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ABSTRACT 

Lionfish (Pterois volitans) are an invasive, predatory fish native to the reefs of the 

Indo-Pacific. In the mid-1980s, lionfish were introduced off the coast of Miami, FL and 

have since transformed many of the reef ecosystems throughout the Western Atlantic 

Ocean. Although lionfish are found year-round as far north as Cape Hatteras, NC, they are 

confined to the warm Gulf Stream during winter months. Seasonal inshore expansion is 

possible in the summer, and further poleward expansion is limited by cold bottom-water 

temperatures in winter. Here, I use an ensemble of 17 different climate models to project 

lionfish habitat by the year 2100. Climate models were statistically downscaled using an 

existing Regional Ocean Modeling System, permitting a high-resolution (7-by-7 km) 

projection of bottom-water temperatures across the Western Atlantic Ocean. I compared 

these projections to the lower temperature thresholds of lionfish feeding and mortality, 

previously estimated to be 16°C and 10°C, respectively. Under the business-as-usual 

climate change scenario (RCP 8.5), lionfish habitat is likely to move inshore to the 

coastlines of the Carolinas, including the Pamlico Sound, NC. The spatial extent of suitable 

habitat in the South Atlantic Bight is expected to increase 35% by 2100, and seasonal 

range is expected to expand by 24%. These methods are broadly applicable to other niche 

models, especially for other hardy, generalist species sensitive to climate change. This 

work has applications for management and prevention of future lionfish invasions.  
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CHAPTER 1 

INTRODUCTION 

Invasive species are rampant in marine environments (Sorte et al., 2010), yet few 

invasions by fish species have been documented (Baltz, 1991). Though uncommon, a few 

invasive fish species have been successful in disturbed marine areas such as the 

Mediterranean Sea (Golani et al., 2002, 2007) and the Hawaiian Archipelago (Randall, 

1987). Indo-Pacific red lionfish (Pterois volitans) and the morphologically-identical devil 

firefish (Pterois miles; hereafter collectively referred to as lionfish) are the first major fish 

invader into the Western Atlantic Ocean (Whitfield et al., 2002).  Lionfish were introduced 

near Miami, FL in the mid-1980s or 1990s, likely as the result of the aquarium trade (Hare 

& Whitfield, 2003; Semmens et al., 2004) and have since spread throughout the 

continental shelves of the Southeastern United States, Bermuda, Caribbean Sea, and the 

Gulf of Mexico (Schofield, 2009, 2010). It is possible that lionfish could survive as far south 

as Uruguay (Morris & Whitfield, 2009), but are likely being deterred by the Amazon-

Orinoco freshwater plume and the Southern Equatorial Current (Côté et al., 2013). Native 

lionfish in the Indo-Pacific live almost exclusively on rocky and coral reefs (Fishelson, 

1975; Schultz, 1986) but can be found not only in reefs (Whitfield et al., 2007; Albins & 

Hixon, 2008; Green & Côté, 2009), but sea-grass beds (Meister et al., 2005; Claydon et al., 

2012), mangroves (Barbour et al., 2010), and estuaries (Jud et al., 2011; Prakash et al., 

2012) in the invaded range.
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Novelty confers certain advantages to lionfish, including a unique appearance and 

hunting strategy that may confuse potential prey, if prey recognize the lionfish as being a 

predator at all (Morris et al., 2009; Albins & Lyons, 2012; Albins & Hixon, 2013). Lionfish 

possess venomous spines that discourage predation by local predators (but see Maljković 

et al., 2008; Diller et al., 2014), and their only predator in the native range, the 

bluespotted cornetfish Fistularia commersonii, is not present in the invaded range 

(Bernadsky & Goulet, 1991). Given these traits, along with a voracious, generalist appetite 

(Morris & Akins, 2009; Muñoz et al., 2011), lionfish have been found to drastically lower 

abundance, recruitment, and diversity of prey fish in areas which they have invaded 

(Green et al., 2012; Albins & Hixon, 2008; Albins, 2013). Benthic macroinvertebrates – the 

preferred prey of young and small lionfish – likely face similar consequences, but 

quantifying the impact of lionfish on this community requires further analysis (Muñoz et 

al., 2011; Layman et al., 2014). Lionfish may also affect abundance and behavior of 

commercially and ecologically important predators in the region, such as snapper and 

grouper, by competing with them for food and space (O’Farrell et al., 2014; Raymond et 

al., 2015).  

Lionfish are currently located throughout the outer shelf of the South Atlantic 

Bight (SAB) as far north as Cape Hatteras, NC (Schofield, 2009). Further northward 

expansion is presently limited by cold winter bottom-water temperatures in the Mid 

Atlantic Bight (Whitfield et al., 2002, 2014; Kimball et al., 2004). The SAB exhibits a unique 

oceanographic climatology due to the Gulf Stream transiting north through the 

continental shelf and redirecting towards Europe at Cape Hatteras. During the winter 
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months (December-March), a steep, inshore-offshore temperature gradient develops 

between the cold, nearshore waters and the relatively warm waters of the Gulf Stream. 

These warm waters provide a  refuge for lionfish in the center of the SAB (Whitfield et al., 

2002, 2014; Meister et al., 2005; Muñoz et al., 2011), while the shallow inshore waters 

rapidly cool due to surface mixing (Atkinson et al., 1983). This gradient is reversed in the 

summer months (June-August), allowing adult lionfish to move further inshore (Whitfield 

et al., 2007; Schofield, 2009) as hot summer surface temperatures are mixed into the 

shallow inshore waters. Lionfish larvae are occasionally advected north by the Gulf 

Stream and warm-core eddies (Hare et al., 2002), resulting in the presence of young-of-

the-year juveniles as far north as the coast of Long Island, NY (Figure 1.1; Whitfield et al., 

2002). These individuals do not survive the harsh winters and have not established a 

breeding population (Kimball et al., 2004). 

Lionfish are unlikely to move further north under present conditions, as their 

current distribution is believed to be physiologically limited by cold tolerance (Kimball et 

al., 2004). However, potential changes to their distributions in response to future climate 

change has not been investigated. Bottom-water temperatures at the northern edge of 

the lionfish’s range have been increasing since regular observations were initiated in the 

1970s, especially during winter months (Parker & Dixon, 1998). More warming is expected 

in the coming decades as a consequence of anthropogenic emissions of greenhouse gases 

(Stocker et al., 2014). Additionally, the marine communities of the region are vulnerable 

to overfishing (Parker & Dixon, 1998; Lucey & Nye, 2010), with resultant declines in 

biomass and mean trophic level (Northeastern Fisheries Science Center, 2012).  Such  
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Figure 1.1: Comparison of potential lionfish habitats in the Western Atlantic Ocean over 
the present day (1987-2006) time period. Timeseries show the spatial average of annual 
bottom-water temperatures of the associated region throughout the year. Bottom-water 
temperatures are shown with blue lines ± 1 standard deviation (grey lines). Black 
horizontal lines indicate the 10°C lethal minimum temperatures for lionfish. Red lines 
indicate the lower feeding threshold for lionfish (Kimball et al., 2004). The colorbar 
indicates winter (December-March) mean bottom-water temperatures. The black 
contour line shows suitable, year-round lionfish habitat, and juvenile outliers are 
indicated by red crosses (Schofield, 2009). 
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conditions are ripe for invasion, further increasing the opportunity for trophic cascades 

(Albins & Hixon, 2013) and regime shifts (Quero, 1998; Scheffer et al., 2001; Daskalov et 

al., 2007). 

Many marine fishes have already shifted their range in response to climate change 

(Perry et al., 2005; Rose, 2005; Parmesan, 2006; Nye et al., 2009; Lucey & Nye, 2010), and 

many more are projected to in the future (Loukos et al., 2003; Cheung et al., 2009, 2010; 

Hare et al., 2012). Many of these analyses utilize bioclimatic envelope models that project 

the fundamental niche – a combination of physical conditions tolerable to an organism – 

to estimate range instead of interspecific biological interactions (Hutchinson, 1957; 

Magnuson et al., 1979). This is a popular way of conducting species distribution models, 

and they tend to be accurate despite their assumptions (Peterson, 2003; Jeschke & 

Strayer, 2008) 

Given how other fishes have responded to climate change, it is expected that 

lionfish range will shift as well. Specifically, we expect lionfish to move further inshore 

(Whitfield et al., 2014) and north within the northern branch of the Gulf Stream (Hare et 

al., 2002). In this study, we use an ensemble of 17 different climate models to project 

future bottom-water temperatures under different climate scenarios and examine 

whether the fundamental niche of lionfish will move based on experimentally-derived 

physiological tolerance limits of lionfish. This approach has previously been used to 

estimate future distributions of the ecologically-similar gray snapper Lutjanus griseus 

(Hare et al., 2012).  
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CHAPTER 2 

METHODS 

Bottom water projections 

I obtained output from climate models used in the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC; Stocker et al., 2014) from the Climate 

Model Intercomparison Project phase 5 (CMIP5; Taylor et al., 2012) hosted on the servers 

of the Earth System Grid Federation (ESGF) . For this analysis, I used the historical model 

runs (1987-2005) to represent the present-day conditions and future model runs forced 

with continued greenhouse-gas emissions from 2006 to 2100 following Representation 

Concentration Pathway (RCP) 8.5 and RCP 4.5 (Moss et al., 2010; van Vuuren et al., 2011). 

These scenarios represent “business-as-usual” and an intermediately optimistic scenario 

where global greenhouse gas emissions level off by about 2050, among other factors 

(Meinshausen et al., 2011). Seventeen of the CMIP5 models had unique, complete 

monthly projections of bottom-water temperatures (BWT) for both the historical and RCP 

8.5 scenarios. Of these 17 models, 11 had accompanying RCP 4.5 models (Table 2.1). 

All climate models used have relatively coarse spatial resolutions (Table 2.1), 

potentially obscuring important oceanographic factors along the eastern coast of the 

United States. To remedy this, all climate models were statistically downscaled with a high 

resolution (7-by-7 km) Regional Ocean Modeling System (ROMS) simulation of the 
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Table 2.1: Climate models used in this analysis 

Institution Model Experiment 
Average Oceanic 

Horizontal Resolution 

Beijing Climate Center BCC-CSM1-1 
RCP 8.5 

0.8˚ x 1.0˚ 
RCP 4.5 

Beijing Normal University GCESS BNU-ESM RCP 8.5 0.9˚ x 1.0˚ 

Canadian Centre for Climate 
Modelling and Analysis 

CanESM 2 
RCP 8.5 

0.9˚ x 1.4˚ 
RCP 4.5 

Centro Euro-Mediterraneo per I 
Cambiamenti Climatici 

CMCC_CESM RCP 8.5 1.2˚ x 2.0˚ 

CMCC_CMS 
RCP 8.5 

1.2˚ x 2.0˚ 
RCP 4.5 

Centre National de Recherches 
Meteorologiques 

CNRM-CM5 
RCP 8.5 

0.6˚ x 1.0˚ 
RCP 4.5 

Institute for Numerical 
Mathematics 

INM_inmcm4 
RCP 8.5 

0.5˚ x 1.0˚ 
RCP 4.5 

Institut Pierre Simon Laplace 

IPSL-CM5A-MR 
RCP 8.5 

1.2˚ x 2.0˚ 
RCP 4.5 

IPSL-CM5B-LR 
RCP 8.5 

1.2˚ x 2.0˚ 
RCP 4.5 

Institute of Atmospheric Physics LASG-CESS_FGOALS-g2 
RCP 8.5 

0.9˚ x 1.0˚ 
RCP 4.5 

Japan Agency for Marine-Earth 
Science and Technology 

MIROC5 RCP 8.5 0.8˚ x 1.0˚ 

MIROC5-ESM RCP 8.5 0.9˚ x 1.4˚ 

MIROC5-ESM-CHEM RCP 8.5 0.9˚ x 1.4˚ 

Max Planck Institute MPI-ESM-LR 
RCP 8.5 

0.8˚ x 1.4˚ 
RCP 4.5 

NOAA Geophysical Fluid Dynamics 
Laboratory 

GFDL-CM3 
RCP 8.5 

0.9˚ x 1.0˚ 
RCP 4.5 

GFDL-ESM2G 
RCP 8.5 

0.9˚ x 1.0˚ 
RCP 4.5 

GFDL-ESM2M 
RCP 8.5 

0.9˚ x 1.0˚ 
RCP 4.5 
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Western Atlantic Ocean (Kang & Curchitser, 2013). Using an approach called the delta 

method (Figure 2.1; e.g., Hamlet et al., 2010; Ramirez-Villegas & Jarvis, 2010), the BWT 

for each climate model in the present period (1987-2006, coincident with last 20 full years 

of Run 03 of the ROMS simulation) was subtracted from the BWT in the future period 

(2081-2100), giving the change projected for each model (the “delta” BWT, referred to 

simply as the delta). The delta was regridded using nearest neighbor interpolation and 

added to the present day BWT simulated by the ROMS model, providing a high-resolution 

representation of the Western Atlantic BWT in the future. Twenty-year averages were 

used for each time period in order to ameliorate noise related to inter-annual variability 

(e.g., phases of the North Atlantic Oscillation, meandering of the Gulf Stream) of the 

ROMS model. The delta method also reduces the chance that biases resulting from 

different initial conditions of each climate model are represented in the 2100 projections.  

The climate models are run using 4 or 6 hour temporal resolutions, but are 

packaged as monthly averages from the ESGF. In order to consider physiological stresses 

on lionfish that may occur due to cold temperatures occurring at frequencies higher than 

monthly, for each area I calculated the average standard deviation, SDM,a , of daily ROMS 

BWT away from the monthly means of each year using 

𝑆𝐷𝑀,𝑎 =
∑ √∑ (𝑇𝐷,𝑦 − 𝑇̅𝑀,𝑦)2

𝑛
𝐷=1

𝑛
𝑁
𝑦=1

𝑁
 

where T refers to the bottom-water temperature of the specific day, D, in each month, 

M, of year, y. N and n refer to the number of years SD was calculated from and the    
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Figure 2.1: The delta method visualized for one model, NOAA-GFDL-CM3. In the top 
panels, the mean bottom-water temperature from the present period (1987-2006) is 
subtracted from the mean bottom-water temperature from the future period (2080-
2100). This long-term difference is then interpolated using nearest neighbor and inverse-
distance methods and added to the high-resolution (7-by-7 km) Regional Ocean Modeling 
System simulation of present-day temperatures (lower panels), giving a high-resolution 
estimate of future bottom-water temperatures. 
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number of days in each month, respectively. a is each 7-by-7 km region of the ROMS 

simulation.  

Most BWT results are given as an average of all climate models used, as studies 

have shown that multi-model means are more accurate than single models alone (Randall 

et al., 2007; Reichler & Kim, 2008). However, each model can also be considered as a trial, 

requiring a minimum threshold of agreement among the models to consider an area 

habitable (e.g. Wethey et al., 2011). These analyses required inverse-distance 

interpolation of the delta before being added to the ROMS simulation. 

Lionfish distributions 

 Lionfish are habitat generalists that can survive in a variety of biological 

conditions. Here, I assume that within the potential expansion range, there is suitable 

bottom habitat, ample prey, and no significant habitat limitation due to predation. Given 

the array of habitats in which lionfish have thrived (Barbour et al., 2010; Jud et al., 2011; 

Claydon et al., 2012; Cure et al., 2014) and the variety of food they have been found to 

consume (Morris & Akins, 2009; Muñoz et al., 2011; Layman & Allgeier, 2012), I believe 

this to be reasonable assumption. As for physical conditions, lionfish are usually found at 

depths between 0.5-100 m (Meister et al., 2005) depending on the habitat, but have been 

spotted beyond 300 m depth (Muñoz et al., 2011). Previous work by others has noted a 

lack of correlation between presence of lionfish to rugosity, current speed, wave action, 

distance to freshwater sources, and proximity to other predators, including fellow lionfish 

(Cure et al., 2014). Prolonged exposure to low salinity (~10‰) does not alter lionfish 
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behavior or physiology, but anything lower is fatal (Jud et al., 2014). This is only important 

in estuaries, as salinities in the open ocean are much higher (~35‰) year-round. 

Given the lack of significant limitations on non-estuarine lionfish distribution by 

predators, salinity, prey availability, and water depth, BWT is believed to be the primary 

factor influencing the fundamental niche of lionfish. Lionfish are a benthic species, and 

sea surface temperatures in relatively deep (>30 m) waters appear to have no impact on 

lionfish presence  (Kimball et al., 2004). Kimball et al. (2004) estimated that lionfish stop 

feeding at approximately 16°C and die at 10°C. It has not been experimentally determined 

how long lionfish can survive starvation, but Fishelson (1997) observed a group of adults 

that all survived three months in experimental aquaria without feeding before cessation 

of the experiment. Seasonally, adult lionfish have been found in areas that experience up 

to four months of suboptimal conditions (10°C-16°C). 

A bioclimatic envelope model was created using the above parameters. Areas (7-

by-7 km) were considered potentially habitable by lionfish as long as the present-day 

salinity always exceeded 10‰ (depth-resolved salinity was not available in climate 

models used) and the mean monthly temperature (MMT) minus one daily SD never fell 

below 10°C. If an area met the minimum criteria outlined above, I calculated suboptimal 

months as the number of months per year the MMT plus one SD was between 10°C and 

16°C. These areas were compared with lionfish sightings reported to the United States 

Geological Survey Nonindigenous Aquatic Species database (Schofield, 2009) to 

investigate assumptions.  Areas were labeled habitable year-round if they experience less 
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than 2 months per year of suboptimal conditions, seasonally habitable if 2-3 months 

exhibited suboptimal BWT conditions, and potentially habitable if 4 months had 

suboptimal BWT conditions. No more than 4 suboptimal months were considered as 

potential habitable areas. The bioclimatic envelope analysis was conducted using the 

multi-model mean BWT from all climate models, then repeated requiring at least 50% 

model agreement in order to consider an area habitable in any capacity.  

Assessment of ROMS BWT accuracy 

Present-day bottom-water temperatures in the ROMS simulation were compared 

with NOAA Winter, Spring, and Autumn Bottom Trawl Survey data from 2002-2006. In 

these surveys, bottom trawls were conducted throughout the Mid and North Atlantic 

Bights in February, March, April, September, and October in order to census fish 

abundance and diversity. Water temperature and depth data were obtained during each 

trawl using a CTD (conductivity, temperature, and depth) instrument. These data were 

obtained from Resource Survey Reports of each expedition from the NOAA Northeast 

Fisheries Science Center website.  

  Samples were matched to equivalent points in the ROMS simulation. For each 

point, the five year (2002-2006) monthly average bottom-water temperature from the 

ROMS simulation and bottom depth were recorded to develop an observed and modeled 

climatological series that could be compared. If there were multiple samples for each 

point across years, they were averaged together. If the depth of the sample and the depth 

represented in the model grid were not within 50 m of one another, they were discarded; 
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this usually occurred on the shelf break where water depth changes rapidly with 

horizontal distance, and large discrepancies may exist between actual depth and depth 

represented by a 7-by-7 km grid spacing. The resulting monthly datasets were combined 

and analyzed using a non-parametric Wilcoxon Signed Ranks test for paired data (α = 

0.05), testing the null hypothesis that the model monthly mean BWT was not significantly 

different from the observed BWT. Data did not meet normality assumptions required for 

parametric statistics. 
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CHAPTER 3 

RESULTS 

Assessment of ROMS BWT accuracy 

Over the 2002-2006 period of NOAA trawl surveys examined here, there were 

2802 samples deemed suitable for comparison. Altogether, the ROMS model averages 

0.06˚C warmer than the samples, with some seasonal variation. According to a Wilcoxon 

Signed Ranks test, the observed BWTs are not significantly different than those in the 

model (N = 2802, p = 0.13), indicating that the ROMS simulation provides a suitable 

present-day representation of BWT on the continental shelf and is useful for examining 

potential changes in lionfish distribution in the region. The biases present (e.g., the 

model’s maximum bias of 0.30°C cooler than observations in September) are rather small.  

A mean monthly BWT difference of 0.30°C is substantially less than the average daily SD 

of 1.41 in the SAB in September. 

Bottom-water projections 

Discernible warming of bottom-water is limited to the continental shelves and is 

more extreme in the polar regions. Under the RCP 8.5 scenario, winter-time BWTs in the 

SAB are expected to rise 2.37˚C from the 1987-2006 average to 19.03˚C in 2081-2100 

(Figure 3.1). In the same region, RCP 4.5 shows a 1.35˚C increase by the 2100 period, 

leading to an average BWT of 18.01˚C (Table 3.1). In both scenarios, warming proceeds at 
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Table 3.1: Spatially-averaged bottom-water temperatures and total lionfish 

habitat in the South Atlantic Bight 

RCP 8.5 SAB Temperature (°C) Habitable Area (km2) Seasonal Area (km2) Extreme Area (km2) 

1987-2006 16.66° 65,709 21,749 2,989 

2040-2060 17.74° 77,959 25,669 3,577 

2080-2100 19.03° 89,229 26,943 5,635 

Change 2.37° 23,520 5,194 2,646 

 
RCP 4.5 

      

 
1987-2006 16.66° 65,709 21,749 2,989 

2040-2060 17.69° 75,950 25,669 3,381 

2080-2100 18.01° 78,253 25,914 3,822 

Change 1.35° 12,544 4,165 833 
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Figure 3.1: Bottom-water temperature projections and anomalies in the South Atlantic 
Bight. A) Present day period (1987-2006) from ROMS model. B) Anomaly between 2100 
(2080-2100) and present day under RCP 8.5. C) 2100 period under the RCP 8.5 scenario. 
D) RCP 4.5 anomaly. D) 2100 period under RCP 4.5. 

  

A 

C 

E 
D 
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˚C 

˚C 
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a similar pace through the 2040-2060 time period, but then increases at a much faster 

rate in the second half of the 21st century under the RCP 8.5 scenario (Table 3.1). 

 Lionfish distributions 

 Most of the reported lionfish sightings are in areas that have one or fewer months 

of suboptimal temperature conditions (10°C - 16°C) per year (Figure 3.2). This year-round 

habitat covers ~65,700 km2 of the SAB (Table 3.1). In present-day conditions, inshore 

areas off the coast of Georgia and the Carolinas, exhibiting 2-3 months per year of 

suboptimal conditions, are uninhabited by lionfish in the winter. However, lionfish have 

been found in these areas during summer months. These conditions cover ~21,700 km2. 

Sightings at the extreme end of lionfish’s physiological cold tolerance (4 suboptimal 

months per year) are rare (Table 3.1; Figure 3.2). 

Under future scenarios of continued greenhouse-gas emissions, the number of 

suboptimal months for lionfish survival is expected to decrease throughout the inner 

continental shelf of the SAB, increasing the probability of successful lionfish invasion. 

Under the RCP 8.5 scenario, no suboptimal conditions are expected off Georgia and South 

Carolina at any point of the year by the last two decades of the 21st century (Figure 3.2). 

Suitable year-round habitat could increase by up to 23,500 km2 by the same period – an 

increase of 35% over presently suitable habitat range on the continental shelf of the SAB 

(Table 3.1). The fundamental niche of year-round habitat in the 2100 period under RCP 

4.5 is similar to the fundamental niche projected by RCP 8.5 in the 2050 period, increasing 

year-round habitat by 10,000 km2-12,000 km2 over the current year-round habitat  



18 

 

Figure 3.2: Number of suboptimal months (10°C-16°C) per year in present and future time 
periods under different RCP scenarios. Less than two months is considered suitable 
habitat for lionfish year-round, 2-3 months may be vulnerable seasonally, and 4 months 
is the most a lionfish could survive. A) Present day (1987-2006) from ROMS model. Red 
crosses indicate confirmed lionfish sightings. B) Change between 2100 time period (2080-
2100) and present day time period under RCP 8.5. C) 2100 time period under RCP 8.5. D) 
Change between present and 2100 period for RCP 4.5 E) 2100 period under RCP 4.5.  
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estimated by present-day BWT. Under RCP 4.5, the rate of increase of lionfish habitat 

drops off dramatically after 2040-2060, with RCP 4.5 gaining only 20% of the year-round 

habitable area that the region gains under RCP 8.5, despite having similar areas in 2050 

(Table 3.1).  

New regions throughout the SAB may face novel pressure of seasonal lionfish 

migration in the future under RCP 8.5, with seasonally suitable expansion up to 24%. 

These regions also face some of the sharpest decreases in suboptimal months per year, 

with portions of the inshore SAB losing 3 months of lionfish-deterring cold water (Figure 

3.2). This includes the southern fork of the Pamlico Sound, NC. RCP 4.5 showed similar 

results for seasonal habitat. 

If lionfish are able to tolerate living at the extreme cold limits of their physiological 

tolerance (4 suboptimal months per year), RCP 8.5 projects the northern fork of the 

Pamlico Sound to be threatened by seasonal lionfish invasion. Also, lionfish could move 

approximately 100 km north in a deep branch of the Gulf Stream along the Outer Banks, 

almost reaching 37°N (Figure 3.2). However, expansion into these extreme conditions is 

minimal under RCP 4.5, with only ~800 km2 being added in this scenario (Table 3.1).  

The same analysis was conducted treating bioclimatic envelopes created by each 

model as a replicate instead of using the ensemble average. Using a threshold of 50% 

model agreement to define habitat area, I found that habitat expansion may be greater 

than that projected by the ensemble average; about 2000 km2 of additional year-round 

habitat expansion is projected by using the median modeled habitat area in comparison 
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to the ensemble average BWT for RCP 8.5.  A similar increase in habitat area occurred 

when examining the seasonally-threatened area. However, there were far less extreme 

habitats projected using this method, indicating that the projections of potential range 

under extreme conditions relied on temperatures from few climate models. Most of the 

climate models agree that the majority of the SAB will be seasonally impacted by 2040-

2060, although the suitable year-round habitat criteria showed a more steady progression 

between now and the 2100 period (Figure 3.3). 
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Figure 3.3: Percentage of RCP 8.5 models (out of 17) that project year-round (0-1 
suboptimal months; A,C) and seasonal (2-3 suboptimal months; B,D) lionfish habitat for 
the 2050 (2040-2060; A,B) and 2100 (2080-2100; C,D) periods 
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CHAPTER 4 

DISCUSSION 

The aim of this investigation was to explore the expansion of lionfish thermal 

habitat associated with anthropogenic global warming as projected by an ensemble of 

IPCC-style climate models. Based on these models, I expect to see a substantial increase 

in potential lionfish habitat in the coming century. As expected, the RCP 4.5 scenario leads 

to a smaller BWT niche for lionfish, about 50% less increase in total areal extent by the 

end of the 21st century in comparison to the RCP 8.5 scenario. This is largely due to the 

decreased rate of expansion in the second half of the century. This is also expected, as 

the RCP 4.5 scenario caps emissions by 2050 (Meinshausen et al., 2011; van Vuuren et al., 

2011). Under the RCP 8.5 scenario, lionfish’s projected range will expand to include 

almost the entire SAB, with the remaining area susceptible to seasonal invasion by the 

species. This shoreward expansion of range is relatively unique among fishes, with most 

species distribution models projecting poleward shifts of marine fishes with climate 

change (Perry et al., 2005; Cheung et al., 2010; Hare et al., 2012). 

So far, the only effective management strategy against lionfish is regular culling of 

adults. This has been shown through both models (Arias-González et al., 2011; Barbour et 

al., 2011; Morris et al., 2011) and experiments (Frazer et al., 2012; Green et al., 2014). 

Although complete eradication is almost certainly impossible, studies have shown that 
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partial eradication of adults can be extremely effective at reducing lionfish 

populations and restoring prey biomass (Morris et al., 2011; Frazer et al., 2012; Green et 

al., 2014). However, these previous analyses were conducted for Bahamian populations 

of lionfish. Characteristics of the SAB may make the dynamics of invasion and 

management different than Bahamian reefs for a number of reasons. For instance, 

lionfish density is much lower in the SAB than it is in the Bahamas, averaging 21.2 lionfish 

per hectare and 393 lionfish per hectare, respectively (Whitfield et al., 2007; Green & 

Côté, 2009). In theory, this would make controlling populations easier in the SAB. 

However, primary lionfish habitat is currently further offshore and in deeper water than 

the Bahamian reef system, requiring use of SCUBA to cull individuals rather than 

snorkeling or freediving. Additionally, limited visibility caused by increased turbidity on 

the SAB combined with fewer fish being easy to find may limit the efficiency of targeted 

culling efforts. These factors make culling in the SAB comparatively difficult and 

expensive, and could preclude many civilians from hunting lionfish recreationally.  

The shoreward expansion of this voracious predator population is alarming. 

However, it is important to note the caveats of the techniques used here. I explored the 

BWT changes associated with two emissions scenarios, RCP 4.5 and RCP 8.5. The RCP 8.5 

scenario is considered the “worst-case” (or “business as usual”) that anticipates 

increasing rates of emissions over time.  The RCP 4.5 scenario is more moderate, and 

suggests a stabilization in radiative forcing by year 2100. Of course, the exact evolution 

of future emissions is unknown, and my projections of lionfish habitat are sensitive to 

assumptions regarding cumulative emissions of greenhouse gases in coming decades.  
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Note, however, that emissions during the recent five years have met or exceeded those 

expected under the RCP 8.5 scenario (Fuss et al., 2014), and continued “business-as-

usual” emissions seems increasingly likely.  

In addition to assumptions regarding the future evolution of climate, my results 

have not considered future rapid change in lionfish physiology and behavior, nor the 

potential adaptability of larger piscivorous fishes and sharks in the region that may exert 

biological control on the population, particularly fish weakened by suboptimal physical 

conditions (Maljković et al., 2008; Mumby et al., 2011; Diller et al., 2014). My results are 

also sensitive to the bioclimatic envelope parameters (i.e. that “suboptimal months” is a 

useful metric, lionfish behave similarly in cold-water habitats), suitability of new ranges 

(presence of appropriate bottom-habitat, available food), and even lionfish’s current 

range (wintertime surveys are rare). Planque et al. (2011) review other sources of 

uncertainty in distribution models, and the difficulties with this model are no exception.  

Despite these caveats, I expect this information will be useful for fisheries 

managers and conservationists throughout the Southeastern United States as they 

consider the likelihood of lionfish invasion in coming years. Lionfish have already been 

found in estuaries (Jud et al., 2011; Prakash et al., 2012), which are valuable nursing 

grounds for many important species supporting the $162 million commercial fishery of 

the SAB (National Marine Fisheries Service, 2013). Economically, much more is brought in 

by tourism and recreational fishermen as well. Georgia and the Carolinas are home to 

many ecologically and economically valuable estuaries and protected areas, and any 
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insight regarding the timing and likelihood of lionfish invasion would be vital for planning 

future eradication efforts and marine spatial planning.  

Mechanistic species distribution models (SDM) – models using experimentally-

derived physiological limits to simulate future distributions – are uncommon for fish 

species (but see Hare et al., 2012). Nevertheless, similar methodology can be applied 

across species in a variety of different systems (Wethey et al., 2011; Glibert et al., 2014; 

Overgaard et al., 2014; Fly et al., 2015). The more common approach for SDMs, called 

correlative SDMs, utilizes presence/absence data from established populations to 

statistically determine parameters relevant to their occurrence. These parameters are 

then used to estimate a species’ range in currently unoccupied regions (Guisan & 

Zimmermann, 2000). However, this method can underestimate the impact of invasive 

species because the invader may be released from whatever biological interactions were 

responsible for confining expansion in its native range (Fitzpatrick et al., 2006; 

Broennimann et al., 2007). As a result, correlative SDMs may be more conservative for 

species in new habitats than mechanistic models (Buckley et al., 2010). Similarly, research 

regarding species’ range expansion under conditions associated with future climate 

change may benefit by considering both biotic and abiotic factors in defining niche space 

(Helmuth et al., 2005; Buckley et al., 2010; Woodin et al., 2013).  

In summary, the South Atlantic Bight is expected to warm substantially over the 

coming decades. With that warming, ranges will expand, contract, and move for most 

mobile and widely-dispersing species, likely leading to changes in the ecosystem; lionfish 
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are just one particularly damaging example. The magnitude of these changes can be 

mitigated by large-scale decreases in greenhouse gas emissions, continued lionfish culls, 

and increased education about invasive species. 
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