t G t t G t t G t t

G t t k t dt

G t t k t dt





   
   







  

  

    



  . (A220) 

Keeping only the leading term give Eq. (51) of the main text.  The same results hold if 

the states 2′ and 1′ are replaced by any two neighboring states. 

We note that a simple, empirical formula interpolates between the limits of strong 

[Eq. (51)] and zero [Eq. (67)] incoherent coupling: 

  
2

2 12 2 1
1 2 1 1 2 11

1 2 1

( , )
( , ) 1 ( , )

( , )

G t t
G t t G t t

G t t


 
 



  . (A221) 

The accuracy of this approximation has not been tested. 

One can consider couplings outside this range.  In this case, the biexciton decay rate 

is less than twice the exciton decay rate.  The presence of a second excitation slows the 

decay of the first.  Although this situation is not forbidden, it is uncommon. 
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APPENDIX C – PHASE-DEPENDENT TRANSIENT-GRATING 

DATA AND CROSS RELAXATION TERM 

1. Static Absorption Spectrum 

The static absorption spectrum of the sample is shown in Figure S1.  The band-edge 

transition forms a defined peak that is well matched to the laser spectrum. 

 

Figure C1.  The static absorption spectrum A′(0) of the sample (red).  The frequency and 
approximate bandwidth of the laser pulses are indicated by the blue bar. 

2. Phase-Dependent Transient-Grating Data 

The process of reducing phase-dependent data to the decay of a complex absorbance 

was illustrated using 2D MUPPETS data in Figure 3.  An example of phase-dependent 

transient-absorption data and its reduction is shown in Figure S2.  The real and imaginary 

parts shown in Figure S2B are converted to phase and magnitude before contributing to 

Figure 5A–B. 
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Figure C2.  Extracting a complex absorbance from a phase-dependent signal. (A) 
Transient-grating absorbance versus phase Φ, A(1)(τ1; Φ)/A′(0), for 3.3 nJ pulses (solid). 
(B) Fourier decomposition of the data in (A) yields cosine (red), sine (blue) and DC 
(black) components.1  Reconstructing the data in (A) from the components in (B) gives 
the dots shown in (A).  The cosine and sine components must be rotated to the correct 
absolute phase to obtain the real and imaginary parts of the absorbance (see Figure 5A–
B).     Compare to Figure 3. 

3. Cross-Relaxation Formulas 

The formula for the 1D cross-correlation function 2
1 1( )C   was given in eq 19.  The 

2D cross-relaxation function 2
1 1 2 1( , )C  
   differs for each of the four models used in 

section 4.5 of chapter 4.  Reference 2 [eqs (49) and (51)] shows that when the cross-

relaxation is small, 

2 2 1 1
1 1 2 1 2 1 2 1 2 2 1 1 2 0 1 2 0( , ) ( , ) ( , ) ( , ) ( , )C C G t t G t t G t t      
        , (S1) 

where 1 0( , )i
jG t t  is the probability for a single molecule to evolve from state i at time t0 

to state j at time t1.   
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If the exciton and biexciton dynamics are uncorrelated, eq S1 reduces to  

  2
1 1 2 1 2 2 1 1 1 1 1 2( , ) ( ) ( ) ( , )C C C C     
       . (S2) 

When the exciton decay is also homogeneous (model one), eq 22 holds and 

  2
1 1 2 1 2 2 1 1 1 2( , ) ( ) ( ) 1 ( )C C C C    
      . (S3) 

On the other hand, when the exciton decay is heterogeneous (model two), eq 21 holds 

and 

  2
1 1 2 1 2 2 1 1 1 2 1( , ) ( ) ( ) ( )C C C C     
       . (S4) 

When the exciton and biexciton dynamics are correlated, eq S1 is rewritten with all the 

time evolution terms starting at t0 

 
2

2 12 2 0
1 1 2 1 2 1 2 1 1 2 02

2 1 0

( , )
( , ) ( , ) ( , )

( , )

G t t
C C G t t

G t t
   


 
    



  . (S5) 

If the decays are homogeneous (model four), the ensemble average is not important.  We 

also assume that the bath relaxation is the same in the exciton and biexciton states.  Using 

eq 28, eq S5 reduces to 

  2 2 2 1
1 1 2 1 1 1 1 2 1

2 1

( )
( , ) ( ) ( )

( )

C
C C C

C

     


 
   




    (S6) 

In  model three, there is an ensemble to average over, but it has just two members (see 

eqs 25 and 26).  Thus, we combine two terms like the one in eq S6: 

 2 2 2
1 1 2 1 1 1 2 1 1 1 2 1( , ) ( , ) ( , )a bC aC bC       
        (S7) 
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APPENDIX D – THERMAL TIME EVOLUTION OPERATOR AND 

FLUENCE-DEPENDENT MUPPETS PHASE DATA 

1. Construction of the Model for Gε 

The model for thermal time evolution is specified by the elements of the time-

evolution operator   2 1( , )
i p
j q

t tG .  The electronic labels i and j are in the basis set of {0, 

1, 2} representing the ground, exciton and biexciton states respectively (Figure I.7A).  

The labels p and q represent the quanta of solvent heat nε.  The only elements needed are 

    
    

2
2

0 2 1
2 1 10

2 1
1 2 0 1 0

0 0

1 0

1 1 1 1

i
j

G

Q G G

Q Q G Q G



 
 
  
 
    

G , (S1) 

  
   

0 2
2 11

2 1
1 2 1 2 0 1 0

0 0 0

0 0

1 1 0

i
j

Q G

Q Q Q Q G Q G



 
 
 
 
      

G , (S2) 

and 

   0
2

2
1 2 0

0 0 0

0 0 0

0 0

i
j

Q Q G



 
 

  
  
 

G . (S3) 
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Here 2 1( , )i
jG t t  are elements of the time-evolution operator for the solute electronic 

states, Q1 is the fraction of the electronic energy that appears as solvent heat upon 

relaxation of the exciton to the ground state, and Q2 is the fraction electronic energy that 

appears as solvent heat upon relaxation of the biexciton to the exciton.  For simplicity, 

the time variables are suppressed.  In writing these equations, it was assumed that the 

decay of the biexciton to the ground state occurs in sequential steps, 

     20 11 20
0 2 02 11

G G G   . 

Once written in this unprimed, eigenstate basis, the solute portions of the matrices are 

transformed to the primed, exciton basis using the transformation matrices1 

 

1 0 0

2 1 1 0

1 2 1 2 1 2

j
j

 
 

  
 
 

  (S4) 

and 

  1
1 0 0

1
1 1 0

2
0 1 2

j

j





 
 

  
  

  (S5) 

In the primed basis set, only elements with j′ = 0′ and p ≠ 0 will create a detectable signal.  

Also, because thermal signals do not propagate across multiple time periods, only q = 0 

elements are relevant.  Thus, the only portions of the transformed matrices that are 

needed are 

 
    2

1 2 1 2 00 1
1 00 1 2 1

2 1 1 0

1 11
0

2

i Q Q Q Q G
Q G

Q G Q G





      
   

G  (S6) 
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and 

    0 2
1 2 00 2

1
0 0

2

i
Q Q G


 G  (S7) 

Completing the transformation requires that the elements i
jG  appearing in the matrices be 

transformed to the primed basis set.  This process yields 

    2 2
2 2 1 10 1

1 00 1 2
1 2 0

11
0

2 2

i Q G Q G
Q G

Q Q G


 
  

 


   
 

 

G  (S8) 

and 

    0 2
1 2 00 2

1
0 0

2

i
Q Q G

 
 G  (S9) 

The final simplification is to recognize that the linearity of the thermal response allows 

the substitution |i′ 2] →  2|i′ 1].  Thus, eqs S8 and S9 are combined 

     

  
0 0 0

0 1 0 2 0 1

2 2 1
2 2 1 1 1 0

2

1
1 0

2

i i i

Q G Q G Q G

  
  
  

  
  

 

  

G G G

, (S10) 

and   0
0 2
i



G  is dropped from the problem.  This result corresponds to eqs 49 and 50 of 

the main text. 

2. Fluence-Dependent MUPPETS Phase Data 
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Figure D1.  Phases of the fluence-dependent component of the MUPPETS data at various 
values of τ1.  The corresponding magnitudes are given in Figure 4A.  The phases are 
expected to be constant at the phase of the biexciton transition, Φ12 = 67° (black line). 
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APPENDIX E – SUPPORTING INFORMATION FOR 

“TWO-DIMENSIONAL ANISOTROPY MEASUREMENTS SHOW 

LOCAL HETEROGENEITY IN A POLYMER MELT” 

I. Pyrromethene 597 

Pyrromethene 597 has many properties desirable for a rotational probe of solvent 

structure.157-159 It has a symmetric, compact shape (Figure E1), high fluorescence and low 

triplet quantum yields, and good photochemical stability. It is soluble in a wide range of 

solvents, but its photophysical properties are insensitive to solvent. In particular, solvent 

induced Stokes shifts are small.   

To the best of our knowledge, ours is the first use of this molecule as a rotational probe. 

The results in toluene (Figure 1) are simple and conventional. They confirm that PM597 

has no unusual properties on its own and is a good reporter of the local solvent structure.  

II. 1D anisotropy decays 

1D anisotropies were measured in the apparatus shown in  Figure 2 using only beams 

1a and 3b. Typical results are shown in  Figure E3 and Table S1.  

 

Figure E1. Left: Chemical structure of the probe molecule, pyrromethene 597 (PM597). 
Chemical name: 1,3,5,7,8-penta-methyl-2,6-di-t-butylpyrromethene difluoroborate 
complex. CAS#: 137829-79-9. Right: Chemical structure of PDMS. 
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Figure E2. Absorption (blue) and emission (green, arbitrary intensity) spectra of the 
sample (PM597 in 5970 g/mol PDMS). The red bar indicates the wavelength and 
bandwidth of the optical pulses used. 

Although eqs 1 and 6 are correct for an idealized experiment, it is common to 

introduce a factor g to correct for small polarization errors in the real experiment. Thus, 

we have used 
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(1) 1 1
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 


 
 (S223) 

Because the anisotropy is not exactly zero at the end of our time range, we adjust g to 

make the anisotropy decay exponentially in its tail. A value of g = 0.95 was chosen for 

the 1D measurements and g = 0.88 for the 2D measurements. 

Our 1D magic-angle results (Figure E3a) fit well to a single exponential with a 

lifetime (4.3 ns) close to that of previous reports (3.91 ns).157 
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Table S1. Fit parameters and physical properties of PDMS: molecular weight M, 
number of monomers n, viscosity η and stretched-exponential fit parameters T and 
β (see Figure 1b). 

 M (g/mol) n η  (cP) T  (ps) β 

Toluene 92 — 0.6 52.6 1.0 

PDMS 770 10 4.6 200 0.74 

PDMS 5 970 76 97 400 0.69 

PDMS 17 250 221 486 424 0.70 

 

III. MUPPETS-Phase measurements 

In general, the signal in a heterodyned experiment, such as MUPPETS, contains both 

components due to changes in absorption and index-of-refraction. These are expressed as 

a complex absorbance with a phase representing the ratio of absorptive and index-of-

refraction responses.21 If there are spectral changes during the decays, the phase is time-

dependent and corrections must be applied to separate spectral decays from spectral 

shifts. PM597 is known to have small Stokes shifts and the solvents used have low 

polarity, so large spectral changes are not anticipated.  

Figure E4 shows an experimental test for this complication.  The raw signals versus 

the phase delay between the two probe beams are shown in Figure E4a. A Fourier 

analysis of these data21 yields the magnitude and phase of the sample shown in Figure 

E4b. All reported phases are relative; no calibration of the absolute phase was done. The 

phase is time independent, which allows uncorrected magnitudes to be used throughout 

the main part of the paper. The reported data consist of the difference of just two phases 

separated by 180°.  
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Figure E3. An example of the data used to generate the anisotropy decay curves shown in 
Figure 1(a) of the main text. (a) Pump–probe decays of PM597 in 5970 g/mol PDMS 
with parallel (red), perpendicular (blue), and magic-angle (green) polarizations. The 
black curve is an exponential fit. (b) 1D anisotropy derived from (a) using eq 1.  

IV. Isotropic-MUPPETS results 

To focus on rotational dynamics, a probe’s electronic-state decay should have neither 

dispersion nor heterogeneity. Figure E5 shows the 2D electronic-state data derived from 

the sum of our polarized results,  
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

  . (S224) 

The decays in  Figure E5 fit to a single exponential with a time constant of 2.1 ns. 

This value is shorter than the one obtained from the 1D magic-angle measurement 

(Figure E3a). The reason for this discrepancy is not understood at present. 
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The results are invariant to τ1, so there is no possibility of electronic-state heterogeneity 

contaminating our rotational results. 

 

Figure E4. (a) A series of MUPPETS data taken of PM597 in 5970 g/mol PDMS in 
different experimental phase angles Φ at τ1 = 0. (b) The magnitude (red) and relative 
sample phase (blue) extracted from the data in (a). 

 

Figure E5. 2D isotropic signals calculated from the data in  Figure 3a calculated from eq 
7. 
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