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ABSTRACT 

Eastern Boundary Upwelling Systems (EBUS) spatially encompass 

approximately 1% of the ocean surface area, but are responsible for nearly 20% of global 

fisheries production.  This significant biological production is primarily attributed to the 

nutrient-rich waters brought to the euphotic zone through a physical process called 

upwelling.  In an attempt to understand the various physical and biological processes 

occurring on a wide range of temporal and spatial scales, the California Current System 

(CCS), one of the major EBUS, has been subject to a multitude of scientific studies over 

the past several decades.  Recent modeling enhancements have enabled researchers to 

investigate mesoscale processes contributing to physical and biological variability within 

the CCS.  This information could be used to improve our understanding of plankton 

dynamics and ultimately, be applied to higher trophic levels and coastal fisheries 

management. 

The primary focus of this study was to investigate whether high-frequency (3 – 7 

days) wind events generate a positive response in surface chlorophyll-a (chl-a) within 

regions of the CCS.  The high-frequency wind events were hypothesized to be 

insufficient to generate enough upwelling and subsequent lift in the nutricline to produce 

a significant response in surface chl-a concentrations.  Rather, I expected that low-

frequency (7 – 30 days) upwelling-favorable wind events would raise the nutricline for a 

period long enough to sustain a phytoplankton bloom.  Utilizing high-resolution climate 

model data, a frequency analysis was performed by conducting a correlation between
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chl-a concentrations and meridional wind stress (τy) events at lagged intervals.  High-

frequency τy events are found to have a minimal impact on chl-a concentrations 

throughout the CCS.  At low frequencies, chl-a concentrations were shown to have a 

positive response to τy events within 100km of the CCS coastline.  These results imply 

that high-frequency upwelling events have little to no immediate impact on the chl-a 

concentrations.  However, the low-frequency τy events appear to persist long enough to 

generate a response in surface chl-a and positively impact productivity within the CCS.
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EXAMINING THE SENSITIVITY OF SURFACE CHLOROPHYLL TO 

UPWELLING EVENTS OF VARIABLE FREQUENCY IN THE  
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1.1 INTRODUCTION 

Major Eastern Boundary Upwelling Systems (EBUS) exist within four key 

regions across the globe: (1) the California Current in the Northeast Pacific Ocean, (2) 

the Humboldt Current in the Southeast Pacific Ocean, (3) the Canary Current in the 

Northeast Atlantic Ocean, and (4) the Benguela Current in the Southeast Atlantic Ocean.  

These regions only spatially encompass 1% of the ocean surface, but are responsible for 

nearly 20% of global fisheries production [Mann, 2000].  The significant biological 

production within these regions has been primarily attributed to a physical phenomenon 

called coastal upwelling.  Alongshore, equatorward winds force the surface water 

offshore, away from the coastline, through the process of Ekman transport [Checkley and 

Barth, 2009; Huyer, 1983].  This in-turn forces relatively cold, nutrient-rich subsurface 

waters toward the surface, also known as upwelling.  Thermoclines and nutriclines that 

shoal into the euphotic zone along the coast are common features of EBUS during 

upwelling periods [Bakun et al., 2010].  The opposite effect occurs during wind events 

that are primarily poleward; surface waters are transported toward the coastline, which 

forces relatively warm, nutrient poor surface waters to sink and downwell [Chelton et al., 

1982].  In the California Current System (CCS), these coastal upwelling events can cause 

localized changes to the physical (Figure 1.1a) and biological (Figure 1.1b) properties of 

the surface water along the coastline.  Upwelling processes in all EBUS are influenced by 

both synoptic and mesoscale atmospheric-oceanic coupled variability in addition to 

coastal orography [Huyer, 1983].  These processes are typically at their strongest during 

late spring and early summer, when the wind stress is primarily equatorward.  

Throughout the summer months (July-September), thermal stratification strengthens due 
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to the increased light availability and the depth of the mixed layer shoals [Palacios et al., 

2004].  The seasonal reversal of the meridional winds during the winter months 

(December and February) induces either downwelling (common in the poleward portions 

of EBUS) or low upwelling rates (common in the equatorward portions of EBUS).  

Ultimately, the magnitude, direction, and spatial structure of the surface winds within the 

California Current System (CCS) alter the local ecology [Bakun, 1990; Rykaczewski and 

Checkley, 2008]. 

These nutrient-rich, upwelled waters can positively influence primary 

productivity as well as indirectly increase productivity in the higher trophic levels within 

the EBUS food chains.  Within the euphotic zone, the ocean layer that light penetrates or 

about the upper 200m, the first trophic level is composed of phytoplankton.  

Phytoplankton are microorganisms that utilize light energy to synthesize organic matter 

through photosynthesis.  In addition to light concentration, both water temperature and 

nutrient availability can impact phytoplankton growth.  The primary nutrients required by 

phytoplankton are nitrate, phosphate, and iron, and diminished growth rates can occur 

when concentrations of these nutrients are limiting [Miller and Wheeler, 2012].  Water 

temperature impacts growth rates and reaction rates and is linked with nutrient 

availability.  Although the relative impact will vary between the different species of 

phytoplankton, growth rates are typically greater at water temperatures above 10°C 

[Miller and Wheeler, 2012].  

Due to the growing concern regarding the impacts of climate change on fisheries 

productivity, the ecological consequences of variable surface winds within these EBUS 

have been explored at decadal to seasonal timescales.  McGowan et al. [2003] used a 50-
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year time series to assess the decadal oscillations and 1977-regime shift within the CCS.  

This decadal transition to a low-nutrient regime along the coast is hypothesized to be a 

result of the intensification of the Aleutian Low pressure system over the North Pacific 

Ocean [Chavez et al., 2003].  This intensification increased coastal stratification, 

dampened coastal upwelling rates, and decreased horizontal advection of the nutrient-rich 

waters from the north.  Also, model estimations have indicated that decreases in plankton 

concentrations may be a response to long-term (1949-2000) warming trends [Di Lorenzo 

et al., 2005].   

Environmental phenomena on interannual scales have also been studied 

extensively within the CCS, such as the El Niño-Southern Oscillation (ENSO).  The 

extreme El Niño event of 1997-1998 for example, led to very low upwelling rates and 

significant upper ocean stratification, which was found to negatively impact the primary 

and secondary production within the CCS [Bograd and Lynn, 2001].  Conversely, the 

subsequent La Niña event of 1999 initiated strong, sustained upwelling throughout the 

CCS.  As a result, coastal SSTs were about 3°C lower than the seasonal average and 

increased surface chl-a concentrations over a broad region extending to further than 50km 

offshore [Schwing et al., 1999].  A seasonal correlation has also been found between the 

chl-a responses within the four EBUS and wind-induced upwelling [Thomas et al., 1994; 

Demarcq, 2009].  Garcia-Reyes and Largier [2012] conducted an analysis of the 

differences between the geostrophically-derived wind stress used within the Bakun 

Upwelling Index (UI) calculation and observed wind stress.  Both datasets captured three 

distinct seasonal periods: Upwelling Season (April-June), Relaxation Season (July-

September), and Storm Season (December-February).  However, the coarse, 3°x3° 
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resolution of the atmospheric model used to estimate the geostrophic winds could not 

account for the small-scale atmospheric fluctuations (i.e. frontal passages) or topographic 

influences (i.e. capes and points) [Garcia-Reyes and Largier, 2010; Garcia-Reyes and 

Largier, 2012].   

Modeling studies have been used for many years to quantify both physical and 

biological processes in the CCS [Di Lorenzo et al., 2004; Spitz et al., 2003].  Botsford et 

al. [2003] and Wroblewski et al. [1989] used idealized model studies to investigate the 

optimal surface wind conditions for zooplankton and larval fish.  These studies indicated 

that wind pulses must be upwelling-favorable over durations long enough for nutricline 

shoaling to reach into the euphotic zone; however, realistic models are required to 

quantify and examine the physical and biological processes that occur.  Recent 

improvements in modeling resolution have provided finer, three-dimensional resolutions 

than previous models and have enabled scientists to research smaller coastal features.  

The Geophysical Fluid Dynamics Laboratory (GFDL) has been developing atmosphere-

ocean coupled climate models (CM) with interactive biogeochemical components to 

research the impacts of global climate change on marine ecosystems.  Both model 

dynamics and resolution have been improved with each new model version (i.e. CM2.1, 

CM2.5, CM2.6).  The improvement in resolution from CM2.1 to CM2.5 included an 

increase in atmospheric resolution from 200km to about 50km and in oceanic resolution 

from 100km to about 28km.  This enhancement allows CM2.5 to better capture such 

seasonal events as ITCZ migration, ENSO events, precipitation patterns, and river 

discharge [Delworth et al., 2012].  Also, both CM2.5 and the new CM2.6 have the 

capacity to resolve mesoscale eddy formation, with the CM2.6 having an enhanced 1/10° 
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(about 10km) grid scale resolution in the ocean [Wintson et al., 2014].  In addition to 

representing the physical circulation of the atmosphere and ocean, CM2.6 includes an 

ecosystem model called the Carbon, Ocean Biogeochemistry and Lower Trophics 

(COBALT) model.  COBALT uses complex nutrient and food web dynamics to best 

represent nutrient cycling, carbon biogeochemistry, and dynamics of a simplified 

planktonic food web within the ocean [Stock et al., 2014], which is further described in 

Section 1.3.1.   

Past research studies have noted that high-frequency events exist within the CCS, 

but the influence of these events on the local surface biology is relatively unknown 

[Huyer, 1983].  Michaelsen et al. [1988] used a 30-month time series of pigment 

measurements from the Coastal Zone Color Scanner (CZCS) to analyze the temporal 

variability of phytoplankton within the CCS.  The results supported previous assessments 

noting a dominant seasonal cycle within the CCS, but a high-frequency atmospheric 

signal of about five to six days was also evident, which was explained by the passages of 

mid-latitude cyclones [Bane et al., 2007].  Additionally, Bane et al. [2007] found that the 

atmospheric jet stream has intraseasonal (10 – 100 days) oscillations that impact the 

coastal wind stress within the CCS.  Atmospheric pressure anomalies have also been 

shown to impact the CCS at time scales on the order of a week to a month [Legaard and 

Thomas, 2006].  Sparse ship observations [Goodman et al., 1984] and simple model 

studies [Botsford et al., 2003] have observed phytoplankton blooms to occur on weekly 

time scales in response to an increased flux of nutrients.  Persistent upwelling-favorable 

wind events over multiple day periods have been shown to induce low sea surface heights 

and bring dense waters to the surface along the CCS coastline [Strub et al., 1987].   
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Increased temporal and spatially robust satellite-derived and model-estimated 

datasets have allowed recent research to focus on mesoscale features within the CCS and 

the other EBUSs.  High-resolution scatterometers (surface wind) and radiometers (SST) 

have been used to identify high-frequency upwelling events of three to seven days within 

the Benguela Current System [Desbiolles et al., 2014].  Botsford et al. [2006] utilized a 

mixed-layer conveyor model and determined that the wind speed and direction over the 

continental shelf must be relatively static for a minimum duration of three days to have 

an ecological significance, which was approximated as the amount of time considered 

necessary for phytoplankton to complete nutrient uptake [Botsford et al., 2006].  Thus, 

high-frequency (3 – 7 days) and low-frequency (7 – 30 days) wind events have been 

shown to have a direct impact on ocean physics and as a result, have a potential influence 

on the surface biology. 

 The CCS has a linear coastline north of Cape Blanco with scalloped coastline and 

headlands present between Cape Blanco and Point Conception [Kahru and Mitchell, 

2001].  Due to the differences in atmospheric-ocean dynamics and orography, which 

affects the wind speed, wind direction, and the relative magnitude and timing of primary 

productivity, previous studies [Strub et al., 1990; Thomas et al., 2004] have analyzed the 

CCS in specific subsections: northern CCS (~41.5°N – 46.5°N), central CCS (~35.5°N – 

41.5°N), and southern CCS (~30.5°N – 35.5°N).  In addition to latitudinal dissimilarities 

within the CCS, physical and biological dynamics evolve differently with regard to 

distance from the coastline.  Throughout the entire CCS, coastal upwelling occurs within 

a narrow band within about 25km of the coast [Huyer, 1983].  Between about 25km to 

100km offshore, coastal plumes and filaments extend from the coastline toward the open 
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ocean [Abbott and Zion, 1987].  Further offshore, phytoplankton concentrations typically 

decrease from 100km to 300km offshore and even more drastically past 300km from the 

coastline  [Thomas et al., 1994; Strub et al., 1990]. 

While upwelling variability at the decadal to seasonal time scales has been 

explored thoroughly, and high-frequency upwelling events have been shown to occur in 

EBUS, the ecological impact induced by high-frequency wind events has had minimal 

investigation.  By furthering our current knowledge of the mesoscale phenomena and 

other physical forcings that impact the CCS, a more complete description of the drivers 

of biological variability may develop.  This information could be used to improve our 

understanding of plankton bloom dynamics and ultimately, be applied to coastal fisheries 

management [Di Lorenzo et al., 2004].  The primary focus of this study is to utilize high-

resolution GFDL CM2.6 data to investigate whether high-frequency upwelling-favorable 

wind events generate a positive response in surface chl-a within regions of the CCS and if 

a relationship exists, to investigate its seasonality.  It is hypothesized that high-frequency 

(3 – 7 days), upwelling-favorable wind events will not stimulate enough upwelling and 

nutrients to produce a significant relationship with surface chl-a concentrations.  Rather, 

that low-frequency (7 – 30 days) upwelling-favorable wind events will raise the nutricline 

for a period long enough to sustain phytoplankton blooms.  Furthermore, the relationship 

between chl-a and wind events will be more correlated during the summer months; due to 

the increased light availability (relative to winter months) and the amplified surface 

winds that could break down near-surface stratification, upwelled nutrients and that 

phytoplankton would be concentrated in the euphotic zone.  The remaining portion of this 

thesis discussion will review characteristic physical and biological dynamics in the CCS 
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(Section 2), describe the model data, model assessment, and analytical methods used for 

this study (Section 3), convey the study results (Section 4), and discuss the study results 

and conclusions (Section 5). 

1.2 STUDY REGION 

1.2.1 The Physical and Biological Overview: Synoptic scale Influence 

The CCS is a region where the dynamic coupling between the atmosphere and the 

ocean is robust.  The Aleutian Low (AL) and the North Pacific High (NPH) pressure 

systems are the primary basin-scale atmospheric features that influence the dynamics in 

this region, as shown in Figure 1.1.  Studies have shown that the positions of the AL and 

NPH alter the regional sea-surface height and near surface wind patterns seasonally 

[Huyer, 1983; García-Reyes et al., 2013].  Huyer [1983] conveyed that the seasonal 

fluctuations in the surface environment were due to the seasonal shifts in the location and 

strength of these two pressure systems.  Figure 1.2 displays the average wintertime sea-

level pressure (SLP) in the North-central Pacific Ocean, and the signature of the AL is 

evident.  Conversely, the NPH (AL) strengthens (weakens) during the summer months 

(Figure 1.2) in addition to continental SLP lowering [Huyer, 1983].  The average position 

of these pressure systems cause surface winds to be directed eastward across the central 

North Pacific, between the AL and NPH, until eventually diverging into a northward and 

southward flow due to the orographic influence of the coastline [Huyer, 1983; Checkley 

and Barth, 2009].  These surface winds circulating around the AL and NPH along the 

coastline influence the surface dynamics of the entire CCS [Dorman and Winant, 1995].   

The direct atmosphere-ocean coupling impacts both surface and subsurface 

properties through Ekman transport.  Ekman dynamics involve the interaction between 
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surface winds and the ocean surface.  Due to the rotation of Earth and the Coriolis force, 

this frictional stress on the surface ocean initiates ripples and waves.  In the Northern 

Hemisphere, the total movement of water within the Ekman layer is 90° to the right of the 

wind direction and is called Ekman transport.  Along the CCS, where surface winds are 

moving toward the equator, the general transport of the subsurface waters is towards the 

west (offshore).  The opposite occurs during poleward wind events; Ekman transport to 

the right of poleward-directed wind events cause water to pile up near the coastline and 

minimize upwelling [Chelton et al., 1982; Huyer, 1983].  During an upwelling event, the 

thermocline and nutricline are forced upward, with upwelling velocities between 10 – 20 

m d-1, and force the movement of the cold, nutrient-rich waters toward the surface [Bakun 

et al., 2010; Checkley and Barth, 2009; McGowan et al., 2003].  Past research has 

demonstrated that a close relationship exists between the location of the thermocline and 

nutricline within the CCS [McGowan et al., 2003; Bograd and Lynn, 2001].  Increased 

vertical stratification has also been hypothesized to reduce the response of nutricline 

shoaling to upwelling-favorable winds and plankton productivity [Roemmich and 

McGowan, 1995].  Although stratification can be induced by seasonal river discharge, the 

average stratification does not fluctuate significantly throughout the CCS [Huyer, 1983].  

Seasonally, the thermocline depth is shallowest during February or March, while the 

maximum thermocline depth occurs after the substantial oceanic warming during the late 

summer months [Palacios et al., 2004].  

The importance of understanding this physical coupling between the atmosphere 

and ocean is often attributed to its significant influence on the ecosystem productivity.  

As previously mentioned, cold waters brought up into the euphotic zone through 



 11	  

upwelling are rich in inorganic nutrients [McGowan et al., 2003; Bograd and Lynn, 

2001].  Additionally, nutrients are also supplied by horizontal advection from the north to 

more southern portions of the CCS [Chelton et al. 1982].  Phytoplankton utilize these 

nutrients to synthesize of organic matter.   

Both eukaryotic (i.e. diatoms, dinoflagellates) and prokaryotic (i.e. cyanobacteria) 

phytoplankton exist within the CCS.  A couple common prokaryotes found in the CCS 

include Synecoccus and Prochlorococcus [Collier and Palenik, 2003]; and Venrick 

[2002] characterized key eukaryotes including Chaetoceros spp. (diatom) and Ceratium 

spp. (dinoflagellate).  The unique aspect of the CCS is the presence of these larger, 

eukaryotic phytoplankton, which typically have a low abundance in the open ocean.  

These primary producers act as the base for a productive food web.  Prominent 

zooplankton within the CCS include copepods, chaetognaths, and euphausiids [Checkley 

and Barth, 2009].  Many organisms further up the CCS food chain, such as pelagic fish, 

marine mammals, and sea birds [Checkley and Barth, 2009], are prevalent due to high 

phytoplankton and zooplankton productivity. 

Seasonal fluctuations in physical dynamics influence the biological composition 

throughout the CCS.  Diatoms dominate the northern region during periods of upwelling, 

but during relaxation and downwelling events smaller phytoplankton such as 

nanoflagellates and cyanobacteria dominate.  The larger phytoplankton are grazed by 

mesozooplankton such as copepods (Calanas spp.) and krill (Euphausia pacifica), while 

the smaller phytoplankton are consumed by microzooplankton [Kudela et al., 2008].  The 

seasonal fluctuations in plankton productivity also influence the migration patterns of 

trophic levels species.  Pacific hake (Merluccius productus) that spawn off the coast of 
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southern California and migrate north during the spring and summer are an example of 

this phenomenon.  Juveniles and adults feed in coastal zones of the CCS that typically 

correlate with areas of high phytoplankton concentrations [Agostini et al., 2008].  Many 

other migratory species, such as Pacific Sardine (Sardinops sagax), albacore (Thunnus 

alalunga), and whales, also use this region to feed and spawn [Checkley and Barth, 

2009]. 

Within the past several decades, the improvement of satellite-derived 

measurements has enabled scientists to explore seasonal and topographical influences on 

chl-a (as a proxy for phytoplankton) distributions in the surface ocean.  The Coastal Zone 

Color Scanner (CZCS) was one of the first satellite missions used to map and quantify 

seasonal chl-a concentrations.  In conjunction with CZCS-derived measurements, 

Thomas et al. [1994] and Strub et al. [1990] used Empirical Orthogonal Function (EOF) 

analysis to distinguish coastal (0 – 100km) and offshore (100 – 400km) seasonal signals.  

The first EOF, within the coastal region, exhibited minimum chl-a concentrations 

occurring during the winter months and a maximum during early summer.  Conversely 

the first EOF was out of phase, with the offshore region displaying a minimum in chl-a 

during the summer months and maximum during the winter months.  The coarse spatial 

resolution (~20km) of the CZCS limited earlier studies to large spatial (~100km) and 

temporal (monthly) averages to diminish the gaps and to support scientific conclusions; 

however, the increased resolution of new satellite missions (i.e. SeaWiFS, MODIS) 

provides high resolution to examine mesoscale phenomena [Kahru and Mitchell, 2001].  

However, the patchiness (due to cloudiness) and low accuracy near shore (due to land 

interference and turbidity) still continue to pose challenges in efforts to explore synoptic-
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scale variability within this region.  Due to the difficulty with obtaining reliable, 

consistent measurements, numerical models offer the opportunity to investigate the 

importance of these rather poorly understood mesoscale processes.  The GFDL CM2.6 is 

one such model, which offers applicable data. 

1.2.2 The Physical and Biological Overview: Mesoscale Influence 

Although synoptic-scale atmospheric and oceanic processes have a strong 

influence in this region, there are numerous mesoscale processes (i.e. jets and eddies) and 

features (i.e. local topography) that also influence the distribution of winds, nutrients, and 

biological production [Legaard and Thomas, 2006].  The rough topography of the CCS 

has been shown to impact the magnitude of upwelling events [Huyer, 1983].  

Additionally, the surface winds can interact with the capes and headlands that exist 

within the CCS to intensify upwelling on a local scale [Checkley and Barth, 2009].  

Areas on the lee of these topographical features are an especially favorable zone for 

phytoplankton retention growth [Graham and Largier, 1997].  Prior research has 

analyzed sections of the CCS independently, with domains selected by the seasonal 

differences in physical (i.e. wind stress, Ekman transport) and biological (i.e. nutrient 

concentrations, productivity) parameters [Kahru and Mitchell, 2001; Strub et al., 1990; 

Thomas et al., 1994].  In the present analysis of the CCS, this region will be divided into 

three subsections based on latitudinal differences in these parameters (Figure 1.3): a. The 

Northern California Current System (NCCS), b. The Central California Current System 

(CCCS), and c. The Southern California Current System (SCCS).   
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a. The Northern California Current System  

The NCCS is defined as the area between 41.5°N – 46.5°N, which extends from 

the midpoint between Cape Blanco and Cape Mendocino, moving poleward to just north 

of the Oregon-Washington border.  With the strengthening of the NPH, the NCCS 

experiences peak chl-a concentrations during April-May with concentrations reaching 

between 3.0 mg m-3 to 6.0 mg m-3 [Strub et al., 1990].  The California Current also 

supplies subarctic waters from the north, which are cold and nutrient-rich [Strub and 

James, 2003; Freeland et al., 2003].  The winter months are characterized by 

downwelling-favorable winds as the AL strengthens and the NPH retreats to the south.  

Thus, the overall biological production diminishes during the end of fall through 

February.  During this time period, the NCCS and the northern portion of the CCCS 

experience strong fluctuations in the wind strength and direction due to the passage of 

numerous low-pressure systems [Dorman and Winant, 1995].  Also, surface waters in 

this region typically contain high amounts of nitrate and nutrients during the winter 

months, but exhibit low chl-a concentrations due to light limitations [Strub et al., 1987].   

The coastline is relatively linear along the coast of Oregon until reaching Cape 

Blanco [Dorman et al., 2013].  Headlands, like Cape Blanco, cause alongshore winds to 

be disrupted (forced over or around the orography) and biological production to be 

amplified [Strub et al., 1990].  In addition to the subarctic input from the California 

Current, a significant flux of freshwater is supplied by the Columbia River, which has a 

variable impact based on the prevalent wind direction [Thomas and Weatherbee, 2006].  

During upwelling-favorable wind events, the Columbia River plume can be advected 

downwind and offshore hundreds of kilometers [Checkley and Barth, 2009].  Conversely, 
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downwelling-favorable wind events cause the plume to remain trapped within 30km of 

the coastline and can be advected latitudinally at rates of about 35 km per day.  This 

plume can act as a retention pool for phytoplankton, but the primary nutrients provided 

are silica and iron with little nitrate input [Hickey et al., 2005]. 

b. The Central California Current System  

 The CCCS stems from about 35.5°N – 41.5°N and has fairly persistent 

equatorward winds throughout the spring and summer months.  During the late fall and 

winter months, the strength of the equatorward winds diminish and are influenced by 

increased frequency of low-pressure systems, which generate sporadic poleward winds 

[Strub et al., 1987a].  The wind-driven chl-a concentrations peak within 5 – 50km of the 

shoreline and reach concentrations above 2.0 mg m-3 at times [Abbott and Zion, 1987].  

Within the CCCS, there are several headlands such as Cape Mendocino, Point Arena, and 

Point Sur.  These capes and points disrupt the alongshore winds within the CCS.  Due to 

these orographical features, atmospheric jets, and oceanic meanders stimulate SST and 

chl-a variability on timescales of three to six weeks [Strub et al., 1987a].  Significant 

bursts in wind stress have been shown to develop south of Point Arena due to the 

aforementioned influence of these orographic features [Dorman and Winant, 1995, 

Dorman et al., 2013] with observations displaying an average increase in wind stress 

south of Cape Mendocino relative to areas further north [Dorman et al., 2013].  Boe et al. 

[2011] documented correlations between positive wind stress anomalies and decreased 

SST on the lee-side of capes and points within the CCCS and the SCCS, which indicates 

cold, nutrient-rich water being brought to the surface through upwelling. 
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c. The Southern California Current System 

  Unlike the NCCS and the CCCS, dynamics within the SCCS (30.5°N – 35.5°N) 

region more independent of the seasonal fluctuations in wind stress.  Persistent, weak 

upwelling-favorable winds are present throughout the entire year, peaking in strength 

during the late summer months [Dorman and Winant, 1995; Strub et al., 1987].  

Typically, a gradient in chl-a concentrations will persist from the coastline (about 2.0 mg 

m-3) into the offshore waters (< 0.25 mg m-3) [Strub et al., 1987].  Additionally the 

southern portion of this region, extending into Baja California, is influenced by seasonal 

atmospheric dynamics and by oceanic Kelvin waves associated with El Niño and La Niña 

[Legaard and Thomas, 2006].  Past research has indicated that Point Conception (~34°N) 

can generate upwelling-favorable winds in the lee, which is important for nutrient 

availability and ultimately, biological productivity in the surface ocean [Dorman and 

Winant, 1995]. 

1.3 DATA, MODEL ASSESSMENT, AND METHODS 

1.3.1 Data 

 The Geophysical Fluid Dynamics Laboratory (GFDL) recently developed the 

Climate Model version 2.6 (CM2.6).  This model has the same atmospheric and oceanic 

physics used in the earlier, well-documented configuration, Climate Model version 2.5 

(CM2.5).  The primary difference is the increased oceanic resolution of CM2.6, which 

has horizontal grid spacing of 4km at high latitudes and around 11km near the equator. 

Both CM2.5 and CM2.6 have a horizontal atmospheric resolution of 50km.  The key 

atmospheric advancements within CM2.5 and CM2.6 over previous versions of the 

GFDL suite of climate models (CM2.0 – CM2.4) lies within the physics, the increased 
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amount of vertical levels (i.e. upper troposphere and stratosphere), and enhanced cloud 

parameterization schemes [Delworth et al., 2012].  Otherwise, the atmospheric physics 

are the same as found in the GFDL global atmosphere and land model simulations 

[GFDL Global Atmospheric Model Development Team, 2004].  In addition to the finer 

resolution, the oceanic physics have been enhanced to simulate more energetic and 

realistic ocean dynamics.  The main additions include the increased submesoscale eddy 

activity, lower viscosity, and K-profile parameterized vertical mixing, which provide a 

better representation of the real environment.  The exchange between the atmosphere and 

the ocean is designed to occur once an hour. 

The dynamically coupled ecosystem model of CM2.5 and CM2.6 is known as 

Carbon Ocean Biogeochemisty and Lower Trophics (COBALT).  Relationships among 

physical properties in CM2.6 and plankton dynamics are examined using COBALT.  

COBALT uses 13 nitrogen-based state variables to best represent the global planktonic 

food web.  The three primary phytoplankton groups (small phytoplankton, large 

phytoplankton, and diazotrophs) all uptake nitrogen and ammonia.  The key productivity 

limitations that influence the productivity of these organisms are light availability and 

nutrient concentrations (i.e. nitrate, phosphorus, and iron) as previously indicated by Spitz 

et al. (2003).  Vertical sinking, zooplankton grazing, and viral shunting are all included 

and contribute to phytoplankton loses.  Remineralization is also integrated to reintroduce 

ammonia to the system.  A more in-depth explanation of the nutrient dynamics (including 

phosphorus and iron grazing) and other formulations used in COBALT can be found in 

Stock et al. [2014]. 
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A two-year time series of daily CM2.6 model data and a twenty-year time series 

of monthly CM2.6 model data was acquired through collaboration between the 

University of South Carolina and GFDL.  These model runs do not incorporate any future 

climate scenarios, but instead assume greenhouse-gas composition similar to 1990.  In 

this study, the primary environmental parameters utilized from the daily CM2.6 model 

runs were surface chl-a concentrations (µg L-3), wind stress (N m-2), SST (°C), nitrate 

concentration (µg m -3), pH, and primary production in the upper 100m (mol m-2 s-1).  

This study used daily averages of the CM2.6 data at a 1/10° resolution.  The monthly 

averaged CM2.6 data (20-year time series) was regridded to a lower resolution (1/2°) to 

compare against the satellite-derived chl-a and wind stress measurements (further 

described in Section 1.3.2).  Data processing, manipulation, and analysis were completed 

using MATLAB2012b. 

1.3.2 Model Assessment  

 The goal of the model assessment is to explore the CM2.6 model’s representation 

of the surface wind patterns and chl-a concentrations within the CCS in comparison to 

satellite-derived data.  The limited availability and lack of previous utilization of CM2.6 

motivates this assessment.  Kahru and Mitchell [2001] produced a blended surface chl-a 

satellite product focused on the CCS that incorporates estimates of chl-a from numerous 

satellites (i.e. SeaWiFS, MODIS, MERIS) in an attempt to improve spatial and temporal 

resolution within the region. The blended chl-a product has been compared against ship-

based observations [Kahru and Mitchell, 1999], which were deemed to be accurate and 

representative of the chl-a concentrations within the CCS.  Similar to the satellite-derived 

chl-a data, wind stress data used for this validation are from a blended satellite product 
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entitled Blended SeaWinds.  This product combines previous and recent satellite missions 

(i.e. QuikSCAT, TMI, and AMSR-E) to lengthen the time series of wind estimates while 

improving the spatial and temporal resolution [Zhang et al., 2006].  The Blended 

SeaWinds product has been previously compared against observational NDBC buoy 

measurements and has demonstrated a significant correlation both offshore and inshore 

[Garcia-Reyes and Largier, 2010].  Given the robustness of the chl-a and wind stress 

datasets, both are adopted as observationally based products for comparison with CM2.6 

within the CCS.  A 20-year time series of monthly averages was compiled for CM2.6, 

and monthly averages were calculated from the daily satellite-derived products for a 14-

year period to create climatological means for comparison.  

 As previously mentioned in Section 1.3.1, both model and satellite-derived 

datasets were linearly interpolated to 1/2° grid spacing to complete a direct comparison.  

Figure 1.4 (Figure 1.5) represents the average of spatial distribution of chl-a during the 

summer (winter) for both model and satellite-derived datasets.  The satellite-derived 

measurements indicate large concentrations of chl-a nearshore during the summer and a 

steep gradient between the coastal zones extending offshore into open ocean waters 

during the winter months.  Although CM2.6 expresses the general spatial distribution of 

chl-a nearshore and offshore, the model underestimates the magnitude nearshore and 

overestimates the offshore chl-a concentrations with respect to the satellite-derived 

measurements.  CM2.6 is able to replicate the spatial patterns as well as the peak 

nearshore chl-a concentrations fairly well.  However, CM2.6 underestimates the chl-a 

concentrations patterns nearshore and overestimates the offshore concentrations, which 

has been previously documented [Stock et al. (2014)].  
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The CM2.6 model data were assessed against satellite-derived measurements by 

comparing the average daily values.  Both chl-a and meridional wind stress (τy) time 

series were generated from averages between 0 – 100km (nearshore) and 100 – 300km 

(offshore) within the NCCS, CCCS, and SCCS.  Differences between the nearshore and 

offshore time series exist within all three regions of the CCS.  Within the NCCS (Figure 

1.6), CM2.6 does not represent the amplified nearshore spring-summer chl-a 

concentrations (Figure 1.6a).  Both offshore time series within the NCCS indicate a 

spring-summer chl-a minimum, which has been revealed by past research [Strub et al., 

1990].  Within the CCCS, CM2.6 does not capture the nearshore (Figure 1.7a) spring and 

fall chl-a maxima that are represented by the satellite-derived measurements.  The 

summer chl-a minima are characterized in the offshore (Figure 1.7b) CM2.6 time series, 

but CM2.6 overestimates the winter chl-a concentrations.  Within the SCCS, the 

nearshore (Figure 1.8a) CM2.6 chl-a concentrations are better represented, but 

overestimate the offshore chl-a concentrations throughout most seasons (Figure 1.10b).  

CM2.6 τy estimates, within the NCCS, display a strong seasonal similarity to the satellite-

derived time series in the nearshore (Figure 1.6c) and offshore (Figure 1.6d) time series.  

However, CM2.6 overestimates the magnitude of the offshore τy during the fall and 

winter months when compared to the satellite-derived product.  Similarly to the NCCS, 

the daily τy events express comparable seasonal trends in the nearshore and offshore 

within both the CCCS (Figure 1.7c and 1.7d) and SCCS (Figure 1.8c and 1.8d).  

Although these two parameters (chl-a and τy) express differences in concentration and 

magnitude between CM2.6 and satellite-derived measurements, CM2.6 captures the 
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spatial distribution well within in the CCS, warranting its use for the remainder of this 

study.  

1.3.3 Methods 

a. Extracting the High- and Low-Frequency Events 

First, the Global Self-consistent, Hierarchical, High-resolution Shorelines [Wessel 

and Smith, 1996] was used to estimate a distance grid from the coastline region between 

30.5°N – 46.5°N and 133.0°W – 114.0°W at the 1/10° resolution, for each grid cell.  

Thresholds were set at different intervals to characterize three distance ranges offshore.  

The first distance range offshore is from 0 – 25km (Band 1).  Band 1 is characterized as a 

narrow band of coastal upwelling within 25km of the coastline [Huyer, 1983].  The 

second distance range is between 25 – 100km (Band 2).  Band 2 experiences filaments 

and coastal plumes that extend off the coastline [Abbott and Zion, 1987].  The third 

distance range is between 100 – 300km (Band 3).  Band 3 is characterized as an area that 

has drastic decreases in phytoplankton concentrations in relation to the nearshore 

environment [Thomas et al., 1994; Strub et al., 1990].  These three offshore ranges are 

shown in Figure 1.3.  This grid was then applied to the CM2.6 model data to extract the 

data for all parameters (chl-a, τy, nitrate, etc.) within each of the ranges.  Finally, the 

model data was divided into three latitudinal regions, NCCS (~41.5°N – 46.5°N), CCCS 

(~35.5°N – 41.5°N), and SCCS (~30.5°N – 35.5°N), as previously described in sections 

1.2.2a, 1.2.2b, and 1.2.2c, respectively.  Daily spatial averages within each of the bands 

and regions were then calculated, resulting in a two-year time series of daily averages for 

each parameter. 
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 After acquiring each time series, a simple averaging scheme was applied to 

extract the high-frequency (3 – 7 days) and low-frequency (7 – 30 days) signals from 

each parameter.  First, each time series was detrended to remove any negative or positive 

trend found within the CM2.6 model data.  Applying a 30-day running average to the 

detrended, 2-year time series dampened the seasonal signal.  The 30-day average was 

then subtracted from the original time series to acquire the anomalous events less than 30 

days (30-day bandpass filter), as shown in Figure 1.9.  To obtain the high-frequency 

events, the events less than 3-days and greater than 7-days must be removed from the 30-

day bandpass.  A 3-day running mean was then applied to the 30-day bandpass to acquire 

all events greater than 3-days.  Also, a 7-day running mean was applied to the 30-day 

bandpass to acquire all events greater than 7 days.  The 3-day running mean was 

subtracted from the bandpass-filtered time series to acquire events less than 3 days (3-day 

bandpass) and the 7-day running mean was subtracted from the 30-day bandpass to 

acquire events less than 7 days (7-day bandpass).  The high-frequency events were then 

extracted by subtracting the 3-day bandpass from the 7-day bandpass, as shown in Figure 

1.10.  Finally, the low frequency events were acquired by subtracting the 7-day bandpass 

from the 30-day bandpass, as shown in Figure 1.11.  This averaging scheme was applied 

to all parameters and spatial subsections. 

b. Statistical Methods 

Using the high- and low-frequency time series for each parameter, the cross-

correlation function (via MATLAB) was applied to estimate the lag and conduct a 

correlation between each paired time series (i.e. chl-a vs. τy) to acquire the maximum 

correlation coefficient (r), and p-value (p).  The lag at which r was maximized was taken 
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as an indication of the primary response period between chl-a and τy at both high-

frequency (Figure 1.10) and low-frequency (Figure 1.11) events.  To estimate the 

response time of other parameters (chl-a, SST, nitrate, etc.) to τy, the focus was only on 

the positive lag since the parameters should be a response to the wind event (i.e. high chl-

a concentrations should be generated by a wind event, not vice versa).  Also, a 30-day 

threshold was applied to limit the lag values to less than 30-days given that any 

correlations outside of that time period are likely spurious.  For example, Figure 1.12 

displays the correlation between chl-a and τy within Band 1 of the CCCS at various lags, 

from 0 days to 30 days.  Figure 1.12a illustrates that the peak correlation occurs with a 

lag of 0 days (r = 0.236; p << 0.0001).  Figure 1.12b displays the low-frequency lag as 4 

days (r = -0.517; p << 0.0001).  In addition to conducting this analysis on the full 2-year 

time series (Section 1.4.1), the time series were broken down into seasonal time series 

(Section 1.4.2); thus, the summer months and winter months were extracted to form a 

summer and winter time series at each location and for both parameters. 

1.4 RESULTS 

 As expressed in Section 1.3.3b, the frequency analyses compared time series of 

chl-a with τy, and the temporal lags that exhibited the greatest correlations between the 

two time series were identified.  Each time lag was examined with respect to all three 

regions and each of the three offshore bands.  A correlation was applied to the lagged 

time series to acquire the correlation coefficients (r).  Negative r-values indicate a 

positive response between chl-a concentrations to upwelling-favorable τy events at the 

high- and/or low-frequency.  Figure 1.13 is an example within Band 1 of the CCCS; the 

highest correlation was evident at a lag time of 4 days between low-frequency chl-a 
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concentrations and τy events.  Figure 1.14 indicates that a significant correlation exists 

between chl-a concentrations and τy within Band 1 of the CCCS at low-frequency  

(r = -0.517; p << 0.0001).  The frequency analysis was applied to the various chl-a and τy 

time series within the CCS with respect to the three regions and three offshore bands, 

which yielded an array of optimal lags, correlation coefficients (r), and levels of 

significance (p-value).   

1.4.1 Two-year time series 

 The chl-a and τy time series at high-frequency exhibit weak relationships within 

the CCS.  Although statistically significant, the NCCS and CCCS both demonstrate small 

correlation coefficients as shown in Figure 1.15.  Within the SCCS, chl-a and τy do not 

show any significant relationship between one another in any of the three offshore bands.  

On average, greatest correlations in all regions and bands were found at a lag between 0 – 

2 days.   

The low-frequency time series showed similar trends between the three regions 

within the CCS as well as the three offshore bands (Figure 1.15).  The NCCS, CCCS, and 

SCCS all express similar offshore trends with the highest negative correlations occurring 

in Band 1.  Figure 1.15 shows the significant correlations in Band 1 for the NCCS (r = -

0.581; p << 0.0001), CCCS (r = -0.517; p << 0.0001), and SCCS (r = -0.359; p << 

0.0001).  The correlation coefficients become more positive in Band 2 as the chl-a and τy 

time series exhibit less correlation than those time series near the coast.  A significant 

correlation was noted within the NCCS (r = -0.433; p << 0.0001) and CCCS (r = -0.415; 

p << 0.0001), however, there was a much weaker relationship within the SCCS (r = -

0.163; p << 0.0001).  In Band 1 and Band 2, the chl-a time series lagged the τy time series 
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by 4 – 6 days in all three regions.  In Band 3, the relationship between chl-a 

concentrations and τy diminishes in all three regions: NCCS (r = -0.156), CCCS (r = -

0.171), and SCCS (r = -0.180) at an optimal lag of 30 days.   

1.4.2 Summer time series 

 During the summer months, the high-frequency time series within the NCCS and 

CCCS display statistically significant, negative responses between chl-a concentrations 

and τy within Band 1 (r = 0.518; r = 0.436, respectively) at a 0-day lag.  Figure 1.16a 

indicates that the second and third offshore bands within the NCCS have no significant 

relationships between the chl-a concentrations and τy.  However, the CCCS shows a 

positive response in chl-a concentrations in Band 2 (r = -0.346; p << 0.0001) and Band 3 

(r = -0.370; p << 0.0001) at a 2-day lag.  The high-frequency time series in the SCCS 

exhibits no significant relationships in any of the three offshore bands during summer. 

At low-frequency τy events, the chl-a responds positively at a 4- to 5-day lag in 

Band 1 (r = -0.495; p << 0.0001) and Band 2 (r = -0.638; p << 0.0001) within the NCCS.  

Figure 1.16a shows a negative response within the CCCS in Band 1 (r = 0.224; p < 0.01) 

and a positive response in Band 2 (r = -0.301; p << 0.0001) and Band 3 (r = -0.314; p << 

0.0001). The SCCS displays a 4- to 5-day lag between chl-a concentrations and low-

frequency τy events within Band 1 (r = -0.377; p << 0.0001) and Band 2 (r = -0.203; p < 

0.01).   

1.4.3 Winter time series 

  During the winter months, the high-frequency time series within the NCCS 

display a weak, negative response within Band 1 (r = 0.281; p << 0.0001) and Band 2 (r = 
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2.89; p << 0.0001) at a 0-day lag.  No statistical significance exists at any of the three 

offshore bands within the CCCS and SCCS. 

 A significant positive response is exhibited in Band 1 within the NCCS (r = -

0.645; p << 0.0001) and CCCS (r = -0.402; p << 0.0001) at a 4- to 5-day lag.  This 

significant relationship weakens further offshore (Figure 1.16b).  None of the three bands 

express statistical significance within the SCCS. 

1.5 DISCUSSION AND CONCLUSIONS 

The primary purpose and focus of this study was to investigate the response of 

surface chl-a to high- and low-frequency τy events.  High-frequency τy events were 

hypothesized to have a weak correlation with chl-a concentrations, as wind events at this 

frequency (3 – 7 days) may not persist long enough to stimulate a significant shoaling of 

the nutricline to produce a significant response in surface chl-a concentrations.  Rather, 

the τy events at low-frequency (7–30 days) were hypothesized to raise the nutricline for a 

period long enough to sustain a chl-a response.  This relationship was hypothesized to be 

more significant during the summer months than the winter months due to the primary 

limitation to summer primary productivity being availability of nutrients, which 

upwelling can decrease the impact of that limitation by supplying nutrients to the 

euphotic zone.  The frequency analysis highlighted relationships in both the two-year 

time series and the seasonal (summer and winter) time series that will be addressed in the 

succeeding subsections: 1.5.1 Two-year time series and 1.5.2 Seasonal time series.  

1.5.1 Two-year time series 

 In general, the three regions within the CCS all display weak relationships 

between chl-a concentrations and high-frequency τy events.  Past research studies have 
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indicated that high-frequency upwelling events occur within the CCS [Huyer, 1983], the 

Benguela Current System [Desbiolles et al., 2014], and other EBUS.  Anomalously low 

coastal SSTs (satellite-derived) and increased water densities (observational) were used 

to quantify the cold, dense waters forced to the surface during these upwelling events.  

McGowan et al. [2003] expressed that the thermocline and nutricline reside at similar 

depths within the water column, which would indicate that high-frequency wind events 

generating cold SST anomalies near the coastline would also be introducing new 

nutrients into the euphotic zone.  However, the weak correlation between high-frequency 

τy events and chl-a concentrations found in the CCS regional results implies that 

upwelled nutrients may not persist long enough in the euphotic zone to sustain a 

significant phytoplankton bloom or the model may be misrepresenting these events.  

Past research has used model estimations to propose that wind speed and direction 

must be relatively static for a minimum duration of 3 – 4 days to have an ecological 

significance, which was approximated as the amount of time necessary for phytoplankton 

to complete nutrient uptake [Botsford et al., 2006].  Although, τy events at frequencies 

between 2 – 6 days, typically driven by atmospheric frontal passages or weather-bands, 

can interrupt upwelling long enough to decrease primary productivity [Bane et al., 2007].  

Also, Michaelsen et al. [1988] proposed that phytoplankton response time is not fast 

enough to react to every high-frequency meteorological event (cycle between 5 – 6 days) 

and may not sustain a phytoplankton bloom, but rather prime the surface ocean for future 

blooms in primary productivity. 

At low-frequencies, all three regions within the CCS displayed significant, 

positive responses between τy events and chl-a concentrations in Band 1 (Figure 1.15).  
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Bane et al. (2007) found similar results in modeled phytoplankton responses off the coast 

of Oregon (~43.5°N – 45.5°N), which were at a 7-day lag to low-frequency τy events.  

The cause of these τy events in this area were attributed to fluctuations in the position of 

the jet stream, which were persistent long enough to bring sufficient amounts of nutrients 

to the euphotic zone and stimulate primary productivity [Bane et al., 2007].  Weaker 

offshore relationships between τy and chl-a concentrations within the CCS may be 

attributed to a few different factors such as eddy activity, submesoscale jets and squirts, 

and deepening mixed-layer depth. In the NCCS and CCCS, Band 3 displayed weak 

relationships between chl-a and τy, which may be attributed to deeper mixed layers in 

these regions [Marchesiello et al., 2003; Strub et al., 1991].  The weak correlations in 

Band 2 and Band 3 of the SCCS may be due to weaker τy events or deeper stratification, 

which would both minimize the amount of nutrients reaching the surface [Huyer, 1983].  

Additionally, eddy and other mesoscale activity increases offshore (i.e. Band 2 and Band 

3), which can cause decreases in this proposed linear relationship between chl-a 

concentrations and τy events [Strub et al., 1991]. 

1.5.2 Seasonal time series (Summer vs. Winter) 

a. The Northern California Current 

The significant seasonal variability within the CCS’s atmospheric and oceanic 

physical factors, such as sea-level pressure, SST, nutrient abundance, and light 

availability, prompted an individual assessment and comparison of the summer and 

winter timeframes.  Weak relationships between chl-a and high-frequency τy events exist 

within the NCCS during both summer and winter months.  This is potentially due to wind 

events interrupting upwelling and the subsequent nutrient flux, which ultimately, can 
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decrease primary production [Bane et al., 2007].  However, the anomalously negative 

response in chl-a concentrations that exists within Band 1 of the NCCS (Figure 1.16a) 

may be attributed to the weak relationship between τy events and surface nitrate (Figure 

1.17), which is expressed by a low correlation coefficient.  These relationships between 

chl-a concentrations (and nitrate) and τy, in Band 1 of the NCCS, were calculated at a 0-

day lag; therefore, a negative response between chl-a and τy events would indicate that 

wind-driven upwelling events do not simultaneously drive biological production.  At low-

frequencies, the strong relationships between chl-a concentrations and τy events exist in 

both summer and winter.  Chl-a concentrations appear to be highly correlated to coastal 

τy events (Band 1 and Band 2) in both seasons, which is consistent with the findings of 

Bane et al. [2007].  This indicates that low-frequency τy events that oscillate between 

downwelling- and upwelling-favorable events persist long enough to impact chl-a 

concentrations negatively or positively, respectively. 

b. The Central California Current System 

 High-frequency events within the offshore bands (Band 2 and Band 3) exhibit 

significant correlations during the summer, but not the winter.  During the summer, these 

weak offshore correlations between chl-a concentrations and τy events could be linked to 

intensified mixing [Legaard and Thomas, 2006].  Also, Henson and Thomas [2007] 

conveyed that light limitations during the winter could drastically hinder phytoplankton 

growth, even if sufficient nutrients are present.  At low frequencies, the CCCS displays 

significant differences between the winter and the summer. During the winter, 

relationships between the τy events and chl-a concentrations may be attributed to 

oscillations in the jet stream due to these events occurring on time scales of 10 – 40 days 
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[Bane et al., 2007].  However, during the summer, negative response exists within Band 

1, which appears to be anomalous and due to coastal eddy activity [Hayward and 

Mantyla, 1990].   

Spatial maps were visually analyzed to determine the relative magnitude of eddy 

activity within 300km of the coastline.  Figure 1.18 displays eddy activity in Year 1 to be 

more active, relative to Year 2 (Figure 1.19), within the CCCS as a whole and 

specifically nearshore to Cape Mendocino (~39°N).  September 4 (Figure 1.18) shows the 

influence of several anticyclonic eddies within Band 1 and Band 2 of the CCCS, which 

lowers the surface chl-a concentrations.  The presence of these features would cause 

deviations from the linear relationship between chl-a concentrations and τy events 

[Hayward and Mantyla, 1990].  Conversely, Figure 1.19 shows minimal nearshore eddy 

activity throughout the Year 2 summer, with respect to Year 1 summer (Figure 1.18).   

To further investigate this nearshore anomaly within the CCCS, the summer time 

series was divided into Year 1 summer (Figure 1.20a) and Year 2 summer (Figure 1.20b) 

to determine if there were any statistical variations between the two years.  A weak 

response in chl-a concentrations is shown in Band 1 during increased eddy activity (Year 

1) and a strong, positive response between chl-a concentrations and τy events during 

decreased eddy activity (Year 2).  Past research has demonstrated that persistent eddies 

near Cape Mendocino and other headlands can disperse nutrients and phytoplankton 

away from the coastline [Strub et al., 1991; Hayward and Mantyla, 1990], which would 

weaken the relationship between τy events and chl-a concentrations. 
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c. The Southern California Current System 

High-frequency events within the SCCS experience extremely weak relationships 

at all three offshore bands in both summer and winter, which coincides with the theory 

that decreases in primary productivity can be generated from events at this frequency 

[Bane et al., 2007].  However, at low-frequencies, the summer months display a more 

significant relationship within the first two bands than the winter.  These statistically 

insignificant relationships during the winter months may be due to decreased light 

availability [Henson and Thomas, 2007] or deep mixed layer depth [Huyer, 1983], which 

would more readily mix nutrients and phytoplankton out of the euphotic zone.  

Ultimately, these relationships within the SCCS indicate that low frequency τy events 

may be more ecologically significant during the summer than the winter.  

1.5.3 Conclusions and Importance 

 In general, high-frequency (3 – 7 days) τy events were found to have a minimal 

impact on chl-a concentrations throughout the CCS.  However, low-frequency τy events 

were shown to have a significant relationship with chl-a concentrations within 100km of 

the coastline in the NCCS and CCCS, and within 25km in the SCCS.  Furthermore, this 

positive relationship was more significant during the summer within the CCCS (Band 2 

and Band 3) at high-frequencies and SCCS (Band 1) at low frequencies.  Also, enhanced 

eddy activity has been proposed to generate discontinuities between the linear 

relationships of alongshore wind events and chl-a concentrations [Strub et al., 1991; 

Hayward and Mantyla, 1990].   

These results suggest that high-frequency upwelling events may not have any 

immediate significance on the chl-a concentration.  However, Michaelsen et al. [1988] 
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proposed that τy events at this frequency could possibly prime the system for blooms at a 

later period, which should be further researched.  Henson and Thomas [2007] conveyed 

that persistent upwelling-favorable τy events greater than 15 days could initiate seasonal 

primary productivity within the CCS; thus, the importance low-frequency events could 

have implications on spring productivity.  Future work should attempt to include the 

utilization of the full, three-dimensional CM2.6 model data for a more extensive analysis 

of the vertical oceanic dynamics within the CCS.  Additionally, future improvements in 

temporal and spatial resolution of satellite-derived measurements may allow for similar 

frequency analyses to be applied. 
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Figure 1.1: (a) Annual Advance Very-High Resolution Radiometer-derived sea surface 
temperature (°C) and (b) Epply [1972] estimated net primary production (mg Carbon m-2 
day-1).  Satellite-derived QuikSCAT estimated 10-meter winds are overlaid.  
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Figure 1.2: (a) Average January and (b) July sea level pressure (mb), generated from a 
10-member ensemble from 1861-2100 (RCP8.5). 
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Figure 1.3: Spatial grid of the CCS, divided into three subsections: Northern CCS 
(NCCS), Central CCS (CCCS), and the Southern CCS (SCCS).  Each subsection was 
divided into three offshore bands: 0 – 25km (Band 1), 25 – 100km (Band 2), and 100 – 
300km (Band 3). 
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Figure 1.4: Difference between model-estimated and satellite-derived average chl-a 
(log(ug L-1)) for July-September. 
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Figure 1.5: Difference between model-estimated and satellite-derived average (log(ug L-

1)) for January-March. 
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Figure 1.6: Average daily chl-a (log(ug L-1)) estimates in the NCCS (a) nearshore and 
(b) offshore.  Average daily τy (N m-2) estimates in the NCCS (c) nearshore and (d) 
offshore.  Black lines indicate CM2.6 and the red lines indicate satellite-derived 
measurements. 
 
 



 39	  

 
Figure 1.7: Average daily chl-a (log(ug L-1)) estimates in the CCCS (a) nearshore and (b) 
offshore.  Average daily τy (N m-2) estimates in the CCCS (c) nearshore and (d) offshore.  
Black lines indicate CM2.6 and the red lines indicate satellite-derived measurements. 
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Figure 1.8: Average daily chl-a (log(ug L-1)) estimates in the SCCS (a) nearshore and (b) 
offshore.  Average daily τy estimates in the SCCS (c) nearshore and (d) offshore.  Black 
lines indicate CM2.6 and the red lines indicate satellite-derived measurements. 
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Figure 1.9: Example of the detrended time series and 30-day bandpass for τy (N m-2). 
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Figure 1.10: Example of the 7-day bandpass, 3-day bandpass, and high-frequency for τy 
(N m-2). 
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Figure 1.11: Example of the 30-day bandpass, 7-day bandpass, and low-frequency for τy 
(N m-2). 
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Figure 1.12: Example of the lag between chl-a (log(ug L-1)) and τy (N m-2) at (a) High 
Frequency and (b) Low Frequency. 
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Figure 1.13: A year time series for (a) chl-a (log(ug L-1)) concentrations and (b) τy (N m-

2) in the CCCS (0 – 25km).  The red arrows indicate the estimated lag between time 
series. 
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Figure 1.14: The linear relationship between chl-a (log(ug L-1)) and τy (N m-2) in the 
CCCS (0 – 25km) at a lag of 4 days (r = -0.517; p-value << 0.0001).   
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Figure 1.15: Black markers indicate correlation coefficients between the chl-a (log(ug L-

1)) and τy (N m-2) (2-year time series) at high frequency and red markers indicate 
correlations coefficients at low frequency time series within the NCCS, CCCS, and 
SCCS.  
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Figure 1.16: Black markers indicate correlation coefficients between chl-a (log(ug L-1))  
and τy seasonal (N m-2) (Summer and Winter) time series at high frequency and red 
markers indicate correlations coefficients at low frequency time series within the NCCS, 
CCCS, and SCCS. 
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Figure 1.17: Black markers indicate correlation coefficients between nitrate (µg m -3) and 
τy (N m-2) seasonal (Summer) time series at high frequency and red markers indicate 
correlations coefficients at low frequency time series within the NCCS, CCCS, and 
SCCS. 
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Figure 1.18: CM2.6 model Year 1: daily surface chl-a (log(ug L-1)) with τy (N m-2) 
overlaid. 
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Figure 1.19: CM2.6 model Year 2: daily surface chl-a (log(ug L-1)) with τy (N m-2) 
overlaid. 
 



 52	  

 
 
Figure 1.20: The correlation coefficients between chl-a (log(ug L-1)) and τy (N m-2), at 
the three offshore distance ranges within the NCCS, CCCS, and SCCS, for the (a) first 
summer and the (b) second summer time series.  Black markers indicate correlations 
between high frequency time series and red markers indicate correlations between low 
frequency time series. 
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