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Abstract

Clustering, as a fundamental process in data science, is frequently used in preliminary

data analysis. Batch effects are a powerful source of variation that can come from 

many sources in data collection, and influence data. We propose a method to simul-

taneously remove batch effects and perform cluster analysis. We see a batch effect as 

a fixed value added on to each batch, and do not make assumptions about the distri-

bution of batch effects. We represent the data using a Gaussian mixture model, and

use the EM algorithm to estimate the cluster means, the cluster covariance matrices,

and the batch effects, and give predictions on which cluster each observation belongs

to via their posterior probability. We also give two tests to identify the presence of

batch effects in the data. Gap statistics are used to determine the number of clusters

that should be used.

We compare our method via simulation studies with a standard K-means method and

K-means with the batch effects removed prior to analysis. Out simulations studies

our method has better prediction results than both of these approaches. Our method

does not assume the batch effects following any particular distribution, and works

on data that have larger batch effects, as well as an interaction between clusters and

batches.
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Chapter 1

Introduction

Classification and clustering are fundamental processes in data science. Setting up

classes of subjects according to similarity in multivariate data is the first step to

understand and develop models to explain and predict the data. Classification and

clustering are two terms in machine learning that are used in supervised and un-

supervised learning, respectively. In supervised leaning the outcome (classes) are

known. In unsupervised learning, we don’t have any information about the under-

lying classes. In this thesis we will consider the latter situation where the natural

classes are unknown.

Batch effects occur when we are gathering data from different sources, different time

periods, or trying to use results from different labs. They have been observed from

the earliest microarray experiment (Lander, 1999) and they are also inevitable when

new data are added to existing data, or in a meta-analysis of multiple studies (Rhodes

et al., 2004). Batch effects are a type of correlated measurement error that can be a

powerful source of variation in experiments (Leek et al., 2010). They occur because

measurements taken at the same time, or in the same “batch”, are similarly affected

by lab conditions, reagent lots, personnel differences, etc. Batch effects occur due to

1



quantitative differences across conditions, which are uncorrelated with the variables

of interest.

For example, in the Upstate Kids Study (G. M. Buck Louis et al., 2014), 65 pro and

anti-inflammatory cytokines were measured on 3944 newborns from Human Obesity

Panel (R&D Systems) by Luminex. The Luminex platform measures the cytokines in

batches of 36. For each batch, samples with known concentrations, called standards,

are included and measured. The readings from the standard samples are then used

to calibrate the readings of the newborn samples through the use of five-parameter

logistic model. This batch-by-batch calibration creates a “batch effect”, a correlated

measurement error from all measurements in the same batch. If ignored, the batch ef-

fect will result in incorrect clustering due to the correlated measurement error instead

of biological similarities.

There are four types of methods to adjust for batch effects. The first one is normal-

ization. In order to adjust for the biases caused by non-biological effects, researchers

developed normalization methods (Schadt et al., 2001; Tseng et al., 2001; Yang et

al., 2002). Data are normalized such that observations in each batch have mean 0

and variance 1.

The second type of method is based on a singular-value decomposition (SVD), adjust-

ing data by identifying the eigenvector referred to batch effects (Alter, 2000). Benito

et al.(2004) use distance weighted discrimination (DWD) to adjust for batch effects

by finding a hyperplane where the batch effects are most significant when projecting

data on this plane, and then removing the batch effects. This type of method is
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complicated and requires a large batch sample.

The third method is a model based location/scale (L/S) adjustment. In this method

researchers assume a model for the location (mean) and/or scale (variance) of the data

within batches and then adjust the parameters to meet model assumptions.

The fourth method is an empirical Bayes method (Johnson et al., 2007). In this

method, the L/S model parameters that represent the batch effects are estimated

by assuming prior distributions of batch effects. The EB estimates for batch effect

parameters are given by conditional posterior means. This method provides robust

adjustments for the batch effect on each observation. However when there is inter-

action between batches and biological factors, the batch effect removal process could

remove some of the biological variation.

Methods for performing cluster analysis include K-means clustering, Gaussian mix-

ture, hierarchical clustering, and many others. We will discuss Gaussian mixture and

K-means clustering in Chapter 2 and Chapter 5, respectively.

In this thesis, we are considering a situation where the data are gathered from different

batches and there are systematic measurement error for each batch. Systematic means

the error is consistent in each batch. We develop a method to simultaneously cluster

and remove the batch effects.

In Chapter 2, we represent the data using a linear mixed model and after we treat

the batch effects as fixed values, we can represent the data using a Gaussian mixture

model. In the Gaussian mixture model, we can calculate the conditional probabilities
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to do the cluster analysis. In Chapter 3, the EM algorithm, the method for estimating

the parameters in Gaussian mixture model, is introduced. We also give introduction

of the Gap statistics to determine the correct number of clusters. In next chapter,

we set up two tests to identify batch effects. In Chapter 5, K-means clustering and a

two-stage procedure to remove batch effect are introduced. In Chapter 6, we compare

our method via simulation studies with a standard K-means method and K-means

with the batch effects removed prior to analysis. In Chapter 7 are the conclusions of

our method and simulation studies.
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Chapter 2

Statistical background

In this chapter, we introduce linear mixed models and Gaussian mixture models as

statistical background to show how our data can be represented as a Gaussian mixture

model.

2.1 Linear mixed model

In a linear mixed effect model the data are represented as

yit(k) = θk + β̃t + rit(k),

where yit(k) represents the ith observation in the tth batch belonging to the kth

cluster, and similarly for the residual rit(k). θk is the fixed effect, β̃t ∼ N(0,Σt)

and rit(k) ∼ N(0,Σk), {yit(k),θk, β̃t, rit(k)} are all 1 × p matrices and Σk is p × p

covariance matrix.

All observations can be represented in the following matrix form

Y = Xθ + Zβ̃ + r,
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where Y (N × p matrix) is the observation matrix, p is the number of biomarkers,

X (N ×K matrix) is the matrix indicating cluster membership, K is the number of

clusters, θ (K × p matrix) is the matrix of the means of the each cluster, Z (N × T

matrix) is the design matrix, indicating which batch the observations belong to, β̃

(T × p matrix) is the random effects for the batches, T is the number of batches and

r (N × p matrix) contains the residuals.

Here N is the total number of observations, where N =
∑T

t=1 nt and nt is the number

of observations in the tth batch.

The estimation procedure in our case is different from the standard mixed modeling.

In the standard mixed models, we know {X,Z} and want to estimate θ, Σt and Σk.

However, in our case, X, θ, Σt and Σk are all unknown.

We assume in the observed data, βt (1× p matrix) is generated from its distribution

only one time and this value, the “batch effect”, is added to all the fixed effects in

each batch. Since θk and rit(k) are both cluster specific, we can combine these two

parts together, which gives us K Gaussian distributions. Each cluster has its own

mean and covariance matrix. For each distribution, observations are generated and

then batch effects are added according to their batch. Given βt we can express the

data as

yit(k) ∼ N(θk + βt,Σk).

Thus, our data can be expressed as observations generated from different Gaussian

distributions. Thus arises a Gaussian mixture model, which is similar to our problem,

and where methods exist to implement cluster analysis.
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2.2 Gaussian mixture model

The Gaussian mixture model was created when researchers noticed some complex

distributions couldn’t be described as a single distribution. A linear combination

of many Gaussian distributions is created to represent more complex distributions

(McLachlan and Basford, 1988; McLachlan and Peel, 2000). We therefore consider a

superposition of K Gaussian densities of the form

p(y) =
K∑
k=1

πkN (y|θk,Σk) ,

N (y|θk,Σk), a multivariate Gaussian distribution, is called the kth component, with

the mean θk, varianceΣk, and πk is the prior probability of picking the kth component

with
∑K

k=1 πk = 1. This can also be viewed as the probability that an arbitrary

observation belongs to the kth component (cluster). Figure 2.1 shows an example

of a bivariate Gaussian mixture distribution, with 3 bivariate Gaussian distributions

and πk = 1/3. The left plot marks clusters using different colors.

Here πk are called the mixing coefficients, and can be formulated as

πk = p(zk = 1),

where zk ∈ {0, 1} and
∑K

k=1 zk = 1. Here zk = 1 represents the indicator that an ob-

servation belongs to the kth cluster. For each observation we have z = (z1, z2, · · · , zk).
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Figure 2.1: Simulation of Gaussian mixture model (scatter plot, K=3)

The distribution of z can be written as

p(z) =
K∏
k=1

πzk
k .

The conditional distribution of y given zk is

p(y|zk = 1) = N (y|θk,Σk) .

Thus,

p(y|z) =
K∏
k=1

N (y|θk,Σk)
zk .

We can obtain the marginal distribution p(y) by summing the joint distribution

p(y|z)p(z) over the possible values of z

p(y) =
∑
z

p(y|z)p(z) =
K∑
k=1

πkN (y|θk,Σk) .

Notice that we get the Gaussian mixture distribution as shown earlier. We represent
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the marginal distribution in the form of a sum of the mixing distributions, which tells

us for each observation there exists a latent variable z (we know this is actually the

indicator of natural cluster assignment). Now we have equivalent representations of

the Gaussian mixture model. To estimate the probability that a given observation

belongs in cluster k, we use the posterior probability p(zk|y), denote by γ(zk), which

can be obtained using Bayes’ theorem as

γ(zk) = p(zk = 1|y) = p(zk = 1)p(y|zk = 1)∑K
j=1 p(zj = 1)p(y|zj = 1)

=
πkN (y|θk,Σk)∑K
j=1 πjN (y|θj,Σj)

.

Here, γ(zk) is the conditional probability given θk,Σk and the information of y.

Another way of interpreting γ(zk) is the responsibility of the kth component takes

for explaining the observation y.
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Chapter 3

Clustering with batch effects

To generalize the Gaussian mixture model to our problem, the probability density

function for an individual observation is

p(yit) =
K∑
k=1

πkN (yit|θk + βt,Σk) ,

where πk has the exact definition as we mentioned earlier, the prior probability of

zkit = 1.

Assume there is a latent indicator zkit (k = 1, 2, . . . , K) with zkit = 1 if yit belongs to

the kth natural cluster. Thus, the marginal probability of yit is the Gaussian mixture

distribution.

Then we define γk
it for our data, which will play a role in the cluster assignments,

as

γk
it = p(zik = 1|yit) =

p(zik = 1)p(y|zik = 1)∑K
j=1 p(zij = 1)p(y|zij = 1)

=
πkN (y|θk + βt,Σk)∑K
j=1 πjN (y|θj + βt,Σj)

.
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Here, γk
it is the posterior probability, given θk,βt,Σk and yit, that the observation

belongs to the kth cluster.

3.1 EM algorithm

The method for finding the maximum likelihood solution for models that contain

latent variables is called the expectation-maximization algorithm or EM algorithm

(Dempster et al., 1977; McLachlan and Krishnan, 1997). To implement the EM algo-

rithm in our problem, the first step is to write down the log-likelihood of a Gaussian

mixture model

log p(y|π,θ,β,Σ) =
T∑
t=1

nt∑
i=1

ln

{
K∑
k=1

πkN (yit|θk + βt,Σk)

}
.

When we take the derivative on the above log-likelihood with respect to θk (for the

moment, we treat Σk,βt and πk as fixed), we get

∂ log p

∂θk

=
T∑
t=1

nt∑
i=1

πkN (yit|θk + βt,Σk)∑K
j=1 πjN (yit|θj + βt,Σj)

Σ−1
k (yit − θk − βt).

Notice that the first part behind the summation sign is γk
it. Then, we set the above

equation to 0, and get

θ̂k =

∑T
t=1

∑nt

i=1 γ
k
it(yit − βt)∑T

t=1

∑nt

i=1 γ
k
it

,

a weighted average of the observations removing the corresponding batch effect, where

the observations that have higher probability of coming from the kth cluster have

larger weights.
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Following the same steps we take the derivative of the log-likelihood with respect to

βt (now treating Σk,θk and πk as fixed) and get

β̂t =

∑nt

i=1

∑K
k=1 γ

k
it(yit − θk)∑nt

i=1

∑K
k=1 γ

k
it

.

Here, βt is estimated through a weighted average of the observed data removing the

mean value (cluster mean) in the corresponding batch. Observations that have higher

probability coming from the kth cluster have larger weights.

Similarly, we take the derivative of the log-likelihood with respect to Σk (treating

θk,βt and πk as fixed), and then set it to 0 to get

Σ̂k =

∑T
t=1

∑nt

i=1 γ
k
it(yit − θk − βt)(yit − θk − βt)

T∑T
t=1

∑nt

i=1 γ
k
it

.

Similarly, this is a weighted average of the sample variances. Note the observations

that have higher probability coming from the kth cluster have larger weights.

Next we take the derivative of the log-likelihood with respect to πk (treating θk,βt

and Σk as fixed). Recall that πk has the restriction
∑K

k=1 πk = 1, thus we need to

account for this restriction when looking for the maximum likelihood solution. We

use Lagrange multipliers, and take the derivative of the following function

log p(y|π,θ,β,Σ) + λ

(
K∑
k=1

πk − 1

)
.
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Doing this we get

T∑
t=1

nt∑
i=1

N (yi|θk + βt,Σk)∑K
j=1 πjN (yi|θj + βt,Σj)

+ λ
set
=== 0.

Multiplying both sides by πk and sum on k, we get λ = −N . Plugging in λ = −N

and multiplying the above equation by πk, we then recognize the first part behind

the summation sign as γ(znk). Thus

π̂k =

∑T
t=1

∑nt

i=1 γ(zik)

N
,

where N =
∑T

t=1 nt.

Now we can form the EM algorithm:

1. Initialize πk, θk, βt and Σk. We use 1
K

for all πk, the estimated cluster means from

K-means for θk, 0 for βt, and λIp for Σk, where λ = 1
KP

tr(V ) and V is the sample

covariance matrix.

2. E step: Evaluate the probabilities using the current parameter values

γ
k(new)
it =

πkN (yit|θk + βt,Σk)∑K
j=1 πjN (yit|θj + βt,Σj)

13



3. M step: Re-estimate the parameter values using the renewed probabilities

βnew
t =

∑nt

i=1

∑K
k=1 γ

k
it(yit − θk)∑nt

i=1

∑K
k=1 γ

k
it

θnew
k =

∑T
t=1

∑nt

i=1 γ
k
it(yit − βnew

t )∑T
t=1

∑nt

n=1 γ
k
it

Σnew
k =

∑T
t=1

∑nt

i=1 γ
k
it(yit − θnew

k − βnew
t )(yit − θnew

k − βnew
t )T∑T

t=1

∑nt

i=1 γ
k
it

πnew
k =

∑T
t=1

∑nt

i=1 γ
k
it

N

4. Evaluate the log-likelihood using the renewed parameters

log p(y|π,θ,Σ) =
N∑
i=1

ln

{
K∑
k=1

πkN (yi|θk,Σk)

}

Then check the convergence criterion:

| log p(y|π,θ,Σ)new − log p(y|π,θ,Σ)old| < 1 ∗ 10−5,

where log p(y|π,θ,Σ)new is the result we get from the current iteration step, and

log p(y|π,θ,Σ)old is the result we get from previous iteration step. If the convergence

criterion is meet, go to step 5, otherwise go back to step 2.

5. Predicting clusters. First we update the probabilities

γ
k(new)
it =

πkN (yit|θk + βt,Σk)∑K
j=1 πjN (yit|θj + βt,Σj)

Then we assign each observation yit to a cluster using γk
it, with clusterit = k∗, where
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k∗ satisfies k∗ = argmax
k

{γk
it} for observation i in batch t.

Notice this algorithm makes no assumption on the distributions of the batch effects.

Now we have given the method to perform cluster analysis on data with batch effects,

we will discuss how to determine the correct number of clusters.

3.2 Gap statistics

Let WK denote the within cluster variation. WK is a weighted average of within

cluster distances Dk. They are defined as follows

WK =
K∑
k=1

1

2nk

Dk,

Dk =
∑
i∈Ck

∑
j∈Ck

∥yi − yj∥
2

= 2nk

∑
i∈Ck

∥yi − ȳ∥2.

Thus

WK =
K∑
k=1

∑
i∈Ck

∥yi − ȳ∥2,

where nk is the number of elements in the kth cluster, and Ck represents the kth

cluster. WK can be seen as a sum across clusters of within cluster variation.

WK is calculated for each number of clusters K (usually start from 2). If K is less

than the true number of clusters, some between cluster variation will be calculated

into within cluster variation. Naturally, WK decrease with K. However, we observe

15



that WK decreases rapidly at the number of natural clusters. Thus,

{WK −WK−1 | K = K∗} ≫ {WK−1 −WK−2 | K = K∗},

where K∗ is the natural number of clusters.

The recently proposed Gap statistic (Tibshirani et al., 2001b) compares a curve of

log(WK) instead of WK to a curve obtained from data uniformly distributed over

a rectangle containing the data. They use a group of simulated data to calculate

log(W
′

Kd) as our reference (d is the dth group of simulations). The simulations are

done by the Monte Carlo Algorithm. The Gap Statistic is defined below:

Gap(K) =
1

D

D∑
d=1

log(W
′

Kd)− log(WK).

We want to find the smallest K∗ with the largest the gap. The following criterion for

choosing the “best” K∗ will be utilized.

K∗ = argmin
K

{K | Gap(K) ≥ Gap(K + 1)− S
′

K+1},

S
′

K = SK

√
1 + 1/D,

where S
′
K is an adjusted standard deviation of SK , and SK is the standard deviation

of {log(W ′

Kd)}d=1,...,D (D usually takes 20). The advantage of using this choosing

criteria is that we only need to do cluster analysis from K=1 to K∗ + 1 to find

the correct number of clusters, which is quite efficient. Further this algorithm can
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Figure 3.1: Gap statistics (with K∗ = 3, test for K=1 to 20)

estimate determine K∗ automatically.

Figure 3.1 shows gap statistics for simulated data sets (without batch effect) with

true K = 3. We use K-means for cluster analysis. The Gap statistics for each K are

mean value of 200 simulations.

In our simulations, the choosing criterion determine K∗ = 3 for 100 % probability

in the same 200 simulations. While for data sets with batch effect, the choosing

criterion determine K∗ = 3 with 32 % probability in another 200 simulations. We

use our method instead to perform cluster analysis, and it turns out gap statistics

are able to determine the true number of clusters every time in simulations.
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Chapter 4

Test for identify batch effect

4.1 Multinomial test

In this section, we discuss a test for independence between batches and clusters using a

multinomial test (or called a chi-squared test for independence). We perform standard

K-means clustering on the data. After clustering, the number of observations ntk

assigned to the kth cluster in the tth batch is known. These numbers can be presented

in Table 4.1, where X represents batch and Y represents the cluster.

Let nt+ =
∑K

k=1 ntk, n+K =
∑T

t=1 ntk and N =
∑K

k=1

∑T
t=1 ntk, where ntk is the

number of observations being assigned to the kth cluster in the tth batch, nt+ is the

total number of observations in the tth batch, n+K is the total number of observations

being assigned to the kth cluster, and N is the total sample size. We suppose πtk =

P (X = t, Y = k) and (n11, n12, . . . , nTK) ∼ Multinomial {(π11, π12, . . . , πTK) , N}.

We call this a saturated model.

Assuming independence between batches and clusters (under our null hypothesis), we

have

P (X = t, Y = k) = P (X = t)P (Y = k).

18



Table 4.1: Two-way contingency table of ntk’s

Y = 1 Y = 2 . . . Y = K Totals

X = 1 n11 n12 . . . n1K n1+

X = 2 n21 n12 . . . n1K n2+

...
...

... . . .
...

...

X = T nT1 nT2 . . . nTK nT+

Totals n+1 n+2 . . . n+K N

Denote P (X = t) by αt and P (Y = k) by βk so πtk = αtβk, under independence.

Here, αt and βk can be estimated through their sample frequencies

α̂t =
nt+

N
, and β̂k =

n+k

N
.

Under independence, the expected value of ntk is

µ̂tk = Nµ̂tk = Nα̂tβ̂k =
nt+n+k

N
.

This gives the following chi-square test statistics of independence

χ2 =
K∑
k=1

T∑
t=1

(ntk − µ̂tk)
2

µ̂tk

,

where under the null hypothesis

χ2 ∼ χ2
(K−1)(T−1).
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The degrees of freedom of the test statistics equals the difference between the degrees

of freedom in the saturated model and the model under independence. The batch

memberships are fixed in both models, but the number of clusters are random. Thus

the saturated model has (K − 1)T degrees of freedom, and the independence model

has K − 1 degrees of freedom.

If we reject the null, we conclude there is some association between clusters and

batches, and that the adjustment for batch effects is needed.

4.2 MANOVA test

As we mentioned before, we see batch effects as a value add to all observations in

each batch. We want to test whether this value is 0. Since the batch effect effects all

observations in each batch the same way, it effects the centers of all the observations

the same way. We calculate the center of the observations in each batch using the

sample mean,

Ct =
1

nt

nt∑
i=1

yit.

Each observation follows a Gaussian distribution with mean θk + βt and covariance

matrix Σk, thus Ct also follows a Gaussian distribution. Under the null hypothesis

βt = 0, and assuming there’s no interaction between batches and clusters, the pro-

portion of each cluster in each batch should be consistent with prior probability πk.
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Thus the mean and covariance of Ct can be calculated as

Ct ∼ N(
K∑
1

πkθk + βt,
1

nt

K∑
1

πkΣk).

Denote
∑K

1 πkθk by µ, the overall mean, and denote 1
nt

∑K
1 πkΣk by Σ, the overall

variance. Note both µ and Σ is independent of t. Thus, testing βt = 0 is a mul-

tivariate analysis of variance (MANOVA) test, where the batch is the only factor in

the test. Notice this method is more powerful, but only effective when dealing with

additive batch effect (which is our assumption in the thesis).

If we reject the null, meaning the values of batch effect are large and cannot be

neglected, the adjustment for batch effect is needed.
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Chapter 5

Alternative methods

In this chapter, we introduce the K-means clustering method and a procedure for

removing the batch effect. We will compare the clustering results from our methods

with results from K-means, and K-means with the batch effect removed prior to the

analysis using the two-stage procedure described earlier.

5.1 K-means cluster analysis

K-means clustering, as a method of vector quantization, was invented in signal pro-

cessing and is popular for cluster analysis in data mining. The purpose of K-means

clustering is to partition the observations into K clusters so that each observation is

closest to the “center” of the cluster it belongs to.

The algorithm for K-means is given below:

1. Initial “centroids”

Give the K initial points (do not have to be observations) as the centroids (center of

each cluster).

2. Assignment step

22



Calculate the distances from each observation to all K centroids Dik = ∥yi − ck∥2

(where ck is the centroid of kth cluster), then assign yi to the k∗th cluster such

that

k∗ = argmin
k

{Dik}.

3. Update step

Update the centroids using

ck =
1

Nk

∑
yi∈k

yi,

where Nk is the number of observations being assigned to the kth cluster.

4. Check convergence

If the criterion for convergence is meet (clustering result dose not change any more),

output the clustering results, otherwise go back to step 2.

We use R build in function ‘kmeans’ to implement this algorithm.

5.2 Two-stage procedure for removing batch effect

A new method for removing batch effects was proposed by Giordan (2013). The

model is based on the extension of the empirical Bayes method proposed by Johnson

et al.(2007) with a different method for estimating the parameters. This method is

designed for both supervised analysis (meaning we have other covariates of interest in

the data) and unsupervised analysis (which is our case, batch is the only covariate we

consider). We give the algorithm for removing batch effect in unsupervised analysis
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only.

1. Set

Y1 = Y− ZB̂,

where B̂ = Z†Y and Z† is the Moore-Penrose pseudoinverse of Z (Z† = (ZTZ)−1ZT

here). The definition of Y and Z are the same as in Chapter 2.

2. Set

Y2 = Y1 ◦ △̂
−1
,

where ◦ denote the Hadamard product and △̂−1
is a matrix with △̂−1

(i, j) = 1/δ̂ij,

where

δ̂2ij =
T∑
t=1

Z(i, t)D̂(t, j),

and D̂ = Z†Ê
2
, with Ê

2
= Ê ◦ Ê and Ê = Y− ZB̂

3. Set

Y3 = Y2 ◦ △̂2,

where △̂2(i, j) =
√

σ̂2
j and

σ̂2
j =

1

N

N∑
i=1

δ̂2ij.

4. Set

Y4 = Y3 +
1

N
1ZB̂,

where 1 is an N ×N matrix of ones.

Y4 is the estimated batch effect. It will be removed form the observations. Bagging
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technique can be applied to get better estimation.

We use R package ‘ber’ (Giordan, M. 2013) to implement this algorithm.
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Chapter 6

Simulations

In this chapter, we first give a simulated data set to show the steps of applying the

methods we mentioned earlier to a data set. Then we give comparisons between

our method and other two methods in different situations (200 simulations for each

situation).

6.1 Clustering comparison

In this section, we simulated two-dimensional data with batch effects, and 3 natural

clusters. For the baseline simulation, we have 5 batches and 50 observations for each

batch. For each batch, the observations are randomly assigned to 3 clusters with even

probability, i.e., πk = 1/3 for all k. Each cluster has their own Gaussian distribution

y
′

it(k) ∼ N(θk,Σk), where y
′

it(k) is the observation without any batch effect. The

parameters {θk,Σk} for the 3 multivariate Gaussian distributions are:

N

(2, 0.8),

0.2 0.1

0.1 0.2


 , N

(−0.5, 2),

0.3 0.1

0.1 0.3


 , N

(0.2, 0.5),

0.25 0.1

0.1 0.3


 .
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Batch effects are generated from a multivariate mean zero Gaussian distribution,

N

(0, 0),

0.5 0

0 0.5


 .

The variance was chosen to set the ICC (intraclass correlation, which represents

the proportion of batch variation out of total variation) at a various levels (here

ICC=0.625). We assume no correlation between the two dimensions. The generated

value βt for each batch is added to all the observations in batch t.

In Figure 6.1, we give plots of data with and without batch effects. We assume that

the variance is larger for biomarker 2, and there is correlation between biomarker 1

and biomarker 2. The estimated ICC is about 0.625.

We can see from Figure 6.1 that the observations without batch effects are nicely

separated, so a typical clustering algorithm like K-means should be able to give ac-

curate results. After adding the batch effect, however, the edges of clusters become

overlapped, which makes the prediction of observations on the edges difficult.

We use Gap statistics to determine the number of clusters. Since our method es-

timates βt, we can directly remove the batch effect from observations. Then we

calculate the Gap(K) using batch effect removed data. We present the results of

Gap(K) and S
′
K in Table 6.1. According to the choosing criterion, we use K=3

clusters in our analysis.

Next we perform the test to identify any possible batch effect. For the multinomial
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Figure 6.1: Comparison of observations with and without batch effect

Table 6.1: Gap statistics using choosing criterion

K 2 3 4

Gap(K) 0.7597289 1.049799 0.7188229

S
′
K 0.09433268 0.04744324 0.04263864

test, the contingency table is shown in Table 6.2. The p-value we get is 0.2524, not

significant at the α = 0.05 level.

For MANOVA test, the p-value for batch is 1.73 ∗ 10−8, so we conclude there is batch

effects, and we should apply our method to the data.

Next, we show the comparison of the clustering results from our method, K-means

and K-means with batch effect removed prior to analysis in Figure 6.2. We add

the original cluster as reference. Notice in the clustering results, we assign “similar”

observations to the same cluster, but the clusters themselves don’t have orders. We

focus on whether observations originally from the same cluster are assigned to the

same cluster by the algorithm.
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Table 6.2: Table of clusters and batches

Y=1 Y=2 Y=3 Totals

X=1 10 15 25 50

X=2 18 15 17 50

X=3 15 17 18 50

X=4 19 13 18 50

X=5 15 22 13 50

Totals 77 82 91 250

In Figure 6.2, we display the results from a single simulation. Notice that our method

and K-means with batch effect pre-removed have better prediction on observations

on the edges of clusters, especially where two clusters partially overlapped.

We use the accurate rate to quantify the clustering results. The definition of the

accurate rate is the portion the observations being correctly clustered.

AR =
Nc

N
,

where Nc is the number of observations being correctly clustered, and N is the total

sample size. An observation is determined to be correctly clustered if its cluster-

ing assignment is to the cluster that contains the most observations from its true

cluster.

For this baseline data set, the ARs for our method, K-means, K-means with batch

effect pre-removed are 0.944, 0.900 and 0.932, respectively.

We ran 200 simulations using these three methods on data sets without batch effects.
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Figure 6.2: Comparison of results from three clustering methods, observa-
tions being assigned to the same cluster are in the same color

The results show there is no harm applying our method on data sets without batch

effects (estimated βt are close to 0). The ARs (followed by standard deviations of ARs

in parenthesis) for our method, K-means, K-means with batch effect pre-removed are

0.952(0.017), 0.944(0.015) and 0.934(0.018), respectively. If our target is to cluster

the data, we don’t need to worry about the existence of batch effects; we can apply

our method directly.
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Table 6.3: ARs (followed by standard deviations of ARs in paren-
thesis) of clustering results with increase of ICC

ICC 0.625 0.667 0.727

AR of our method 0.948(0.022) 0.949(0.022) 0.947(0.029)

AR of K-means 0.853(0.053) 0.821(0.073) 0.737(0.096)

AR of K-means batch
effect removed

0.934(0.019) 0.936(0.016) 0.934(0.019)

6.1.1 Clustering comparison by ICC

The higher the ICC the larger batch effect. As a result, we explore the influence of

higher ICC on clustering results. Again we compare results from the three methods

discussed earlier. We use the same simulation setting as the baseline data set, only

altering the covariance matrix of the batch effect to set the ICC.

In Table 6.3, we represent the ARs. We can see that with an increase in ICC, K-means

loses accuracy in its prediction, while the accuracies of our method and K-means with

batch effect pre-removed remain (in fact they appear immune to the increase of ICC).

This shows the necessity of adjusting for the batch effect, especially when the values

of batch effects are relatively large.

6.1.2 Clustering comparison by sample size of each batch

We know that larger sample sizes in each batch lead to better estimates of the batch

effect. In this section we want to test if the methods are consistent when there are

fewer observations in each batch. We use the same simulation setting as the baseline

data set, only altering the number of observations in each batch.
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Table 6.4: ARs (followed by standard deviations of ARs in parenthesis) of clustering
results with decrease of sample size

Sample size in each
batch

50 30 20 10

AR of our method 0.948(0.022) 0.949(0.022) 0.925(0.049) 0.883(0.078)

AR of K-means 0.853(0.053) 0.821(0.073) 0.853(0.061) 0.838(0.076)

AR of K-means with
batch effect removed

0.934(0.019) 0.936(0.016) 0.914(0.034) 0.877(0.068)

In Table 6.4, we present the ARs with the number of observations in each batch

decreasing. All three methods are consistent when the sample size of each batch is

greater than 30, no sign of accuracy rates decreasing appears. However, when the

sample size of each batch is small (for example, 10), we can see obvious decrease in

the AR for all three methods. We therefore recommend apply these methods to data

sets with sample size at least 20 for each batch.

6.1.3 Clustering comparison by the number of batches

As we discussed earlier, the batch effect can come from many sources, like different

time periods, samples, labs, etc. There can be many batches in one data set, so we

explore the influence of the number of batches on the clustering results. We use the

same simulation setting as the baseline data set, and only altering the number of

batches.

In Table 6.5 we present the ARs of the three methods by batch size. We can see

the number of batches doesn’t influence the ARs of these three methods. With the

increase of total sample size, these three methods gain precision (smaller variance of
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Table 6.5: ARs (followed by standard deviations of ARs in paren-
thesis) of clustering results with increase of batch size

Number of batches 5 10 20

AR of our method 0.948(0.022) 0.958(0.011) 0.959(0.007)

AR of K-means 0.853(0.053) 0.854(0.032) 0.855(0.021)

AR of K-means with
batch effect removed

0.934(0.019) 0.936(0.011) 0.935(0.009)

ARs).

6.1.4 Clustering with an interaction between batches and clusters

In the previous results our method has resulted in modest increases the accuracy

rate compared to K-means with batch effect removed prior to analysis. A situation

where there is noticeable improvement is when there is an interaction between batches

and clusters. By interaction we mean that in some batches the proportion of each

cluster is not consistent with the proportion in the total sample. For example, in our

case the proportion of each cluster is 1/3, if in some batches there are much more

observations from cluster 1, there is an interaction. In this situation when we remove

the batch effect from the data, we remove part of the effect of cluster 1 in those

batches. This could lead to very biased results. This kind of interaction occurs in

the real life for two main reasons: when the sample size of each batch is small or the

clusters and batches are correlated some way, for example, some biomarkers we are

measuring are correlated with the locations the subjects live in. This could result in

an interaction.

In this part, our simulated data comes from 5 batches, and 50 observations per batch
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(ICC=0.625). We assign observations to three clusters randomly in batch 1 and batch

2. In batch 3, we assign observations to cluster 1 and cluster 2 randomly. In batch

4, we assign observations to cluster 2 and cluster 3 randomly. In batch 5, we assign

observations to cluster 1 and cluster 3 randomly. The total number of each cluster

will remain approximately equal, while there is an interaction between clusters and

batch 3, 4 and 5.

In this simulation the AR for our method is 0.935(0.043); the AR for K-means is

0.859(0.053); while the AR for K-means with batch effect removed prior to analysis

is only 0.805(0.035). Our method is immune to an interaction like this.
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Chapter 7

Conclusions

Our simulation studies suggest that our method has better prediction results than

K-means, and K-means with batch effect removed prior to the analysis. K-means

tends to produce lower accuracy rates when the batch effects have relatively large

variances. K-means with batch effect removed prior to the analysis fails when there

is an interaction between batches and clusters. Since we have set up tests to identify

the batch effect, we apply this test to the data first. If any batch effect is detected,

we can choose our method to do clustering, and the Gap statistics can be used to

determine the number of clusters.

Our method does not require the batch effect following any particular distribution.

Further it works on data that has small sample size, data that has higher batch effect,

data that has an interaction between clusters and batches, and data that has many

batches.

We only test our method on bivariate data; further simulation studies on multivari-

ate data can be done to find the effectiveness of our method on higher dimensional

data. Our method models only additive batch effects, the simulation studies use only
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additive batch effect and we are not sure our method can be applied to other type

of batch effects. In the future, we can introduce scalars into our model to model the

scaled variance in each batch.
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