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Abstract 

 The work done in this thesis is mainly focused on understanding the nanoscale 

morphology and activity of model heterogeneous catalysts. In order to do this we design 

and prepare model catalytic surfaces in ultrahigh vacuum (UHV) and study these surfaces 

using electron and ion based microscopies and spectroscopies. The nucleation, growth and 

chemical activity of mono and bimetallic clusters on TiO2(110) were investigated in order 

to understand how activity is influenced by cluster sizes, interactions with the oxide support 

and surface compositions of the bimetallic clusters.  For example, Au-based and Pt-based 

bimetallic clusters such as Co-Au, Co-Pt, and Pt-Re were grown on titania and their activity 

for CO adsorption as well as methanol reaction were investigated. The nucleation and 

growth of these metals were found to be dependent upon the mobility of each metal on the 

titania surface. Furthermore, bimetallic clusters can be grown on the surface by taking 

advantage of the relative surface mobilities; when clusters of the less mobile metal are 

deposited first, the subsequent deposition of the second, more mobile metal results in 

nucleation exclusively at the existing seed clusters. Furthermore, bimetallic Pt-Ru clusters 

on highly oriented pyrolytic graphite (HOPG) have been studied as model systems for 

understanding direct methanol fuel cell catalysts. For Pt-Ru clusters deposited on powdered 

carbon supports, the novel electroless deposition (ED) method produces exclusively 

bimetallic clusters in contrast to the existing wet impregnation methods. The ED grown 

clusters were compared with clusters grown via vapor deposition by sequential deposition 
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of Pt on Ru seed clusters. For both ED and vapor deposition, exclusively bimetallic clusters 

were produced since the deposition of Pt did not result in the formation of new clusters. In 

addition to bimetallic clusters, we have also successfully synthesized MoS2 clusters on 

titania to understand the structural changes that occurs in the presence of different reactant 

molecules since the activity of MoS2 towards hydrodesulphurization type reactions is very 

sensitive to the structure of the clusters. What we have discovered was that these structures 

are very stable towards adsorption of MeOH, CO, H2O and H2 in UHV.   
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1.1 Introduction to catalysis  

“There is probably no chemical reaction which cannot be influenced 

catalytically” - Wilhelm Ostwald 

Catalysis is an action of a chemical substance (a catalyst) to increase the rate of a 

reaction towards a desired product. Homogeneous and heterogeneous catalysis are the two 

primary forms of catalysis. In homogeneous catalysis, the catalyst is in the same physical 

state as the reactants, and in heterogeneous catalysis, the catalyst and the reactants are in 

different physical states. Initial evidence of catalysis appeared when mankind began to 

produce alcohol by fermentation. In 1835, J. J. Berzelius introduced the term “catalysis” 

by systematic investigations of  recorded observations.1,2 Catalysts were used widely 

during World War I and World War II in producing materials like explosives and synthetic 

fuels. Since those early times catalysis has had major turning points and success including 

Nobel prizes and other significant achievements.2  

In chemical industries reactions mainly occur at the surfaces of heterogeneous 

catalysts. There is a great deal of ongoing scientific research on heterogeneous catalysts in 

order to study the surfaces and thereby to gain a fundamental understanding of the nature 

of the reaction occuring at the surface. Understanding the basic aspects of complex 

industrial catalysts is rather difficult due to the nature of the complexity. For example, most 

industrial catalysts are supported metal clusters. A clear understanding of active sites, 

metal-support interfaces, and metal-metal interactions are therefore, harder to decouple to 

obtain a better structure-activity relationship. Financial benefits that can be gained by being 

able to design catalysts rationally are tremendous. Industrial catalytic materials most often 

have drawbacks in catalyst stability due to poisoning, and some of the materials are often 
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wasted due to the fact that the surfaces are not well-engineered to gain the best surface to 

volume ratio. To this date, the fundamental knowledge of catalysts is limited in order to 

rationally design catalysts with the knowledge of structure-activity relationship. Studying 

models of the complex catalytic systems is one approach to help the rational design of 

smarter catalysts.  

 

1.2 Motivations and objectives 

The research conducted in our laboratory is mainly focused on understanding bimetallic 

clusters on single crystal supports as models for heterogeneous catalysts. Bimetallic 

catalysts are known to exhibit enhanced activity compared to their monometallic 

counterparts.3-10 Enhanced activity of bimetallic catalysts can be explained by bimetallic 

effects, namely bi-functional effects, electronic effects and ensemble effects. Bi-functional 

effects are present when the catalyst demonstrates the activity of both metals in the 

bimetallic form with no significant modification in activity. Bimetallic clusters that show 

different activity and selectivity compared to their monometallic counterparts due to 

electronic interactions are termed electronic effects. In some bimetallic systems geometric 

differences in the bimetallic forms act as altered active sites that either enhance the activity 

or change the selectivity. Most of the catalysts used today for energy generation type of 

reactions are bimetallic clusters on oxide supports. They are designed by trial and error 

fashion rather than by rational design. Most often therefore materials are wasted without 

having been used effectively. Our motivation is to design model systems in extremely 

controlled environments to understand the fundamental aspects such as structure-activity 

relationships to help the rational design of catalysts.  
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We have studied the growth of catalytically relevant metals such as Au, Ni, Co, Pt, Re 

and Ru on rutile TiO2(110) and HOPG. The Co-Au bimetallic system is known to exhibit 

interesting catalytic properties, such as in Fisher-Tropsch reaction.11,12 The Co-Au system 

has been studied as a part of larger study where Pt-Au and Ni-Au were also investigated as 

model catalysts for steam reforming type reactions.13-15 An extended study of Au-based 

bimetallic systems was done with the motivation of designing model bimetallic catalysts 

for conversion of alcohols to H2. In comparison to bulk immiscible bimetallic systems, i.e. 

Co-Au, the Co-Pt system, which is a bulk miscible bimetallic system, was studied. Co-Pt 

is known to have catalytic activity towards electro-oxidation of methanol in fuel cells.16-19 

The conventional Pt catalyst becomes poisoned by CO, which is a byproduct of the 

reaction.20-23 Co is known to modify Pt sites so that Pt sites are less susceptible to poisoning 

by CO.24,25 Similar effects have been seen in Pt-Re bimetallic systems as well. Pt-Re 

bimetallic clusters on titania were also studied as a model catalytic system for the aqueous 

reforming of alcohols. Addition of Re to Pt is believed to suppress poisoning by the CO 

byproduct, and the presence of Re oxides is also reported to play a role in enhanced activity 

for oxidation reactions.26-30 The role of the second metal in these bimetallic systems on 

titania is not precisely known. Studying models of these catalytic systems could shed light 

on why these enhanced activity is observed in bimetallic catalysts. A Pt-Ru model system 

was prepared via electroless deposition (ED) method as a proof of principle study to 

investigate the design of models using industrially relevant methods. Carbon supported Pt-

Ru catalysts have shown superior activity as anode catalysts compared to pure Pt for 

electro-oxidation of methanol in direct methanol fuel cells.31-34 Similar to the bimetallic 

systems on titania, here also the second metal, Ru, is known to suppress the poisoning of 



5 

 

the Pt sites by CO.35-38 In addition to bimetallic clusters, we have also successfully 

synthesized MoS2 clusters on titania to understand the structural changes that occur in the 

presence of different reactant molecules. MoS2 is use to catalyze hydrodesulphurization  

reactions.39,40 

    The nucleation, growth and chemical activity of mono and bimetallic clusters were 

investigated to understand how activity is influenced by cluster sizes, interactions with the 

oxide support and surface compositions of the bimetallic clusters. The metal-titania bond 

strength dictates how metals such as Co, Au, Pt, Ni and Re grow on titania. When the 

metal-titania bond strength is weak, the mobility of metals on titania is high. Au-titania has 

the lowest bond strength followed by Ni, Pt, Co, and Re. Therefore, Re shows the lowest 

mobility on titania, with smaller cluster sizes and higher cluster densities compared to more 

mobile metals such as Au, Ni, Pt and Co. Furthermore, we have discovered that the metal-

titania bond strengths follow the same trend as the metal-oxygen bond strengths. Therefore, 

if metal-oxygen bond strengths are known, one can predict the growth of metals on titania. 

Exclusive formation of bimetallic clusters was achieved for Co-Au, Co-Pt, and Pt-Re on 

titania. Bimetallic clusters can be designed by taking advantage of the relative mobilities 

of metals, which involves deposition of the low mobile metal first followed by deposition 

of the more mobile metal second. For metals such as Pt and Co, where the relative 

mobilities are not drastically different, bimetallic clusters can be prepared in either order 

of deposition as long as the first deposition provides enough seed clusters to act as 

nucleation sites for the second metal. Sintering of clusters at higher temperatures was 

observed for metals in their monometallic and bimetallic forms.  
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Unlike titania, HOPG is an inert carbon support therefore, defect sites govern the 

nucleation density of metals on HOPG.  Defect density was controlled by Ar+ ion 

sputtering.  Exclusive formation of Pt-Ru bimetallic clusters was achieved by depositing 

the first metal on modified HOPG followed by the deposition of the second metal. Both 

orders of deposition resulted in bimetallic clusters, provided that the initial deposition 

created enough seed clusters. Significant sintering takes place when mono/bimetallic 

clusters on HOPG are heated to temperatures as low as 400 K, due to very weak metal-

support interactions. Pt-Ru bimetallic clusters were successfully prepared via ED of Pt on 

Ru seed clusters on lightly modified HOPG.  

 Growth of MoS2 on titania was successfully achieved by previously developed 

synthesis method. Sulfiding conditions and the temperature at which the synthesis was 

done dictate the size distribution of MoS2 nanostructures. MoS2 did not show sintering 

unlike the other metallic systems that we studied on titania.  

The surface composition of bimetallic clusters was determined by low energy ion 

scattering spectroscopy. For bimetallic clusters such as Co-Au, where metals are bulk 

immiscible, the surface composition is governed by the surface free energies. The surface 

of Co-Au bimetallic clusters were Au rich, and therefore, a core-shell type structure with 

Au at the shell was observed. For bulk miscible metals such as Co and Pt, the surfaces were 

composed of a mixture of two metals. In contrast, even though Pt and Re are bulk miscible, 

the surfaces of the bimetallic clusters were found to be Pt rich. In this system, Re-TiO2 

interactions play a vital role in determining the surface composition. Re shows very strong 

metal support interactions; therefore, there it is likely that Re migrate onto the support. 

This facilitate the segregation of Pt to the surface, which is favorable according to the lower 
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surface free energy of Pt. Similar behavior was observed for the Pt-Ru bimetallic clusters 

even though Pt and Ru are bulk miscible. Bimetallic Pt-Ru clusters were Pt rich, core-shell 

type structures which can be explained by the lower surface free energy of Pt compared to 

Ru and Pt has very weak interactions with the support compared to Ru. Determining the 

surface composition of Pt-Ru bimetallic clusters are prepared via ED was not achievable 

using LEIS studies because the clusters are exposed to solution and air therefore, the first 

atomic layer is contaminated. 

Encapsulation of metals with titania was observed at higher temperatures for metals 

such as Pt and Co but not on Au. Encapsulation, segregation of the support on metals, is 

an indication of the presence of strong metal-support interactions. Pt and Co become 

encapsulated in both Co-Pt and Co-Au bimetallic clusters. Metals, being in bimetallic form 

did not prevent the individual metals from being encapsulated by the support. Re was 

encapsulated even at room temperature due to strong metal-support interactions. The titania 

became reduced upon the deposition of Re, which was not observed for Au, Pt or Co, which 

is further evidence of strong support interactions with Re. Metal-metal interactions, were 

not studied in Co-Au, Co-Pt and Pt-Ru systems where the bimetallic clusters were made in 

submonolayer coverages. At these coverages, it is difficult to decouple the cluster size 

effects and metal-metal interactions using XPS. For higher coverages of Pt-Re bimetallic 

clusters, Pt-Re interactions were present when Re was deposited on Pt. When Re was 

deposited first, Re-support interactions dominated over Pt-Re interactions.  

Active sites of Pt-Co, Co-Au, Pt-Re and MoS2 on titania were studied using TPD. 

The presence of probe molecule, such as CO, induced changes in the surface composition 

of Co-Au bimetallic clusters. Even though the surface is rich in Au, CO desorption from 
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Co sites was observed due to adsorbate-induced metal segregation. This phenomenon has 

previously been observed in other bulk immiscible bimetallic systems such as Pt-Au and 

Ni-Au. Whereas for metals that are miscible in bulk such as Pt and Co, CO desorption was 

observed from both Pt and Co sites. Significant changes in the surface composition, after 

reaction, were not observed. Furthermore, bimetallic effects were more evident in the Co-

Pt system. The selectivity of the methanol reaction was different for Co-Pt bimetallic 

clusters in comparison to that of pure Co and pure Pt. There was also stabilization of the 

C-H bond in the methanol reaction that is preferable in a catalyst for methanol oxidation 

reactions. Such effects can be anticipated to be seen in a system where the metals ae known 

to mix in bulk, which can lead to more electronic interactions as opposed to a system like 

Co-Au, where the metals do not mix in the bulk. In the Pt-Re system, even though Pt-Re 

is known to mix in the bulk, CO desorption was mostly dominated by Pt sites, which is 

consistent with the LEIS data. CO desorption from Pt sites can be structure sensitive, but 

in this work, the structure of the Pt was not investigated.  

The activity and stability of MoS2 were investigated using TPD and XPS. MoS2 

structures were remarkably stable upon adsorption of gases in UHV. MoS2 disintegrates 

upon exposure to extreme oxidation conditions. Adsorption of CO confirms the presence 

of a metallic character in MoS2 particles.  
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2.1 UHV chamber 

Preparation and characterization of the model catalytic system are done in an ultra-

high vacuum (UHV) Chamber. The base pressure of this chamber is below 1 x 10-10 Torr. 

Figure 2.1 a) shows a schematic of the UHV chamber and b) shows an image of the 

chamber. 

 

 
Figure 2.1.a) Schematic of the Ultra High Vacuum Chamber 
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The chamber is equipped with a manipulator arm to hold the sample and move it to different 

positions. The sample holder is capable of heating samples via electron beam bombardment 

of a back plate where the sample has been mounted. The main chamber is connected to a 

load lock chamber that is isolated with a gate valve in order to provide the ability to 

introduce a sample without opening the entire chamber. Inside the chamber, there is a 

carrousel that can retain six different samples. The chamber is equipped with an ion gun 

for sputtering, metal dosers for the physical vapor deposition of metals and gas dosers, to 

allow insitu preparation of model surfaces. UHV chamber is also equipped with an ion gun 

for Low Energy Ion Scattering spectroscopy (LEIS), an electron gun for low energy 

electron diffraction (LEIS) and Auger Electron Spectroscopy (AES), an X-ray source for 

Figure 2.1.b. Ultra High Vacuum Chamber 
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X-ray Photoelectron Spectroscopy (XPS), a mass spectrometer for Temperature 

Programmed Desorption (TPD) and a Scanning Tunneling Microscope (STM) .    

2.2 Scanning Tunneling Microscopy (STM) 

The concept of STM was first introduced by Binnig and Rohrer, who won the Nobel 

Prize in physics in 1986. STM can be used to image with atomic resolution. Figure 2.2 

shows the working principle of STM. 

 

 

 

The technique is based on the quantum tunneling effects. As shown in the figure 2.2, when 

a sharp metallic tip is rastered across a conductive sample, to which a positive or a negative 

bias is applied, electrons tunnel across the vacuum gap from the sample to tip or tip to 

sample, respectively. The applied voltage determines the direction of the tunneling 

electrons. If the sample is negatively biased with respect to the tip (figure 2.2a) electrons 

tunnel from the occupied states of the sample to the unoccupied states of the tip; when the 

sample is biased positively with respect to the tip ( figure 2.2b) then the electrons tunnel 

from the tip to the sample. Even though, STM does not provide direct chemical 

Figure 2.2 Concept of Scanning Tunneling Microscope 
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information; it is a powerful tool for determining the morphology of a surface. Morphology 

of the surface is generated by the movement of the tip in z-direction. Resolution down to 

the atomic level allow for identification of specific sites on the surface. STM experiments 

that have been done in the work described here was done by applying a positive voltage to 

the sample. Furthermore, there are two modes in which STM can be operated, constant 

current mode and constant height mode. Constant current mode or constant height mode 

control the movement along the z-axis. Constant current mode maintains a constant current 

between the sample and the tip, to give the morphology of the surface. In constant height 

mode, the height is kept constant so that the change in the current develop the morphology 

of the surface. In our lab, we use constant current mode. Changing parameters such as a 

bias voltage and current helps to tune the quality of the image. 

It is of vital importance that a very sharp tip is used in STM experiments.  Imaging 

with a tip that does not have close to a single atom apex can result in the contribution to 

the tunneling current from multiple atoms at the tip, and, therefore, the lateral resolution is 

diminished. The tips that were used for these experiments were prepared by 

electrochemical etching of a 0.38 mm tungsten wire in 8 M sodium hydroxide solution. 

Tips are conditioned  for better quality by sputtering with a 8 uA, Ar+ ion beam at 3 kV 

and applying high voltages (pulsing) while scanning a cleaned support such as TiO2 inside 

the UHV chamber (figure 2.1.b).  

Surfaces were imaged by STM, and cluster sizes for the mono/bimetallic clusters 

on the model support were analyzed either using the SCALA 4.1 software from Omicron 

or an in-house program STATS. Analysis of the STM images provides insight into the 
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growth and cluster distribution, which are essential factors in determining surface 

morphology and activity relationship.  

2.3 X-ray Photoelectron Spectroscopy (XPS) 

XPS measurements are obtained by irradiating the surface to be analyzed with x-

rays. The irradiated atoms eject core level electrons (photoelectrons) and are collected by 

an electrostatic analyzer. Photoelectrons are separated according to their binding energies 

that are fingerprints of the elements from which the electrons are ejected, and the number 

of electrons is proportional to the concentration of that element. Figure 2.3 shows the basic 

concept of XPS.  When atoms are irradiated with x-rays, one of three phenomena can take 

place. 1) photons can pass without any interactions 2) photons can scattered by atomic 

orbitals that lead to an energy loss and 3) photons can interact with atom with total transfer 

of energy to an electron leading to the electron emission. Third process is the process that 

gives chemical information about the elements in  an XPS experiment. 

When the photon energy is equal or greater to the threshold energy required to 

remove an electron from an atom, energy is transferred to the electron and eject from the 

atom. Excess energy gives rise to the kinetic energy (KE) of that ejected electrons. Binding 

energy of the ejected electron is calculated by the equation 1. 

EB = hʋ -KE ------ (1)  

EB  is the binding energy of the electron to the atom, h is the Plank’s constant, ʋ is the 

frequency of the photon and KE is the kinetic energy of the electron. An electrostatic 

analyzer collects the ejected electrons and measures the kinetic energy, and from that 
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information binding energies can be calculated.  Each element has a set of characteristic 

binding energies, which serve as atomic "fingerprints".  

 

 

Furthermore binding energy of an ejected electron provides information about the chemical 

environment of a particular element on the surface. For example, Fe2+ and Fe3+ can be 

distinguished by differences in their binding energies; Fe(3+) has a higher binding energy 

because the effective nuclear charge experienced by the core level electrons is greater in 

the +3 valency. Not only the oxidation states, but significant differences in the chemical 

environments also can be identified by XPS.  

X-rays for the XPS experiment are generated by a dual anode that consists of an Al 

anode and a Mg anode. To generate X-rays, thoria-coated iridium filament is heated to emit 

electrons, and the emitted electrons are accelerated to the anode which has a voltage of 15 

kV. Electron bombardment of the anode surface generates x-rays. This process creates 

significant thermal energy, and, therefore, the anode needs to be water cooled. The excited 

Figure 2.3. Concept of X-ray Photoelectron Spectroscopy  
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Mg or Al targets emit x-rays with an energy of 1253.6 eV or 1486.6 eV, respectively. The 

probe depth of the XPS experiments is about 10 nm into the bulk due to the mean free path 

of the ejected electrons. 

2.4 Low Energy Ion Scattering (LEIS) 

LEIS is a technique in which the first atomic layer of a surface can be probed. In 

the LEIS experiment, the surface is exposed to a stream of noble gas ions of low energy 

(>600 eV) (He+, Ne+, Ar+), and the back scattered ions are collected by an electrostatic 

analyzer to measure the kinetic energy. The kinetic energy of the backscattered ion depends 

on the mass of the surface atom with which the ion collides. To a first approximation, the 

scattering event can be treated as a classical two-body elastic collision. The mass of the 

element on the surface is calculated by conservation of momentum and energy for the 

system. Figure 2.4 shows a simple schematic of the scattering process occurring in a LEIS 

experiment.  

Surface sensitivity of a LEIS experiment arises from the neutralization of ions that 

penetrate beyond the first atomic layer. Ions that penetrate deeper into the surface get 

neutralized before they escape the surface, therefore, are not detected by the electrostatic 

analyzer. The relative sensitivity of LEIS to different elements is different. Therefore, a 

sensitivity correction factor must be applied to quantitative analysis of the elemental 

composition at the surface. Unlike XPS, which probes around 10 nm into the surface, LEIS 

only probes the first atomic layer that makes it the most surface sensitive technique.  

 



23 

 

 

 

2.5 Temperature Programmed Desorption (TPD) 

TPD is used to understand the active sites of the model surface. The experiment is 

performed by, first preparing the model catalyst surface, exposing the surface to a gas-

phase probe molecule, and heating the surface in front of a quadrupole mass spectrometer. 

The desorbing products are detected by the mass spectrometer. From the mass 

fragmentation pattern, the products can be identified, and from the integration of the peaks, 

the product yield can be estimated. Figure 2.5 shows the TPD setup that is being used in 

our lab. The mass spectrometer is shielded with a Au-covered flag that has a ~2mm 

diameter, hole in the center of the flag. The sample is placed approximately 3 mm from the 

aperture, which helps to eliminate any contribution from molecules that desorb from the 

Figure 2.4.  Scattering process of low energy ion scattering spectroscopy  
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rest of the sample holder or manipulator. The sample is biased at -100 V to prevent 

electron-induced chemistry on the surface.  

 

 

 

2.6 Model system  

The model system is prepared in a highly controlled environment, i.e. inside the 

UHV chamber. The insitu preparation of metal clusters are done using physical vapor 

deposition. Physical vapor deposition is achieved by electron beam heating of a metal rod 

or a crucible which filled with the metal. Electron beam heating is achieved by accelerating 

electrons from a thoriated tungsten wire to a positively biased metal rod or a crucible. 

Characterization of these systems has been done using following characterization methods.  

In an industrial catalyst, active metal component which is responsible to catalyze 

the reaction is supported on oxides or carbon. Single crystal supports of these oxide 

surfaces or carbon supports such as rutile TiO2 (110) and HOPG respectively serve as 

model supports due to their simplicity and the order. There are other methods of preparing 

these oxide supports such as preparing thin films on conductive supports. The workd done 

Figure 2.5. Temperature Programmed Desorption set up  



25 

 

in this thesis, was done using TiO2 (110) single crystal as a model oxide support and Highly 

Ordered Pyrolytic Graphite (HOPG) as a model carbon support.  

Titania crystal structure has been studied extensively in literature.1-5 Furthermore 

titania is a reducible oxide which could effectively participate in a reaction and, therefore, 

catalytically relevant. For these reasons rutile TiO2(110) serve as a good model support. 

Structure of the titania in stick and ball model is shown in figure 2.6 a) and 2.6 b) shows 

an STM image of TiO2 (110) single crystal. The rutile titania crystal structure consists of 

octahedral titanium atoms bonded to 6 oxygen atoms with the octahedra alternating their 

orientation between the rows. The (110) surface of the crystal (Figure 2.6.b) results in the 

cleavage of one of these oxygen-titania bonds yielding two different types of titanium 

atoms with 5-fold and 6-fold coordination in addition to two types of oxygen atoms, in 

plane and out of plane.1 In figure 2.6.b) an STM image of cleaned titania is shown. We use 

Ar+ ion sputtering to remove the contaminants from the support. This sputtering process 

make a rough surface therefore, the surface is heated to ~1000 K for 3 minutes to create 

large enough flat terraces. Sputtering annealing process drive the lattice oxygen off making 

the support an n-type semiconductor. The support after the preparation procedure is 

conductive enough for ion and electron based spectroscopies and microscopies. In the STM 

image bright rows correspond to Ti atoms and the dark rows correspond to oxygen atoms. 

There always is an uncertainty between whether STM probe the geometric structure or the 

electronic structure. In this case clearly STM has probed the electronic structure because 

otherwise the bright rows are supposed to be oxygen because geometrically oxygen lies a 

layer above Ti atoms. This has been the case for STM images on titania, where unoccupied 

states of Ti is imaged when the sample is positively biased.1   
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                                          Figure 2.6. b) STM image of TiO2(110) 

 

Figure 2.6. a) Stick and ball model of the TiO2(110) 
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Cleanliness and the order of the support has been determined using surface characterization 

techniques such as XPS, STM, LEED and LEIS.  

Metal deposition in order to make metal cluster on supports was achieved either by 

physical vapor deposition of metals or electroless deposition of metals.  Model catalytic 

systems are prepared in a very controlled environment such as in Ultra High Vacuum 

conditions. Unlike in real catalytic conditions surface can be analyzed with minimum 

amount of contamination in a UHV chamber. 
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3.1 Introduction 

 Understanding the growth of metals on oxide surfaces is of critical importance for 

a wide variety of applications, including those involving heterogeneous catalysis, 

electronic devices and gas sensors.1-4  In catalysis, the number of active sites depends on 

the exposed surface area of the supported metal clusters, and therefore the growth mode of 

the metal clusters is crucial for determining the activity of the supported clusters.2,5,6  In 

the fabrication of gas sensors and other electronic devices, the ability of metal films to 

adhere to the oxide substrate depends on the nature of bonding at the metal-oxide 

interface.3,7-9   

 Co is an important Fischer-Tropsch catalyst for the synthesis of hydrocarbons from 

CO and H2 (syngas).10,11  The attractiveness of Co as a catalyst for the Fischer-Tropsch 

reaction stems from its high activity,10-12 high selectivity for longer chain hydrocarbons,13 

and low activity for the undesired water-gas shift side reaction.11,14  Furthermore, titania is 

a preferred support for the Co-based Fischer-Tropsch catalysts,12,15-22 due to its excellent 

thermal stability under reaction conditions and good mechanical properties.23  The Co-TiO2 

system has also been used for other industrially relevant catalytic processes, including the 

steam reforming of ethanol,24 preferential oxidation of CO in hydrogen25 and oxidative 

dehydrogenation of ethane.26  The nature of the Co-titania interface is believed to influence 

the chemical activity of the supported Co clusters.  For example, the number of active sites 

is altered by the extent of sintering or agglomeration of the clusters during heating as well 

as the initial wetting ability of the Co on titania.  While strong Co-titania interactions favor 

higher activity through greater dispersion, the formation of a Co-titanate compound is 

known to deactivate Co catalysts.14  It has also been reported that this interfacial reaction, 
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which occurs during reduction with H2, inhibits the reduction of Co.27  Previous studies of 

Co on titania catalysts report strong metal support interaction (SMSI) effects, such as the 

decreased adsorption of CO and H2 after heating the system in a reducing 

environment.19,20,28,29  Recent investigations of Co on TiO2(110) from our group show that 

the Co clusters become partially encapsulated by titania upon heating in vacuum,30 and 

other investigations of Co on TiO2(110) observe decreased Co photoemission upon 

annealing,29 which is also consistent with encapsulation. 

 In order to better understand the growth of Co on titania and the nature of the Co-

titania interfacial interactions, we have studied vapor-deposited Co clusters on rutile 

TiO2(110) using techniques such as scanning tunneling microscopy (STM) and X-ray 

photoelectron spectroscopy (XPS) under ultrahigh vacuum (UHV) conditions.  The 

deposition of Co on titania at room temperature results in greater cluster densities and 

smaller cluster sizes compared to other transition metals grown on TiO2(110).  Co remains 

predominantly metallic and does not induce significant reduction of the titania support.  

Upon heating the surface, the Co clusters undergo sintering to form larger clusters.  Density 

functional theory (DFT) studies were carried out to calculate the binding energy of a single 

metal atom on vacuum-annealed (reduced) TiO2 for Co as well as other transition metals 

like Au, Ni and Pt.  This binding energy scales with the strength of oxygen metal bonds 

formed on close-packed single crystal surfaces of the metals.  The relative cluster sizes and 

densities for various metals on TiO2 are successfully predicted based on the metal-titania 

binding energies: stronger metal-titania binding results in slower diffusion rates and 

smaller clusters with higher cluster densities.  Furthermore, diffusion rates for metals 
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deposited on oxidized TiO2 were lower than on reduced TiO2 for all four metals (Au, Ni, 

Pt, Co) due to the formation of strong admetal-oxygen bonds. 

3.2 Experimental methods 

 All experiments were conducted in two ultrahigh vacuum chambers.  The first 

chamber has a base pressure of <5x10-11 Torr and is equipped with a variable-temperature 

scanning tunneling microscope (Omicron, VT-25), hemispherical analyzer (Omicron, 

EA125) for X-ray photoelectron and low energy ion scattering experiments, low energy 

electron diffraction optics (Omicron SPEC3), and a quadrupole mass spectrometer 

(Leybold-Inficon Transpector 2).  A more detailed description of the chamber, as well as 

sample heating and metal deposition procedures, can be found elsewhere.31-36  The second 

chamber has a base pressure of <2x10-10 Torr and was used to conduct soft X-ray 

photoelectron spectroscopy (sXPS) experiments on the U12a beamline at the National 

Synchrotron Light Source.37-40  The rutile TiO2(110) crystals (Princeton Scientific) were 

cleaned by several cycles of Ar ion sputtering at 1 kV for 20 min followed by annealing to 

950-1000 K for 1-3 min.  Preferential loss of oxygen from the crystals through this 

treatment resulted in crystals that were reduced and sufficiently conductive for STM and 

XPS experiments.  All TiO2(110) surfaces were subjected to this treatment unless otherwise 

specified, and these surfaces are referred to as vacuum-annealed or reduced TiO2(110).  

Surface cleanliness and order were confirmed by a combination of XPS, STM and LEED.  

Temperatures were measured by type K or C thermocouples spotwelded to the backplate 

of the crystal and independently calibrated with an infrared pyrometer.31   

 In the first chamber, metals were deposited via a commercial metal evaporator 

(Oxford Applied Research, EGC04) using electron beam heating of pure Co, Pt and Ni 
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rods and Au pellets contained in a Mo crucible.  In the second chamber, Co was evaporated 

from a 0.25 mm pure Co wire (99.995%, ESPI) wrapped around a 0.50 mm W wire (ESPI), 

through which current was passed to heat the Co.  Metal coverages and fluxes were 

measured by a quartz crystal microbalance, which was independently calibrated.30  

Deposition rates for all of the metals were ~0.1 ML/min, where one monolayer (ML) is 

defined by the packing densities of the Co(0001), Pt(111), Ni(111) and Au(111) surfaces.  

Oxygen (Matheson, 99.997%) exposures were carried out at room temperature with a 

pressure rise of 1x10-7 Torr for 5 min using a stainless steel directed dosing tube positioned 

5 mm from the face of the crystal. 

 

dwell time and 0.03 eV step size.  The Ti(2p) region was collected with a photon energy 

of 600 eV, step size of 0.1 eV, and dwell time of 0.1 s.  STM studies were conducted at a 

sample bias of +2.3 V and a tunneling current of 0.05-0.1 nA with electrochemically etched 

tungsten tips.33  Measurements of cluster heights in the STM images were carried out with 

an in-house analysis program that has been described elsewhere.30,41  Cluster heights are 

used as measure of cluster size since the diameters are known to be overestimated due to 

tip convolution effects.30,33   

Computational Methods 

 Density functional theory calculations42,43 of metal binding to TiO2 were performed 

with the Vienna Ab-initio Simulation Package.44,45  Core electrons were described by 

projector augmented-wave potentials 45,46 and valence electrons with a plane wave basis 

using an energy cutoff of 300 eV.  Electron correlation was modeled within the generalized 

gradient approximation using the PW91 functional of Perdew and Wang.47 A Dudarev +U 
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correction of Ueff = 4 eV was applied to the Ti d states.48,49 All calculations were spin 

polarized. The Brillouin zone was sampled at the Γ-point. A dipole correction was applied 

in the direction normal to the TiO2 surface. 

 The calculated lattice constant of bulk rutile TiO2 (a = 4.68 Å, c = 3.03 Å, c/a = 

0.64) was found to be in good agreement with literature values.50 To study the binding of 

metal atoms, we used a rutile (110) slab structure having three stoichiometric layers and a 

3 × 2 surface supercell. We prepared a reduced TiO2 surface by removing one bridging 

oxygen atom from a stoichiometric slab, and an oxidized surface by adding an oxygen atom 

on top of the fivefold (5f) Ti site. The bottom TiO2 layer was held fixed in bulk lattice 

positions during geometry optimization, and the topmost two layers were free to relax. 

Binding energies of various metal atoms on the TiO2 (110) slabs were calculated as 

, with , , and  being the energy of the 

bound system, metal in gas phase, and TiO2 slab, respectively.  

3.3 Results 

 Scanning tunneling microscopy experiments were carried out on various coverages 

of Co deposited on TiO2(110) at room temperature (Figure 3.1).  For the lowest coverage 

of 0.02 ML, relatively small clusters are formed with an average height of 3.3+ 0.9 Å and 

a cluster density of 4.17x1012 clusters/cm2 (Figure 3.1a).  Although three-dimensional 

clusters are grown on the surface, many of the clusters are only 1-2 atomic layers thick, 

suggesting strong interactions between the TiO2 support and the Co clusters.  Furthermore, 

there is no preference for the clusters to reside at the step edges, which are the high 

coordination sites, and this implies that the diffusion length of the Co atoms on TiO2 is 

shorter than the distance between steps on the titania surface.  As the coverage is increased 

slabmetalslabmetalb EEEE  / slabmetalE / metalE slabE
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to 0.06 ML and 0.13 ML, the number of clusters on the surface and the average cluster 

height increases, with the height reaching 4.4+1.2 Å at 0.13 ML (Figure 3.1 b,c).  These 

same trends continue as the Co coverage is increased to 0.19 ML and then 0.25 ML, where 

the surface appears to be completely covered with clusters with an average height of 5.2 

+1.6 Å (Figure 3.1d,e).   

 

Figure 3.1: STM images of the following coverages of Co deposited on TiO2(110) 

at room temperature: a) 0.02 ML; b) 0.06 ML; c) 0.13 ML; d) 0.19 ML and e) 0.25 

ML.  All images are 1000 Åx1000 Å. 

 

 A quantitative comparison of cluster height and densities as a function of coverage 

is shown in Figure 3.2.  From 0.02 to 0.06 ML, the number of clusters on the surface 

increases linearly, with the number of clusters increasing by a factor of 2.8 (Figure 3.2a).  

Between 0.06 and 0.19 ML, the clusters density increases less sharply as the surface 

becomes covered with clusters, and therefore the probability of an incoming Co atom 

joining an existing cluster becomes high despite the short diffusion length of Co on TiO2.  
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In the highest coverage regime of 0.19 to 0.25 ML, the number of clusters nearly plateaus, 

presumably because there is little exposed titania on which new clusters can nucleate, and 

consequently the incoming Co atoms are likely to contribute to the growth of existing 

clusters.  Although the average heights of the clusters also increase nearly linearly from the 

lowest to highest coverage studied (Figure 3.2b), the total increase in height between 0.02 

and 0.25 ML is only ~2 Å, which roughly corresponds to a single atomic layer.  

 

Figure 3.2:  Cluster densities (a) and average cluster heights (b) as a function of increasing 

Co coverage on TiO2(110).  The error bars for the cluster densities are the standard 

deviations from counting the clusters in three 1000Åx1000Å images from the same 

experiment except for the 0.19 ML clusters, where only two images were counted. 

 

 At a coverage of 0.02 ML of Co, the height distribution is very narrow, with 80% 

of the clusters in the 2-4 Å range and 20% in the 4-6 Å range (Figure 3.3).  As the coverage 

is increased to 0.13 ML, the distribution becomes slightly broader; larger clusters appear 

with heights of 8 Å, and only 40% of the clusters are 2-4 Å high.  Furthermore, at 0.25 ML, 

clusters as large as 10 Å are observed, and the smaller 2-4 Å clusters comprise <20% of 

the total distribution.  



37 

 

 

Figure 3.3: Cluster height distributions for various 

coverages of Co deposited on TiO2 at room 

temperature.  Heights were determined from STM 

images using an in-house cluster measurement 

program, and the following image sizes were used 

for the analysis: 1000Åx1000Å for 0.02 ML, 

500Åx1000Å for 0.13 and 0.25 ML. 

 

The broadening of the size distribution with increasing coverage is explained as follows: 

at the higher coverages, incoming Co atoms can both nucleate new clusters, which 

contribute to the smallest cluster sizes, or become incorporated into existing clusters, which 

contributes to the larger cluster sizes.  In contrast, at the lower coverages, almost all of the 

Co atoms nucleate new clusters because the diffusion length is not large enough for these 

atoms to reach existing clusters.  In general, our group has observed that the size 

distribution for metals grown on TiO2 becomes narrower as the diffusion length decreases; 

for example, on a TiO2 surface that was intentionally made defective by heating to induce 
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partial reconstruction of the surface, the deposition of Cu clusters resulted in a more 

uniform size distribution than on stoichiometric TiO2(110)-(1x1).51,52  The same behavior 

has been reported for the growth of Pd,53 Ag54 and Pt55 on reconstructed TiO2(110)-(1x2) 

surfaces. 

 The most striking feature of the growth of Co on TiO2 is that the nucleation density 

for Co is much higher than for other mid-late transition metals on TiO2(110),33,36,52,54,56-64 

implying a lower diffusion rate for Co on TiO2.  A more direct comparison of the growth 

of Co with Au, Ni and Pt is shown in the STM images in Figure 3.4, where 0.25 ML of 

each metal is deposited at room temperature.  Because the four metals have different rates 

of diffusion on TiO2, the resulting cluster sizes and densities are also different, and cluster 

heights and densities for these surfaces are presented in Table 3.1.  

 

Figure 3.4: STM images of 0.25 ML of the 

following metals deposited at room temperature 

on TiO2(110): a) Au; b) Ni; c) Pt; and d) Co.  All 

images are 1000 Åx1000Å. 
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Au clusters (Figure 3.4a) have the largest average cluster heights of the four metals 

(12.7+4.3 Å) and the lowest cluster density, indicating that Au atoms have the greatest 

mobility on TiO2.  

Table 3.1.  Average cluster heights and densities for 0.25 ML of metal deposited on 

vacuum-annealed TiO2(110) at room temperature.  These statistics are based on 

measurements of all clusters in 1000x1000 Å2 images, which contained a minimum of 300 

clusters. 

Surface Average height (Å) Cluster density 

(clusters/cm2) 

0.25 ML Au 12.7 + 4.3 3.02x1012 

0.25 ML Ni 11.1 + 2.8 5.24x1012 

0.25 ML Pt 6.0 + 2.1 1.17x1013  

0.25 ML Co 5.2 + 1.6 1.63x1013  

 

Furthermore, the Au clusters exhibit a tendency to reside at the step edges since the Au 

atoms are able to diffuse across the terraces. Ni atoms diffuse slightly less readily than Au;  

the average cluster height is smaller (11.1+2.8 Å) and the cluster density for Ni is a factor 

of 1.7 higher than for Au although the Ni clusters are still preferentially located at step 

edges (Figure 3.4b).  In the case of Pt, a significant fraction of the clusters appear on the 

terraces, but the step edge sites are also occupied by clusters (Figure 3.4c).  The average 

cluster height for Pt decreases to 6.0+2.1 Å, and the cluster density is more than twice that 

of Ni.  The Co clusters have no preference for nucleation at step edges, as well as the 

smallest cluster height (5.2+1.6 Å) and a cluster density that is 1.4 times greater than Pt 

(Figure 3.4d).   

 The binding energies of these metals on TiO2(110) were calculated by DFT in order 

to explain the experimental differences in metal nucleation and growth (Table 3.2).  The 



40 

 

vacuum-annealed (reduced) TiO2 surfaces used for the experiments contain ~7% oxygen 

vacancies as determined by counting the number of these features in high resolution STM 

images, and this number is consistent with the values reported in the literature for similarly 

prepared TiO2(110) surfaces.3  The DFT calculations demonstrate that the metal atoms bind 

preferentially at the oxygen vacancies, as also reported in the literature for Pt and Au on 

TiO2(110);65,66 it has generally been observed that for growth on oxide surfaces, defects 

play an important role in the nucleation of the metal clusters.1  Co binds most strongly to 

the bridging oxygen vacancy, followed by Pt, Ni, and finally Au.  Furthermore, the Co 

atom binds asymmetrically to one Ti (5f) atom and one bridging oxygen atom, in contrast 

to the symmetric Ti (5f)–metal–Ti (5f) bond of Pt, Ni, and Au, as shown in Figure 3.5 

(circles, top). The distinct bonding geometry of Co-TiO2 can be understood in terms of the 

stronger affinity of Co for oxygen compared with the Pt, Ni, and Au cases.  The calculated 

oxygen binding energies on the (111) surfaces of Au, Pt and Ni and the (0001) surface of 

Co are given in Table 3.2 to illustrate that the metal-titania binding energies are correctly 

predicted by the admetal-oxygen bond strengths.  Likewise, a review article by Campbell 

on the growth of metals on oxides reports that for metal deposition on alumina, the 

interfacial energy scales with the strength of the admetal-oxygen bond.1 

From the calculated binding energies of metals, there is a clear trend between 

binding energy and cluster size/density; specifically, the larger binding energies lead to 

smaller cluster sizes and higher cluster densities.  This behavior can be understood if the 

rate of diffusion for the metal on titania is assumed to be related to the metal-titania binding 

energy, with slower rates of diffusion and shorter diffusion lengths associated with strong 

metal-titania binding.   
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Figure 3.5: Calculated binding energies of metal atoms 

on vacuum-annealed (reduced) TiO2 and oxidized TiO2 

(O-TiO2) surfaces. 

 

The Bronsted-Evans-Polyani (BEP) relationship suggests that the activation energy barrier 

for metal diffusion should scale with the adsorption energy of the metal.67-69  According to 

the BEP equation, the change in activation energy is equal to a constant times the change 

in reaction energy for reactions of the same type, and this relationship has been successfully 

applied to understanding the elementary steps in surface reactions.67-72  Thus, the activation 

energies obtained from transition state theory can be directly determined from the more 

easily calculated thermodynamic properties.69  More recent work by Norskov and 

coworkers have shown through DFT calculations that there is a "universal" linear 

relationship between the activation energy of reaction and the adsorption energies of the 

atomic species for the dissociation of diatomic molecules (N2, CO, NO, O2) on many 

transition metal surfaces.73,74  Other DFT investigations have also demonstrated this same 
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relationship between activation energy of reaction and adsorption energies for C-H bond 

breaking in ethylene,75 CO dissociation76 and N2 dissociation.74  Consequently, the rate of 

diffusion of the metal atoms on the surface should decrease with increasing metal-titania 

binding.  The calculated binding energies in Table 3.2 are consistent with the diffusion 

rates for the metals on TiO2 following the order of Au>Ni>Pt>Co for diffusion rates.   

Table 3.2.  Calculated metal binding energy on the vacuum-annealed (reduced) and the 

oxidized TiO2 (110) surface.  Also reported is the oxygen binding energy to the metal(111) 

surface for Au, Ni and Pt, and to (0001) for Co.  

Metal 
Metal binding energy 

on reduced TiO2 (eV) 

Metal binding energy 

on oxidized TiO2 (eV) 

Oxygen binding 

energy on metal (eV) 

Au -1.54 -3.89 -3.67 

Ni -1.61 -7.23 -4.02 

Pt -2.28 -6.05 -4.56 

Co -3.07 -8.70 -6.02 

 

The metals with the greatest mobility on the surface exhibit the largest cluster sizes, the 

smallest cluster densities and the greatest tendency for the clusters to occupy the high-

coordination step edge sites. 

The growth of Co, Au and Ni is substantially altered when the vacuum-annealed 

TiO2 surface is exposed to O2 at 295 K before metal deposition.  XPS studies report that 

this oxygen treatment decreases the Ti+3 low binding energy shoulder at ~458 eV in the 

Ti(2p3/2) spectrum.  The oxidation process is proposed to involve O2 dissociation at oxygen 

vacancies and subsequent filling of these vacancies by oxygen adatoms, leaving the 

remaining oxygen adatoms on the surface.77,78   
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Figure 3.6:  STM images of 0.05 ML of the following metals deposited on: 

vacuum-annealed TiO2(110): a) Au; b) Ni; and c) Co; and TiO2 exposed to O2 at 

295 K: d) Au, e) Ni; and f) Co.  All metals were deposited at room temperature, 

and images are 1000Åx1000 Å. 

STM images in Figure 3.6 illustrate that for 0.05 ML coverages of various metals, the 

number of clusters is significantly increased for the oxidized surface compared to reduced 

TiO2 in all cases. Similarly, the average cluster heights are all smaller for deposition on 

oxidized TiO2 compared to the reduced surface.The changes in the cluster sizes and 

densities (Table 3.3) suggest that diffusion is inhibited on the oxidized surface due to 

stronger metal-support interactions.  The most pronounced difference is observed for Au, 

given that the cluster density on the oxidized surface increases by a factor of ~6.  Both Ni 

and Co exhibit smaller changes, with the cluster densities increasing by a factor of only ~3 

or ~2, respectively, on oxidized TiO2.  Thus, Au, which diffuses most readily on reduced 

TiO2 shows the most pronounced changes in growth.  DFT calculations were conducted to 

compare the binding energies on the oxidized and reduced TiO2 surfaces (Figure 3.5), and 
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the most stable binding sites of metal atoms on oxidized TiO2 were adopted from the 

literature.79  The calculations demonstrate that the binding energy of the metal is higher on 

oxidized TiO2 (O-TiO2) in all cases.  Moreover, the binding energy of Au on O-TiO2 is 

lower than that of Ni or Co, and this reflects the experimental behavior in which the Au 

clusters grown on O-TiO2 have greater average heights (4.8+2.3 Å) than Co (3.0+0.4 Å) 

or Ni (2.7+1.5 Å), which have similar heights (Table 3.3).  Likewise, STM studies of Ag80 

and Au79 clusters on oxidized TiO2(110) have reported stronger bonding of the metal to the 

oxidized surface compared to the vacuum-annealed surface.80  This increased binding in 

the presence of oxygen is reflected in the experimental observation (Figure 3.6) that the 

average particle size for all investigated metals is smaller on the oxidized surface. 

 The difference in metal binding on the reduced and oxidized TiO2 surfaces can be 

understood in terms of the relative electronegativities of the metals. The reduced TiO2 

(110) surface is electron rich whereas the oxidized TiO2(110) surface is electron deficient,79 

and therefore a correlation between the relative electronegativities of the metals and the 

difference in binding to these surfaces is expected.81 This was tested by explicitly 

calculating the binding energy difference, , where  and  

are the metal binding energies on the oxidized and reduced TiO2 (110) surfaces, 

respectively.  Figure 3.7 shows that the binding energy difference is well-correlated with 

the Pauling electronegativity of the metals.82 Co, which has the lowest electronegativity, 

most strongly prefers the oxidizing environment.   

 

 

 

DEb = Eb
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Table 3.3.  Average cluster heights and densities for 0.05 ML of metal deposited at room 

temperature on vacuum-annealed (reduced) TiO2(110) and TiO2(110) exposed to O2 at 295 

K (oxidized, O-TiO2).  These statistics are based on measurements of all clusters in 

500x1000 Å2 or 1000x1000 Å2 images, which included 180-940 clusters. 

Surface Average height (Å) Cluster density 

(clusters/cm2) 

0.05 ML Co/TiO2 3.7+1.2 9.32x1012 

0.05 ML Co/O-TiO2 3.0+0.4 1.57x1013 

0.05 ML Au/TiO2 8.0+2.7 1.88x1012 

0.05 ML Au/O-TiO2 4.8+2.3 1.16x1013 

0.05 ML Ni/TiO2 4.4+1.5 5.44x1012 

0.05 ML Ni/O-TiO2 2.7+0.6 1.42x1013 

 

In contrast, Au has the highest electronegativity and the smallest magnitude of ΔEb.  

Although Au has the smallest ΔEb of the three metals, the ratio of number of clusters on 

the oxidized compared to TiO2 surface is the greatest for Au.   

 

Figure 3.7: Correlation between the ΔEb values of 

metal atoms on TiO2 with their electronegativities. 
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This behavior is explained by the fact that the reduced TiO2 surface has very few nucleation 

sites for Au compared to Ni or Co, and therefore the creation of new nucleation sites on 

the oxidized surface has the most pronounced effect on the cluster density for Au. 

To investigate the interactions between the TiO2 support and the Co clusters, sXPS 

experiments were carried out at the U12a beamline at the National Synchrotron Light 

Source.  The surface sensitivity of the experiments was enhanced by using an incident 

energy of 600 eV so that the photoelectrons have lower kinetic energy than those generated 

-ray source.  For these experiments, a higher metal coverage 

of 2 ML was deposited in order to increase the likelihood of observing the effects of Co-

titania interactions.  The Ti(2p3/2) spectrum of the clean TiO2(110) surface is fit with a main 

peak at 459.2 eV, which is assigned to Ti+4 and accounts for 90% of the total intensity; a 

smaller feature at 457.7 eV, which is assigned to Ti+3, accounts for the remaining 10% 

(Figure 3.8a).39,83,84  After the deposition of 2 ML of Co (Figure 3.8b), the Ti+4 and Ti+3 

peaks comprise 80% and 15% of the total intensity, respectively, and a small feature at 

456.5 eV appears, which is assigned to Ti+2 and accounts for 5% of the intensity.  The 

~10% decrease in the Ti+4 peak compared to clean TiO2 suggests that a small fraction of 

Ti+4 is reduced by Co.  Previous studies of Co clusters annealed at 800 K showed that the 

clusters were encapsulated by titania,30 as has also been observed for many other metals 

such as Pt,39,84,85 Rh,39,86 Pd87-89 and Ni32,35,84,90 heated on TiO2(110) in a reducing 

environment like UHV.  After annealing to 800 K, the Ti(2p3/2) peak shape is nearly 

identical to that of the unannealed surface with Ti+4, Ti+3 and Ti+2 contributions of 85%, 

12% and 3%, respectively (Figure 3.8c), and this peak shape is also very similar to the 

clean TiO2 surface.  Thus, the Co clusters appear to be encapsulated by stoichiometric 
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titania, as also observed for encapsulated Ni clusters,84 whereas Pt clusters are encapsulated 

by reduced titania.39,84,85,91,92 

XPS data for the Co(2p) region indicate that the 0.25 ML Co clusters on TiO2 

consist predominantly of metallic Co (Figure 3.9).  After deposition at room temperature, 

the Co(2p) peak shape is similar to that of metallic Co with a Co(2p3/2) binding energy of 

778.5 eV (Figure 3.9a).93  However, the peak is slightly broader than what is observed for 

bulk Co surfaces, with greater intensity in the shoulder around 781 eV.   

 

Figure 3.8: Soft X-ray photoelectron spectroscopy 

data for the Ti(2p3/2) region for: a) clean TiO2(110); 

and 2 ML of Co deposited on TiO2(110) after room 

temperature deposition (b) and after heating to 800 K 

for 1 min (c).  The incident photon energy was 600 

eV. 
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One possibility for the origin of this shoulder is that a small fraction of the Co is oxidized 

from interaction between the Co clusters and the TiO2 support; note that Co is not expected 

to be oxidized by background gases upon deposition in UHV, given that pure metallic Co 

films have been observed on metal surfaces like Mo in UHV.94  A similar Co(2p) peak 

shape has been observed for Co deposited on vanadia thin films, and the spectral intensity 

around  ~ 781 eV was assigned to a shakeup satellite arising from d-d correlation, rather 

than oxidation of Co.95 

  

 

Figure 3.9: XPS data for the Co(2p) region for 

0.25 ML of Co deposited on TiO2(110) at room 

temperature: a) as deposited; b) exposed to O2 at 

room temperature; c) exposed to air for 24 hours; 

d) annealed to 800 K for one minute; and e) 

annealed to 800 K for one minute and exposed to 

O2 at room temperature.  The O2 was dosed in 

UHV at a pressure rise of 1x10-7 Torr for 5 

minutes via a directed dosing tube. 
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Based on the lower heat of formation of cobalt oxide compared to vanadium oxide, it is 

unlikely that the Co would be oxidized by the vanadia support,95 and a similar argument 

would suggest that Co should not be oxidized by the titania support either.  XPS studies of 

Co thin films grown on Cu and oxidized Cu have attributed the Co(2p3/2) shoulder to 

correlation-induced satellite features, and the intensity of this satellite feature is reported 

to be very sensitive to film thickness, with greater intensity for thinner films.96-98  In 

addition to d-d interaction, the Cu 4s-Co 3d hybridization also contributes to the Co(2p3/2) 

satellite structure for the Co films on Cu.  Furthermore, theoretical studies confirm that the 

d-d correlation is expected to contribute to the satellite structure.99,100  Therefore, the 

appearance of the shoulder in the Co(2p3/2) spectrum of Co on TiO2 is not exclusively 

attributed to oxidation, given that the slight reduction of the titania surface is consistent 

with the presence of only a small fraction of Co oxide.   

 In order to understand changes in the Co(2p) spectrum due to oxidation, the 0.25 

ML Co clusters were exposed to O2 at a pressure of 1x10-7 Torr for 5 min.  The resulting 

spectrum begins to resembles that of Co oxide93 as the 2p3/2 binding energy shifts to 780.5 

eV and distinct shoulders appear at a binding energies 5.7 eV higher than the main 2p peaks 

(Figure 3.9b).  For comparison, the spectrum of 0.25 ML of Co exposed to air for 24 hours 

is shown in Figure 3.9c to illustrate that the clusters exposed to oxygen in UHV are not 

fully oxidized.  In the spectrum of the Co clusters exposed to air, the 2p3/2 peak continues 

to shift to high binding energy (781.1 eV), indicating that this Co surface is more fully 

oxidized than the one treated in UHV.  The Co(2p) spectrum of the clusters annealed to 

800 K for one minute (Figure 3.9d) shows only a ~20% decrease in the integrated Co 

intensity, but the Co(2p3/2) peak also becomes slightly narrower, which could result from 
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decomposition of the small fraction of Co oxide.  Indeed, when the Co clusters are oxidized 

in UHV and then heated to 800 K, the metallic peak shape is restored as the decomposition 

of Co oxide occurs at this temperature.  However, because the intensity of the shoulder at 

~781 eV is dependent on the thickness of the Co overlayers, the changes at 800 K could 

also be ascribed to a morphological change.96-98  After annealing to 800 K, the partially 

encapsulated Co clusters are exposed to O2 at 295 K (Figure 3.9e), and there is a significant 

change in peak shape and a shift in Co(2p3/2) binding energy to 779.7 eV.  This suggests 

that the Co clusters become oxidized even after partial encapsulation by titania although 

the extent of oxidation is not as great as for the unencapsulated Co clusters, based on the 

smaller shift to higher binding energy. 

3.4 Discussion 

 A comparison of Co, Pt, Ni and Au growth on TiO2(110) demonstrates that 

information about the kinetics of cluster growth can be extracted from thermodynamic 

properties like the admetal-oxygen bond strengths.  The relative rates of diffusion increase 

with decreasing admetal-oxygen bond strengths, and higher diffusion rates lead to larger 

clusters and lower cluster densities.  Co exhibits the lowest diffusion rate since it has the 

strongest metal-titania bonding, and Au exhibits the highest diffusion rate since it has the 

weakest metal-titania bonding; Ni and Pt follow the same trend of increasing diffusion rates 

with weaker metal-TiO2 bonding.  Consequently, cluster sizes increase in the order of 

Co<Pt<Ni<Au.  For Co, its less active neighbors in the periodic table (Rh, Ni) exhibit much 

higher metal atom diffusion at room temperature,59,62 implying significantly weaker metal-

titania binding compared to Co.  Many of the mid-late transition metals have been imaged 

by STM on TiO2(110), and the reported spatial distributions also follow the trends 
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predicted by the metal-oxygen bond strengths.  Metals like Cu,58,59 Ag57,61,101, Rh62 and 

Pd53,60 are mobile on the surface at room temperature compared to Pt and Co, which have 

higher metal-oxygen bond strengths, and therefore the Cu, Ag, Rh and Pd clusters are 

preferentially located at the high-coordination step sites.  Similarly, metals like Mo102,103 

and Al104 with stronger metal-oxygen bonds form clusters that show no preference for 

nucleation at step edges due to the short diffusion lengths. 

 Diebold and Madey have compared the growth of many transition metals on 

TiO2(110) and found that the mode of film growth can also be predicted from 

thermodynamic properties.3,4,105  Specifically, the wetting ability of the admetal film 

depends on the activity of the admetal for reaction with oxygen.  Late transition metals like 

Cu105 and Au,56,106 which are not active for reaction with oxygen, grow as three 

dimensional islands that do not wet the surface; in contrast early transition metals like Cr107 

and Mn108 are active for reaction with lattice oxygen and form flatter islands that wet more 

of the titania surface.  In general, the admetal's activity for reaction with lattice oxygen 

follows the heat of formation of the oxides per mole of oxygen,4 similar to the trend 

observed for reduction of the titania by the admetal.  Moreover, a review by Campbell 

demonstrated that the growth mode for metals on oxides can be predicted from trends in 

the heats of formation of the admetal oxide.1  Three-dimensional film growth is expected 

when γo <  γm + γm/o , where γo and  γm are the surface free energies of the oxide and admetal, 

respectively, and γm/o is the energy of the admetal-oxide interface.  Since the surface free 

energy of the metal is usually higher than that of oxide,109 the interfacial energy often 

controls the mode of film growth, with strong admetal-titania interaction favoring more 2-

dimensional growth.  Given that the interfacial energy has been shown to scale with the 
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heats of formation for the admetal oxides,1 two-dimensional growth is expected for 

admetals with higher heats of formation of the associated admetal oxide. 

 The general trend observed for transition metals on TiO2 is that the extent of 

reduction at the admetal-titania interface increases with the heat of adsorption of oxygen 

on the admetal.102 Tanaka and coworkers showed that the heat of adsorption for oxygen 

follows the standard heat of formation (per metal atom) of the highest oxide,110 and 

therefore, the extent of titania reduction by the admetal should increase with increasing 

heat of formation of the oxide.  Fe, which is directly to the left of Co in the periodic table, 

exhibits greater reduction of the titania surface than Co,105,111 and the early transition metals 

such as Cr,107 V,4,112 Mo113,114 and Mn108 also reduce titania significantly upon room 

temperature deposition.  In addition, metals in the periodic table that are in or to the left of 

the Fe group111 reduce titania while the admetal itself becomes oxidized, and this interfacial 

reaction enhances wetting ability.4  For the mid-late transition metals deposited on 

TiO2(110) in this study (Au, Pt, Ni, Co), the extent of titania reduction for equivalent 

coverages of metal also reflects the relative strengths of the admetal-titania bonds even 

though none of these metals reduce titania substantially.84  In the case of Au, which has the 

weakest metal-titania interaction, there is only a ~3% reduction of Ti+4 to Ti+3 after 

deposition.  Ni deposition on titania induces a 6% reduction of Ti+4 to Ti+3 and 3% 

reduction of Ti+3 to Ti+2.  Co and Pt, with the strongest metal-oxygen bonds, cause a ~10% 

reduction of Ti+4 to Ti+3 and a ~5% reduction of Ti+3 to Ti+2.   

 For the deposition of Co on metal oxide surfaces, the extent to which Co is oxidized 

by the support increases with decreasing heats of formation of the metal oxide.  For 

example, Co becomes oxidized when deposited on niobia thin films115 and ZnO surfaces116-
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118, but Co remains metallic when deposited on alumina,115,119,120 vanadia thin films95 and 

the TiO2(110) single-crystal surfaces reported here.  The heats of formation of the metal 

oxides (per mole oxygen) for the most stable metal oxide follow the order 

alumina>titania>vanadia>niobia>ZnO.1,121  Thus, deposited Co is less likely to become 

oxidized by the support for metal oxides that have the strongest bonds with lattice oxygen.  

The observed lack of oxidation of Co on TiO2 is expected based on the heats of formation 

of titania compared with alumina and vanadia, which also do not oxidize Co clusters. 

3.5 Conclusions 

 The growth of Co clusters on TiO2(110) results in small clusters 3-5 Å high for 

coverages up to 0.25 ML, accompanied by a relatively high cluster density and no 

preferential nucleation at step edges.  These results demonstrate that Co is less mobile on 

the surface compared to other mid-late transition metals, which form larger clusters and 

nucleate at step edges.  Room temperature deposition of Co induces only a minor reduction 

of the titania surface, and Co is not significantly oxidized by the titania support.  A 

comparison of the growth of Au, Ni and Pt clusters on TiO2(110) with Co at the same 

coverage demonstrates that Co forms the smallest clusters and highest cluster densities due 

to the lowest rates of the diffusion.  DFT calculations for the binding energies of these 

metals on titania show that the diffusion rate decreases with metal-titania bond strength, 

which also follows the binding energy of oxygen on the close-packed metal surfaces.  

Therefore, the rate of diffusion and corresponding clusters size can be predicted based on 

the metal-titania and admetal-oxygen binding energies.  Co, with the strongest binding, has 

the greatest diffusion barrier and therefore forms the smallest clusters; Au, with the weakest 

binding, is the most mobile and result in the largest clusters.  On oxidized TiO2(110) 
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surfaces, diffusion of four metals is slower due to strong bonding between the metals and 

surface oxygen. 
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4.1 Introduction 

 The ability to systematically tailor the activity and selectivity of catalytic materials 

has long been a goal in heterogeneous catalysis.  Control over active sites is key to the 

development of superior catalysts.  New active sites can be created on bimetallic surfaces, 

where electronic modification due to strain effects1-4 or metal-metal interactions, 2,4-12 the 

formation of mixed metal sites,13-15 or other structural changes such as site-blocking 16 

gives rise to new chemical activity.17-21 For example, Chen and coworkers have shown that 

Pt-Ni bimetallic surfaces exhibit unique chemical activity for a variety of reactions, 

including hydrogenation of cyclohexene22-24 and benzene,23 selective hydrogenation of 

acrolein,25 reforming of methanol and ethylene glycol to CO and H2,
26 hydrodeoxygenation 

of meta-cresol27 and hydrodesulfurization of thiophene.28  A number of DFT studies have 

also reported that adsorption and dissociation of surface species like H2
2,12,29, O2

12,30 

ethylene10, CO11 and OH31,32 are different on surface alloys compared to bulk metals.  

Furthermore, the adsorption of CO is known to be different on pure metal surfaces 

compared to thin metal films on metal substrates.5-7,9  In addition to creating new sites via 

bimetallic surfaces, interactions between the metal clusters and a reducible oxide support 

can result in new chemical activity.  For instance, an "inverse" catalyst composed of titania 

clusters supported on Au exhibits the same enhanced activity for the water gas shift 

reaction as Au clusters supported on titania, illustrating the importance of cluster-support 

interfacial sites.33  For supported metal clusters on ceria, oxygen from ceria participates in 

oxidation processes, forming gaseous products containing lattice oxygen from the ceria 

support.34-39  In the three way catalysts for the conversion of CO, NOx and hydrocarbons 
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into CO2, water and N2, the ceria support also plays an important role in oxygen storage.40-

42    

 The Co-Au bimetallic clusters on TiO2(110) present a model system for 

understanding the nature of metal-metal interactions and metal-support interactions.  This 

study is part of a larger research effort that includes investigations of the growth and 

activity of Ni-Au and Pt-Au clusters on TiO2(110),43-47 and the behavior of the Co-Au 

system will be compared.  The Co-Au on titania system is of specific interest because it 

has the potential to serve as an excellent catalyst for the conversion of alcohols to H2.  

Although Co itself is highly active for C-C and C-H scission in alcohols,48 decomposition 

of the alcohol results in the production of CO, which blocks active sites and poisons the 

catalyst.49  The oxidation of CO to CO2 is known to be catalyzed by Au particles supported 

on titania,50-54 and there is strong evidence that this reaction occurs at Au-titania interfacial 

sites.54-56  Therefore, the Co-Au bimetallic surfaces could potentially improve conversion 

of alcohols to H2 by providing sites at which the C-C and C-H bonds are cleaved, as well 

as sites for the removal of CO.  Co also has greater selectivity for H2 production compared 

to other catalysts like Pt and Ni due to the ability of Co to suppress the methanation side 

reaction.57-61 

 Furthermore, the Co-Au bimetallic system exhibits interesting catalytic properties, 

and there are a number of reactions in which the bimetallic surface has superior activity 

and selectivity compared to the pure metals.  The catalytic activity of Co-based clusters is 

reported to be improved when the Co is alloyed with noble metals like Au.  For example, 

the activity of Co on a TiO2 catalyst used in the Fischer-Tropsch reaction is increased upon 

the addition of Au,62 and the same is true for Co on Al2O3 and SiO2.
63  Moreover, the 
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presence of Au in the Co clusters lowers the temperature at which Co oxide can be 

reduced,62-64 and other noble metals such as Ru,65 Re,65 and Pt66 mixed with Co exhibit the 

same effect.  A recent study also reports enhanced activity for Co oxide on Au in the 

electrochemical evolution of oxygen;  specifically, the turnover frequency is ~40 times 

higher for 0.4 ML Co oxide on Au compared to Co on bulk Co oxide.67  The addition of 

Au to a kaolin-supported Co catalyst increases the conversion of 1,4-butanediol to 2,3-

dihydrofuran, and XRD studies show that the structure of the Co catalyst is modified by 

the Au.64  Another example is the addition of Co to an oxide-supported Au catalyst for the 

gas phase epoxidation of propene using a H2/O2 mixture.68  The Co-Au bimetallic clusters 

are more active for propene oxide formation compared to pure Au, and the bimetallic 

surfaces are also less susceptible to deactivation compared to pure Au.   

 In the work reported here, Co-Au bimetallic clusters are grown on rutile TiO2(110) 

by nucleating Au atoms at existing Co clusters, based on the slower diffusion of Co 

compared to Au.  The resulting cluster surfaces are >80% Au for bulk Au fractions of 

>50%, as dictated by the lower surface free energy of Au compared to Co.  Although the 

pure Co clusters are significantly smaller than the Au clusters at room temperature due to 

the increased nucleation density for Co (5.5 vs. 12.7 Å average height), addition of Co to 

the Au clusters does not suppress cluster sintering.  Pure Co clusters become encapsulated 

by titania upon annealing to 800 K, and for annealed Co-Au clusters, surface Co atoms are 

selectively encapsulated while the Au atoms remain uncovered.  Exposure of the bimetallic 

clusters to CO results in diffusion of Co to the surface of the clusters, but this effect is less 

pronounced than what is observed in the Pt-Au and Ni-Au systems.  DFT calculations 
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demonstrate that the CO-induced metal diffusion is thermodynamically driven by the 

formation of strong CO-metal bonds. 

4.2 Experimental 

 Experiments were carried out in two ultrahigh vacuum chambers with base 

pressures below 510-11 Torr.  The first chamber is equipped with a variable-temperature 

STM (Omicron, VT-25), hemispherical analyzer for XPS and LEIS experiments (Omicron, 

EA125), and a low energy electron diffraction (LEED)/Auger electron spectroscopy (AES) 

system (Omicron, SPEC3).  The second chamber houses a quadrupole mass spectrometer 

(Hiden HAL 301/3F) for TPD experiments, a cylindrical mirror analyzer for AES 

(Omicron, CMA 150) and LEED optics (Specs).  Both the first43,44,47,69-71 and second,44,47,71-

73 chambers have been previously described in more detail.   

 The rutile TiO2(110) crystals (Princeton Scientific Corporation, 1 cm x 1 cm x 0.1 

cm) were cleaned by Ar+ sputtering at 1 kV for 20 minutes and subsequent annealing to 

950-1000 K for 3 minutes.44  The resulting crystals were sufficiently conductive for STM 

as well as electron and ion spectroscopy experiments since this treatment preferentially 

removed oxygen from the crystal.  The crystals were heated via electron bombardment of 

the Ta backplates,73,74 and temperatures were monitored by type C or K thermocouples, 

which were calibrated with an infrared pyrometer.69  The cleanliness and the order of the 

TiO2(110)-(1x1) surface were confirmed by a combination of STM, XPS, LEIS and LEED 

and AES experiments.   

 In the first chamber, a commercial metal evaporator (Oxford Applied Research, 

EGC04) was used to deposit metals via heating by electron bombardment; Co (ESPI, 
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99.995%) was evaporated from a 2 mm diameter rod, and Au was evaporated from pure 

pellets (Alfa Aesar, 99.95%) housed in a molybdenum crucible.  In the second chamber, 

Au was evaporated by passing current through a tungsten wire cage surrounding a pure Au 

pellet, and Co was deposited by passing current through a 0.50 mm diameter tungsten wire 

(ESPI) around which 0.25 mm diameter Co wire (ESPI, 99.995%) was wrapped.  Metal 

fluxes were monitored using a quartz crystal microbalance (Inficon).  The quartz crystal 

microbalance (QCM) was independently calibrated by depositing submonolayer coverages 

of Au and Pt onto Ru(0001) and imaging with STM to determine the total fraction of the 

surface covered.  The QCM calibration was checked by depositing one monolayer of the 

metals on TiO2(110) and confirming that the disappearance of the Ti LEIS signal occurred 

at this coverage.  One monolayer (ML) is defined with respect to the packing densities of 

the Au(111) (1.39x1015 atoms/cm2) and Co(0001) (1.83x1015 atoms/cm2) surfaces, 

respectively. The deposition rate was approximately 0.1 ML/min for both metals.  

 LEIS experiments were conducted with 600 eV He+ ions at a scattering angle of 

130°, current to the crystal of 25 nA, step size of 0.2 eV, and dwell time of 0.05-0.2 s.  

Dwell times were adjusted for each surface in order to use the maximum value that resulted 

in a <10% decrease in the Co and Au signals after seven successive scans.  This ensured 

that the metal signals were not changing due to sputtering effects over the course of heating 

and acquiring spectra at seven different temperatures.   The Au peak was collected over 

490-545 eV, while the Co and Ti features were collected over 365-465 eV.  A scaled 

contribution from the Ti peak for clean TiO2 was subtracted from the spectrum in order to 

generate a flat baseline for integration of the Co peak. 
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 XPS experiment

step size of  0.03 eV and dwell time of 0.2 s.  For TPD experiments, the crystal was 

positioned in front of a shielded quadrupole mass spectrometer,44,71 the heating rate was 2 

K/s, and the crystal was biased at -100 V to avoid damage from electrons generated by the 

mass spectrometer filament.  CO (National Welders, 99.99%) was adsorbed onto the 

surface at 295 K by positioning the crystal ~2 mm in front of the end of a stainless steel 

directed dosing tube and leaking CO into the chamber with a pressure rise of 3.0 x 10-10 

Torr for 3 min.  This exposure resulted in a saturation coverage of CO. 

  STM experiments were carried out with the sample biased at +2.3 V with respect 

to the tip using a tunneling current of 0.05 nA-0.1 nA.  STM tips were prepared by 

electrochemically etching 0.38 mm diameter tungsten wire in NaOH,43 and the tips were 

conditioned by a combination of Ar+ ion sputtering and pulsing to high voltage. 

 Measurements of cluster heights and surface areas from STM images were carried 

out with an in-house analysis program that is described in more detailed elsewhere.75  

Briefly, this program follows the algorithm developed by Jak et al.76 to remove steps from 

the titania surface before automatically measuring cluster heights and diameters.  This 

program also measures the surface area of every cluster in a 1000 Å x1000 Å image.  

Average heights were determined by measuring the heights for clusters in a 1000 Å x1000 

Å image with the exception of the room temperature 25%Co/75%Au and pure Co surfaces, 

in which 1000 Å x500 Å images containing more than 850 clusters were processed.  The 

reported uncertainties for the room temperature heights are the standard deviations from 

the cluster height distributions.  The reported uncertainties in the cluster densities are the 

sample standard deviations, which are calculated as the square root of the number of 
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clusters counted and assumes Poisson statistics.  Note that the cluster height is taken as the 

measure of the cluster size since the diameters are known to be overestimated from tip 

convolution effects.43  Typically the diameters are overestimated by a factor of 2.2, and 

this estimate is calculated from an average cluster diameter based on: the total number of 

atoms deposited as determined by the quartz crystal microbalance, the average cluster 

height, the number of clusters/cm2 and assumes hcp/fcc packing densities for Co and Au.  

The calculated cluster surface areas were corrected by a factor of (2.2)2 for the 

overestimation of the cluster diameters due to tip convolution effects.     

 Computational Methods 

 Fully spin-polarized periodic density functional theory (DFT) calculations were 

performed within the generalized gradient approximation (GGA) using the Vienna ab initio 

simulation package (VASP).77-79  The revised Perdew-Burke-Ernzerhof (RPBE)80,81 

functional was used to describe the exchange-correlation effects.  A (2×2×1) Monkhorst-

Pack k-mesh with an energy cutoff of 400 eV was used for all structural relaxations.  

Energies were calculated with a (5×5×2) k-mesh.  The Methfessel-Paxton method82 of 

order one with a smearing of 0.2 eV was used to allow for partial occupancy near the Fermi 

level, and dipole corrections to the total energy were computed with Makov and Payne's 

modified method.83  The metal (111) surface was modeled by a [3 × 3] supercell with a 

four-layer slab thickness and a vacuum spacing of 15 Å.  Electronic energies were 

converged to 10-5 eV, and ionic relaxations were considered converged when the forces on 

the ions were less than 0.02 eV/Å.  The atoms in the bottom layer of the slab model 

(typically Au) were fixed to the bulk position of the metal atoms of this layer, and all other 

atoms were allowed to relax to minimize the total energy.  For all bimetallic calculations, 



78 

 

the equilibrium lattice constant for bulk Au (4.21 Å) was used; this value was calculated 

from the RPBE functional with a Monkhorst-Pack k-point grid of 11×11×11.  Co-Au 

bimetallic structures were obtained by replacing Au atoms with Co atoms at various 

positions.  

4.3 Results 

Scanning Tunneling Microscopy Studies 

STM studies of the sequential deposition of Co and Au at room temperature demonstrate 

that bimetallic clusters can be formed by depositing the more mobile Au atoms on the less 

mobile Co.  The deposition of 0.02 ML of Co on TiO2 results in clusters with average 

heights of 3.3+0.9 Å and a cluster density of 4.8+0.2 x1012/cm2 (Figure 1a).  Compared to 

other metals like Pt,43,84,85 Rh,84,85 Ni,47,86 Cu,86 Ag and Au43,51 on TiO2(110), Co forms 

many more nucleation sites as well as smaller average cluster sizes.  After the deposition 

of 0.1 ML of Au on the 0.02 ML Co clusters, there is only a small, ~6% increase in cluster 

density up to 5.1+0.2 x1012/cm2, indicating that the majority of Au atoms nucleate at 

existing Co sites (Figure 4.1b).  This is consistent with the observed increase in average 

cluster height to 6.9+2.8 Å as the incoming Au atoms are incorporated into Co clusters to 

form bimetallic clusters.  In the absence of Co clusters, the growth of 0.1 ML Au on TiO2 

(Figure 4.1c) results in much larger clusters (10.0+3.4 Å) with a lower cluster density 

(2.1+0.1 x1012/cm2), providing further evidence that Au nucleates at the existing Co 

clusters in Figure 4.1b.  The lower cluster densities for pure Au compared to deposition of 

pure Co at a coverage five times lower demonstrate that Au is more mobile on the surface 

than Co.  Moreover, the Au clusters are preferentially located at step edges, which are the 
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favored, high coordination sites on the surface, whereas Co clusters nucleate on terraces 

due to the inability of the Co atoms to diffuse to the step edge sites.   

 

Figure 4.1: STM images of the following metal 

coverages deposited at room temperature on 

TiO2(110): a) 0.02 ML of Co; b) 0.02 ML of Co + 0.1 

ML of Au; and c) 0.1 ML of Au; d) 0.1 ML Au + 0.02 

ML of Co; e) 0.05 ML of Co; and f) 0.05 ML of Co + 

0.1 ML of Au.  All images are 1000 Å x1000 Å. 

 

For the reverse order of deposition of 0.02 ML of Co on 0.1 ML of Au (Figure 4.1d), the 

Co atoms do not nucleate exclusively at Au clusters.  After Co deposition, the cluster 
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density increases to 4.3+0.2 x1012/cm2, and a bimodal distribution consisting of very small 

clusters of pure Co (~3 Å) and larger, Au-rich clusters (~11 Å) is observed.  Thus, the 

immobile Co atoms are not always able to diffuse to existing Au clusters, and pure Au and 

pure Co clusters coexist on the surface along with bimetallic clusters.  When 0.1 ML of Au 

is deposited on a higher Co coverage of 0.05 ML (Figures 1e and 1f), the cluster density 

decreases from 9.2+0.3 x1012 to 8.0+0.3 x1012/cm2.  This implies that Au nucleates at Co 

clusters and that cluster coalescence occurs as the individual clusters grow.  When the 

initial coverage of Co clusters is sufficiently high (>0.05 ML Co) to create a large number 

of nucleation sites, Au nucleates exclusively at the existing Co clusters.  

 Given that bimetallic clusters can be formed by the deposition of Co followed by 

Au, surfaces with varying bimetallic compositions were deposited at room temperature, 

keeping the total metal coverage fixed at 0.25 ML.  The higher metal coverages were 

employed in order to increase the number of surface sites for chemical studies on Co-Au 

bimetallic clusters.  Figure 4.2 shows STM images of clusters with average Co 

compositions of 0, 25, 50, 75 and 100%, corresponding to 0.25 ML Au, 0.06 ML Co + 0.19 

ML Au, 0.13 ML Co + 0.13 ML Au, 0.19 ML Co + 0.06 ML Au and 0.25 ML Co, 

respectively. 

The cluster densities as well as the average heights of the clusters are presented in Figure 

4.3 as a function of Co fraction.  The nucleation density increases almost linearly with 

increasing Co fraction.  At the highest Co fractions, small clusters appear to cover almost 

the entire surface, in contrast to the pure Au clusters, which form larger clusters that leave 

the majority of the titania surface exposed.   
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Figure 4.2: STM images of the following metal coverages deposited at room 

temperature on TiO2(110): a) 0.25 ML of Au; b) 0.06 ML of Co + 0.19 ML of Au; 

c) 0.13 ML of Co + 0.13 ML of Au; d) 0.19 ML Co + 0.06 ML of Au; and e) 0.25 

ML of Co.  All images are 1000Å x1000Å. 

 

Likewise, the average cluster heights at room temperature generally decrease with 

increasing Co fraction since the higher Co coverages provide a larger number of nucleation 

sites.  The largest decrease in average height occurs between the pure Au clusters (12.7+4.3 

Å) and the 25% Co clusters (8.1+2.3 Å), with the height then dropping more gradually to 

5.5+1.6 Å for the pure Co clusters; height distributions are shown in Figure A.1a in 

appendix B. 

 Changes in surface morphology were studied by STM after heating to 500 K and 

800 K for one minute at each temperature to address the effects of cluster sintering.  

Average heights and cluster densities for the clusters deposited at room temperature and 

then heated to 500 K and 800 K are shown in Figure 4.3 as a function of bulk Co 
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composition.  Upon heating to 500 K, the average cluster heights increase, and the cluster 

densities decrease, but the 

 

Figure 4.3: Average cluster heights (a) and cluster densities (b) as a function of 

bulk Co fraction at room temperature and after annealing at 500 K and 800 K for 

one minute at each temperature.  All surfaces have a total metal coverage of 0.25 

ML.  The error bars shown for the room temperature heights are the standard 

deviations from the cluster height distributions.  Standard deviations for the 

heights of clusters annealed to 500 K and 800 K are not shown for the sake of 

clarity but are given in Table S1 of the supporting information. 

 

effects are relatively minor at all compositions compared to changes after heating at 800 

K.  At 800 K, the number of clusters on the surface is still larger for higher Co fractions, 

but the decrease in cluster density is only 50% for the pure Au clusters compared to ~70-

80% for all of the Co-containing clusters (Figure 4.4).  This behavior implies that the Co-

containing clusters are more easily sintered than pure Au, and the smaller sizes for the 800 

K-annealed clusters with high fraction of Co is attributed to the fact that these clusters have 

significantly smaller heights and higher cluster densities before annealing.   
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Figure 4.4: STM images of the following metal coverages deposited at room 

temperature on TiO2(110) and annealed to 800 K for one minute: a) 0.25 ML of 

Au; b) 0.06 ML of Co + 0.19 ML of Au; c) 0.13 ML of Co + 0.13 ML of Au; d) 

0.19 ML Co + 0.06 ML of Au; and e) 0.25 ML of Co.  All images are 1000 Å 

x1000 Å. 

 

 For the pure Au clusters, there is a small increase in average cluster height from 12.7+4.3 

Å at room temperature to 15.5+4.4 Å after annealing to 800 K.  Although the difference in 

average height is similar for all Co fractions, the height distributions (Figure A.2, appendix 

B) show that the pure Co surfaces annealed at 800 K consist of small clusters with heights 

of ~3 Å in addition to larger clusters of 12-14 Å, and the same is true for the other Co-

containing surfaces.  For higher Co fractions, the number of ~3 Å clusters increases.   

Thus, the average height is shifted to lower values by the presence of these small clusters 

and does not reflect the overall increase in cluster size, which is more apparent from the 

STM images.  The appearance of the ~3 Å clusters after annealing to 800 K is attributed to 
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small Co clusters that are strongly bound to the TiO2 surface, very likely at oxygen vacancy 

defects, and are therefore not mobile on the surface even at 800 K.   

Low Energy Ion Scattering and X-ray Photoelectron Spectroscopy Studies 

 LEIS studies were carried out to characterize the composition of the first monolayer 

of the clusters.  Based on the higher surface free energy for Co compared to Au (1.9 87-89,90 

vs. 1.1 J/cm2 87,88,90) and the immiscibility of the two metals in the bulk,91 it is expected 

that the surfaces of the clusters should be Au-rich when Au is deposited on top of Co seed 

clusters.  The relative sensitivities for Co and Au were determined by depositing 10 ML of 

Co and 30 ML of Au, collecting LEIS data and determining the surface areas of the two 

films from STM images.70  The sensitivity for Au is 3.4 times higher than Co in the LEIS 

experiment, and for these coverages, no Ti is exposed on the surface.  A plot of surface Au 

composition as determined from LEIS vs. the bulk Au % deposited (Figure 4.5) shows that 

the clusters are rich in Au (85-100%) for Au fractions greater than 50%.  However, it is 

still possible to prepare clusters with both Co and Au at the surface if the Au fraction is 

sufficiently low.  For example, the clusters with 75% Co/25% Au (0.19 ML Co + 0.06 ML 

Au) have a surface composition of ~60% Au.  A calculation of the total surface area of the 

0.19 ML Co clusters from the STM images shows that the deposition of 0.06 ML of Au 

will leave ~40% of the Co surface exposed because the Au coverage is not high enough to 

completely cover the Co seed clusters.  In contrast, a similar calculation for the 50% 

Co/50%Au clusters illustrates that 0.13 ML of Au provides sufficient Au atoms to 

completely cover the 0.13 ML Co seed clusters; the fact that cluster surfaces are ~15% Co 

at this coverage instead of 100% Au is explained by DFT calculations, which are discussed 

in a later section.  
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Figure 4.5: The surface % Au from LEIS 

experiments vs. bulk % Au deposited on the 

surface for Co-Au clusters of varying 

compositions.  The total coverage of all surfaces 

was 0.25 ML, and Au was deposited on existing 

Co seed clusters in order to form bimetallic 

clusters.  The error bars shown are the standard 

deviations from: 2 experiments at 75% Au, 3 

experiments at 25% Au and 4 experiments at 

50% Au.  In the case of 75% Au, the error bar is 

smaller than the plot symbol. 

 

It is also important to understand compositional changes in the bimetallic clusters that 

occur upon annealing.  When metal clusters such as Pt,45,84,92 Rh,84 Ni,45,47,70,72 and Pd93-95 

are heated on TiO2(110) in a reducing environment such as ultrahigh vacuum (UHV), the 

clusters become encapsulated by TiOx from the support, and this effect is known as a strong 

metal support interaction (SMSI).96-99  It is not known whether Co clusters on titania will 

also encapsulate upon annealing in UHV, but it is likely that this will occur, given that 

encapsulation is observed for the neighbors of Co in the periodic table (Rh, Pd, Ni, Fe100).  

To address the issue of encapsulation, the intensity of the Co LEIS signal was   monitored 

as a function of annealing temperature (Figure 4.6, circles).   
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Figure 4.6:  A plot of the integrated Co LEIS signal (circles), 

the integrated Co(2p) XPS signal (squares), and cluster 

surface area determined by STM (triangles) for 0.25 ML of 

Co deposited at room temperature and heated to various 

temperatures for 1 minute.  All values are normalized to the 

values at room temperature.   

 

Between room temperature and 700 K, the decrease in Co LEIS signal is almost linear, 

reaching 64% of the room temperature value at 700 K.  Furthermore, at 800 K and 900 K, 

there is a more pronounced decrease in signal, which drops to ~14% of the original value 

after heating to 900 K.  The loss in Co signal can be attributed to one of three processes: 

encapsulation, decrease in surface area due to sintering and Co desorption.  Since the LEIS 

experiment detects only the top monolayer, the change in surface area determined from 

STM experiments is also plotted on the same graph in order to help distinguish loss of Co 

surface area due to sintering versus encapsulation (Figure 4.6, triangles).  After heating to 

500 K, there is no change in surface area, but the surface area then drops to 61% and 17% 
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of the initial value at 800 K and 900 K, respectively.  Although the decrease in surface area 

and Co LEIS signal is similar at 900 K, the surface area does not diminish as rapidly as the 

Co LEIS signal at lower temperatures.  This implies that the decrease in LEIS signal below 

900 K is not solely due to cluster sintering and can be attributed in part to Co encapsulation 

by titania.   

 Changes in the XPS Co(2p) intensity for the 0.25 ML Co clusters were also 

monitored as a function of annealing temperature (Figure 4.6, squares).  Up to 700 K, the 

decrease in the Co signal is less than 10% compared to the signal at room temperature 

before annealing.  This small loss is assigned to either the onset of encapsulation or 

decrease in surface area due to sintering.  At 800 K, the Co XPS signal decreases to 82% 

of the value at 295 K, and this is coincident with the substantial reduction in LEIS signal 

at 800 K.  At 900 K, it appears that significant Co desorption occurs; the 43% drop in Co 

XPS signal from the 295 K value cannot be explained by encapsulation by one or two 

titania layers, which should attenuate the Co signal by only 9% and 17%, respectively,101 

assuming a mean free path for electrons in titania of 3.47 nm102 at a kinetic energy of 708.6 

eV for the Co(2p) photoelectrons excited by the 

less sensitive to changes in cluster morphology and surface composition compared to LEIS, 

given that LEIS probes only the first surface monolayer while XPS probes multiple layers 

into the near-surface region.  For average cluster heights of 6.3 Å and 11.9 Å at 295 and 

800 K, respectively, the Co XPS signal from the clusters should be 74%-77% of Co signal 

for a surface where all of the Co atoms are deposited as a single monolayer;  this calculation 

is based on a mean free path of 14 Å101 and assumes a hemispherical cluster shape.  In 

summary, it is concluded that the majority of the signal lost at 800 K both in the XPS and 
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LEIS experiments is due to Co encapsulation, whereas Co desorption becomes a significant 

factor around 900 K. 

 Changes in both the Co and Au LEIS signals as a function of temperature were 

studied for the bimetallic clusters of varying compositions with a total metal coverage of 

0.25 ML (Figure 4.7).  The normalized Co intensity for the pure Co clusters is shown again 

in order to compare directly with the Co signals for the bimetallic clusters (Figure 4.7a), 

and all LEIS signals are normalized to the values at room temperature so that relative 

changes can be seen more clearly.  For the 75% Co clusters, the decrease in Co signal with 

annealing temperature closely follows that for the pure Co clusters.   Encapsulation is not 

complete even at 900 K for the 75% Co and pure Co clusters since the Co signal does not 

drop to zero but remains at 10-15% of the room temperature value.  The Co signals for the 

50% Co and 25% Co clusters decrease slightly more rapidly than what is observed for the 

higher Co fractions, but in general the Co signals follow the same general trend:  the loss 

in Co signal is significant at 800 K, and the Co signal decreases almost to zero at 900 K. 

The data suggest that the reduction in Co signal is greatest for the clusters with lower Co 

fractions, but given the low absolute signal intensity for the 25% and 50% Co clusters, it 

is possible that these differences are within experimental error.  The normalized Au signal 

for the pure Au clusters also decreases with annealing temperature, reaching ~60% of the 

room temperature value at 800 K and ~40% at 900 K  (Figure 4.7b).  However, the Au 

signals for all of the cluster compositions do not drop as quickly as the Co signals.  While 

the 25% Co and 50% Co clusters follow exactly the same trend as the pure Au clusters, the 

75% Co clusters have slightly higher values at all temperatures.  For example, the decrease 

in Au signal at 800 K is still ~70% of the room temperature value.  This behavior is 
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attributed to the fact that the 75% Co clusters represent the only composition at which there 

are not enough Au atoms to completely cover the Co surface.  When the surface area 

decreases after cluster sintering at the higher temperatures, all of the Au atoms can still be 

accommodated at the cluster surface, and therefore no Au signal is lost due to incorporation 

of Au atoms into the bulk of the clusters. 

  

 

Figure 4.7: LEIS signals as a function of annealing for 1 minute at various temperatures 

for pure Co, pure Au and Co-Au clusters on TiO2: a) normalized Co signal; and b) 

normalized Au signal.  Signals are normalized to the initial values at 295 K.  Au was 

deposited on Co clusters at room temperature for various compositions at a total metal 

coverage of 0.25 ML.  The error bars shown are the standard deviations from: 2 

experiments at 75% Au and 100% Co, 3 experiments at 25% Au and 4 experiments at 50% 

Au.  For each composition, the maximum standard deviation in the temperature set was 

used.   

 

Temperature Programmed Desorption Studies 

 Temperature programmed desorption experiments for CO adsorbed at room 

temperature were conducted to investigate the surface chemistry on the clusters.  Figure 

4.8 demonstrates that CO is evolved (28 amu) from pure 0.25 ML Co clusters in a 
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molecular desorption peak at 370 K and a high temperature peak at 755 K ascribed to 

recombination of carbon and oxygen atoms from dissociated CO.  As the fraction of Au is 

increased in the 0.25 ML clusters, the CO desorption decreases.  Since CO does not adsorb 

on pure 0.25 ML Au clusters or the TiO2 support at room temperature, CO desorption is 

considered to be a measure of the fraction of Co at the cluster surface.  The peak 

temperature for CO desorption shifts down to 350 K as the concentration of Au is initially 

increased to 25%, and the peak continues to shift to lower temperature (337 K) at 50% and 

75% Au.  This behavior suggests that the adsorption energy of CO on Co is decreased when 

the Co atoms are surrounded by Au atoms instead of Co atoms.  Note that the change in 

desorption temperature cannot be attributed to a CO coverage effect; when the Au fraction 

is increased, the CO coverage should decrease and induce ta shift to higher desorption 

temperatures as a result of diminished repulsive CO-CO interactions at the lower 

coverage.103 

 A plot of normalized CO desorption yield and surface composition of Co from the 

LEIS experiments as a function of bulk Co fraction is shown in Figure 4.9a.  The CO yields 

are normalized against the value for the pure 0.25 ML Co clusters.  Since the normalized 

CO yield and the fraction of surface Co both have a maximum value of unity at a bulk Co 

composition of 100%, the relative changes for these two values can be easily compared.  

The CO desorption yield follows the same general trend as the Co surface composition, but 

for any given bimetallic composition, the normalized CO yields are ~ 10% higher than the 

fraction of Co atoms at the surface.   

Thus, it appears that the strong bonding of CO to Co has a slight effect in inducing the 

diffusion of Co to the surface.  Similar CO-induced diffusion of metals in Ni-Au and Pt-
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Au clusters have been observed in previous work,44,47 and these effects are more 

pronounced for Ni and Pt than for Co (Figure 4.9b, c), particularly at the 25% and 50% Ni 

or Pt compositions.  In the case of Ni, the normalized CO desorption is 15% and 27 % 

higher than the fraction of Ni at the surface for the 25% and 50% Ni compositions, 

respectively.  In the case of Pt, this difference is even greater, given that the 50% Pt clusters 

desorb 36% of the CO that is observed from the pure Pt clusters when the fraction of Pt at 

the surface is essentially zero in the absence of CO.  This difference in the ability of CO to 

extract Co, Ni and Pt from the subsurface layers of the bimetallic clusters is explained by 

the relative strengths of the CO-metal bonds.  The desorption temperatures for a saturation 

exposure of CO on the pure clusters are 380 K for Co, 400 K for Ni47 and 500 K for Pt.44  

The metals with higher CO desorption temperatures form stronger bonds with CO, and 

CO-induced diffusion of these metals to the cluster surface should occur more readily for 

the strong metal-CO bonding. 

Density Functional Theory Calculations 

 In order to understand the thermodynamics of Co-Au surfaces in the presence and 

absence of CO, DFT calculations were carried out on 50% Co/50% Au model surface 

structures.  Four different surface configurations (Figure 4.10a-d) were considered by 

substituting 50% of the Au atoms with Co atoms in the surface model for pure Au.  The 

relative energies (Erel) of these surfaces with respect to the Au-terminated surface model 

(Au-Co-Co-Au, Figure 4.10a) are presented in Table 4.1.  Based on these results, Co 

surface layers are highly unstable compared to Au-terminated surfaces, and this is again 

consistent with the higher surface free energy of Co (1.9 J/cm2)87-90 in comparison to Au 

(1.1. J/cm2).87,88,90   



92 

 

 

 

 

 

Figure 4.8: TPD experiments for CO adsorbed at room 

temperature on TiO2 itself and on clusters ranging from 0-

100% Co with a total metal coverage of 0.25 ML.  In all 

cases, the Co was deposited on the surface first, and the 

heating rate during the TPD experiment was 2 K/s. 
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Figure 4.9: Normalized CO desorption yields from TPD experiments and surface % metal 

from LEIS experiments as a function of bulk % metal deposited on the surface for: a) Co-

Au; b) Ni-Au and c) Pt-Au.  The CO desorption is normalized to the value on the pure Pt, 

Ni or Co clusters.  The total coverage of all surfaces was 0.25 ML, and Au was deposited 

on existing metal seed clusters in order to form bimetallic clusters.  The error bars for the 

CO yields on Co are the standard deviations from: 3 experiments on 0.25 ML Co and the 

25% Co clusters; 2 experiments on the 75% Co clusters; and 4 experiments on the 50% Co 

clusters. 

 

 

Figure 4.10: Model structures of 50% Co/50% Au surfaces where the 

bottom Au layer is fixed in bulk Au position: a) Au-Co-Co-Au; b) Co-Co-

Au-Au; c) Co-Au-Co-Au; d) structure (a) with one Co atom exchanged 

from the third layer; and e) CO adsorbed on structure (d).  
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For the two Co-terminated surfaces, a higher relative energy (Erel = 10.7 eV) was calculated 

for the configuration with alternating layers of Au and Co (Co-Au-Co-Au, Figure 4.10c).  

Thus, the immiscibility of the two metals in the bulk results in a preference for two layers 

of the same metal to cluster together, as in the structure Co-Co-Au-Au (Figure 4.10b, Erel 

= 4.3 eV).  Interestingly, when one Co atom from the third layer is exchanged into the top 

Au layer for the Au-Co-Co-Au structure (Figure 4.10d), the energy is decreased by 0.4 eV 

due to a better distribution of strain, and therefore the thermodynamically favored surface 

is predominantly Au, with a small fraction of Co.  This is consistent with the LEIS data, 

which show that when the Au fraction is high enough for the Au atoms to completely cover 

the surface of the Co seed clusters, the surfaces are rich in Au (>80%) but still contain 

some small fraction of Co.   

Table 4.1.  Computed relative energies (Erel) of the 50% Co/50% Au structures in the 

presence and absence of CO, and calculated adsorption energies (Eads) of CO on these 

structures. 

Structure Co-Au clean surface CO adsorbed on Co-Au 

Erel (eV) Erel (eV) Eads (eV) 

Au-Co-Co-Au 

(Figure 4.10a) 

0.0 0.0 -0.8 

Co-Co-Au-Au 

(Figure 4.10b) 

4.3 2.4 -2.6 

Co-Au-Co-Au 

(Figure 4.10c) 

10.7 8.3 -3.2 

Au(Co1)-Co-Co-(Au1)-Au 

(Figure 4.10d) 

-0.4 -0.7 -1.1 
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 Next, the stability of these structures in the presence of a CO molecule was 

investigated.  CO adsorption was considered at the atop site of a Au or Co atom on the four 

surface models (Figure 4.10a-d).  The relative energies of these surfaces (Table 4.1) 

indicate that the Au-terminated surface with one Co atom on the surface (Figure 4.10e) is 

the most stable among the four surface models and becomes even more preferred than in 

the absence of CO due to the strong Co-CO bond.  The CO adsorption energies (Eads) given 

in Table 4.1 suggest that CO adsorbs more strongly on Co atoms than on Au atoms.  

However, CO adsorption is weaker by ~1.5 eV on Co surrounded by Au atoms (Au(Co1)-

Co-Co(Au1)-Au, Figure 4.10d) compared to Co surrounded only by Co atoms (Figures 

10b).  This result is consistent with the TPD data, which demonstrates that the CO 

desorption temperature is shifted to lower values as the fraction of Au in the clusters is 

increased.  Furthermore, Bader charge analysis indicates that there is a significant amount 

of charge transfer from Co to the neighboring Au atoms, and the surface Co atom in the 

Au(Co1)-Co-Co(Au1)-Au model is positively charged (qCo = +0.33). Thus, back donation 

from the positively charged Co metal to the adsorbed CO is reduced (qCO = -0.28), leading 

to weaker CO adsorption.  In comparison, for the Co-terminated surface (Co-Co-Au-Au), 

the surface Co atoms are nearly charge neutral (qCo = +0.02), resulting in more back 

donation of electrons to the adsorbed CO molecule (qCO = -0.40) and a stronger metal-CO 

bond.  Nevertheless, due to the high surface free energy of Co, the stronger CO adsorption 

is still not sufficient to bring more Co atoms to the surface.  

 In order to examine whether additional Co atoms can diffuse to the surface when 

the CO partial pressure is increased, the phase diagram for a 50% Co/50% Au system was 



96 

 

calculated in the presence of CO at a given temperature and CO partial pressure (Figure 

4.11a).  Approximate Gibbs free energies are calculated using the following equation: 

 

  

DG = EnCo(s)-nCO - E1Co(s) - n ECO + DmCO (T,1atm) + kBT ln
P
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where EnCo(s)-nCO corresponds to a structure with n Co atoms covered by adsorbed CO on 

the surface, E1Co(s) corresponds to the energy of the most stable surface in the absence of 

CO (Au(Co1)-Co-Co(Au1)-Au, Figure 4.10d), ΔμCO(T,1 atm) is the (ideal gas) reference 

chemical potential of CO at temperature T, and P is the partial pressure of CO.  The 

calculated phase diagram in Figure 4.11a suggests that at room temperature and a CO 

partial pressure of 10-9-10-10 atm, ~11-22% of the surface atoms (1-2 out of 9 surface atoms 

per unit cell) are Co atoms.  A much higher partial pressure of CO (10-4 atm) is necessary 

to provide sufficient driving force for a ~33% Co surface composition (3 out 9 surface 

atoms per unit cell).  

 To compare this driving force for metal diffusion to the surface in the Co-Au system 

with the Ni-Au and Pt-Au systems, the phase diagrams for 50% Ni/50% Au and 50% 

Pt/50% Au structures were also calculated.  A similar computational setup as described 

above for the Co-Au structures was used for Ni-Au and Pt-Au.  The most stable structure 

in the absence of CO for the latter two systems is the Au-surface terminated structure.  The 

diffusion of Ni or Pt atoms to the surface is not thermodynamically favored in the absence 

of CO, in contrast to the behavior of Co atoms in the Co-Au system.   
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Figure 4.11: Phase diagrams for 50% M/50% Au 

model surfaces in the presence of CO calculated by 

constrained ab initio thermodynamics, where M=Co 

(a), Ni (b), and Pt (c).  The most stable structure in the 

absence of CO is shown in the inset.  All other 

structures are displayed in the supporting information. 
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The phase diagram for the Ni-Au system (Figure 4.11b) suggests that Ni comprises ~22% 

(2 out of 9 surface atoms per unit cell) of the surface atoms at room temperature and a CO 

partial pressure of <10-10 atm.  Furthermore, at a CO partial pressure of 10-6 atm, a surface 

with ~44% Ni atoms is stable.  In the case of the Pt-Au system (Figure 4.11c), CO facilitates 

Pt migration at even lower CO partial pressures than for Ni in the Ni-Au structures. For 

example, Pt atoms comprise ~44% of the surface atoms at pressures just above 10-10 atm, 

and the surface consists of nearly pure Pt at CO pressures of ~10-3 atm.  Thus, the 

thermodynamic driving force for CO to extract metal atoms out of the metal-Au systems 

is stronger for Pt and Ni compared to Co even though a larger fraction of Co atoms can be 

found at the bimetallic surface in the absence of CO.  These computational results are 

consistent with experimental data illustrating that CO-induced diffusion of Pt and Ni occurs 

more readily than diffusion of Co in the metal-Au clusters. 

4.4 Discussion 

Growth, Sintering and Encapsulation 

 Bimetallic Co-Au clusters are formed on TiO2(110) by sequential deposition due to 

the difference in diffusion rates for Co and Au on the surface. When the less mobile Co 

atoms are deposited first followed by the more mobile Au atoms, the incoming Au atoms 

nucleate almost exclusively at the existing Co seed clusters.  In general, our group has 

shown that when there is a significant difference in the diffusion rates for the two metals, 

bimetallic clusters can be prepared via sequential deposition by depositing the less mobile 

metal first, followed by the more mobile metal; bimetallic cluster growth was observed for 

sequential deposition of Pt or Ni seed clusters followed by Au43,44,47 since Pt and Ni also 

diffuse less readily on the surface compared to Au.  Notably, in the reverse order of 
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deposition of Co deposited on existing Au clusters, Co does not nucleate preferentially at 

Au sites, and pure Co clusters coexist with clusters that are Au-rich.  One major difference 

between the growth of Co-Au clusters compared to Ni-Au and Pt-Au is that pure Co 

clusters form many more nucleation sites than the other two metals.  Consequently, the 

cluster density for Co-Au is higher than for the two other bimetallic systems.  The high 

nucleation density for the Co clusters compared to other metals is attributed to the strong 

Co-titania interfacial energy, as discussed in more detail elsewhere.104 

 For the Co-Au clusters, there is no evidence that the addition of Co suppresses the 

sintering of the Au clusters, as was previously observed for Pt-Au and Ni-Au clusters on 

TiO2(110).43,44,47  However, the bimetallic Co-Au clusters are smaller than pure Au clusters 

both before and after annealing, given that Au nucleates at Co seed clusters, and that the 

slow diffusion of Co on TiO2 results in a high cluster density.  In the cluster sintering 

process, the first step involves detachment of an adatom from an existing cluster and the 

second step involves diffusion of the atom on the surface to reach another cluster and 

contribute to its growth.  For metals such as Cu, Ni and Rh on TiO2(110), previous studies 

have reported that the rate-limiting step in cluster sintering is adatom detachment rather 

than adatom diffusion,85,86  and therefore the extent of sintering diminishes with increased 

metal-metal bond strength.  This is likely to be the case for Au on TiO2 as well because Au 

diffuses more readily on the surface than Cu, Ni or Rh; however, since Co diffuses less 

readily than these other metals, it is possible that adatom diffusion is the rate-limiting step 

in the sintering of Co clusters.  For the Pt-Au clusters, the addition of Pt to Au clusters 

suppresses sintering because Pt-Pt and Pt-Au bonds are stronger than Au-Au.  In the case 

of Ni, the Ni-Ni bond is only slightly stronger than the Au-Au, and therefore this effect is 
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much less pronounced.  Based on the heats of sublimation for pure Co (425 kJ/mol)105,106 

and Au (370 kJ/mol),107 the Co-Co bond is predicted to be slightly stronger than Au-Au.  

Consequently, the Co clusters should sinter less easily than Au clusters if metal-metal bond 

breaking is the rate-limiting step, in contrast to the STM results.  The facile sintering of the 

Co clusters at higher temperatures is explained by the enhanced diffusion of Co atoms at 

800 K, whereas the Au atoms are already sufficiently mobile even at room temperature due 

to the weaker metal-titania interactions. 

 In addition to cluster sintering upon annealing, other compositional and structural 

changes occur at the surfaces of the clusters.  The annealing of TiO2-supported Co clusters 

in UHV results in encapsulation of the clusters by titania, demonstrated by STM and XPS 

experiments.  This same behavior has been previously reported for metals such as Pt, Ni, 

Pd, and Rh on TiO2(110), 45,47,70,72,84,92-95,108 whereas metals like Au and Cu, which do not 

interact strongly with titania, do not undergo encapsulation.99,109,110  For the annealed Co-

Au clusters on TiO2, the Co becomes encapsulated by titania while the Au remains 

exposed, resulting in a network of Au-titania sites at the surface.  Similarly, studies of Pt-

Au and Ni-Au on TiO2 annealed in UHV report selective encapsulation of the Pt and Ni at 

the cluster surface.43,44,47  A significant difference between the three bimetallic systems is 

that the clusters containing Co104 and Ni111 are encapsulated by stoichiometric titania, 

whereas the Pt-containing clusters are encapsulated by reduced titania.45  These surfaces 

with extended Au-titania interfaces might be useful in increasing the activity of the Au-

titania catalysts, assuming active sites are located at the cluster-support interface.54-56  
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Adsorbate-induced Changes in Surface Composition 

 In the absence of surface adsorbates, the surface composition of the Co-Au clusters 

is controlled by the relative surface free energies of Co (1.9 J/m2)87-90 and Au (1.1 

J/m2).87,88,90  At bulk Au fractions of >50%, the surface is Au-rich due to the lower surface 

energy for Au compared to Co.  At Au compositions of less than 50%, there is not enough 

Au present to completely cover the Co seed clusters, and therefore both Co and Au atoms 

reside at the surface.  Likewise, the surfaces of Pt-Au43,44 and Ni-Au47 clusters on 

TiO2(110) are Au-rich, as dictated by the lower surface free energy of Au, and mixed-metal 

surfaces can be formed for the Pt-Au and Ni-Au clusters at the lower Au fractions, when 

there is not enough Au to completely cover the clusters.  The surface free energies of Ni 

(1.7 J/m2)87,90,112 and Co are very similar, resulting in nearly identical surface compositions 

of Au as a function of bulk Au fraction.  Given that the Pt surface free energy (2.5 J/m2)113 

is the highest of the four metals, it is not surprising that the Au fraction is also the highest 

at any given bulk Au fraction.  In other bimetallic systems, the composition of the surface 

is determined by the relative surface free energies of the metals, as well as the strain energy 

arising from a mismatch in atomic sizes; thus, the surfaces of Co-Pt alloys are Pt-rich 

despite the higher surface free energy of Pt.114,115  However, for the M-Au systems (M=Pt, 

Ni, Co) studied here, the relative surface free energies of the metals appear to be the 

dominant factor. 

 On Co-Au clusters that are rich in Au at the surface, the adsorption of CO results 

in activity associated with Co rather than Au, suggesting that CO induces the diffusion of 

Co to the surface.  This effect has also been observed for Pt-Au and Ni-Au clusters on 

TiO2(110) that are exposed to CO,44,47 and the extent of CO-induced surface segregation 
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of Pt and Ni is more extensive than for Co.  DFT studies show that metal surface 

segregation is thermodynamically driven by the formation of strong Co-CO, Pt-CO and 

Ni-CO bonds.  Furthermore, the calculated phase diagrams for model 50% M/50% Au 

systems (M=Co, Pt, Ni) with Au-M-M-Au structures demonstrate that for a given pressure 

of CO, Pt atoms are most easily segregated to the surface, followed by Ni atoms and then 

Co atoms. This behavior is consistent with the relative strengths of the CO-metal bonds, 

given that on the pure metal clusters, CO has the lowest desorption temperature on Co, 

followed by Ni and then Pt, which has the highest desorption temperature. 

 Adsorbate-induced changes in the composition of other bimetallic surfaces have 

been experimentally observed in a number of systems where strong metal-adsorbate bonds 

are formed, particularly with oxygen.116  For example, Chen and coworkers have 

investigated monolayer metal films of Ni and Co on Pt(111) by DFT, AES, HREELS.117  

After annealing these films to 600 K, Ni and Co diffuse into the surface, creating a Pt-M-

Pt structure where M=Ni, Co.  However, upon exposure to 400 L of O2, surface segregation 

of Ni or Co occurs at 300-450 K.  DFT studies show that oxygen binds more strongly to 

M-Pt-Pt compared to pure Pt, while oxygen binds less strongly to Pt-M-Pt.  Thus, the 

oxygen-induced diffusion of Ni or Co to the surface is thermodynamically driven by 

formation of strong metal-oxygen bonds.  Varga and coworkers' studies of single-crystal 

NiPt alloys of varying compositions have reported that exposure of these surfaces to 

oxygen induces segregation of Ni to the surface,118 and investigations of a Pt3Co(110) alloy 

showed that oxygen exposure at 573-773 K induces Co segregation to the surface to form 

Co oxide.119  Cu3Pt(110) alloy surfaces have also undergone Cu surface segregation upon 

exposure to oxygen at room temperature.120  Furthermore, studies of PtRh alloy surfaces 
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indicate that exposure to O2 or NO at >400 K induces Rh diffusion to the surface to make 

strong Rh-O bonds.121-124  Similar to the effect of O2, exposure to CO induces surface 

segregation of Pt and Pd at room temperature for AuPt125 and AuPd126 systems. 

 In addition to adsorbate-induced changes in the surfaces of single-crystal alloys and 

bimetallic films, changes in surface composition have been reported for supported 

bimetallic clusters.  Somorjai and coworkers have shown that the surfaces of supported 

RhPd and RhPt nanoparticles are controlled by exposure to gases at 573 K and pressures 

of 100 mtorr.  Specifically, reversible changes in surface composition are induced by 

exposure to an oxidizing (NO or O2) or reducing (CO or H2) gas environment.  Under 

reducing conditions, Pd or Pt segregates to the surface, but under oxidizing conditions, the 

surfaces are Rh-rich due to the stability of Rh oxide compared to Pt or Pd oxide.127,128 

 Theoretical studies have also predicted adsorbate-induced changes in bimetallic 

surface composition.  A DFT study of a AuPd alloy surface showed that CO induces Pd 

segregation to the surface.129  Likewise, DFT investigations of PtPd and CoCr illustrated 

that adsorbed oxygen causes enrichment of Pd or Cr atoms at the surface due to the higher 

oxygen affinity of these metals compared to Pt and Co, respectively.130  DFT calculations 

by Balbuena and coworkers reported that surface segregation in bimetallics can be directly 

correlated with metal-adsorbate bond strengths, and consequently, the surface segregation 

of metals for Pt3M alloys (M=Fe, Co, Ni) is different in vacuum versus in an oxygen 

environment.131  For PdAg alloys, Ag prefers to be at the surface under vacuum conditions, 

but the strong metal-oxygen bonds favor the diffusion of Pd to the surface in the presence 

of oxygen.132  Similarly, the exposure of PdAg alloys to hydrogen induces Pd diffusion to 

the surface, given that the hydrogen binds more strongly to Pd than Ag.133  
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 Diffusion of metal atoms from the bulk to the cluster surface is not expected to be 

kinetically limited at room temperature, and consequently, the bimetallic surface 

composition will change if exchange of metal atoms from the bulk to the surface of the 

clusters is thermodynamically favorable.  For example, LEIS experiments for NiAu 

clusters on TiO2(110) showed that the surfaces of 2 ML of Ni deposited on top of 2 ML 

Au was 80% Au, demonstrating that Au atoms are sufficiently mobile at room temperature 

to migrate to the cluster surface.111  Reports of the CO-induced reconstruction of Pt surfaces 

at room temperature further support the idea that metal atoms are mobile at room 

temperature.134-137  As discussed in the preceding paragraphs, many studies of adsorbate-

induced surface segregation occur at or near room temperature, which also implies high 

mobility of atoms at room temperature. 

4.5 Conclusions 

 Co-Au bimetallic clusters were grown on TiO2(110) by sequential deposition of Co 

followed by Au.  This resulted in preferential nucleation of Au at existing Co clusters due 

to the slower diffusion of Co on the surface compared to Au.  Although the addition of Co 

to Au clusters does not inhibit cluster sintering, the sizes of the Co-Au clusters both before 

and after annealing decrease with increasing Co fraction, given the higher nucleation 

density of Co seed clusters for the larger Co coverages.  At Au fractions of >50%, the 

cluster surface is rich in Au as a result of the higher surface free energy of Au compared to 

Co.  Furthermore, annealing the Co-Au clusters causes encapsulation of the surface Co by 

TiOx while the Au remains uncovered.  Exposure of the Co-Au clusters to CO induces 

migration of Co from the bulk of the cluster to the surface in order to form the strong Co-

CO bonds.  This CO-induced metal diffusion has also been observed in Pt-Au and Ni-Au 
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surfaces, but the effect is less pronounced for Co due to the weaker metal-CO bonds.  DFT 

calculations confirm that the surface of the Au clusters should be Au-rich for model 

bimetallic structures with a 50% Au fraction, and these calculations show that the CO-

induced diffusion of metal to the cluster surface follows the trend of Pt>Ni>Co in other 

metal-Au systems. 
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5.1 Introduction 

 Co-Pt bimetallic systems are known to exhibit superior catalytic activity compared 

to pure Co or pure Pt.  Co-Pt bimetallic surfaces have attracted interest as electrocatalysts 

due to their improved activity for the oxygen reduction reaction (ORR) at the cathode of 

direct methanol fuel cells (DMFCs).1-5  While Pt is typically used as the cathode catalyst 

for ORR, there is an ongoing search for Pt-based alloys that are both more active and more 

resistant to methanol crossover from the anode to the cathode through the polymer 

electrolyte membrane.1,6-11  Co-Pt alloys exhibit higher activity for ORR than Pt alone and 

are also more active in the presence of methanol.1-3,12,13  In addition, Co-Pt catalysts have 

superior properties compared to pure Pt for methanol oxidation at the anode.1,14-16  As an 

anode catalyst, Pt has the highest activity for dissociative adsorption of methanol of any of 

the transition metals,1 but the kinetics for methanol oxidation are slow, and Pt is easily 

poisoned by CO, which is a byproduct of methanol oxidation.1,8,17-19 

 The higher activity for Co-Pt in ORR is attributed to electronic modification of Pt 

by Co.20  For example, Stamenkovic et al. reported that activity for ORR is 3-4 times 

greater on an annealed Pt3Co alloy surface covered by a layer of segregated Pt, as compared 

to pure Pt.2,3  Ultraviolet photoemission spectroscopy studies show that the segregated Pt 

monolayer, or Pt "skin," is electronically modified by the underlying Co, resulting in a shift 

of the d-band center away from the Fermi level.2,4,5   Density functional theory (DFT) 

calculations for a Pt monolayer with Co in the second layer demonstrate that oxygen binds 

more weakly to this surface than to unmodified Pt,21-23 and activity is promoted by reducing 

oxygen poisoning on the Co-modified Pt.24  DFT calculations by Mavrikakis and 

coworkers confirm that the binding of oxygen to the Pt monolayer supported on CoPt is 
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lower than on pure Pt, and this is attributed to the shifting of the d-band away from the 

Fermi level.24    

 Furthermore, there have been a number of reports of synergistic activity observed 

on Co-Pt bimetallic surfaces for reactions other than ORR and methanol oxidation.   For 

example, the desorption of H2 is reported to occur at much lower temperature on Co-Pt 

bimetallic surfaces compared to pure Co or Pt.25  Greater activity for hydrogenation has 

been also observed on the Co-Pt bimetallic systems;  low temperature self-hydrogenation 

of cyclohexene to cyclohexane occurs at 220 K on 1 ML Co films on Pt(111) but does not 

occur on either Pt(111) or thick Co films on Pt(111).26  Moreover, higher activity for CO2 

reforming of methane to synthesis gas is observed on supported Co-Pt catalysts due to 

decreased coking on the bimetallic catalysts.27  Finally, activity for the hydrogenation of 

crotonaldehyde to crotyl alcohol has also been observed on Co-Pt particles supported on 

silica, whereas this reaction does not occur on pure Co or pure Pt surfaces.28 

 In the work reported here, Co-Pt clusters were deposited on TiO2(110) in order to 

investigate whether activity for methanol reaction and CO adsorption are altered due to 

Co-Pt interactions on the bimetallic surfaces.  Co-Pt bimetallic clusters were grown via 

sequential deposition of 0.13 ML of Co on 0.13 ML Pt, or 0.13 ML Pt on 0.13 ML Co.  

Although the diffusion length of Co is shorter than that of Pt, when the cluster density of 

the first metal provides sufficient nucleation sites for the growth of the second metal, 

exclusively bimetallic clusters are formed.  The surface compositions of Co-Pt clusters 

with varying metal fractions are always Pt-rich, but the top monolayer is comprised of both 

Pt and Co atoms for all compositions studied (30% Co-80% Co).  For the adsorption of CO 

on the bimetallic clusters, desorption from Co and Pt sites is observed at high Co fractions, 
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and the desorption temperature for CO on Pt decreases with increasing Co fraction.  

Methanol reaction on the pure and bimetallic Co-Pt clusters produces CO and H2 as the 

main products, with methane as a minor product.  However, on the bimetallic clusters, C-

H bond breaking occurs at higher temperature, and the selectivity for C-O bond scission to 

produce methane is increased over C-H bond scission to produce CO.  Co on Pt and Pt on 

Co clusters with a 55% Co fraction exhibit nearly identical surface compositions and 

chemical activity, illustrating the high mobility of atoms within the clusters at room 

temperature. 

5.2 Experimental 

 All experiments were carried out in two UHV vacuum chambers (P<1x10-10 Torr), 

which have been described in detail elsewhere.29-36 The first chamber is equipped with a 

variable-temperature STM (Omicron VT-25), a hemispherical analyzer (Omicron EA125) 

for low energy ion scattering and X-ray photoelectron spectroscopy experiments, and low 

energy electron diffraction (LEED) optics (Omicron).29-34 The second chamber is equipped 

with a quadrupole mass spectrometer for TPD studies (Hiden HAL 301/3F), a cylindrical 

mirror analyzer for Auger electron spectroscopy (Omicron CMA 150) and LEED optics 

(Omicron).32-36  

 Metals were grown on rutile TiO2(110) crystals (Princeton Scientific Corp., 1 cm x 

1 cm x 0.1 cm), which were prepared by multiple cycles of Ar+ sputtering for 20 min, 

followed by heating to 950-1000 K for 3 min.  This treatment reduced the crystals by 

removing oxygen and resulted in n-type semiconductors that are sufficiently conductive 

for STM experiments.  The cleanliness and crystallinity of the surfaces were confirmed 

with a combination of STM, LEIS, Auger electron spectroscopy and LEED experiments.  
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The crystals were mounted onto Ta back plates using Ta foil straps, and sample heating 

was achieved via radiative heating from a tungsten filament positioned behind the back 

plates, as well as by electron bombardment when the samples were held at a positive 

potential.  The temperature of the crystals was measured using either a type K or type C 

thermocouple spotwelded to the edge of the back plate, and the thermocouples were 

independently calibrated with an infrared pyrometer (Heitronics).29 

 In the first chamber, Co and Pt were deposited from pure Co and Pt rods (ESPI, 

99.95%) using an Oxford electron-beam evaporator (EGC04), and the metal flux was 

measured with an independently calibrated quartz crystal microbalance (Inficon XTM-2) 

before every deposition.37  In the second chamber, Pt was deposited from a Pt rod using an 

Omicron evaporator (EFM3), while Co was deposited from a homemade source consisting 

of Co wire (0.25 mm diameter, ESPI, 99.95%) wrapped around a tungsten wire (0.50 mm) 

through which current was passed.  The Co flux was calibrated with a quartz crystal 

microbalance (QCM) before each deposition;  for Pt deposition, the internal flux monitor 

of the evaporator was used to control Pt flux, and the flux monitor readings were initially 

calibrated with a QCM.  A coverage of one monolayer (ML) of Co or Pt is defined as the 

packing density of the Co(0001) (1.831015 atoms/cm2) or Pt(111) (1.501015 atoms/cm2) 

surface, respectively.  The deposition rates were 0.1 ML/min for Co and 0.050-0.1 ML/min 

for Pt.  

 The surfaces were exposed to CO (National Welders, 99.99%) and methanol 

(Fisher Scientific, 99.9%) via a stainless steel directed dosing tube.  CO was used as 

received, and methanol was purified by 3-4 freeze-pump-thaw cycles before each dose.  

During CO exposure, the sample temperature was held at 300 K, and a saturation exposure 
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of CO was achieved by leaking in CO at a pressure rise of 3.0x10-10 Torr for 3 min.  

Saturation exposures of methanol at 100 K were determined from the appearance of the 

methanol multilayer peak in the TPD data.  In TPD experiments, the crystal was heated at 

a constant rate of 2 K/s in front of the mass spectrometer.  The crystal was positioned ~2 

mm in front of a 4 mm diameter hole cut in the shroud of the mass spectrometer in order 

to prevent detection of products desorbing from the sample holder.  The crystal was biased 

at -100 V during TPD experiments to prevent damage from the electrons emitted by the 

mass spectrometer filament.  Nine masses were collected in a typical TPD experiment; 

during wide mass scan experiments to check for additional products, 40 mass channels 

were monitored in a single experiment.  No carbon was detected on the surface in post-

TPD Auger experiments after methanol or CO adsorption/reaction.   

 STM experiments were carried out at a +2.3 V sample bias with tunneling currents 

of 0.05-0.1 nA.  STM tips were prepared by electrochemically etching a 0.38 mm tungsten 

wire, and tips were also conditioned by Ar+ sputtering and pulsing to high voltage.31  

Average cluster heights were measured using an in-house program described 

elsewhere.33,38  For the surfaces heated to 800 K, all clusters in a 1000 Å x 1000 Å image 

were analyzed; for all other surfaces, a 1000 Å x 500 Å region was used for the 

measurement.  The number of clusters analyzed in a single image ranged from 300-870.  

Given that the diameters of the clusters are known to be overestimated due to tip 

convolution effects,31,37,39,40 the cluster heights are used as a measure of cluster size.  Based 

on the coverage determination from the QCM, cluster diameters appear to be overestimated 

by a factor of ~2.2.31,41 
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 LEIS data were acquired with a 600 eV He+ ion beam, a 25 nA current to the 

sample, a step size of 0.2 eV, and a dwell time of 0.05-0.14 s.  The total acquisition time 

for each spectrum was adjusted to minimize loss of metal from the surface due to He+ 

sputtering.  In all cases, the Co and Pt signals decreased by less than 10% after seven 

successive scans, which corresponds to the seven different temperatures investigated.  For 

some cluster compositions, changes in Co and Pt signals as a function of temperature were 

monitored in two separate experiments in order to minimize beam damage. 

5.3 Results 

Growth of Bimetallic Clusters 

 STM images for Pt, Co and Co-Pt clusters deposited on TiO2(110) at room 

temperature indicate that bimetallic clusters can be prepared via sequential deposition for 

both Co on Pt and Pt on Co.  Figure 5.1 compares STM images for 0.13 ML of pure Co 

(Figure 5.1a) and 0.13 ML of pure Pt (Figure 5.1c) deposited on TiO2; both metals grow 

as three-dimensional clusters, which are shown as bright features in the STM images.  The 

average cluster height and cluster densities for the Co and Pt clusters are 3.8+1.0 Å and 

1.25x1013cm-2 and 5.2+1.7 Å and 1.02x1013 cm-2, respectively.  The smaller cluster sizes 

and higher densities for Co demonstrate that the Co atoms are less mobile on the surface 

than Pt atoms.  Furthermore, the higher mobility of Pt atoms on the surface results in a 

tendency to nucleate at the step edges, which are the preferred low-coordination sites, 

although Pt clusters nucleate on the terraces as well.  In contrast, the Co clusters show no 

preference for residing at the step edges, implying that the short diffusion length for Co 

atoms prevents the atoms from reaching the step edges.  Previous STM and DFT studies 

of the growth of Co, Pt and other metals on TiO2(110) report that the rate of diffusion of 
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the metals on the TiO2 surface decreases with increasing metal-titania bonding, which also 

follows the metal-oxygen bond strengths.41  Since Pt-O bonds are weaker than Co-O, the 

diffusion rate of Pt is expected to be higher than that of Co.   

 

 

Figure 5.1: Scanning tunneling microscopy images for 

the following metal coverages deposited on TiO2(110) at 

room temperature: a) 0.13 ML of Co; b) 0.13 ML of 

Co+0.13 ML of Pt; c) 0.13 ML of Pt; and d) 0.13 ML 

Pt+0.13 ML Co.  All images are 1000 Å x1000 Å. 

  

When 0.13 ML of Pt is deposited on top of the 0.13 ML Co seed clusters, the 

average cluster height increases to 6.1+1.5 Å, but there is no appreciable increase in cluster 

density (1.27x1013 cm-2), as shown in Figure 5.1b.  This behavior implies that the incoming 

Pt atoms are incorporated into existing Co clusters rather than nucleating new clusters of 
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pure Pt.  For the reverse order of deposition of 0.13 ML Pt + 0.13 ML Co (Figure 5.1d), 

there is also an increase in average cluster height to 6.8 Å+1.9 Å, while the cluster density 

does not change significantly; the 1.05x1013 cm-2 cluster density is <2% higher than before 

Co deposition.  Despite the fact that the mobility of Pt is higher than Co, mainly bimetallic 

clusters are formed from deposition of Co on Pt because at these coverages, the number of 

Pt seed clusters formed is high enough to serve as nucleation sites for all of the deposited 

Co.  However, the cluster sizes are smaller and the cluster densities are larger for bimetallic 

clusters prepared by depositing Pt on Co. Bimetallic surfaces of varying compositions were 

prepared by depositing the less mobile Co atoms first and keeping the total metal coverage 

fixed at 0.25 ML.   

 

Figure 5.2: Scanning tunneling microscopy images for the following 

clusters deposited on TiO2(110) at room temperature at a total metal 

coverage of 0.25 ML: a) 100% Pt; b) 30% Co+70% Pt; c) 55% Co+ 45% 

Pt; d) 80% Co+20% Pt and e) 100 % Co.  All images are 1000 Å x1000 Å. 
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Figure 5.2 shows STM images for pure Pt, 30% Co, 55% Co, 80% Co and pure Co clusters.  

These compositions correspond to 0.25 ML Pt, 0.06 ML Co+0.19 ML Pt, 0.13 ML Co+0.13 

ML Pt, 0.19 ML Co+0.06 ML Pt, and 0.25 ML Co, respectively, after accounting for the 

higher packing density of Co compared to Pt in 1 ML of the metal.  For all of the surfaces 

except for the pure Co clusters, the average cluster heights are similar, ranging from 6.0-

6.2 Å (Table 5.1).  The pure Co clusters are distinctly smaller with an average height of 

5.2+1.5 Å.  All of the surfaces exhibit relatively narrow size distributions based on the 

standard deviations for the average height measurements, which vary from 1.5-2.1 Å. 

 These same five surfaces were annealed to 800 K for 1 minute in order to 

understand changes in cluster size upon heating.   

 

Figure 5.3: Scanning tunneling microscopy images for the following 

clusters deposited on TiO2(110) at room temperature at a total metal 

coverage of 0.25 ML, and then heated to 800 K for 1 minute: a) 100% Pt; 

b) 30% Co+70% Pt; c) 55% Co+45% Pt; d) 80% Co+20% Pt and e) 100 % 

Co.  All images are 1000 Å x1000 Å. 
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The resulting STM images demonstrate that the annealed Pt clusters exhibit the largest 

cluster sizes (9.4+2.7 Å) compared to the other surfaces, which are all in the range of 6.7-

7.4 Å (Figure 5.3).  Histograms for the cluster heights (Figure 5.4) indicate that the  

Table 5.1. Average Cluster Heights for Pt-Co Bimetallic Clusters. 

Composition Height (Å) 300 K Height (Å) 500 K Height (Å) 800 K 

0.25 ML Co 5.2+1.5 5.4+1.7 7.4+2.9 

0.19 ML Co+0.06 ML Pt 6.1+1.7 5.7+1.6 6.7+2.7 

0.13 ML Co+0.13 ML Pt 6.1+1.5 6.8+1.9 7.0+2.4 

0.13 ML Pt+0.13 ML Co 6.8+1.9 7.2+2.3 7.3+2.4 

0.06 ML Co+0.19 ML Pt 6.0+1.8 6.4+2.2 6.7+2.6 

0.25 ML Pt 6.2+2.1 7.6+2.3 9.4+2.7 

 

annealed Pt clusters have the highest fraction of large clusters > 10 Å. As the Co fraction 

is increased from 0-30%, there is a distinct shift in cluster heights to lower values.  The 

30%-80% Co cluster height distributions are similar except that a sharp peak around 4-5 Å 

appears in the distribution for the 80% Co clusters.  The pure Co clusters exhibit a bimodal 

distribution with peaks around 8-9 Å and 3-5 Å; although the fraction of large cluster sizes 

is the same as observed at the 80% Co composition, the number of small Co islands is 

significantly lower.  This loss in cluster density for the pure Co clusters is attributed to 

desorption of Co from the surface, given that the onset of desorption should occur in this 

temperature range.37  The presence of Pt in the clusters appears to inhibit the desorption of 

Co from the surface, and therefore the 80% Co clusters have the highest cluster density 

after annealing.  The greater Co-Pt bond strength compared to Co-Co (2.97 vs. 1.73 eV)42 

is consistent with decreased Co desorption from the bimetallic clusters.  Notably, there is 

no evidence for significant Co diffusion into TiO2(110), given that Co is not observed by 

X-ray photoelectron spectroscopy (XPS) or STM after the usual cycles of sputtering and 
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annealing.  Also, the XPS Co(2p3/2) binding energy for the Co clusters has same value as 

metallic Co37,41 and does not shift upon annealing, as would be expected if Co were 

diffusing into titania. 

 

Figure 5.4: Histograms of cluster heights measured from scanning 

tunneling microscopy images (Figure 5.3) of the pure and bimetallic 

clusters deposited at room temperature and annealed to 800 K for one 

minute.  For each surface, all clusters in 1000 Åx1000 Å images were 

measured. 

 

 Figure 5.5 and Table 5.2 show cluster densities before (triangles) and after (circles) 

Pt deposition on Co clusters, as well as after annealing to 500 K and 800 K.  Data for the 

pure Pt and Co clusters (squares) are also shown for comparison, and total metal coverages 

are fixed at 0.25 ML.  For the 80% Co clusters (0.19 ML Co +0.6 ML Pt), the cluster 

density before Pt deposition (green triangle) is slightly greater than after Pt deposition 

(green circle), indicating that no new clusters of pure Pt are formed on the surface, and the 

small decrease is attributed to cluster coalescence.   
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Figure 5.5: Cluster densities for 

various surfaces at room temperature 

and after heating to 500 K and 800 K 

for one minute at each temperature. 

 

As discussed earlier, the cluster densities for the 55% Co surface do not change 

substantially, regardless of the order of deposition.  However, for the 30% Co surface, the 

number of pure Co clusters formed in the initial deposition is not high enough to provide 

nucleation sites for all of the deposited Pt, and the cluster density increases from 7.42x1012 

cm-2 to 11.67x1012 cm-2.  Therefore, the 30% Co surface is the only one that does not consist 

of exclusively bimetallic clusters, with pure Pt clusters coexisting with Co-Pt clusters.  The 

80% and 55% Co clusters are expected to have relatively uniform compositions because 

the incoming Pt atoms are evenly deposited over the surface, and the Co seed clusters are 

also uniformly dispersed across the surface, as shown for the 0.13 ML Co coverage in 

Figure 5.1a. 
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       Table 5.2. Average Cluster Densities for Pt-Co Bimetallic Clusters. 

Composition Density 

(clusters/cm2) 

300 K 

Density 

(clusters/cm2) 

500 K 

Density 

(clusters/cm2) 

800 K 

0.25 ML Co 1.75x1013 1.35x1013 4.61x1012 

0.19 ML Co+0.06 ML Pt 1.59x1013 1.12x1013 7.96x1012 

0.13 ML Co+0.13 ML Pt 1.27x1013 1.13x1013 7.19x1012 

0.13 ML Pt+0.13 ML Co 1.05x1013 9.25x1012 5.78x1012 

0.06 ML Co+0.19 ML Pt 1.17x1013 9.24x1012 7.15x1012 

0.25 ML Pt 1.12x1013 9.19x1012 5.71x1012 

 

After annealing to 500 K, the 20% decrease in cluster density for Co and Pt suggests 

that the rates of sintering at 500 K are comparable for the two metals.  All of surfaces 

exhibit a relatively small (11-30%) decrease in the number of clusters after heating to 500 

K.  This decrease appears to be more pronounced for the 100% and 80% Co clusters 

because the difference in total number of clusters is greatest, but the percent change in 

cluster density is not substantially different.  For all surfaces except the pure Co clusters, 

the decrease in cluster density at 800 K is ~40-50% of the density at 295 K.  In the case of 

pure Co, the larger decrease in cluster density (75%) is again attributed to desorption of Co 

from the surface, whereas there is no evidence of Pt desorption at 800 K.   

 In order to establish the atomic composition of the bimetallic surfaces, LEIS 

experiments were conducted on various cluster compositions with a total coverage of 0.25 

ML.  The relative sensitivities for Pt and Co were determined from LEIS experiments on 

15 ML films that completely covered the TiO2 surface so that the Ti peak was fully 

attenuated.  The Pt:Co sensitivity factor was calculated to be 3.0 after correcting for the 

total surface areas of the Pt and Co films as measured from a numerical integration of the 

STM images for the films.30  The plot in Figure 5.6 shows the surface compositions 
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determined by the LEIS experiments (surface % Co) vs. the ratio of metals deposited (bulk 

% Co), and the dotted line indicates identical surface and bulk compositions.  Based on 

surface free energies alone, the higher surface free energy for Pt (2.5 J/m2)43 compared to 

Co (1.9 J/m2)44-47 suggests that bimetallic clusters formed from deposition of Pt on Co 

should be core-shell structures with Pt in the core.  However, the fact that Co and Pt alloy 

readily over a wide range of compositions48 implies that both Co and Pt atoms should reside 

at the surface.  For all of the bimetallic clusters, both Co and Pt atoms are detected at the 

surface, and cluster surfaces are Pt-rich compared to the bulk.  The composition of the 55% 

Co clusters formed from the deposition of Co on Pt is shown as a blue square in Figure 5.6; 

deposition of Co on Pt results in a surface composition that is slightly richer in Co (37% 

vs. 29%).  The similarity in surface compositions for the Co+Pt and Pt+Co depositions 

indicates that the diffusion of metal atoms within the clusters occurs readily at room 

temperature. 

 

Figure 5.6: A plot of surface Co 

composition determined from low 

energy ion scattering experiments as a 

function of bulk Co composition, which 

is the ratio of deposited metals. 
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 Changes in surface composition for the bimetallic clusters upon annealing were 

investigated by LEIS, and data for the Co and Pt signals as a function of temperature are 

shown in Figure 5.7.  For each cluster composition, all signals are normalized to the value 

at room temperature so that changes in intensity can be observed on the same scale.  

However, it should be noted that the absolute intensity of the Co signals for the 30% Co 

and 55% Co clusters are relatively low, constituting only ~20% and 40%, respectively, of 

the intensity for pure Co clusters at room temperature.  The Pt LEIS intensity for the 0.25 

ML Pt clusters decreases to ~30% of the room temperature value after heating to 800 K 

(Figure 5.7a).  This dramatic decrease in intensity is attributed to encapsulation of the Pt 

clusters by titania upon heating, as demonstrated in previous studies of Pt on TiO2 annealed 

in UHV.49-51  Pt does not desorb from the surface at 800 K, and the loss in surface area due 

to sintering at 800 K also cannot account for the large decrease in Pt intensity.    

 

Figure 5.7: Pt (a) and Co (b) low energy ion scattering signals as a function of 

annealing temperature for various cluster compositions.  For each cluster 

composition, signals are normalized to the initial value at room temperature. 

 

The encapsulation of Pt by the titania support upon heating in a reducing atmosphere such 

as UHV or H2 is a well-established phenomenon in the literature and is known as a strong 
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metal support interaction (SMSI).52-55  For the bimetallic clusters, the Pt signals all follow 

similar trends upon heating to 800 K, and the signals at 800 K are even lower than those 

for the pure Pt clusters, suggesting that either Pt is more easily encapsulated in the presence 

of surface Co or that Pt is diffusing into the bulk of the cluster upon annealing.  For the 

80% Co clusters, the small increase in Pt signal at 800 and 900 K is unexpected but has 

been reproduced in three separate experiments.  A possible explanation is that Co 

desorption at these temperatures increases the fraction of Pt at the cluster surface, and this 

effect is most pronounced for the bimetallic clusters with the greatest concentration of Co.   

 For the pure Co clusters, the Co signal (Figure 5.7b) decreases substantially at 800 

K, similar to the Pt signal.  Previous studies have reported that Co is encapsulated by TiO2 

upon heating in vacuum, given that the loss in Co signal between 295 and 800 K cannot be 

attributed solely to Co desorption or cluster sintering.37   All of the Co signals for the 

bimetallic surfaces are also significantly diminished at 800 K, indicating that the presence 

of Pt does not prevent encapsulation of Co at the surface.  However, the 30% Co clusters 

exhibit an increase in Co signal between room temperature and 600 K.  Similarly, the Co 

signal intensity for the 55% Co clusters increases between 295 and 500 K, and the intensity 

at 600 K is comparable to the intensity before heating.  The surface Co concentration for 

the 30% Co clusters corresponds to 16% at 500 K compared to 12% at 295 K, and the 

surface Co concentration for the 55% Co clusters is 33% at 500 K vs. 29% at 295 K.  Thus, 

annealing has a relatively small effect on the overall surface composition of clusters, given 

that the change in composition is less than 5%.  A possible explanation for the diffusion of 

Co to the surface after heating is that at room temperature, Co atoms are too strongly bound 

at the titania interface to diffuse to the surface, but at higher temperatures, diffusion of the 
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Co from the cluster-support interface to the surface can occur.  This effect would be 

expected to be more pronounced for the low Co fractions, where the concentration of Co 

atoms in the near-surface region is limited by the diffusion of strongly bound Co atoms 

away from Co-titania interface. 

Chemical Activity 

CO Desorption 

 The chemical activity of the bimetallic clusters was investigated in TPD 

experiments using CO as a probe molecule (Figure 5.8).  Unless otherwise stated, the 

bimetallic clusters were prepared by deposition of Co seed clusters followed by the more 

mobile Pt.  Notably, CO does not adsorb on the TiO2 support during dosing at 300 K.  On 

the pure Co clusters, the evolution of CO occurs in a low temperature molecular desorption 

peak at 375 K and a high temperature peak at 750 K attributed to the recombination of 

atomic carbon and oxygen from the dissociation of CO.56  On the pure Pt clusters, CO 

dissociation does not occur, and only a molecular desorption peak is observed in the lower 

temperature regime.  The maximum CO intensity occurs at ~495 K, and there is also a 

pronounced shoulder around 420 K;  the higher temperature desorption states have been 

previously attributed to CO adsorption at steps, which are the sites that bind CO the most 

strongly.57 At lower CO coverages, the 495 K peak appears first as the step sites are 

preferentially populated, and the lower temperature states appear only at the higher CO 

coverages.   

For CO adsorption on the 80% Co clusters, two desorption states at 350 and 430 K of 

comparable intensities are observed.  The 350 K peak is assigned to adsorption on Co sites 
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while the 430 K is assigned to adsorption on Pt sites although neither peak appears at 

exactly the same temperature as CO desorption from the pure metals.  The shift in 

desorption temperature from 375 K for the pure Co clusters to 350 K for the 80% Co 

clusters could be explained by the blocking of step sites on the Co surface by Pt.  

Furthermore, the loss of the 495 K feature from Pt step sites demonstrates that these types 

of sites are not present on the Co-Pt clusters.  Although desorption at 350 K from Co and 

at 430 K from Pt is the most straightforward explanation of the data in Figure 5.8, it is 

impossible to rule out contribution from desorption at mixed Co-Pt sites.  The decreased 

intensity for the recombinant peak at 750 K implies that the Pt atoms block the Co sites 

needed for CO dissociation.  

On the 55% Co clusters, the contribution of the 350 K peak diminishes as the 450 

K grows, indicating that a greater fraction of CO is now bound to Pt.  This behavior is 

consistent with the decreasing Co fraction at the surface.  Since the intensity at 350 K is 

higher on the pure Pt clusters than on the 55% Co clusters, it is possible that all CO 

desorption is from Pt; previous studies of Co-Pt alloy surfaces indicate that CO is adsorbed 

preferentially on Pt compared to Co for surfaces that contain a high fraction of Pt.58-60  The 

complete disappearance of the recombinant CO peak demonstrates that all of the Co sites 

for CO dissociation are blocked by Pt.  CO desorption from the 55% Co clusters prepared 

by the reverse order of deposition (Co on Pt) exhibits a nearly identical desorption profile 

compared to Pt on Co.  Slight differences are observed in the intensity of the desorption 

peaks and the shift in the leading edge, and although these differences are small, they were 

found to be highly reproducible. 
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Figure 5.8:  Temperature programmed 

desorption data for a saturation exposure of 

CO at room temperature on various surfaces.  

The bimetallic surfaces have a total metal 

coverage of 0.25 ML. Co deposition was 

followed by Pt deposition except for the 

dotted trace for 55% Co, in which the order 

of deposition was reversed.   

 

Furthermore, for the Co on Pt clusters, there is evidence for CO adsorption on Co, given 

that the leading edge for CO desorption on this bimetallic surface is slightly lower in 

temperature than that of CO desorption from the pure Pt clusters.  The shift in this edge to 

lower temperature and the increase in the 350 K peak intensity are both consistent with 

increased Co at the surface for the Co on Pt clusters.   
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 When the Co content in the bimetallic clusters is reduced to 30%, the CO desorption 

profile continues to evolve toward that on the pure Pt clusters, as the higher temperature 

desorption state increases in intensity and shifts toward higher temperatures.  The lower 

temperature state at 350 K does not increase in intensity compared to desorption on the 

55% Co clusters and remains less intense than desorption from the pure Pt clusters.  Again, 

the absence of the 750 K recombinant peak on the Co-Pt cluster surfaces that are 

predominantly Pt shows that this surface is lacking the ensembles of Co sites necessary for 

CO dissociation. 

Methanol Reaction 

 The TPD data for adsorption of methanol at 100 K on pure 0.25 ML Co clusters 

and subsequent reaction up to 850 K are shown in Figure 5.9a.  The main products from 

methanol decomposition are gaseous CO (28 amu) and H2 (2 amu).  CO evolves in a 

molecular desorption peak at 400 K and a higher temperature peak at 750 K assigned to 

recombinant desorption.  The main peak for H2 evolution is at 360 K although there is a 

shoulder at 230 K, and a higher temperature tail extends up to 550 K.  A small water (18 

amu) desorption peak is observed at 230 K and is attributed to reaction of the hydroxyl 

hydrogens with oxygen from the titania support.  The main H2 desorption peak at 360 K 

occurs at a lower temperature than CO desorption, implying that C-H bonds are broken 

before CO begins to desorb from the surface.  The desorption of multilayer methanol (32 

amu) is observed around 115 K, and molecular methanol desorption is also observed at 280 

K.  Methane (16 amu) is barely detectable.  Methyl radical (15 amu) evolution is observed 

from methanol reaction on the TiO2 support around 620 K,34,61 but the deposition of Co 

blocks the active sites on titania;  the same behavior is observed for other metals on titania 
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such as Pt.61  Wide mass scan experiments from 30-110 amu established that no other 

products were evolved since the only detectable mass signals were from the reported 

products and their cracking fragments.  No carbon was detected on the surface in Auger 

electron spectroscopy experiments on any of the surfaces after TPD. 

 

 

Figure 5.9: Temperature programmed desorption data for a saturation exposure of 

methanol dosed at 100 K on: a) 0.25 ML Co and b) 0.25 ML Pt clusters.  The dotted traces 

are profiles for the desorption of CO itself after adsorption at room temperature. 

 

 TPD data for methanol reaction on pure 0.25 ML Pt clusters on TiO2(110) has been 

reported previously,61 and the main results are summarized briefly here for comparison 

with pure Co clusters.  Reaction on the Pt clusters produces CO at 490 K, with no evidence 

for recombinant desorption at higher temperature.  H2 desorption occurs in a main peak at 
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275 K as well as a smaller shoulder at 490 K.  A small methane peak is detected at 480 K, 

and the desorption of water occurs at 230 K.  No methyl (15 amu) production is observed, 

in contrast to the activity on the clean TiO2(110) surface.  The sharp 15 amu peak at 100 K 

is from fragmentation of the condensed methanol that desorbs at this temperature. 

 Figure 5.10 (solid traces) shows TPD data for CO evolution from methanol reaction 

on Pt-Co clusters as a function of Co composition.  Previous studies of CO on TiO2-

supported Ni clusters demonstrate that lattice oxygen from titania participates in the 

removal of carbon from the surface as gaseous CO.30   

 

Figure 5.10:  Temperature programmed 

desorption data (28 amu, CO) for a saturation 

exposure of methanol dosed at 100 K on 

bimetallic clusters of varying compositions 

with a total metal coverage of 0.25 ML. 
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As the fraction of Co is decreased, the recombinant CO peak decreases in both intensity 

and evolution temperature.  At a Co fraction of 30%, the recombinant peak is not observed, 

indicating that C-O bond scission does not occur in methanol and CO. Furthermore, the 

lower temperature CO peak shifts from 400 K on the pure Co clusters to 485 K on the 30% 

Co clusters and 490 K on the pure Pt clusters.  The desorption peak widths for all of the 

bimetallic clusters are comparable to that on the pure Pt clusters, whereas the peak on the 

pure Co clusters is significantly narrower.  For comparison, data for the desorption of CO 

itself on the clusters of different compositions are overlaid as dotted traces.   

On the bimetallic clusters, it appears that CO evolution occurs only from Pt sites 

since no CO production is observed in the lower temperature regime corresponding to 

desorption from Co.  This result is consistent with previous work that reports preferential 

binding of CO at Pt sites on Co-Pt alloy surfaces.58-60  The similarity in temperatures for 

CO desorption and CO evolution from methanol reaction indicate that the production of 

CO from methanol is desorption-limited.  The greater intensity of CO evolution at 750 K 

from methanol reaction compared to CO adsorption/desorption implies that C-O bond 

scission in the methanol reaction intermediate contributes to recombinant CO production 

at higher temperature. 

 The H2 and methane desorption profiles for methanol reaction on the pure and 

bimetallic clusters, as well as on the TiO2 support, are shown in Figure 5.11a. On the titania 

support, H2 evolution at 220 K is attributed to O-H bond scission to form the methoxy 

intermediate that decomposes to CH3 at higher temperatures.34  The H2 peak at 360 K, 

which is characteristic of reaction on the pure Co clusters, is not a prominent feature in the 

spectra for any of the bimetallic clusters, and this indicates that reaction on the bimetallic 
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surfaces is not dominated by pure Co sites.  In contrast, the main peak from reaction on Pt 

occurs at 275 K, and a desorption peak at a similar temperature of 300 K is clearly observed 

in reaction on the 30% Co clusters.  For the 55% Co clusters, the H2 desorption peak at 315 

K is also attributed to reaction on Pt sites, but at the lowest Pt fraction (80% Co), there is 

no clear H2 desorption state associated with reaction on Pt.   

 

Figure 5.11:  Temperature programmed desorption data for a saturation exposure 

of methanol dosed at 100 K on bimetallic clusters of varying compositions with 

a total metal coverage of 0.25 ML: a) 2 amu (H2) and b) 16 amu (CH4). 

 

The 30% Co clusters have a desorption profile similar to the pure Pt clusters although the 

275 K peak is more pronounced on the Pt clusters.  However, the 55% and 30% Co clusters 

exhibit H2 desorption at 435 K that is more intense than the corresponding peak on pure 

Pt, and this peak does not appear at all on pure Co;  the 435 K feature is therefore attributed 
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to reaction at mixed Co-Pt sites.  For the bimetallic surfaces, there is also a 180 K 

desorption state that is clearly observedd on the 80% and 55% Co clusters but nonexistent 

on the pure Co and Pt clusters.  Studies by Chen and coworkers have shown that H2 

desorption occurs at temperatures as low as 150 K on Pt-Co-Pt(111) sandwich structures 

compared to 270-285 K on bulk Pt and Co surfaces and 315 K on Co-Pt-Pt(111).25  Thus, 

the low temperature H2 production is also evidence of activity on the bimetallic surface.   

 Methane production at 440 K was highest on the bimetallic cluster surfaces and 

consequently attributed to activity at Co-Pt sites (Figure 5.11b).  No methane is produced 

on the pure Co clusters, and the barely detectable 16 amu signals arise from mass 

fragmentation of the CO evolved at 400 and 750 K.  On the pure Pt clusters, a smaller 

amount of methane is produced in a broad peak with maximum intensity at ~490 K.  The 

methane yield is greatest on the 55% Co clusters, which produces ~4 times more methane 

than the pure Pt clusters and ~1.6 times more than the 30% and 80% Co clusters.  For the 

55% and 80% Co clusters as well as the pure Pt clusters, methane desorption is nearly 

coincident with the CO and higher temperature H2 peaks.  For the 30% Co clusters, 

methane evolution occurs in a relatively broad peak that coincides with both high and low 

temperature H2 desorption. 

 Other masses that were specifically monitored in the TPD experiments on the 

various Co-Pt cluster compositions were: water (18 amu), methyl (15 amu) and methanol 

(32 amu) (data not shown).  Water desorption occurred at 230 K with comparable 

intensities on all cluster surfaces.  Methyl was only observed on the clean TiO2 surface, 

and methanol desorbed in a multilayer peak around 110 K.  A molecular methanol peak at 

285 K was observed on the Co surface, but this feature decreased in intensity with 
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decreasing Co coverage and was not detected on pure Pt (Figure 5.9a,b).  The presence of 

the higher temperature methanol desorption peak at 285 K on pure Co clusters indicates 

that total activity is higher on the Pt clusters, where this peak from recombination of 

methoxy and surface hydrogen is not observed. 

5.4 Discussion 

Growth and Surface Composition 

 Co-Pt bimetallic clusters were grown on TiO2(110) by the sequential deposition of 

Co on Pt or Pt on Co.  In general, bimetallic clusters can be formed when the second metal 

is more mobile on the surface than the first metal, and therefore all of the metal atoms from 

the second deposition can be nucleated at existing clusters from the first deposition.31,33,37,62  

Previous work from our group has demonstrated that the relative mobilities of the metals 

on TiO2 can be predicted from the strength of the metal-oxygen bonds;  specifically, 

stronger metal-oxygen bonding results in lower mobilities and shorter diffusion lengths.41  

Co is less mobile on the surface than Pt, but exclusively bimetallic clusters are grown from 

the deposition of 0.13 ML Co on 0.13 ML Pt or 0.13 ML Pt on 0.13 Co; the key here is 

that the number of nucleation sites created in the first deposition must be sufficient to serve 

as seed clusters for metal atoms from the second deposition.  The deposition of 0.19 ML 

of Pt on 0.06 ML of Co produced pure Pt clusters coexisting with bimetallic clusters 

because the low coverage of Co seed clusters did not provide sufficient nucleation sites for 

all of the Pt atoms from the second deposition.  For metals with a greater difference in 

mobility, such as Au with Ni, Pt or Co, the bimetallic clusters can only be formed when 

Au is deposited second because the short diffusion lengths of Ni, Pt and Co relative to Au 

prevents the metal atoms from nucleating exclusively at existing Au clusters.31,33,37 
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 The Co and Pt atoms in the bimetallic clusters interdiffuse readily at room 

temperature, given that the bimetallic clusters formed from both orders of deposition have 

surface compositions that are nearly identical.  The Co on Pt clusters are slightly richer in 

Co (37% Co) than Pt on Co clusters (29% Co), suggesting that the surface compositions 

are not completely equilibrated since the surfaces are richer in the metal that was deposited 

second.  Furthermore, the CO TPD data show that the Co on Pt and Pt on Co clusters have 

indistinguishable activity for CO desorption.  Likewise, methanol reaction studied by TPD 

exhibits the same activity on Co-Pt clusters, regardless of the order of deposition.  For Co 

films deposited on Pt(111), the Co atoms are mobile on the surface at room temperature,63 

but significant diffusion of Co into the bulk occurs only after heating to higher temperatures 

of 600-700 K.58,64,65  Thus, interdiffusion at room temperature between the surface and bulk 

is more pronounced for the clusters than the planar surfaces, and similar effects have been 

observed for intermixing in TiO2-supported Pt-Au and Ni-Au clusters31,33 compared to the 

corresponding planar bimetallic surfaces.66-69 

 For Co-Pt clusters of varying compositions, the cluster surfaces are found to be 15-

25% richer in Pt than the bulk compositions.  These surface compositions do not follow 

the relative surface free energies, as in the case of Au-M (M=Pt, Ni, Co) clusters in which 

bulk immiscibility of the metals and the lower surface free energy of Au results in surface 

compositions that are 80-100% Au for bulk Au fractions of >50%.31,33,37  Because Co and 

Pt alloy over a wide range of compositions,48 the lower surface free energy of Co (1.9 

J/m2)44-47 compared to Pt (2.5 J/m2)43 does not result in clusters with near Co shell-Pt core 

structures.  A possible explanation for this behavior is that Co atoms are strongly bound at 

the interface with titania, and consequently there are fewer Co atoms available for diffusion 
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to the surface; note that the Co-Pt clusters all have average heights of ~3.5 atomic layers, 

and therefore it is not surprising that binding with titania should influence surface 

composition.  However, heating the clusters to 500 K, which is below the temperature 

needed to induce significant encapsulation by titania, increased the Co surface composition 

by less than 5%, indicating that the Pt-rich surface compositions cannot be solely attributed 

to trapping of the Co atoms at the titania interface. 

 Furthermore, there are many studies in the literature reporting Pt surface 

compositions that are higher than bulk Pt compositions for Pt-Co alloys, and this behavior 

is consistent with what is observed for the titania-supported Co-Pt clusters.  For example, 

when Co is deposited on Pt(111) and annealed at 700 K, an alloy film with an overall 50% 

Pt composition is formed with a surface composition of 85% Pt.58  Other studies of 

annealed Co films on Pt(111) also report Pt surface compositions of ~75% in the top 

monolayer.64  Investigations of Pt25Co75(111) bulk alloys show that the surface is enriched 

up to 50% Pt, 70,71 and Pt75Co25 alloys form a top layer of pure Pt after annealing to 1000 

K.3,4  In addition, STEM studies of Pt3Co nanoparticles supported on carbon demonstrate 

that the top monolayer is 100% Pt.23  Theoretical studies also support Pt rich surfaces for 

the alloys; a study of Pt34Co3 clusters shows that a core shell structure with Co atoms in 

the interior is more stable than Co at the surface,60 and DFT calculations for 4-6 layer slab 

structures indicate that Pt-rich surfaces are favored for PtCo and Pt3Co alloys.72  Notably, 

the enrichment of the top monolayer with Pt results in enrichment of the second layer with 

Co for the bulk alloys.2,4,70,71,73 
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Chemical Activity 

 At high Co fractions, TPD experiments for CO desorption on the Co-Pt clusters 

exhibit two distinct desorption states attributed to desorption from Co and from Pt sites.  A 

comparison of the desorption temperatures for CO on the pure clusters indicates that the 

binding of CO to Pt is stronger than to Co, and TPD experiments for CO on Co(0001)74,75 

and Pt(111)76,77 in the literature confirm stronger adsorption of CO to Pt.  For the 80% Co 

clusters, a lower temperature desorption peak assigned to CO at Co sites is observed, and 

recombinant desorption at 750 K confirms that the surface contains Co atoms, given that 

Pt does not dissociate CO.  At Co fractions of 55% and below, the lower temperature peak 

from Co is not as pronounced, and there is no recombinant CO desorption.  Furthermore, 

the desorption profiles on these bimetallic clusters are similar to that on pure Pt although 

the molecular desorption peak is shifted to lower temperatures compared to on the pure Pt 

clusters; the 30% Co surfaces contain some pure Pt clusters as well as bimetallic clusters, 

and therefore it is not surprising that these surfaces should exhibit behavior similar to that 

of pure Pt.   Furthermore, investigations of CO on Co-Pt alloy surfaces report that CO 

preferentially binds to Pt when the surfaces are Pt-rich,58,59 whereas CO adsorption is 

observed on Co for alloy surfaces that are Co-rich.59  Theoretical calculations also support 

preferential binding of CO to Pt rather than Co on small (~40 atom) Pt-rich clusters.60  

 The higher temperature desorption peak on the Co-Pt clusters assigned to 

desorption from Pt shifts to lower values as the Co fraction is increased from 0% to 80%.  

Given that the 495 K peak on Pt surfaces is attributed to CO adsorption at step sites,57,76 

this shift to lower temperature could be attributed to site-blocking when the Co atoms 

reside at the step edges; since the less strongly adsorbing sites are the only ones available 
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for CO adsorption, the overall desorption temperature shifts to lower values.  As the Co 

fraction is increased from 0 to 80%, the higher temperature molecular desorption state 

attributed to Pt gradually shifts from 495 K on pure Pt, to 475 K on 30% Co, to 450 K on 

55% Co, to 430 K on 80% Co.  This ~60 K shift is comparable to what has been previously 

observed by our group for CO desorption from Pt-Au clusters on TiO2.
61  Bimetallic 

clusters were grown at the same Pt compositions studied here via the deposition of Pt seed 

clusters followed by Au.  In the case of the Au-Pt clusters, the surfaces were initially pure 

Au at higher bulk Au fractions, but exposure to CO induced the diffusion of Pt atoms to 

the surface in order to form the strong Pt-CO bonds; CO did not adsorb on pure Au clusters 

at room temperature.  Since the same shift in desorption temperature for CO on Pt is 

observed in both the Co-Pt and Au-Pt systems, the decrease in CO adsorption energy could 

be explained solely by site-blocking.  However, it is also possible that electronic effects 

arising from Co-Pt interactions could also contribute to the shifts in desorption 

temperatures.   

 Previous work for CO on Co-Pt alloy surfaces reports that CO desorption from Co 

is shifted to higher temperature while desorption from Pt is shifted to lower temperature, 

as compared with the respective pure metal surfaces.59  Studies of CO on bulk Pt-Co alloy 

surfaces by Al-Shamery and coworkers report that CO is more weakly bound to Pt in the 

PtCo alloy by 0.15 eV, while CO on pure Co and PtCo have similar adsorption energies 

within 0.04 eV; in these experiments, Co is deposited on Pt(111) and then heated to various 

temperatures to make alloys of different compositions.59,64  It was proposed that the binding 

of CO at the Pt monolayer is weakened from the lowering of the d-band center due to ligand 

effects from the Co in the second layer.59  On the Co-Pt clusters studied here, it is not 
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always possible to distinguish desorption from Co and desorption from Pt because the 

desorption profile from Pt itself is broad, extending from 300-550 K.  For the 80% Co 

clusters, the CO desorption peak attributed to Co is not shifted to higher temperatures 

compared to the pure Co clusters.  The peak attributed to desorption from Pt shifts to lower 

temperature with increasing Co fraction, but the magnitude of this shift is consistent with 

a site-blocking effect of Co on Pt, as discussed in the preceding paragraph.   

 Although CO desorption does not clearly demonstrate ligand effects in the Co-Pt 

clusters, the bimetallic clusters exhibit unusual activity for methanol reaction.  Specifically, 

the reaction intermediate is more stable on the Co-Pt clusters, given that the temperature 

for reaction-limited H2 desorption is higher on Co-Pt clusters than on either pure Co or Pt.  

Methoxy is known to be the surface intermediate formed from methanol reaction via O-H 

bond scission on single-crystal Pt surfaces like Pt(110)-(2x1)78,79 as well as Co-Pt 

surfaces.65  The inhibition of C-H bond scission in methoxy on the Co-Pt bimetallic clusters 

suggests that these surfaces should be less susceptible to CO poisoning from methanol 

crossover in DMFCs.  Furthermore, methane production is highest on the bimetallic 

clusters, indicating that the selectivity of C-O bond scission over C-H bond scission is 

increased on the Co-Pt clusters compared to either of the pure metals.  While this unusual 

activity could be attributed to the electronic effects that are well-established in Co-Pt 

bimetallic systems, it is known that selectivity for methane is structure-sensitive on Pt 

surfaces.78-80  There is also evidence that a small high temperature H2 desorption peak 

around 430 K appears for methanol reaction on Pt(110)-(1x1) but is not observed on 

(2x1)Pt(110).80,81 However, it seems unlikely that the high temperature H2 peak on the Co-

Pt clusters originates solely from site-blocking of Co on Pt because the 430 K peak at the 
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lowest Co fraction is comparable in intensity to the feature on pure Pt clusters, and the 430 

K peak is greatest on the 80% Co clusters.  Moreover, H2 desorption at 430 K is not 

observed from methanol reaction on Au-Pt clusters grown on TiO2(110) with bulk Au 

compositions of 50% and 75%.  For methanol reaction on Au-Co bimetallic clusters on 

TiO2, H2 production at 430 K does not exceed the intensity observed on pure Co clusters 

at this temperature, in contrast to the activity on the Co-Pt clusters reported here.  The H2 

production at 430 K therefore appears to be unique to the Co-Pt surface, and cannot be 

assigned to the blocking of active sites on either the Co or Pt surfaces, given that the 

addition of Au to the pure metal clusters does not result in the same activity.  Thus, the 

greater stability of C-H bonds in the methoxy intermediate is attributed to electronic 

interactions specific to the Co-Pt bimetallic system, rather than to a change in surface 

structure due to the addition of the second metal.   

 The reactions of methanol on the pure Pt and Co clusters are very similar in the 

sense that gaseous CO and H2 are the main products.  The main difference is that 

recombinant CO desorption at high temperature is observed on the Co clusters but not on 

Pt, which does not dissociate C-O bonds.  Based on periodic trends, it might be expected 

that Co as a mid-transition metal would be more active for methanol decomposition than 

the late-transition metal Pt.  However, the Pt clusters have higher activity than the Co 

clusters as demonstrated by the lower desorption temperature for H2 on the Pt clusters.  The 

presence of the molecular methanol desorption peak at 250 K on Co but not on Pt suggests 

that the total methanol activity is lower on Co due to greater recombination of methoxy 

and surface hydrogen.  This behavior is consistent with the fact that desorption of surface 

hydrogen as H2 occurs at lower temperature on the Pt clusters, thus preventing 
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recombination of surface hydrogen with methoxy.  The greater activity on Pt is also 

reflected by the higher product yields: the H2 and CO production is 20-35% higher on Pt 

clusters, and methane is evolved from the Pt clusters but not the Co clusters.    

5.5 Conclusions 

 Bimetallic Co-Pt clusters can be grown on TiO2(110) via the sequential deposition 

of Pt on Co;  despite the higher mobility of Pt on the surface compared to Co, bimetallic 

clusters are also formed from the deposition of Co on Pt, provided that the initial Pt 

deposition produces a cluster density that is high enough for all of the Co atoms to nucleate 

at the existing clusters.  The facile diffusion of atoms within the clusters is illustrated by 

the fact that the bimetallic clusters have nearly identical activities and surface 

compositions, regardless of the order of deposition.  The bimetallic clusters with bulk Co 

fractions varying from 30-80% all contain a mixture of Co and Pt in the surface monolayer, 

and in all cases the surface is richer in Pt than the bulk.  Studies of methanol reaction on 

the pure and bimetallic clusters show that C-H bond breaking is inhibited and the selectivity 

for methane production is increased on the bimetallic clusters compared to the pure 

clusters.  For CO desorption from the bimetallic clusters, a lower and higher temperature 

peak can be distinguished for adsorption on Co and Pt, respectively, for Co fractions >55%; 

the shift in Pt desorption temperature to lower values with increasing Pt fraction can be 

explained by a site-blocking effect.  As a cathode catalyst for ORR, the Co-Pt surfaces 

should be more resistant to CO poisoning since CO desorption occurs at a lower 

temperature than on pure Pt.  Furthermore, the Co-Pt catalysts in DMFCs should also be 

less susceptible to CO poisoning from methanol crossover since C-H bond scission in the 

methoxy intermediate occurs at higher temperature. 
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Chapter 6. Characterization of Pt-Re bimetallic clusters on TiO2(110) 
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6.1 Introduction  

 Generation of hydrogen from biofuels has much promise to reduce the dependence 

on fossil fuels for energy requirements.1 Hydrogen is a versatile energy carrier with a very 

high energy density compared to gasoline. Furthermore hydrogen is the promise of clean 

energy for the future. Research has been done for decades on production of hydrogen via 

alcohol reforming. Ethanol has become an attractive alcohol because of the availability and 

the ability of producing it using biomass. Furthermore, ethanol is a nontoxicity alcohol that 

can be easily transported, and easily stored.2 Nickel-based catalysts are widely used in 

ethanol reforming.The drawback of such catalysts is the poisoning by CO, which is a 

byproduct of the reaction.3 A catalyst that has more stability towards poisoning and has 

selectivity to H2 over hydrocarbons is lacking.  

 Recently Pt-based catalysts have been proposed for aqueous phase reforming of 

alcohols but suffer from the lack of stability due to poisoning by CO and other 

carbonaceous species.4-8 Addition of a second metal to Pt has shown to increase the stability 

of the catalyst by reducing the formation of coke.9  The addition of Re to supported Pt 

catalysts has shown to enhance the activity due to a smaller degree of CO poisoning of Pt 

sites.10,11 The support also plays a significant role in this catalyst; for instance, Pt/TiO2 

interface has activity towards water gas shift (WGS) reaction which acts as sites for the 

removal of CO.12  WGS reaction helps to remove the CO which is a byproduct of the 

reforming reaction to enhance the stability of the reaction and also reduces the methanation 

of CO which decreases the selectivity for H2 production. Addition of Re into Pt/TiO2 

known to enhance the activity towards water gas shift reaction by generating a reaction 

pathway via ReOx active sites, for the activation of water.13-16 Furthermore, addition of Re 
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into the Pt catalyst has also shown to enhance the total conversion of polyols with a small 

decrease in the selectivity to hydrogen. 17-19 Aqueous phase reforming (APR) activity of 

glycerol is known to increase the activity upon addition of Re to the Pt catalyst due to Pt-

Re interactions.20 Additionally Pt-Re on titania is shown to have the most activity 

compared to other supports such as ceria.20 Also in a different study, Pt-Re/TiO2 has been 

shown to have more conversion of xylitol in APR reaction compared to pure Pt.17 

Furthermore addition of Re to Pt/C,  increased the total conversion of glycerol to synthesis 

gas, and this was suggested to be facilitated by providing an additional path for WGS 

reaction on Re sites and by reducing the strength of the CO bound to Pt, due to Pt-Re 

interactions.21,22 In addition, an enhanced activity has been observed for low-temperature 

water gas shift reactions for  Re on Pt/TiO2 because of the higher dispersion of Pt on Re, 

where Re acts as an anchor for Pt on the support.23 Pt-Re on mixed metal oxide supports 

has also shown greater activity for WGS reaction and assigned the higher activity has been 

assigned to greater dispersion of  Pt.24 The presence of Re is generally known to improve 

dispersion Pt on oxide supports which gives the catalyst  better thermal stability. Addition 

of Re to the Pt catalyst,  has been shown to reduce the selectivity to structure-sensitive 

reactions and decrease the amount of poisoning of Pt sites by larger hydrocarbons.26 These 

literature studies show promise for the Pt-Re catalysts to have a better activity, selectivity 

and stability towards the aqueous phase reforming reaction, but the reasons behind this 

enhanced activity are not well understood. There are few model studies that have been done 

in order to understand the system better. A model study of Re/Pt(111) has shown the 

existence of Pt-Re interactions by the  adsorption behaviors of H2 and CO.27  
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 Likewise investigating these phenomina using model systems could shed some light 

to undersatnd the mecahnism by which the enhanced activity is achieved. Bemetallic 

clusters often show enhanced activity and stability compared to their monometallic 

counteraprts due to bimetallic effects.28,29 Few model studies have been done on the Pt-Re 

bimetallic system, warranting further investigation. Since, atomic level understanding of 

the industrial catalysts under reaction conditions is challenging, we propose a model system 

of Pt-Re on TiO2 (110) to study the fundamental aspect of this system. In this study, we 

have designed a model system where we have prepared bimetallic clusters of Pt-Re on a 

single crystal titania rutile support to understand the growth, structure, interactions and 

activity at a fundamental level. Exclusive bimetallic cluster formation on titania is 

discussed for different amounts of metal coverages. Bimetallic clusters have found to be Pt 

rich at surface for all the coverages discussed. Interactions between Pt-Re have been 

identified using X-ray photoelectron spectrocopy. Strong metal support interactions are 

also observed for Re at room temperature. CO-TPD was done in order to understand the 

active sites of the bimetallic system.  

6.2 Experimental section 

Experiments were carried out in an ultra-high vacuum (UHV) chamber with a base 

pressure below 1 x 10 -10 Torr. The UHV chamber is equipped with a number of surface 

analytical techniques such as Scanning Tunneling Microscopy (STM, Omicron VT-25), 

Low Energy Ion Scattering (LEIS), X-Ray Photoelectron Spectroscopy (XPS), and 

Hemispherical Analyzer (Omicron EA 125) for XPS and LEIS and Auger Electron 

Spectroscopy (AES)/ Low Energy Electron Diffraction (LEED) system (Omicron Spec 3). 

The second chamber is equipped with a quadrupole mass spectrometer for TPD studies 



165 

 

(Hiden HAL 301/3F), a cylindrical mirror analyzer for Auger electron spectroscopy 

(Omicron CMA 150), and LEED optics (Omicron) 

The rutile titania (110) (Princeton Scientific Corporation, 1cm x 1cm x 0.1 cm) was 

used as the substrate to grow Pt/Re bimetallic clusters. The crystal was prepared by using 

Ar+ ion sputtering at 1 kV for 20 mins and subsequent annealing to 950 K- 1000 K for 

3mins. The crystals were mounted on a Ta back plates using Ta foil straps, and heating of 

the sample was achieved through radiative heating from a tungsten filament positioned 

behind the back plates, as well as by electron bombardment when the samples were held at 

a positive potential. This treatment preferentially removes lattice oxygen to make the 

crystal an n- type semiconductor that enables ion and electron based spectroscopies and 

sanning tunneling microscopyexperiments to be conducted. TiO2 (110)-1x1 LEED pattern 

was obtained upon this cleaning procedure. Cleanliness and the order were confirmed using 

a combination of STM, LEED, XPS and AES techniques. The temperature was monitored 

via a type K thermocouple that was calibrated using an infrared pyrometer.  

In the first chamber, Re was deposited by physical vapor deposition of a Re rod 

(ESPI, 0.08” x 1”, 99.99%) using an Oxford electron beam evaporator (EGCO4). Metal 

flux was determined using a quartz crystal microbalance (QCM, inficon). The QCM was 

independently calibrated by depositing a sub-monolayer coverage of Au on a Ru(0001) 

single crystal and calculating the coverage using STM images obtained on these surfaces. 

In the second chamber, Re was deposited from a Re rod (ESPI, 0.0625” x 1.77”, 99.99%) 

using an Omicron evaporator (EFM3), while Pt was deposited from a homemade source 

consisting of Pt wire (0.25 mm diameter, ESPI, 99.999%) wrapped around a tungsten wire 

(0.50 mm) through which current was passed. The Pt flux was calibrated with a QCM 
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before each deposition; for Re deposition, the internal flux monitor of the evaporator was 

used to control Re flux, and the flux monitor readings were initially calibrated with a QCM. 

The metal coverage is given in monolayer (ML) equivalents that correspond to packing 

density of the corresponding metal. (Re (0001):1.52 x 1015 atoms/cm2
,   Pt (111): 1.50 x 

1015 atoms/cm2). The metal deposition rate was approximately 0.05 - 0.1 ML/min.  

STM experiments were carried out to investigate the surface morphology of the 

Pt/Re bimetallic clusters. The sample was biased at + 2.3 V with respect to the tip, and the 

images were collected at a constant tunneling current of 0.05 nA – 0.1 nA.  Tips were made 

using a 0.38 mm tungsten wire by electrochemical etching by NaOH and sputtering with 

an argon ion beam at 3 kV. Clusters in a 500 Å x 500 Å were measured using an inhouse 

STM stats analysis program. 

LEIS experiments were carried out to understand the surface composition. 

Experiments were conducted with 600 eV helium ion beam and 80 nA current to the 

sample. Sensitivity to the corresponding metal for LEIS was determined using 

polycrystalline Pt and Re foils. Foils were sputtered at 5 uA, 1 kV for 15 min and annealed 

to 900 K for 6 min before taking the scans. The step size for the acquired spectra was 0.2 

eV and the dwell time was 0.2 s. The Pt-Re region was collected between 460 eV- 550 eV 

energy ranges. The XPS data for the Re (4f), Ti(2p) and Pt(4f) regions were collected with 

an Al Kα source using a 0.2s dwell time and 0.02 eV step size.   

The surfaces were exposed to CO (National Welders, 99.99%) and methanol 

(Fisher Scientific, 99.9%) via a stainless steel directed dosing tube. CO was used as 

received. During CO exposure, the sample temperature was held at 300 K, and a saturation 

exposure of CO was achieved by leaking in CO at a pressure rise of 3.0 × 10−10 Torr for 3 
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min. In TPD experiments, the crystal was heated at a constant rate of 2 K/s in front of the 

mass spectrometer. The crystal was positioned ∼2 mm in front of a 4 mm diameter hole 

cut in the shroud of the mass spectrometer in order to prevent detection of products 

desorbing from the sample holder. The crystal was biased at −100 V during TPD 

experiments to avoid damage from the electrons emitted by the mass spectrometer filament. 

Nine masses were collected in a typical TPD experiment; during wide mass scan 

experiments to check for additional products, 40 mass channels were monitored in a single 

experiment.  

6.3 Results  

STM images of different compositions of Pt-Re, grown on titania (110) at room 

temperature, are shown in figure1. Corresponding histograms for cluster heights are 

presented in figure 6.2. A 0.25 ML coverage of Pt on titania resulted in 3D clusters with 

an average cluster height of 6.22 ± 2.15 Å and a density of 11.24 x 1012 cm-2(figure 6.1a). 

The same coverage of Re clusters deposited on titania resulted in a narrow cluster 

distribution with an average cluster height of 3.19 ± 1.06 Å and a density of 28.16 x 1012 

cm-2 (figure 6.1f). Corresponding histograms are shown in figure 6.2a and figure 6.2f. 

Histograms of the cluster heights indicate that the highest fraction of clusters for 0.25 ML 

Pt is above 4 Å whereas, for 0.22 ML Re, the highest fraction of the clusters is below 4 Å 

in height. Growth mode of metals on titania has been known to dictate  by the metal-oxygen 

bond strength.30 From the STM images for pure Pt and pure Re, it appears that the Pt-

Titania bond is weaker compared to the Re-titania bond that resulted in a smaller cluster 

density and a higher cluster height. In contrast, the growth of Re resembled more 2D cluster 

growth with a higher cluster densities and a lower cluster heights. A 0.13 ML Pt coverage 
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was then deposited on titania (figure 6.1b) which resulted in a cluster density of 9.34 x 1012 

cm-2 and an average cluster height of 4.66 ± 1.66 Å.  A 0.11 ML Re covearge was then 

deposited on the 0.13 ML Pt surface as shown in figure 6.1c.  

 

Figure 6.1. STM images of  a) 0.25 ML Pt, b) 0.13 ML Pt, c) 0.13 ML Pt + 0.11 

ML Re, d) 0.22 ML Re, e) 0.11 ML Re  f) 0.11 ML Re + 0.13 ML Pt, deposited 

at room temperature. All images are 1000 Å x 1000 Å. 

 

Two sizes of clusters can be observed at this compositions. Small clusters were below 4 

Å in height and larger clusters were above 4 Å in height. The average cluster height for 

this composition of Pt+Re is 5.00 ± 1.80 Å and the cluster density is 18.60 x 1012 cm-2.  

Even though the average clusters height is higher than for 0.13 ML Pt, increase of cluster 

density by a factor of two from the 0.13 ML Pt coverage indicates that there are new 

nucleation sites after deposition of 0.11 ML Re on 0.13 ML Pt. The histogram for the 0.13 

ML Pt + 0.11 ML Re also shows a bimodal distribution that can be attributed to 

monometallic clusters of pure Re (small clusters) and bimetallic Pt-Re clusters (bigger 
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clusters). Therefore, in this order of deposition exclusive bimetallic cluster formation was 

not observed. Figure 6.1d show that 0.11 ML of Re deposited on titania resulted in a cluster 

density of 31.44 x 1012 cm-2 and an average height of 2.92 ± 1.05 Å. The average cluster 

height indicates that Re forms approximately one atomic layer high clusters.  Histograms 

of 0.11 ML Re (Figure 6.2d) and 0.22 ML Re (figure 6.2f) show that they have a similar 

cluster distribution with a higher fraction of 0.11 ML Re clusters in 1-3 Å range in height, 

whereas  for 0.22 ML Re, clusters are 2-4 Å range in height.  

 

Figure 6.2.  Histograms of cluster heights for the STM images in figure 

1: a) 0.25 ML Pt, b) 0.13 ML Pt,and  c) 0.13 ML Pt + 0.11 ML Re  d) 

0.22 ML Re,  e) 0.12 ML Re, and  f) 0.11 ML Re + 0.13 ML Pt. For each 

surface, all clusters  in  500 Å x 500 Å region were measured. 

 

In the second experiment 0.13 ML Pt was deposited on 0.11 ML of Re which resulted in 

an average clusters of 4.47 ± 1.33 Å and a cluster density of 25.58 x 1012 cm-2. The cluster 

height is higher than that of the cluster height of the 0.11 ML Re, and the density is lower, 
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which indicates that the deposited Pt has preferentially nucleated on the Re seed clusters. 

Deposition of Re first provided a sufficient number of seed clusters for the second metal to 

nucleate at, forming bimetallic clusters. This behavior is in contrast to the deposition 0.13 

ML of Pt first which did not provide sufficient number of nucleation sites for all of the Re 

clusters. A histogram of the cluster height distribution for 0.11 ML Re + 0.13 ML Pt (figure 

6.2e) shows a shift to larger cluster sizescompared to  histogram for the pure 0.11 ML Re 

(figure 6.2d); this is consistent with the nucleation of Pt at existing Re clusters. 

STM images of clusters heated to 800 K are shown in figure 6.3. Corresponding 

histograms for cluster height distributions are illustrated in figure 6.4.  

 

Figure 6.3.  STM images of metals deposited at 

room temperature and then heated to 800 K (a) 0.25 

ML Pt, (b) 0.13 ML Pt + 0.11 ML Re, (c) 0.11 ML 

Re + 0.13 ML Pt and (d) 0.22 ML Re. all images 

are 1000 Å x 1000 Å. 

 

Heating 0.25 ML of Pt to 800 K resulted in clusters which are ~50% (9.14 ± 2.91 Å) larger 

in height than the clusters directly after room temperature deposition, and density decreased 
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by ~50% (5.71 x 1012 cm-2). The corresponding histogram (figure 6.4a) for 0.25 ML Pt 

indicates that the larger clusters are greater than 10 Å and smaller clusters are smaller than 

8 Å. After heating the 0.13 ML Pt + 0.11 ML Re surface to 800 K, there are clearly very 

small clusters as well as larger clusters. (Figure 6.3b) The corresponding histogram also 

shows a bimodal distribution of cluster heights where smaller clusters peak around 2- 4 Å 

and larger clusters peak around 9-10 Å.(Figure 6.4b) This behavior was observed even at 

room temperature due to the formation of monometallic and bimetallic clusters. For 0.13 

ML Pt + 0.11 ML Re, the cluster density decreased by 39% (11.26 x 1012 cm-2) and the 

average cluster height increased by 18% (5.91± 3.08 Å).  

 

Figure 6.4.  Histograms for the STM images in 

figure 3: a) 0.25 ML Pt, b) 0.13 ML Pt+0.11ML 

Re, c) 0.11 ML Re+0.13 ML Pt  and d) 0.22 ML 

Re. All clusters  in  a 500 Å x 500 Å region were 

measured 
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For 0.11 ML Re + 0.13 ML Pt (figure 6.4c) an even greater cluster size distribution can be 

observed. The average cluster height increased by 22 % (5.46 ± 2.25 Å) and the density 

decreased by 43% (14.61 x 1012 cm-2) compared to the clusters before heating. The cluster 

density of the 0.22 ML Re clusters dropped by 38% (17.51 x 1012 cm-2) and the cluster 

height increased by 31% (4.62 ± 1.44 Å) after annealing to 800 K. Decrease in cluster 

density for all metal compositions except pure Pt is almost the same. The percent decrease 

in cluster density is greater on the pure Pt surface than on the Pt-Re surfaces. When Re is 

present on the surface, the initial cluster density is large and, therefore, after annealing to 

800 K the cluster density for these surfaces remains high compared to annealed pure Pt 

clusters. 

Low energy ion scattering data collected for different compositions of Pt-Re at room 

temperature are shown in figure 6.5a.  

 

Figure 6.5 Low energy ion scattering spectroscopy studies of different 

compositions of Pt-Re; a) Pt-Re region at room temperature and b) Pt-Re signal 

(normalized to the room temperature value) at different temperatures. 
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The LEIS signals for Pt and Re both fall in the same range of kinetic energy, and therefore 

it is difficult to get an accurate quantification of the surface composition although a 

qualitative analysis can be done. The relative sensitivity of LEIS to Pt and Re are 

determined from polycrystalline Pt and Re foils with same surface area exposed. The 

calculated sensitivity ratio for Pt: Re is 1.9. Furthermore, the LEIS signal for 0.11 ML Re 

appears at a slightly lower kinetic energy than that of 0.13 ML Pt. For 0.11 ML Re, the 

intensity is very small compared to the pure Pt even after correcting for the relative 

sensitivity. From the STM images, it appears that the cluster density for pure Re is higher 

than that of  pure Pt, which suggests more exposed Re on the surface. This observation 

could not be confirmed with the LEIS data, even after correcting to the sensitivity. This 

difference may be due the oxophillic nature of Re, which leads to a reaction with titania 

upon deposition and encapsulation of Re by titania. Both orders of deposition for 0.11 ML 

Re/0.13 ML Pt have similar surface compositions at room temperature. The LEIS signal 

intensity is slightly higher compared to 0.13 ML of  Pt when the Pt is deposited second due 

to greater dispersion of Pt, which nucleates at the Re seed clusters. The difference in 

dispersion of metal clusters very well observed with the STM  iamges, where Re+Pt 

showed higher cluster density with smaller cluster sizes compared to Pt+Re.  

Figure 6.5b shows how the signal intensity changes with annealing to different 

temperatures with respect to the room temperature values. The signal intensity decreases 

as the surface is heated to higher temperatures. At 600 K, for bimetallic clusters, the largest 

decrease (34% from its room temperature value) in signal intensity is observed for 0.11 

ML Re +0.13 ML Pt and lowest decrease (13%) is observed for 0.13 ML Pt +0.11 ML Re. 
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At 800 K, highest decrease in signal intensity is observed for 0.25 ML Pt (81%) and the 

lowest decrease was observed for 0.22 ML Re (42%).  

 To understand more about the nature of Pt-Re clusters on titania, higher coverages 

of Pt-Re were studied. Figure 6 shows the STM images obtained on 1.7 ML Re, 1.7 ML 

Re + 2 ML Pt, 2ML Pt and 2ML Pt + 1.7 ML Re. Figure 6a shows an STM image of 1.7 

ML Re on titania that has a cluster density of 15.49 x 1012 cm-2 and a cluster height of  4.7 

± 1.0 Å. When 2 ML Pt was deposited on the existing 1.7 ML Re clusters (figure 6b), the 

cluster density decreased to 10.77 x 1012 cm-2 and the cluster height increased to 6.3 ± 1.1 

Å. The increase in the cluster height and the fact that the lack of increase in cluster density, 

indicates that Pt deposited second was nucleated on the Re-seed clusters that were 

deposited first. 

 

Figure 6.6. STM data for a) 1.7 ML Re, b) 1.7 ML 

Re + 2ML Pt, c) 2ML Pt, d) 2ML Pt + 1.7 ML Re, 

all images are 1000 Å x 1000 Å 
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The cluster coalescence can explain the decrease in the cluster density. When 2 ML Pt 

was deposited on titania (figure 6.6c), the cluster density (5.66 x 1012 cm-2) was much 

smaller compared to that of 1.7 ML Re and the cluster height (13.2  ± 2.3 Å) was much 

higher. When 1.7 ML Re was deposited on 2 ML Pt, the cluster height increased to 17.2  ± 

3.1 Å, and the cluster density decreased to 5.41 x 1012 cm-2 indicating the formation of 

bimetallic clusters. Even though we get bimetallic clusters are formed from both orders of 

deposition, evidently the surface morphology and the exposed area of metals at the surface 

are different in each case. 

Low energy ion scattering data was obtained on these surfaces and are presented in 

figure 6.7. The highest LEIS signal is observed for 1.7 ML Re + 2 ML Pt which was even 

greater than that of 2 ML Pt; this can be explained by the greater dispersion of Pt on smaller 

Re clusters therefore larger Pt surface area. 

 

Figure 6.7. Low energy ion scattering spectroscopy studies 

of different compositions of Pt-Re.  

 

1.7 ML Re shows the lowest signal intensity. The reason may be that the Re is very 

oxophillic and therefore reacts with titania upon room temperature deposition, resulting in 

encapsulation of Re by TiOx. The signal for 2 ML Pt + 1.7 ML Re is lower than that of the 

reverse order of deposition, partly because the surface area is smaller than for 1.7 ML Re 
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+ 2 ML Pt due to the lower cluster density. Futhermore, when the Re is deposited second, 

some amount of Re is probably still present on the surface at room temperature.  

Figure 6.8a shows XPS data of Ti (2p3/2) peak for 1.7 ML Re and 2 ML Pt on titania at 

room temperature. When 1.7 ML Re is deposited on titania, a shoulder at lower binding 

energy appears, which shows that Re reduces the support. In contrast, Pt deposition did not 

alter the Ti peak shape. Reduction of the titania by Re, support the fact that Re has strong 

metal support interactions. Furthermore, the LEIS data shown in figure 6.8b shows that 

titanium peak can never be fully removed by adding higher coverages of Re. This 

observation suggests that there is a layer of TixOy on the Re film which is also with the 

strong Re-titania interactions.  

For bimetallic clusters, XPS studies show mixing of Pt and Re, when Re is deposited on 

Pt seed clusters. Figure 9 shows the Re (4f) region and the Pt (4f) region for these high 

coverage Pt-Re surfaces. 

 

Figure 6.8. a) XPS data for Ti(2p3/2) peak fro TiO2 itself and Re and Pt clusters on TiO2 

and b) LEIS data for thick layers of Re on titania     
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The Pt (4f) peak shifts 0.5 eV to higher binding energies when Re has been deposited on 

Pt.  Binding energy shifts for different metal copositions and coverages are depicted in 

table 6.1. This shift cannot be attributed to the cluster size effect because that was not 

present in 2 ML Pt clusters. The shift is therefore assigned to the change the electronic 

structure in Pt due to the mixing of Re with Pt to make an alloy. The Re(4f) peak is already 

shifted to higher binding energies compared to its metallic position due to the reaction takes 

place between the Re and titania upon deposition. 

 

     Figure 6.9: XPS data for different compositions of Pt-Re. a) Re(4f), b) Pt(4f) 

The chemical activity of bimetallic clusters for lower coverages (0.24 ML total metal 

coverage) prepared via both orders of deposition was investigated by adsorbing CO at room 

temperature and observing CO desoprtion upon heating. CO TPD data is shown in figure 

6.10. CO does not adsorb on the clean titania surface during exposure at 300 K. On the 

pure Re clusters there are two distinct desorption peaks at 433 K and 918 K. The low-

temperature peak is the molecular desorption peak, whereas the higher temperature peak is 

the recombinant peak in which the dissociated C and O recombine to form a CO molecule. 

On the pure Pt clusters, there is one distinct peak at 420 K, which is attributed to the 

molecular desorption. The high-temperature shoulder that is at 500 K is attributed to the 

CO desorption from the step sites of Pt.37, 38 
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Figure 6.10: TPD data for CO adsorption 

on different compositions of Pt-Re  clusters 

on TiO2 

 

When the bimetallic clusters are formed via both orders of  deposition at lower coverages 

(0.24 ML total metal coverage) the molecular desorption peak appeared at 440 K. There 

was no shoulder to the right of the molecular CO desorption peak that is characteristic for 

the step sites on Pt.  Occupation of these sites by Re is a possible reason for the 

disappearance of the shoulder. The CO recombinant peak at high temperatures has not been 

observed on these bimetallic clusters. Strong Re-support interactions may be the cause of 

the lack of metallic Re for dissociation of the C-O bond. Specifically Re is a highly 

oxophilic metal, and therefore, Re-TiO2 interactions are expected. 
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Table 6.1: Binding energy data obtained from 

XPS for different compositions of Pt-Re 

prepared at room temperature 

 

 

 

Figure 6.11: TPD data for CO absorption on different compositions of Pt-Re 

clusters on titania as a function of  a) Pt coverage and b) Re coverage.  
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Mixing Re with the Pt clusters did not cause a significant difference in the absorption 

behavior of CO on Pt. However, Pt blocked the Re sites that dissociate the CO.  

Figure 6.11a show the CO TPD of different coverages of Pt with 0.11 ML Re. Pure 

Re (0.11 ML Re) shows two CO desorption peaks that correspond to the molecular 

deposition (low temperature) and CO recombinant peak (high temperature). Pure Pt (1 ML) 

still shows one molecular desorption peak with a shoulder at high temperatures 

corresponding to the molecular desorption of CO from step sites. When a small amount of 

Re was added to the Pt, high-temperature CO desorption peak disappears which indicates 

that Re has blocked the Pt step sites. When the amount of Pt is decreased by half, the 

amount of CO desorption was about 70% of that for 1 ML Pt peak.  In all other cases, the 

amount of CO deposition remained almost same on the pure 1 ML Pt.   

 Figure 11b shows the CO TPD data for 2 ML Pt and different coverages of Re. 

Only the molecular desorption peak was observed for pure Pt. A molecular desorption peak 

and a recombinant peak were observed for pure Re. When Re is added to Pt, molecular 

desorption at step sites on Pt disappears. When Pt is deposited on Re, the recombinant CO 

desorption peak disappears, which suggests that the Re sites are entirely covered by the Pt. 

When Re is deposited on Pt, both the molecular peak and the recombinant peaks are 

observed implying the availability of both Pt and Re on the surface, as also observed in 

LEIS experiments. The integrated intensity for the molecular desorption peak shows that 

the highest desorption yield of CO arises from the 2 ML Pt + 1.3 ML Re surface. Lowest 

from the 1.7 ML Re + 2 ML Pt surface. Desorption temperature of CO did not change 

significantly for the bimetallic system compared to their monometallic systems. 
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6.4 Discussion 

A comparison of the growth of Pt and Re shows that the dispersion of Re on titania is 

greater than the dispersion of Pt on titania.  Previous studies by our group have shown that 

the mobility and growth of metals on titania are determined by the affinity of the admetal 

for oxygen. Pt-O bond strength is lower than the Re-O bond strength and Re is known to 

be oxophillic in nature, therefore, the observation of high dispersion of Re on titania 

compared to Pt is expected. Metals with a high mobility, like Au, create 3D clusters on 

titania while metals with a low mobility, like Re, form 2D islands on titania. The height of 

0.11 ML Re, which is 2.92 ± 1.05 Å is close to the thickness of one atomic layer (2.4 Å). 

Therefore, growth of Re on titania is attributed to 2D growth of clusters in contrast to a 3D 

growth. This observation demonstrates the strong metal support interactions of Re with 

titania. Furthermore XPS analysis of the Ti(2p) peak after the deposition of Re also suggest 

that Re reacts with titania upon deposition at room temperature, and this behavior was not 

observed for metals such as Pt. Encapsulation of Re by tiatnia due to stromg metal support 

interactions was confirmed by the LEIS studies. Deposition of thick layers of Re on titania 

could not completely attenuate the Ti and O LEIS peaks, which suggests that TiOx atleast 

partially covere the Re clusters. It has also been suggested that ReOx diffuses into the titania 

lattice; temperature programmed reduction studies of Re/TiO2
31 report that +7 and +4 

oxidation states for Re in high loading of Re on titania but for low loading, they only found 

+4 states. In low loading of Re, only +4 oxidation state is observed due to atomic dispersion 

of Re in the titania lattice, which prvents it from going to +7. High dispersion of Re on the 

surface was also observed in our STM experiment. Furthermore, XPS data shows the 

reduction of Ti(2p) indicating a change in valency of Ti4+ that could be caused by diffusion 
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of Re into the titania lattice. The absenece of a recombinant CO peak in the TPD data for 

smaller coverages (0.11 ML Re) suggest an absence of therequsite sites or ensembles of 

Re atoms necessary for CO dissociation. This behavior could be a combination of 

encapsulation of Re by titania and diffusion of Re on titania lattice that leads to different 

valencies of Re. Strong metal support interactions that lead to encapsulation of metal 

clusters by a reducible supports have previously been observed at elevated temperatures 

and reducing conditions for other metals such as Pt and Co.32-34 

 Formation of bimetallic clusters has been achieved by depositing less mobile Re 

first followed by Pt for total metal coverage of 0.24 ML. When the more mobile Pt is 

deposited first followed by Re, a mixture of mono and bimetallic clusters was formed. 

Despite the fact that different order of Pt deposition results in different cluster densities 

and sizes, the overall surface compositions are similar. The surfaces are Pt rich for both 

orders of deposition. In contrast, for higher coverages where the total amount of metal has 

been fixed at 3.7 ML, both orders of deposition form bimetallic clusters. In both cases, the 

first deposition provides enough seed clusters for the nucleation of the second metal. 

However, the cluster density and size distribution are significantly different due to 

differences in the number of initial seed clusters. LEIS data shows that the Re+Pt is Pt rich 

where is Pt+Re has a mixture of Pt and Re on the surface. Pt rich surfaces for the bimetallic 

clusters are consistent with the lower surface free energy of Pt (2.5 J/m2) compared to Re 

(3.6 J/m2). Furthermore, strong interactions of Re with titania also another driving factor 

for the Re to diffuse to the support. It has also been shown that  alloys such as Pt75Re25 

form a core-shell structure with the Pt at the shell 35,36 
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When there is 0.22 ML Re on the surface,  a sufficient amount of Re is present, but for 

the  bimetallic clusters with total metal coveraage of 0.24 ML, the CO desorption profiles 

look similar to CO desorption from pure Pt clusters. Furthermore, the higher desorption 

peak that is characteristic of presncce of metallic Re was not observed. The CO desorption 

profile for high coverages of pure Re (1.7 ML) shows more metallic behavior compared to 

lower coverages. For pure 2 ML Pt, a molecular desorption peak was observed with a 

higher internsity compared to lower covareges. For all the compositions where Re is 

deposited second ( 2 ML Pt+ 1.7 ML Re, 2 ML Pt+1.3 ML Re, 2 ML Pt + 0.9 ML Re) the 

amount of the higher CO desorption peak at higher temperatures increased as the amount 

of Re is increased. This suggest that the amount of metallic Re present for the dissociation 

of C-O bond is proportional to the amount of Re deposited on the Pt. LEIS data also 

indicates that the surface composition is a mixture of Pt and Re. The yield of lower 

temperature CO desorption peak that correspond to the molecular desorption of CO is 

highest for bimetallic Pt-Re compositions compared to pure Pt or pure Re. A similar 

observation has been reported when Re is deposited on Pt(111), and has been attributed to 

the electronic interactions between Pt-Re.27 For the opposite order of deposition (1.7 ML 

Re + 2ML Pt), no C-O dissociation was observed. The molecular desorption peak also was 

smaller compared to other bimetallic compositions and as well as pure Pt. This obseravtion 

is contradictory to the LEIS data, in which the surface Pt is highest for 1.7 ML Re + 2 ML 

Pt, which in principle should give rise to higher CO desorption. For this composition, the 

molecular desorption from the step sites of Pt was also not observed. The structure of Pt 

on the Re/TiO2 could be different from the structure of Pt on TiO2 which leads to lower 

adsorption of CO at room temperature. 
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CO desorption from the step sites of pure Pt at higher desorption disappears when a 

small amount of Re is added to the Pt. This behavior can be explained by the blocking of 

step sites which has been shown for Pt-Au and Pt-Co as well.37,38 When 1 ML  Pt is added 

to 0.11 ML Re/TiO2, diffusion of  Re to step sites on the Pt seems unlikely given the fact 

that Re has very strong metal support interactions and higher surface free energy compared 

to Pt. Another explanation might be that the growth of Pt on Re/TiO2, could be different 

compared to the growth of Pt on TiO2. Re dispersion on the surface of the titania, lattice 

has also been suggested before. 31 Re is known to modify the oxide supports like alumina 

as well.39 When a supported metal on an oxide is prepared from an adsorbed precursor 

incorporating a noble metal bonded to an oxophilic metal such as Re, the result may be 

small noble metal clusters nested in a cluster of atoms of the oxophilic metal, which is 

oxidized and anchored to the support through metal-oxygen bonds.40,41 Therefore it is 

possible that Pt grows differently on the Re/TiO2. However, at this point the structure of 

the Pt on Re/TiO2 is not clear.  

Heating to elevated temperatures resulted in cluster sintering in both pure and bimetallic 

clusters. Lowest sintering is observed for pure Re from both STM and LEIS studies. This 

is partly because Re already has been partially encapsulated with titania and, therefore, 

both sinter resistant and extent of encapsulation at elevated temperatures is not that 

significant compared to room temperature. Sintering of bimetallic clusters shows similar 

behavior as their monometallic counterparts. Decrease in the LEIS signal is attributed to 

the cluster sintering and encapsulation. Deposition of Re on titania has reduced the titania 

surface whereas deposition of the same amount of Pt did not reduce the titania support, 

which suggest the encapsulation of Re by tiatnia at room temperature. At elevated 
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temperatures, strong metal support interactions are reported for Pt as well.32 It has been 

shown that Re prevents Pt from sintering on supports such as titania and carbon.15,21 This 

has also been observed in the system we studied because the initial amount of clusters is 

higher in the presence of Re, and therefore sintering is relatively low at higher temperatures 

compared to pure Pt. The improved dispersion of Pt on Re, which creates smaller clusters 

compared to pure Pt growth, is known to reduce the structure-sensitive reaction pathways 

that lead to poisoning of the Pt sites by carbonaceous species.26 Similarly it has been shown 

that the most active Pt-Re bimetallic clusters for water gas shift reaction are produced by 

sequential impregnation of Re followed by Pt.42 These observations can be explained by 

our STM studies, which shows that Pt is deposited on the Re results in a greater number of 

nucleation sites both at room tmperature and elevated temperatures. 

For low coverages, Pt-Re interactions were difficult to determine using XPS, due to 

cluster size effects. Pt-Re interactions were observed when 1.7 ML Re is deposited on 2 

ML Pt. When Pt is deposited second on Re, there were no Pt-Re interactions observed. 

When Re is deposited first, strong interactions between Re and the support prevent Pt-Re 

interactions. A study of Pt-Re catalyst is made by impregnation of metals on alumina, has 

also shown no Pt-Re interactions but a modification of the support due to strong Re-

alumina support interactions.43  Different catalytic pretreatment and preparation methods 

such as calcination, coimpregnation, successive impregnation reported that Pt-Re 

interactions.44,45 This was also observed in our system, when Re was deposited first, Re-Pt 

interactions were not observed due to the dominant Re-support interactions. 
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6.5 Conclusions 

 Re shows strong metal support interactions even at room temperature resulting in 

highly dispersed Re layers. Encapsulation of Re by TiOx was observed due to SMSI effects. 

Pt-Re bimetallic clusters were prepared by depositing less mobile Re first followed by 

deposition of Pt for sub monolayer coverages. The surface composition of the bimetallic 

clusters was Pt rich due to the lower surface free energy of Pt and oxophillic nature of Re. 

CO adsorption behavior of the bimetallic clusters resembled the activity of pure Pt. At 

higher coverages (3.7 ML total metal coverage) bimetallic clusters were formed by both 

orders of deposition. (Re on Pt and Pt on Re). When Re was deposited first it resulted in 

higher nucleation density for bimetallic clusters, and the surface 100% Pt, and the activity 

resembled that of pure Pt. When Pt was deposited first, the initial seed cluster density was 

low resulting in a lower density of bimetallic clusters which led to a lower surface area. In 

this order of deposition surface composition was a mixture of Pt and Re and the activity 

studies also suggested that both Pt and Re are active sites for the adsorption of CO. Pt-Re 

interactions were observed when Pt was deposited on titania followed by the deposition of 

Re.  
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Chapter 7. Platinum-Ruthenium bimetallic clusters on graphite: A 

comparison of vapor deposition and electroless deposition methods 
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7.1 Introduction 

 Electrochemical fuel cells have provided an attractive option for portable energy 

sources that do not rely on fossil fuels.1-3  In particular, direct methanol fuel cells (DMFCs) 

have garnered substantial attention due to their high energy density, ease of handling, low 

operation temperature, and lack of polluting emissions.1, 2, 4-10  A major challenge for the 

DMFC is the development of an anode catalyst for efficient electro-oxidation of methanol.  

Platinum catalysts have been used for the DMFC, and although Pt catalyzes the oxidation 

of methanol to CO2, the Pt active sites become poisoned by CO.1, 2, 6, 11-13  However, 

bimetallic catalysts such as Pt-Ru supported on carbon are reported to exhibit activity 

superior to Pt alone.1, 2, 6, 10, 12, 14,15 The origin of this resistance to poisoning has been 

explained by two well-established theories: the bifunctional mechanism and ligand effect.  

According to the bifunctional mechanism, the oxides of Ru provide sites for water 

dissociation to surface OH, which facilitates the oxidation of the intermediates of methanol 

decomposition that poison the active Pt sites.16-20  The ligand (electronic) effect proposes 

that electronic interactions between Pt and Ru lower the energy of the d band of Pt and 

cause CO to bind less strongly to Pt.15, 18, 21-25  In recent studies, the bifunctional mechanism 

is reported to play the dominant role, with the ligand effect providing a minor contribution 

to the reduced CO poisoning.9, 14, 20 

 The most active catalysts for methanol electro-oxidation are composed of highly 

dispersed, nanosized Pt-Ru particles deposited on a carbon support, but small variations in 

preparation conditions have a significant impact on activity.1, 12  Conventional 

impregnation methods have difficulty controlling the dispersion and surface compositions 

of the Pt-Ru catalysts.1, 2, 7, 26-29  Although colloidal and microemulsion preparation 
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methods are known to deposit highly dispersed, nanosized Pt-Ru clusters,28-35 these 

methods require complex preparation procedures and expensive starting materials, making 

them ill-suited for commercial scale up.1, 2, 28, 30  Therefore, practical preparation methods 

that produce active Pt-Ru catalysts are still being sought.  Monnier and coworkers have 

demonstrated that electroless deposition (ED) can be used to prepare well-dispersed, 

exclusively bimetallic clusters in which the two metals are well mixed.36-42 In this method, 

the secondary metal in the form of a metallic salt is selectively deposited from solution on 

the surface of the primary metal, which has been activated by a reducing agent, rather than 

on the catalyst support.37, 38, 43-45  Studies by Weidner and coworkers of methanol electro-

oxidation with Pt-Ru catalysts on carbon (XC-72) show that 50% Pt-50%Ru catalysts 

prepared by electroless deposition of Ru on commercial Pt/C have higher activity than the 

commercial bimetallic catalysts (E-TEK) of the same composition.46  This higher activity 

is attributed to better mixing of Pt and Ru on the atomic scale, given that the commercial 

Pt-Ru catalysts are known to be poorly mixed, with particles of pure Ru and pure Pt 

coexisting with bimetallic particles.47, 48 

 In this work, the nucleation and growth of vapor deposited Pt, Ru and Pt-Ru clusters 

on highly ordered pyrolytic graphite (HOPG) are investigated and compared with 

bimetallic cluster growth via electroless deposition.  Unlike vapor deposition, electroless 

deposition is a method that can be readily adapted for industrial catalyst preparation, given 

that electroplating has been used commercially for many years in the preparation of thin 

film coatings.43 HOPG provides an atomically flat, crystalline surface to serve as a model 

carbon support for well-characterized bimetallic Pt-Ru clusters, and HOPG is also 

sufficiently conductive for STM, XPS and LEIS studies.  Exclusively bimetallic clusters 
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can be grown by either deposition of Pt on Ru (Ru+Pt) or Ru on Pt (Pt+Ru), provided that 

the first metal generates a high enough cluster density to serve as nucleation sites for the 

second metal.  The HOPG surfaces are initially sputtered with Ar+ before metal deposition 

to introduce defects that serve as nucleation sites.  The surfaces of the bimetallic clusters 

are Pt-rich, regardless of the order of deposition, implying that the atoms readily diffuse 

within the clusters to achieve the lowest energy surface.  Electroless deposition of Pt on Ru 

seed clusters on HOPG resulted in the formation of bimetallic clusters.  Although 

electroless deposition of Ru on Pt was also achieved, trace Ag contamination in the 

Ru(NH3)6Cl3 salt caused the deposition of Ag in addition to Ru. 

7.2 Experimental 

 Surface characterization and preparation were carried out in an ultrahigh vacuum 

(UHV) chamber that has previously been described in detail.49-54  This chamber has a base 

pressure below 1 x 10-10 Torr and is equipped with a variable-temperature STM (Omicron 

VT-25), a hemispherical analyzer (Omicron EA125) for X-ray photoelectron spectroscopy 

and low energy ion scattering experiments, and a load lock chamber for rapid introduction 

of new samples. 

 The HOPG support was purchased from SPI supplies (10 mm x 10mm x 1 mm, SPI 

3).  The HOPG samples were mounted on a standard Omicron tantalum sample plate and 

heated via electron bombardment using a tungsten filament positioned behind the sample 

plate.55  Before each experiment, a clean surface was prepared by cleaving the surface with 

adhesive tape in air and reintroducing the sample into the UHV chamber.  Approximate 

temperatures were measured by a K-type thermocouple spot welded to the edge of the 

sample plate.  In order to create surfaces with more defects for metal nucleation, the HOPG 
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was sputtered with Ar+ -7 Torr 

for 30 seconds and 5 minutes.  For comparison, the more aggressive sputtering conditions 

used for cleaning TiO2(110) and Pt(111) surfaces are 1 kV, 3- -5x10-6 Torr for 

20 min.  Following sputtering, the HOPG surfaces were heated to 950-1000 K for 12 min 

to remove embedded Ar. 

 Metal deposition was achieved with an electron-beam evaporator (Oxford Applied 

Research, EGCO4) using a Ru bar (Good Fellow, 99.9%, 2 mm x 2 mm x 25 mm) or a Pt 

rod (ESPI, 99.99%, 2 mm diameter).  During deposition, a +800 V bias was applied to the 

surface in order to repel the positively charged metal ions that are known to create defect 

sites for metal nucleation on HOPG.56  Metal coverages were determined using an 

independently calibrated quartz crystal microbalance (Inficon, XTM-2),57 and one 

monolayer (ML) is defined as the packing density of Pt(111) (1.50 x 1015 atoms/cm2) or 

Ru(0001) (1.58 x 1015 atoms/cm2).  

 Procedures for the electroless deposition of Pt and Ru were adapted from previous 

experiments conducted on Pt and Ru catalysts supported on a powdered carbon support 

(XC-72).46  The general procedures for electroless deposition experiments have been 

described in detail elsewhere.36, 45, 58  Concentrations of the metals in ppm are calculated 

from the mass of the metal only divided by the total mass of the solution.  For the deposition 

of Pt on 0.43 ML Ru clusters on HOPG, the electroless deposition (ED) bath consisted of 

a 100 mL aqueous solution of 20-60 ppm Pt+2 (H2PtCl6, Sigma-Aldrich) with 

dimethylamine borane (DMAB, Sigma-Aldrich) as the reducing agent in a 5:1 molar ratio 

of DMAB:Pt+2.  The total deposition time in the Pt ED bath was 60 min, and an additional 

aliquot of DMAB was added after 30 min in order maintain the 5:1 molar ratio, assuming 
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that all of the initial DMAB was consumed at this time.  The temperature of the ED bath 

was maintained at either 40 or 70 C by immersion in a temperature-controlled water bath.  

The pH was fixed at 11.0 + 0.2 through the addition of 1-2 drops of 10 M NaOH, followed 

by 1 M HCl and 1 M NaOH for fine adjustment, if necessary.  The bath for the electroless 

deposition of Ru on 0.50 ML Pt clusters on HOPG was a 120 mL aqueous solution of 50 

ppm Ru+3 (Ru(NH3)6Cl3, Sigma-Aldrich) and formic acid (Fluka) as the reducing agent in 

a molar ratio of formic acid:Ru+3 of 10:1.  The total deposition time in the Ru ED bath was 

90 min, and additional aliquots of formic acid solution were added after 30 and 60 min to 

maintain the 10:1 molar ratio.  The temperature of the bath was set at 90 C, and a pH of 

3.5-4 was maintained through the addition of HCl and NaOH.  After removal of the HOPG 

sample from the ED bath, the surface was thoroughly washed with deionized water before 

transferring into the UHV chamber for surface analysis.  All aqueous solutions were 

prepared with deionized water, experiments were carried out in single-use polypropylene 

cups, and the ED baths were vigorously stirred during deposition. 

 STM experiments for clusters on HOPG were carried out with a constant tunneling 

current of 0.1-0.2 nA and a sample bias of +2-2.3 V with respect to the tip; the clean HOPG 

surface was imaged with a 0.8 nA tunneling current and +1.0 V bias.  STM tips consisted 

of 0.38 mm diameter tungsten wire that was electrochemically etched in NaOH and 

conditioned by voltage pulsing and sputtering with Ar+.51  Cluster heights are reported as 

a measure of cluster size since tip convolution effects are known to significantly 

overestimate diameters.51, 57, 59, 60  The average cluster heights and standard deviations were 

determined using an in-house program53, 61 that measured all clusters in a 100 x 100 nm2 

image.  For the following surfaces, 50 clusters were measured manually because the 
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program was unable to accurately assess the heights of clusters: 0.50 ML of Pt and 0.43 

ML of Ru on unmodified HOPG, 0.43 ML Ru+Pt ED (20, 50 ppm Pt+2). 

 LEIS experiments were carried out with a 600 eV He+ beam using a dwell time of 

0.2 s and step size of 0.2 s and a current to the sample of 25 A.  Exposure to the ion beam 

was minimized to prevent damage to the surface during the LEIS experiment.  XPS studies 

of 0.02 eV.  

7.3 Results 

 An STM image of the freshly cleaved HOPG surface shows that the surface consists 

of atomically flat terraces that are as wide as 1000 Å.  The terraces are separated steps of 

5-10 Å in height, which correspond ~1-3 atomic layers (Figure 7.1a).  When 0.25 ML of 

Pt is deposited on this freshly cleaved surface, three-dimensional clusters are formed with 

a cluster density of 0.12 x 1012 cm-2, and these clusters are preferentially found at the step 

edges, which are the preferred coordination sites (Figure 7.1b).  The average height for the 

clusters at the step edge is 33.0 + 3.7 Å while the larger clusters on the terraces have heights 

ranging from 40-50 Å.  Furthermore, it was difficult to collect high quality images due to 

the relatively strong interactions between the Pt clusters and the STM tip.   

These interactions are a consequence of the weak binding between Pt and the 

HOPG support,62 and the fact that the glitches often coincide with the appearance of fully 

or partially imaged Pt cluster on the terraces suggests that the clusters are picked up or 

dropped by the STM tip.  The presence of the majority of the Pt clusters at the steps implies 

that Pt atoms are mobile on the surface at room temperature and diffuse to the preferred 
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step sites; alternatively, it is possible that the STM tip sweeps the clusters across the 

terraces to the step edges. 

 

Figure 7.1: Scanning tunneling microscopy 

images of: a) a freshly cleaved HOPG surface; b) 

0.25 ML Pt on HOPG; c) modified HOPG (m-

HOPG) prepared by Ar+ sputtering for 30 s; and 

d) 0.25 ML Pt on m-HOPG.  All images are 4000 

Å x 4000 Å. 

 In order to systematically study nucleation and growth of bimetallic clusters via 

sequential deposition, a more uniform cluster density over the surface is desirable.  

Therefore, the HOPG surface was sputtered with Ar+ to intentionally create surface defects 

to serve as nucleation sites.  After sputtering at 500 eV for 30 s with a 0.1 A current to 

the sample, the resulting STM image of the clean HOPG shows that the surface has become 

more heterogeneous with defect sites appearing on the terraces (Figure 7.1c); this treatment 

creates the modified HOPG (m-HOPG) surface.  In contrast to growth on the unmodified 

surface, an STM image of 0.25 ML of Pt deposited on m-HOPG shows that the nucleation 
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density increases by a factor of ~20 (2.25 x 1012 cm-2), the average cluster height decreases 

to 14.6 ± 2.7 Å, and clusters are nucleated uniformly over the surface (Figure 7.1d).  

Average cluster heights and densities for various surfaces are summarized in Table 7.1.  

These results are consistent with previous studies reporting that Ar+ ion sputtering 

selectively creates nucleation sites for metals on HOPG.56, 63-68   

 A comparison of 0.25 ML and 0.50 ML of Pt on m-HOPG for smaller 1000 Å x 

1000 Å images is presented in Figures 2a and b.  The cluster density for 0.50 ML of Pt 

(2.68 x 1012 cm-2) is nearly the same as for 0.25 ML, but the average cluster height increases 

to 16.0 + 3.5 Å, implying that the additional Pt atoms contribute to larger cluster sizes 

rather than nucleating new clusters.  Therefore, it appears that almost all of the nucleation 

sites already are occupied by Pt clusters at a coverage of 0.25 ML.  When the HOPG 

support was sputtered for 5 min to create additional nucleation sites, the deposition of 0.50 

ML of Pt on this highly modified surface (hm-HOPG) resulted in the smallest clusters (11.3 

+ 2.7Å) with the highest nucleation density (6.69 x 1012 cm-2)  (Figure 7.2c). 

  Bimetallic Pt-Ru clusters are prepared by depositing 0.43 ML of Ru on the 0.50 ML Pt 

clusters (Pt+Ru) on m-HOPG.  A comparison of Figures 2b and 2d indicates that the 

addition of 0.43 ML of Ru caused a decrease in cluster density from 2.68 to 2.46 x 1012 

cm-2 due to cluster coalescence at the higher coverage, while the average cluster size 

increased from 16.0 + 3.5 Å to 22.8 + 6.0 Å.  Thus, exclusively bimetallic clusters are 

formed, given that the incoming Ru atoms nucleate at the existing Pt clusters instead of 

forming new clusters of pure Ru.  Histograms of the cluster heights for all of the clusters 

imaged over a 1000 Å ×1000 Å region on m-HOPG are presented in Figure B.1 (Appendix 

B).  These height distributions demonstrate that the cluster heights increase with increasing 
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coverage, and the addition of the second metal results in a shift in the size distribution 

toward higher values.   

 

Figure 7.2: Scanning tunneling microscopy 

images of: a) 0.25 ML Pt on m-HOPG (sputtered 

30 s); b) 0.50 ML Pt on m-HOPG; c) 0.50 ML Pt 

on hm-HOPG (sputtered 5 min); and d) 0.50 ML 

Pt + 0.43 ML Ru on m-HOPG.  All images are 

1000 Å x 1000 Å. 

 

The growth of pure Ru clusters on HOPG was also investigated in order to understand the 

formation of bimetallic clusters via the sequential deposition of Pt on Ru.  The deposition 

of 0.22 ML of Ru on the unmodified HOPG surface (Figure 7.3a,b) demonstrates that the 

relatively high mobility of the Ru atoms allows the Ru clusters to fill all of the sites at the 

step edges.  
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Table 7.1. Average cluster heights and cluster densities for metals on HOPG.  

All of the surfaces exposed to the Pt ED bath were heated to 130 C. 

Surface Av. Cluster 

Height (Å) 

Cluster Density 

(x1012/cm2) 

0.25 ML Pt/HOPG 33.0+3.7 0.12 

0.25 ML Pt/m-HOPG 14.6+2.7 2.25 

0.50 ML Pt/m-HOPG 16.0+3.5 2.68 

0.50 ML Pt/hm-HOPG 11.3+2.7 6.69 

0.50 ML Pt+0.43 ML Ru/m-HOPG 22.8+6.0 2.46 

0.22 ML Ru/HOPG 15.8+3.0 0.19 

0.22 ML Ru/m-HOPG 11.7+2.3 2.95 

0.43 ML Ru/m-HOPG 17.3+2.9 3.28 

0.43 ML Ru+0.50 ML Pt/m-HOPG 19.4+3.9 2.82 

0.43 ML Ru+0.50 ML Pt/m-HOPG, 

130 C 

22.5+4.7 1.36 

0.43 ML Ru+Pt ED (50 ppm Pt+2, 70 

C) 

34.5+10.9 1.66 

0.43 ML Ru+Pt ED (20 ppm Pt+2, 70 

C) 

24.0+5.9 1.95 

0.43 ML Ru+Pt ED (60 ppm Pt+2, 40 

C) 

22.8+4.6 1.53 

0.43 ML Ru+ED bath 40 C, no Pt+2 19.9+4.7 1.58 
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Figure 7.3: Scanning tunneling microscopy images of: 0.22 ML Ru on 

unmodified HOPG: a) 4000 Åx4000Å and b) 1000 Å x 1000 Å; c) 0.22 ML 

Ru on modified HOPG (30 s); d) 0.43 ML Ru on m-HOPG; and e) 0.43 ML 

Ru + 0.50 ML Pt on m-HOPG.  Images c-e are 1000 Å x1000 Å. 

 

However, two thirds of the clusters also reside on the terraces, in contrast to the behavior 

of Pt on unmodified HOPG;  this implies that the interaction of the metal clusters with 

HOPG is weaker in the case of Pt.  The average height of clusters on the terraces is 15.8 + 

3.0 Å while the density of all clusters is 0.19 x 1012 cm-2, which is 1.6 times higher than 

for Pt on HOPG.  In general, the clusters at the steps are slightly larger (18.7 + 2.0 Å) than 

at the terraces.  Furthermore, the Ru clusters do not have symmetrical shapes but instead 

exist as clusters of smaller particles.   

 After modifying the HOPG surface by sputtering for 30 s (m-HOPG), the 

deposition of 0.22 ML of Ru results in smaller clusters with an average height of 11.7 + 

2.3 Å and a higher cluster density of 2.95 x 1012 cm-2 (Table 7.1, Appendix B, Figure B.1).  
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Increasing the Ru coverage to 0.43 ML m-HOPG produces larger clusters (17.3 + 2.9 Å), 

while the cluster density increases by only ~10% compared to the 0.22 ML coverage (3.28 

x 1012 cm-2, Figure 7.3c).  Both these values are similar to those of 0.50 ML of Pt on m-

HOPG, with heights within 10% and cluster densities within 20%.  However, a comparison 

of the histograms (Appendix B Figure 7.1) indicates that there are more small clusters <10 

Å for Pt and more large clusters >20 Å for pure Ru, which makes the average cluster height 

for Ru higher despite the ~20% higher cluster density for Ru.  Another difference is that 

the Ru clusters have more distinctly facetted shapes than Pt, suggesting that the Pt atoms 

are more mobile within the clusters at room temperature than Ru, and therefore distinct 

surface facets are not observed for Pt.   

 After the deposition of 0.50 ML of Pt on the 0.43 ML Ru clusters (Ru+Pt), the 

cluster density decreases to 2.82 x 1012 cm-2 as a result of cluster coalescence, and the 

average cluster height increases to 19.4 + 3.9 Å (Figure 7.3e).  The larger cluster heights 

and lower cluster density imply that Pt atoms nucleate at Ru clusters to grow bimetallic 

clusters, rather than forming new nucleation sites for pure Pt clusters.  Notably, the cluster 

heights and densities are similar for the two bimetallic surfaces although the Pt+Ru surface 

has a larger average cluster height and lower density due to the initially higher cluster 

density for pure Ru compared to pure Pt. 

 LEIS experiments were carried out to evaluate the surface compositions of the 

Pt+Ru and Ru+Pt bimetallic clusters (Figure 7.4).  In order to calculate the surface 

compositions based on the integrated LEIS peaks, the relative sensitivity factors for Pt and 

Ru were determined by growing 5 ML Ru and 5 ML Pt films on a Pt foil substrate.   
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Figure 7.4. Low energy ion scattering 

data for the following clusters on m-

HOPG: a) 0.50 ML Pt+0.43 ML Ru; 

b) 0.50 ML Pt+0.43 ML Ru heated to 

130 °C for 3 min; c) 0.43ML Ru+0.50 

ML Pt;  and d) 0.43 ML Ru+0.50 ML 

Pt heated to 130 °C for 3 min. 

 

At this coverage, LEIS experiments showed that the Ru completely covers the Pt foil, given 

that no Pt signal is detected.  The sensitivity for detection of Pt was found to be 1.74 times 

greater than for Ru, assuming identical surface areas for the films.  The surfaces of 0.50 

ML Pt+0.43 ML Ru clusters were 80% Pt, whereas the 0.43 ML Ru+0.50 ML Pt clusters 

were 93% Pt.  Furthermore, when the clusters were heated to 130 °C for 3 min, the surface 

compositions increased to 98-99% Pt for both surfaces.  Thus, the bimetallic clusters are 

rich in Pt regardless of the order of deposition and reach ~100% Pt when the clusters are 

heated to achieve equilibrium.  These results are consistent with the higher surface free 

energy for Ru (~2.7 J/m2) compared to Pt (~2.2 J/m2), which favors Pt at the surface.69 
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 Figures 5 and 6 show STM and Pt(4f) XPS data for the electroless deposition of Pt 

on 0.43 ML Ru clusters on m-HOPG under various conditions (see experimental section 

for details).  No Pt deposition occurs when the freshly cleaved HOPG substrate itself is 

exposed to the Pt ED bath.  All of the surfaces exposed to the ED baths are heated to ~130 

°C for 3 min before STM and XPS analysis in order to remove surface contamination that 

prevents imaging by STM.  Since the metal clusters sinter significantly after heating to 130 

°C, the ED experiments are compared with vapor deposition experiments in which the 

surfaces have also been heated to 130 °C.  For example, when the vapor deposited 0.43 

ML Ru+0.50 ML Pt clusters are heated to 130 °C, a 50% decrease in cluster density is 

accompanied by an increase in cluster size (Appendix B. Figure 7.1, Table 7.1). 

In the first Pt ED experiment with 50 ppm Pt+2 at 70 C, the STM image 

demonstrates that the surface consists of large clusters with heights ranging from 15 to 65 

Å (34.5 ± 10.9 Å) and a cluster density of 1.66 x 1012 cm-2 (Figure 7.5a).  The Pt(4f) region 

in the XPS data for this surface confirms that Pt was deposited; based on a comparison of 

the Pt(4f) intensity with that of vapor deposited 0.43 ML Ru+0.50 ML Pt, the Pt coverage 

in the ED experiment is well over 0.5 ML (Figure 7.6).  Due to the high coverage of Pt, it 

is not possible to determine if Pt deposits selectivity on the Ru seed clusters. Therefore, in 

the second ED experiment, the Pt+2 concentration was decreased to 20 ppm, which resulted 

in a Pt coverage below 0.5 ML (Figure 7.6).  The STM image of this surface (Figure 7.5b) 

shows clusters with nonuniform heights ranging from 10 to 60 Å (24.0 ± 5.9 Å average 

height, cluster density of 1.95 x 1012 cm-2), and the surface is difficult to image without the 

tip crashing on the very large clusters.   
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Figure 7.5. Scanning tunneling microscopy 

images for 0.43 ML Ru on m-HOPG after: a) 

electroless deposition of Pt (50 ppm of Pt+2 at 70̊C);  

b) electroless deposition of Pt (20 ppm of Pt+2 at 

70̊C); c) electroless deposition of Pt (60 ppm of 

Pt+2 at 40 ̊C); and d) exposure to the same 

electroless deposition conditions in (c) without 

Pt+2.  All surfaces were heated to 130 °C for 3 min, 

and images are 1000 Å x 1000 Å. 

 

In the third ED experiment, the temperature was reduced to 40 C in order to decrease the 

rate of Pt deposition and promote more uniform cluster growth.  At a Pt+2 concentration of 

20 ppm, no Pt was detected by XPS, but a small amount of Pt was deposited from a 60 ppm 

Pt+2 solution at the same temperature (Figure 7.6); this coverage is estimated to be less than 

0.1 ML based on the integrated Pt intensity compared to that of the vapor-deposited 0.43 

ML Ru+0.50 ML Pt clusters. 
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Figure 7.6. X-ray photoelectron 

spectroscopy data for the Pt(4f) region 

for 0.43 ML Ru on m-HOPG after the 

following treatments: a) vapor 

deposition of  0.50 ML Pt; b) Pt 

electroless deposition (50 ppm, 70 °C); 

c) Pt electroless deposition (20 ppm, 

70 °C); and d) Pt electroless deposition 

(60 ppm, 40 °C).  All of the surfaces 

exposed to the ED baths (b-d) were 

annealed at 130 °C for 3 min.    

 

  An STM image of this surface shows clusters with an average height of 22.8 + 4.6 Å and 

a cluster density of 1.53 x 1012 cm-2 (Figure 7.5c).  In order to understand changes due to 

cluster sintering in the ED bath, 0.43 ML of Ru on m-HOPG was exposed to ED conditions 

in the absence of the Pt+2 salt.  XPS data from the resulting surface indicated that no Pt was 

deposited, and the Ru clusters had an average height of 19.9 + 4.7 Å with a cluster density 

of 1.58 x 1012 cm-2.  The nearly identical cluster densities and larger cluster sizes for the 

third Pt ED experiment compared to this surface demonstrate that bimetallic clusters are 

formed via selective deposition of Pt at the Ru seed clusters.   
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Figure 7.7. X-ray photoelectron spectroscopy data 

for the Ru(3d)/C(1s) region for 0.43 ML Ru on m-

HOPG after the following treatments: a) vapor 

deposition of 0.50 ML Pt; b) Pt electroless 

deposition (50 ppm, 70 °C); c) Pt electroless 

deposition (20 ppm, 70 °C); d) Pt electroless 

deposition (60 ppm, 40 °C); and e) 0.43 ML Ru 

exposed to ED bath in (d) without Pt+2.  All of the 

surfaces exposed to the ED baths (b-e) were 

annealed at 130 °C for 3 min.   

 

The cluster size distributions for these two surfaces confirm that there is a shift to larger 

sizes after ED of Pt (Appendix B, Figure B.1).  
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XPS data for the Ru(3d) region are presented in Figure 7, with the Ru(3d5/2) peak 

at 280 eV and the Ru(3d3/2) and C(1s) peaks contributing to the feature at ~284.3 eV.  For 

comparison to the ED experiments, the spectrum of vapor deposited 0.43 ML Ru+0.50 ML 

Pt appears at the bottom of the figure.  The Ru (3d5/2) peak is observed for all experiments, 

indicating that Ru remains on the surface in the ED process.  As expected, the intensity of 

the Ru(3d5/2) peak decreases with increasing Pt coverage and is attenuated to 40-60% of 

the intensity of vapor deposited 0.43 ML Ru clusters.  Notably, the 0.43 ML Ru clusters 

exposed to the ED bath without Pt+2 also exhibit a 40% decrease in Ru intensity compared 

to the freshly deposited 0.43 ML Ru clusters despite that fact that no Pt is deposited on the 

Ru clusters.  

 Electroless deposition of Ru on Pt seed clusters on hm-HOPG was carried out for 

0.50 ML Pt clusters in an ED bath consisting of 50 ppm Ru+3 and formic acid (formic 

acid:Ru+3=10:1) as the reducing agent at a pH of 3.5-4 and temperature of 90 C; the hm-

HOPG was used to create more nucleation sites for Ru deposition and ensure a detectable 

Ru XPS signal.  The appearance of a Ru(3d5/2) peak indicates that Ru was deposited on the 

surface, and the Pt(4f) spectrum after deposition shows that Pt remains on the surface after 

Ru ED (Figure 7.8).  However, Ag deposition is also detected by XPS, and inductively 

coupled plasma emission spectroscopy experiments confirm that there is trace Ag 

contamination in the Ru(NH3)6Cl3 solution.  Based on the relative XPS sensitivities for 

Ag(3d5/2) and Ru (3d5/2),
70 the amounts of Ag and Ru deposited are estimated to be roughly 

the same.   
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Figure 7.8. X-ray photoelectron 

spectroscopy data for the: a) 

Ru(3d)/C(1s); b) Pt(4f); and c) Ag(3d) 

regions for 0.50 ML Pt on hm-HOPG 

after exposure to the Ru ED bath.  The 

surface was annealed at 130 °C for 3 

min.   

  

LEIS experiments also establish the presence of Ag on the surface.  Despite the much 

higher concentration of Ru+3 in solution compared to Ag+, the greater reduction potential 

for Ag favors the deposition of Ag first, and the relatively small number of surface sites 

results in comparable coverages of Ru and Ag deposited.  Notably, Ag was not detected by 

XPS for the electroless deposition of Ru using the same Ru(NH3)6Cl3 on a commercial 
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Pt/C catalyst.46  This behavior is attributed to the greater number of active sites on the 

powdered carbon support, allowing extensive Ru deposition even after deposition of the 

Ag contaminant.  The use of Pt/C and Pt clusters/HOPG as sacrificial surfaces for the 

deposition of trace Ag contaminants before exposure to a second Pt/HOPG surface was 

unsuccessful, given that only Ag was deposited on the second Pt/HOPG surface.  

Furthermore, other attempts at Ru ED with different Ru salts were not successful because 

either Ru+n was unstable in solution under ED conditions (K2RuCl5, RuCl3, Ru(NH3)6Cl2), 

or the solution was too thermally stable for the reduction of Ru+n (K4Ru(CN)6).  The 

reduction of Ag+ contaminants from the Ru+3 solution was also attempted using a three-

electrode system with potentiostat control, with a Pt wire as the working electrode and a 

Hg/HgSO4 reference electrode.  Given that the standard reduction potential for Ag+ to Ag 

is 0.7 V greater than that of [Ru(NH3)6]
+3 to [Ru(NH3)6]

+2 , the working electrode was held 

at a potential close to the value corresponding to the standard potential for reduction of 

[Ru(NH3)6]
+3 to [Ru(NH3)6]

+2.   However, the Ru ED bath prepared from this reduced 

solution still resulted in the deposition of Ag. 

7.4 Discussion 

 On the unmodified HOPG surface, weak Pt substrate interactions result in high 

mobility of the Pt atoms and nearly exclusive nucleation of clusters at the step edges.  The 

small fraction of clusters appearing on the terraces is likely due to interactions between the 

STM tip and Pt clusters that cause cluster displacement.  Similarly, other studies of metal 

clusters such as Pt,62 Ru56 and Ag12, 71, 72 on freshly cleaved HOPG have also shown that 

weak cluster-support interactions coupled with stronger cluster-tip interactions lead to the 

tip-induced movement of the clusters on the surface.  In general, the mobility of metal 
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atoms on the unmodified HOPG surface is high at room temperature, and consequently the 

metal clusters are often found at the favored low-coordinated step sites.64 , 66, 72 , 73, 74  

However, Ru atoms interact more strongly with HOPG and have decreased mobility, as 

demonstrated by the higher fraction of Ru clusters found on the terraces and the 60% higher 

cluster density compared to Pt.  Furthermore, the Ru clusters exist on unmodified HOPG 

as aggregates of smaller particles, and the lack of coalescence of the smaller particles is 

attributed to different rotational orientations of the crystalline particles with respect to the 

surface, given that stacking faults preventing coalescence can be formed when particles of 

two different orientations grow together.  In fact, Ru is reported to grow epitaxially on 

modified HOPG surfaces with two different growth orientations.75  In both cases, the 

(0001) face of Ru is parallel to the graphite surface, but one orientation is the same as the 

graphite lattice whereas the other is rotated by 30.  The aggregates of particles are not 

observed on m-HOPG, where the Ru clusters have nearly facetted shaped.  However, the 

sizes of the clusters on m-HOPG are generally smaller than the uncoalesced particles on 

unmodified HOPG due to the shorter Ru diffusion lengths on the more defective m-HOPG. 

 The nucleation densities of Pt and Ru clusters on HOPG are controlled by creating 

nucleation sites via Ar+ ion sputtering.  For the same metal coverages, a more highly 

sputtered surface results in a higher cluster density as well as smaller cluster sizes, and the 

clusters have a relatively narrow size distribution.  Even after sputtering to introduce 

nucleation sites, the number of clusters for Ru is higher than for Pt, and this is attributed to 

the higher mobility of Pt atoms on the surface and weaker metal-HOPG interaction for Pt.  

Furthermore, the difference in cluster densities is greater on the unmodified surface; the 

Ru density is ~60% higher on the unmodified surface but only 20-30% higher on m-HOPG 
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for metal coverages of 0.22-0.43 ML.  Other literature studies also shown that metal 

particles with uniform size and spatial distributions are observed after defect sites have 

been intentionally introduced to the HOPG surface either by sputtering with an inert gas,56, 

63-68 or by sputtering followed by oxidation in air at temperatures above 500 C.12, 63, 71, 75   

 Bimetallic clusters are formed from sequential vapor deposition of Ru on Pt or Pt 

on Ru for 0.4-0.5 ML coverages of both metals on m-HOPG.  For bimetallic clusters 

growth on TiO2(110), our group has shown that exclusively bimetallic clusters can be 

grown when the less mobile metal is deposited first, followed by the more mobile metal.51-

53, 57, 76, 77  Moreover, it is also possible to form only bimetallic clusters through either order 

of sequential deposition as long as the number of nucleation sites formed during the 

deposition of the first metal exceeds the number of nucleation sites required during the 

deposition of the second metal.77  In the case of Pt and Ru on m-HOPG, a 0.4-0.5 ML 

coverage of either metal provides the requisite number of nucleation sites for the 0.4-0.5 

ML coverage of the second metal.  Furthermore, on m-HOPG the diffusion length is 

controlled primarily by the number of defect sites induced by sputtering rather than by the 

intrinsic mobility of the metals.  The surface compositions of the bimetallic clusters are 

close to 100% Pt after heating to 130 C, and this is consistent with predictions from bulk 

thermodynamics, given that Pt has a lower surface free energy than Ru (2.2 J/m2 vs. 2.7 

J/m2).69  At room temperature, the deposition of Ru on Pt results in cluster surfaces that are 

only 80% Pt because the atoms have insufficient energy to diffuse within the clusters and 

achieve the equilibrium surface compositions.  However, even at room temperature the 

diffusion of atoms within a cluster is facile enough to reach an 80% Pt surface composition 

for Ru deposited on Pt.  Although the cluster sizes and densities are similar for the Pt+Ru 
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and Ru+Pt surfaces, the Ru+Pt surface has a slightly smaller average cluster height (19.4 

+ 3.9 Å vs. 22.8 + 6.0 Å) and a 15% higher cluster density because the initial deposition of 

the Ru seed clusters provides more nucleation sites than the deposition of Pt seed clusters.  

Previous LEIS studies of Pt-Ru films on HOPG also report a strong tendency for surface 

segregation of Pt; deposition of 30 Å of Ru on 50 Å of Pt resulted in both Pt and Ru at the 

surface, whereas 30 Å of Pt on 50 Å of Ru resulted in a pure Pt surface.78  In addition, 

encapsulation of Ru and Pt by carbon from the support was observed for 50 Å films 

deposited on HOPG after heating to 700 C,79 but no such cluster encapsulation was 

observed at 130 C in this study. 

 Bimetallic Pt-Ru clusters are grown on m-HOPG using the technique of electroless 

deposition.  Specifically, Pt is deposited from solution onto Ru seed clusters supported on 

m-HOPG.  To our knowledge, this is the first instance in which bimetallic clusters have 

been grown by electroless deposition and characterized on an atomically flat model support 

such as graphite.  The bimetallic cluster densities are nearly identical to that of the 

monometallic seed clusters exposed to the ED without Pt+2 and heated to 130 C, while the 

average cluster heights increase, and the deposition of Pt is confirmed by XPS.  The amount 

of Pt deposited can be controlled by changing the Pt+2 concentration in the ED bath, and 

the rate of metal deposition can be decreased to form more uniformly-sized clusters by 

decreasing the temperature of the ED bath.  Although Ru deposition on Pt seed clusters 

could be achieved by electroless deposition, the presence of a Ag contaminant in the 

Ru(NH3)6Cl3 salt results in the codeposition of Ag.  It should also be noted that electroless 

deposition is extremely sensitive to trace contaminants of other metals, particularly if the 

reduction potential for the contaminant metal is significantly higher, as is the case for Ag 
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and Ru.  A Ag contamination level of only 2.5 x 10-5 g Ag/g Ru provides enough Ag atoms 

to completely cover the 0.50 ML Pt clusters on m-HOPG in the Ru+3 ED experiment 

because these model surfaces have a relatively small number of surface sites compared to 

conventional catalysts on powdered supports. Unlike cluster growth via vapor deposition 

in vacuum, the technique of electroless deposition is one that is suitable for commercial 

catalyst preparation, given that electroplating is already widely used in industry.  Thus, the 

ability to grow bimetallic clusters on model, atomically flat surfaces by electroless 

deposition allows the "materials gap" to be bridged between fundamental investigations of 

clusters grown on single-crystal support surfaces and studies of industrial catalysts. 

7.5 Conclusions 

 Bimetallic Pt-Ru clusters have been grown on HOPG via vapor deposition in UHV 

and electroless deposition in solution.  The first step in the growth of bimetallic clusters is 

the deposition of seed clusters of pure Ru or Pt, which serve as nucleation sites for the 

deposition of the second metal;  the higher mobility of Pt on HOPG compared to Ru is 

attributed to stronger metal-HOPG interactions for Ru.  The number of seed clusters on 

HOPG can be controlled by Ar+ sputtering, which creates defects that serve as nucleation 

sites.  For the same metal coverages, the cluster density increases with Ar+ sputtering time, 

and the average cluster height decreases.  Bimetallic clusters can be grown through 

sequential vapor deposition of either Pt on Ru (Ru+Pt) or Ru on Pt (Pt+Ru), provided that 

the initial deposition creates a sufficient number of seed clusters for the nucleation of the 

second metal.  Given the lower surface free energy of Pt compared to Ru, the fact that the 

resulting cluster surfaces are nearly 100% Pt after heating to 130 °C for both orders of 

deposition demonstrates that diffusion of metal atoms within the clusters occurs readily at 
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this temperature.  Electroless deposition of Pt on Ru seed clusters was achieved using PtCl6
-

2 with DMAB as a reducing agent, and STM images of the resulting surface indicate that 

the Pt deposition occurred only at the Ru seed clusters.  The electroless deposition of Ru 

on Pt seed clusters was also carried out from a solution of Ru(NH3)6Cl3 with formic acid 

as a reducing agent, but Ag contamination in the Ru salt resulted in the deposition of Ag 

as well as Ru. 

 

7.6 References 

1. H. S. Liu, C. J. Song, L. Zhang, J. J. Zhang, H. J. Wang and D. P. Wilkinson, J. 

Power Sources, 2006, 155, 95. 

2. A. S. Arico, S. Srinivasan and V. Antonucci, Fuel Cells, 2001, 1, 133. 

3. A. K. Shukla, A. S. Arico and V. Antonucci, Renew. Sust. Energ. Rev., 2001, 5, 

137. 

4. N. M. Markovic and P. N. Ross, Electrochim. Acta, 2000, 45, 4101. 

5. R. Dillon, S. Srinivasan, A. S. Arico and V. Antonucci, J. Power Sources, 2004, 

127, 112. 

6. J. M. Leger, S. Rousseau, C. Coutanceau, F. Hahn and C. Lamy, Electrochim. Acta, 

2005, 50, 5118. 

7. E. Antolini, Mater. Chem. Phys., 2003, 78, 563. 

8. B. D. McNicol, D. A. J. Rand and K. R. Williams, J. Power Sources, 1999, 83, 15. 

9. S. Wasmus and A. Kuver, J. Electroanal. Chem., 1999, 461, 14. 



 

220 

 

10. C. Lamy, J. M. Leger and S. Srinivasan, in Modern Aspects of Electrochemistry, 

eds. O. M. Bockris, B. E. Conway and R. E. White, Plenum Press, New York, 2000, vol. 

34, pp. 53. 

11. R. Parsons and T. Vandernoot, J. Electroanal. Chem., 1988, 257, 9. 

12. C. Roth, A. J. Papworth, I. Hussain, R. J. Nichols and D. J. Schiffrin, J. Electroanal. 

Chem., 2005, 581, 79. 

13. A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J. M. Leger and C. Lamy, J. 

Electroanal.  Chem., 1998, 444, 41. 

14. T. Frelink, W. Visscher and J. A. R. Vanveen, Surf. Sci., 1995, 335, 353. 

15. K. Sasaki, J. X. Wang, M. Balasubramanian, J. McBreen, F. Uribe and R. R. Adzic, 

Electrochim. Acta, 2004, 49, 3873. 

16. M. Watanabe and S. Motoo, J. Electroanal. Chem., 1975, 60, 267. 

17. S. L. Gojkovic, T. R. Vidakovic and D. R. Durovic, Electrochim. Acta, 2003, 48, 

3607. 

18. P. Waszczuk, G. Q. Lu, A. Wieckowski, C. Lu, C. Rice and R. I. Masel, 

Electrochim. Acta, 2002, 47, 3637. 

19. N. M. Markovic, H. A. Gasteiger, P. N. Ross, X. D. Jiang, I. Villegas and M. J. 

Weaver, Electrochim. Acta, 1995, 40, 91. 

20. C. Lu and R. I. Masel, J. Phys. Chem. B, 2001, 105, 9793. 

21. P. Liu and J. K. Norskov, Fuel Cells, 2001, 1, 192. 



 

221 

 

22. F. B. de Mongeot, M. Scherer, B. Gleich, E. Kopatzki and R. J. Behm, Surf. Sci., 

1998, 411, 249. 

23. H. Igarashi, T. Fujino, Y. M. Zhu, H. Uchida and M. Watanabe, Phys. Chem. Chem. 

Phys., 2001, 3, 306. 

24. E. Christoffersen, P. Liu, A. Ruban, H. L. Skriver and J. K. Norskov, J. Catal., 

2001, 199, 123. 

25. H. Rauscher, T. Hager, T. Diemant, H. Hoster, F. B. De Mongeot and R. J. Behm, 

Surf. Sci., 2007, 601, 4608. 

26. J. H. Sinfelt, Bimetallic Catalysts.  Discoveries, Concepts, and Applications, John 

Wiley and Sons, New York, 1983. 

27. M. Gotz and H. Wendt, Electrochim. Acta, 1998, 43, 3637. 

28. Z. L. Liu, X. Y. Ling, X. D. Su and J. Y. Lee, J. Phys. Chem. B, 2004, 108, 8234. 

29. T. J. Schmidt, M. Noeske, H. A. Gasteiger, R. J. Behm, P. Britz and H. Bonnemann, 

J. Electrochem. Soc., 1998, 145, 925. 

30. Z. L. Liu, J. Y. Lee, M. Han, W. X. Chen and L. M. Gan, J. Mat. Chem., 2002, 12, 

2453. 

31. Z. L. Liu, J. Y. Lee, W. X. Chen, M. Han and L. M. Gan, Langmuir, 2004, 20, 181. 

32. H. Bonnemann, R. Brinkmann, P. Britz, U. Endruschat, R. Mortel, U. A. Paulus, 

G. J. Feldmeyer, T. J. Schmidt, H. A. Gasteiger and R. J. Behm, J. of New Mat. for 

Electrochem. Sys., 2000, 3, 199. 



 

222 

 

33. W. Vogel, P. Britz, H. Bonnemann, J. Rothe and J. Hormes, J. Phys. Chem. B, 

1997, 101, 11029. 

34. D. R. M. Godoi, J. Perez and H. M. Villullas, J. Electrochem. Soc., 2007, 154, 

B474. 

35. J. F. Anderson, M. Kuhn, U. Diebold, K. Shaw, P. Stoyanov and D. Lind, Physical 

Review B-Condensed Matter, 1997, 56, 9902. 

36. K. D. Beard, M. T. Schaal, J. W. Van Zee and J. R. Monnier, Appl. Catal. B, 2007, 

72, 262. 

37. M. T. Schaal, A. C. Pickerell, C. T. Williams and J. R. Monnier, J. Catal., 2008, 

254, 131. 

38. K. D. Beard, J. W. Van Zee and J. R. Monnier, Appl. Catal. B, 2009, 88, 185. 

39. M. Ohashi, K. D. Beard, S. Ma, D. A. Blom, J. St-Pierre, J. W. Van Zee and J. R. 

Monnier, Electrochim. Acta, 2010, 55, 7376. 

40. J. Rebelli, A. A. Rodriguez, S. Ma, C. T. Williams and J. R. Monnier, Catal. Today, 

2011, 160, 170. 

41. J. Rebelli, M. Detwiler, S. G. Ma, C. T. Williams and J. R. Monnier, J. Catal., 2010, 

270, 224. 

42. Y.-J. Song, J. R. Monnier, P. T. Fanson and C. T. Williams, J. Catal., 2014, 315, 

59. 

43. S. S. Djokic, in Modern Aspects of Electrochemistry, eds. B. E. Conway and R. E. 

White, Springer, New York, NY, 2002, vol. 35, pp. 51. 



 

223 

 

44. K. D. Beard, D. Borelli, A. M. Cramer, D. Blom, J. W. Van Zee and J. R. Monnier, 

ACS Nano, 2009, 3, 2841. 

45. M. T. Schaal, A. Y. Metcalf, J. H. Montoya, J. P. Wilkinson, C. C. Stork, C. T. 

Williams and J. R. Monnier, Catal. Today, 2007, 123, 142. 

46. T. R. Garrick, W. Diao, J. M. Tengco, J. R. Monnier and J. W. Weidner, ECS 

Trans., 2013, 53, 79. 

47. B. L. Garcia, B. Captain, R. D. Adams, A. B. Hungria, P. A. Midgley, S. J. M. 

Thomas and J. W. Weidner, J. Clust. Sci., 2007, 18, 121. 

48. P. G. Corradini, F. I. Pires, V. A. Paganin, J. Perez and E. Antolini, J. Nanopart. 

Res., 2012, 14, 1080. 

49. J. B. Park, J. S. Ratliff, S. Ma and D. A. Chen, J. Phys. Chem. C, 2007, 111, 2165. 

50. J. Zhou, S. Ma, Y. C. Kang and D. A. Chen, J. Phys. Chem. B, 2004, 108, 11633. 

51. J. B. Park, S. F. Conner and D. A. Chen, J. Phys. Chem. C, 2008, 112, 5490. 

52. S. A. Tenney, J. S. Ratliff, W. He, C. C. Roberts, S. C. Ammal, A. Heyden and D. 

A. Chen, J. Phys. Chem. C, 2010, 114, 21652. 

53. S. A. Tenney, W. He, C. C. Roberts, J. S. Ratliff, S. I. Shah, G. S. Shafai, V. 

Turkowski, T. S. Rahman and D. A. Chen, J. Phys. Chem. C, 2011, 115, 11112. 

54. S. A. Tenney, B. A. Cagg, M. S. Levine, W. He, K. Manandhar and D. A. Chen, 

Surf. Sci., 2012, 606, 1233. 



 

224 

 

55. A. Illingworth, J. Zhou, O. Ozturk and D. A. Chen, J. Vac. Sci. Technol. B, 2004, 

22, 2552. 

56. R. M. Nielsen, S. Murphy, C. Strebel, M. Johansson, J. H. Nielsen and I. 

Chorkendorff, Surf. Sci., 2009, 603, 3420. 

57. R. P. Galhenage, S. C. Ammal, H. Yan, A. Duke, S. A. Tenney, A. Heyden and D. 

A. Chen, J. Phys. Chem. C, 2012, 116, 24616. 

58. M. T. Schaal, Ph. D. Thesis, University of South Carolina, 2009. 

59. D. A. Chen, M. C. Bartelt, K. F. McCarty and R. Q. Hwang, Surf. Sci., 2000, 450, 

78. 

60. S. Stempel, M. Bäumer and H. J. Freund, Surf. Sci., 1998, 404, 424. 

61. J. S. Ratliff, Ph.D. Thesis, University of South Carolina, 2009. 

62. F. Atamny and A. Baiker, Appl. Catal. A, 1998, 173, 201. 

63. L. L. Wang, X. C. Ma, Y. Qi, P. Jiang, J. F. Jia, Q. K. Xue, J. Jiao and X. H. Bao, 

Ultramicroscopy, 2005, 105, 1. 

64. A. R. Howells, L. Hung, G. S. Chottiner and D. A. Scherson, Solid State Ionics, 

2002, 150, 53. 

65. K. A. Friedrich, F. Henglein, U. Stimming and W. Unkauf, Electrochim. Acta, 

2000, 45, 3283. 

66. A. V. Kalinkin, A. M. Sorokin, M. Y. Smirnov and V. I. Bukhtiyarov, Kinet. Catal., 

2014, 55, 354. 



 

225 

 

67. Y. X. Yao, Q. Fu, Z. Zhang, H. Zhang, T. Ma, D. Tan and X. H. Bao, Appl. Surf. 

Sci., 2008, 254, 3808. 

68. I. N. Kholmanov, L. Gavioli, M. Fanetti, M. Casella, C. Cepek, C. Mattevi and M. 

Sancrotti, Surf. Sci., 2007, 601, 188. 

69. W. R. Tyson and W. A. Miller, Surf. Sci., 1977, 62, 267. 

70. C. D. Wagner, W. M. Riggs, L. E. Davis and J. F. Moulder, Handbook of X-Ray 

Photoelectron Spectroscopy, Perkin Elmer Corporation, Eden Prairie, MN, 1978. 

71. H. Zhang, Q. Fu, Y. X. Yao, Z. Zhang, T. Ma, D. L. Tan and X. H. Bao, Langmuir, 

2008, 24, 10874. 

72. I. Lopez-Salido, D. C. Lim and Y. D. Kim, Surf. Sci., 2005, 588, 6. 

73. J. Z. Gao and Q. M. Guo, Appl. Surf. Sci., 2012, 258, 5412. 

74. K. A. Wepasnick, X. Li, T. Mangler, S. Noessner, C. Wolke, M. Grossmann, G. 

Gantefoer, D. H. Fairbrother and K. H. Bowen, J. Phys. Chem. C, 2011, 115, 12299. 

75. Z. Song, T. H. Cai, J. C. Hanson, J. A. Rodriguez and J. Hrbek, J. Am. Chem. Soc., 

2004, 126, 8576. 

76. J. B. Park, J. S. Ratliff, S. Ma and D. A. Chen, Surf. Sci., 2006, 600, 2913. 

77. R. P. Galhenage, H. Yan, A. S. Ahsen, O. Ozturk and D. A. Chen, J. Phys. Chem. 

C, 2014, 118, 17773. 

78. E. M. Fiordaliso, S. Dahl and I. Chorkendorff, J. Phys. Chem. C, 2011, 115, 25351. 

79. A. Guttler, T. Zecho and J. Kuppers, Surf. Sci., 2004, 570, 218. 



 

226 

 

 

 

Chapter 8. Adsorbate-induced changes in MoS2 clusters on TiO2(110) 
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8.1 Introduction 

Layered structures of MoS2 have been investigated in recent years for their 

applications in sulfur removal catalysts and photocatalysts.1-4 MoS2 nanoclusters are 

known to show different electronic and geometric structures compared to the bulk MoS2 in 

the reactivity.5 Furthermore, it has also been shown that these structures are active in 

electrocatalytic water splitting.6,7 Besenbacher and co-workers have done a tremendous 

amount of research investigating MoS2 layered structures on model supports such as gold 

and titania to inquire into their fundamental structure and activity towards 

hydrodesulfurization (HDS) reactions.4,5,8-19 They have investigated the HDS reaction in 

the context of the metallic edge present in the MoS2 structures. MoS2 nanostructures also 

serve as model systems to obtain an atomic level understanding of the reaction mechanisms 

which take place at the edges of the more complex MoS2 structures explained above.9 

Interactions between thiophene and hydrogen with MoS2, supported on Au(111), have been 

investigated using high-resolution STM.5 This study shows that the thiophene reacts on 

fully sulfided edges, known as brim sites, which exhibit metallic character. DFT studies 

have identified two metallic states on MoS2 structures that act as reactive sites.12,20 This 1-

D metallic brim site is known to play a major role in facilitating the HDS reaction.10 These 

edge structures that aid reactions are known to be affected by the support.18 Besenbacher 

and his co-workers have successfully synthesized MoS2 on TiO2  in order to understand the 

support effect.18 The structure of TiO2  has a significant effect on the shape of the supported 

MoS2 clusters. Furthermore, they found that strong support interactions arise due to a 

chemical linkage between the MoS2 structure and the oxide support. Different oxide 

supports such as alumina and titania show differences in activity towards the HDS reaction 
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that suggest that the support has an effect on the reactivity.18 Reactions such as 

hydrodeoxygenation and hydrodenitrogenation are reactions that could behave similarly to 

the HDS reaction. The MoS2 system is also known to have activity towards the water gas 

shift reaction21 and in the formation of alcohols.22,23 Studying these model systems serves 

to aid in understanding the fundamental aspects of the surface and to help in the rational 

design of catalysts.    

Although there have been studies done on the synthesis and characterization of 

MoS2 nanoparticles on titania, the stability of these structures has not been studied. The 

objective of this study is to investigate the stability of MoS2 nano structures on titania as a 

function of temperature and as a function of reactant gases. We prepared a model surface 

that consisting of MoS2 nano structures on titania to investigate the stability of MoS2 at 

high temperatures, and the results show that MoS2 clusters are extremely stable under these 

conditions. Furthermore, we have investigated these clusters under reactant molecules such 

as D2, CO, CH3OH, H2O and O2.  Our results show that MoS2 structures are extremely 

stable under mildly oxidizing or reducing conditions, such as in the presence of oxygen or 

hydrogen, but they disintigrate under extremely oxidizing conditions.  

8.2 Experimental section 

All experiments were carried out in a UHV chamber where the base pressure is kept 

lower than 5 × 10-11 Torr. This chamber is assembled to perform variable temperature STM 

(Scanning Tunneling Microscopy), a hemispherical analyzer for LEIS (Low Energy Ion 

Scattering Spectroscopy) and XPS ( X-ray Photoelectron Spectroscopy) and a LEED (Low 

Energy Electron Diffraction)/AES (Auger Electron Spectroscopy) system.  
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A rutile titania(110) single crystal (Princeton Scientific Corporation) was used as 

the substrate to prepare MoS2. The crystal was mounted on a Ta back plate and cleaned by 

several cycles of ion sputtering with Ar+ at 1 kV for 20 minutes with 3.2 uA current to the 

sample and subsequent annealing at 1030 K for 3 minutes. Heating the crystal was done by 

electron bombardment of the Ta back plate. This cleaning process drives lattice oxygen out 

of the bulk, making the crystal an n-type semiconductor, which allows the use of STM and 

other electronic and ion based microscopies and spectroscopies. Cleanliness and the order 

of the surface have been confirmed by STM, XPS, LEIS and LEED.  

Evaporation of Mo onto the rutile TiO2 (110) crystal was carried out either from an 

Omicron doser (Omicron Nanotechnology, EFM 3) or from an Oxford doser (Oxford 

Applied Research, EGCO4) where Mo rods of diameters 0.0625” (ESPI, 3N8 purity) and 

0.080”(ESPI, 3N8 purity) were mounted, respectively. The rods were heated using electron 

bombardment by tungsten filaments. The MoS2 surface was prepared by evaporating Mo 

onto the titania surface, which was kept at a temperature of 400 K – 500 K while in an 

atmosphere of 5 x 10-6 torr H2S. This surface was then annealed at 950 K for 15 mins in 

the same sulfiding atmosphere. The preparation of MoS2 on titania was done according a 

previously established method.18 The MoS2 surface was then exposed to different gases 

(CO, H2O, D2, CH3OH and O2) at pressures of ~10-7 Torr - 250 Torr to study the effects of 

different molecules on the morphology and the chemical state of MoS2. 

STM experiments were carried out to investigate the surface morphology of the 

MoS2 clusters. Constant tunneling current mode was used, and the tunneling current was 

in the range of 0.3 nA – 0.32 nA. The sample was positively biased at 1.2 eV with respect 

to the tip. Tips were made from 0.38 mm tungsten wire that was electrochemically etched 
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and sputtered with Ar+ at 3 kV and 8 uA ion current. Widths, lengths and the heights of 

fifty clusters from each image were analyzed.  

XPS experiments were carried out to understand the chemical nature of MoS2 

clusters on rutile TiO2(110). In all experiments, Al Kα X-rays were used at 15 kV, ~20 mA 

emission. XPS spectra were collected for the Ti(2p) region (450 eV- 471 eV), Mo(3d) 

region (220 eV-240 eV) and S(2p) region (153 eV-173 eV). Since the sample was mounted 

on a Ta support, the Ta(4d) region ( 210 eV- 230 eV) was subtracted from Mo(3d) region 

using the spectra acquired on the clean titania sample. For all XPS experiments, the dwell 

time was 0.2 s, and the step size was 0.02 eV. The cluster analysis was done using XPM 

pro 2.0. XPS of a MoS2 single crystal (SPI supplies, 100% natural, 99% purity) was done 

to compare with the supported clusters. The preparation of the MoS2 single crystal was 

done by cleaving the first couple of layers by using adhesive tape. 

Temperature Programmed Desorption (TPD) studies were done in order to 

understand the active sites of prepared MoS2 nano structures. The surfaces were exposed 

to CO (National Welders, 99.99%) via a stainless steel directed dosing tube. CO was used 

as received. During CO exposure, the sample temperature was held at 300 K, and a 

saturation exposure of CO was achieved by leaking in CO at a pressure rise of 3.0 × 10−10 

Torr for 3 min. In TPD experiments, the crystal was heated at a constant rate of 2 K/s in 

front of the mass spectrometer. The crystal was positioned ∼2 mm in front of a 4 mm 

diameter hole cut in the shroud of the mass spectrometer in order to prevent detection of 

products desorbing from the sample holder. The crystal was biased at −100 V during TPD 

experiments to avoid damage from the electrons emitted by the mass spectrometer filament. 



 

231 

 

Nine masses were collected in a typical TPD experiment; and 40 mass channels were 

monitored in a single experiment to check for additional products. 

8.3 Results  

Preparation of MoS2 was done according to the procedure developed by Kibsgaard 

et al.18 They have done atom resolved STM to image the supported nanoclusters, and found 

the interatomic spacing of perfectly crystalline basal plane to be 3.15 Å, which agrees with 

the interatomic spacing of bulk MoS2(0001) facet. Figure 8.1 shows the growth of Mo and 

MoS2 on titania. Mo on titania was prepared exactly the same way as MoS2 was prepared 

except for the H2S environment that was present in the preparation of MoS2.  

 

Figure 8.1 STM images of a) 0.1 ML Mo on titania deposited 

at 400 K and subsequently annealed to 950 K for 15 minutes , 

b)  0.1 ML MoS2: prepared by depositing 0.1 ML Mo on titania 

at 400 K  in 5 x 10-6 Torr H2S and subsequently annealed to 

950 K for 15 minutes in the same H2S environment. All images 

are  100 nm x 100 nm. 

 

Pure Mo formed small, round-shaped clusters (0.5 ± 0.1 nm in height, 2.9 ± 0.4 nm in 

width) while the MoS2 clusters formed rectangular-shaped clusters that have an average 

height of 0.7 ± 0.1 nm, an average length of 5.6 ± 0.9 nm and an average width of 2.3 ± 



 

232 

 

0.4 nm.  In Figure 8.2, the size distribution of clusters is shown in histograms. Figure 8.2a 

displays the length distribution of 50 clusters selected from Figure 8.1b. These elongated 

structures are understood to be single layer high MoS2 clusters by atom resolved STM.18 

The clusters show a bimodal distribution around 5 nm and 6 nm. The average width (2.3 

nm) and height (0.6 nm) are comparable to what is reported in the literature (3.3 nm and 

0.5 nm, respectively).18 The small differences in the size distribution of MoS2 clusters 

compared to the values declared in the literature could be due to the slight differences in 

heating and the sulfiding environment. 

 

Figure 8.2.  Histograms for length, width and height of clusters in Figure 

1b (0.1 ML MoS2) in nanometers.  

 

Kibsgaard et al. have showed that a 50 K difference in heating could generate slightly 

different size distributions.18 There were features which were more round in shape which 

can attributed MoSx, which were not completely sulfided to form elongated MoS2 

structures. MoS2 clusters have been heated to different temperatures to understand the 

stability at elevated temperatures. STM images of 0.1 ML MoS2 after heating to 400 K, 

600 K and 800 K are shown in Figure 8.3. Table 8.1 represents the cluster analysis on the 
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Table 8.1. Cluster size analysis of MoS2 on titania at different temperatures  

 

STM images collected on MoS2 at different temperatures. Changes in the average cluster 

height, length, and width are compared to the room temperature measurements. The 

changes in the height and width of MoS2 clusters are within 10% of the values at room 

temperature, and the changes in the average length are within 15%, which suggests that 

MoS2 structures on titania are stable at higher temperatures. MoS2 clusters were then 

exposed to different probe molecules to understand the stability of the structure in the 

presence of various reactant molecules. The probe molecules used in this experiment were 

D2, H2O, CH3OH, O2 and CO. STM images of the surfaces that were exposed to different 

gas molecules at a pressure at 1 x 10 -7 Torr are shown in Figure 8.4. 

An analysis of cluster sizes of these images is depicted in Table 8.2. Changes in the 

cluster height of the MoS2 structures after exposure to gases are within 10% of the 

characteristic MoS2 height except for the surface expose to D2 where a change of 23% was 

observed. The length also did not change substantially and was within 10% with the 

exception of the surface to H2O where we could not grow longer clusters in the initial 

synthesis of MoS2. 
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Figure 8.3. STM images of a) 0.1 ML MoS2, heated to b) 400 

K, c) 600 K and d) 800 K. All images are 100 nm x 100 nm. 

   

The width of the clusters increased approximately 20% when the surfaces were exposed to 

H2O and methanol; whereas, the change was within 5% for other gas molecules. When the 

pressure of the reactant molecules was increased to 10 Torr, for H2O, methanol and O2, the 

increase in width was about 20% while the height remained almost constant. STM images 

for the exposures at 10 Torr are shown in Figure 5. Long MoS2 structures remained after 

the exposure to methanol, but after exposing to H2O and O2 longer structures were rarely 

found on the surface. STM images collected after exposing the MoS2 structures to O2 at 

250 Torr for 2.5 hours and to air for 2.5 hours are shown in Figure 8.6. Under these more 

extensive oxidizing conditions, the MoS2 structures were destroyed. 
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Table 8.2. Cluster size analysis of MoS2 which was exposed to different gases at a pressure 

1 x 10 -7 Torr 

 

 

Figure 8.4. STM images of, A 0.1 ML MoS2 was exposed to different gas 

molecules at 1 x 10-7
  Torr for 5 min a) D2, b) CO, c) CH3OH, d) H2O, e) O2.  

All images are 100 nm x 100 nm. 

 

XPS data for the Mo(3d) region for Mo/TiO2, MoS2/TiO2, and MoS2 single crystal 

are shown in Figure 8.7.  The Mo (3d5/2) peak for Mo clusters appeared at 228.3 eV. This 

value is shifted by +0.6 eV from the metallic position given in standard XPS data books. 

The shift in the oxidation state could either be a factor of the cluster size effect or the 

oxidation of Mo by lattice oxygen in titania. Oxidation of Mo is supported by the reduction 

of Ti substrate as shown in Figure 8.8.  
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Figure 8.5. STM: A 0.13 ML coverage of MoS2 surface was exposed to 

different gas molecules at 10 Torr for 2.5 hours a) CH3OH  b) H2O, c) O2. All 

images are 100 nm x100 nm. 

 

 

Figure 8.6. STM: A 0.1 ML coverage of MoS2 was exposed to 

a) O2 at 250 Torr for 2.5 hours and b) Air for 2.5 hours. All 

images are 100 nm x 100 nm. 

 

A comparison of XPS data of Ti(2p3/2), for clean titania, Mo/titania, and MoS2/Titania, is 

illustrated in Figure 8.8. The shoulder at lower binding energy, shows the reduction of 

titania upon deposition of Mo. This observation support the oxidation of Mo clusters upon 

deposition. Mo(3d) peak for the supported MoS2 clusters appeared at 228.0 eV. 
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Figure 8.7. Comparison of the Mo(3d) peak of 

Mo, MoS2 and MoS2 single crystal  

 

Figure 8.8. XPS data for the Ti(2p3/2) 

region for Mo and MoS2 on titania 

compared to a clean titania surface.  

 

It has been shifted towards the binding energy for metallic Mo and the shoulder that 

represents the reduction of titania was no present. Therefore, the +0.6 eV shift could be an 

effect of oxidation of Mo by the suppport. However, the Mo (3d5/2) peak for MoS2/Titania 
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is shifted by -1.5 eV compared to the Mo(3d5/2) for the MoS2 single crystal. This could be 

due to the difference in clusters on titania compared to the bulk MoS2 in a single crystal. 

S(2s) peak appears at 226.7 eV and can be seen clearly in the MoS2 single crystal but not 

very prominent in MoS2/titania due to the low concentration of S on the MoS2 clusters. 

XPS data for the oxidation of Mo and MoS2 at 1 x10 -7 Torr of oxygen are shown in Figure 

8.9. Mo(3d) peak for Mo clusters has shifted to higher binding energies whereas; Mo(3d) 

peak for MoS2 did not shift upon oxidizing at this oxidizing conditions. MoS2 was then 

exposed to 10 Torr of O2, H2O, and MeOH. 

 

Figure 8.9. XPS data for the Mo(3d) region a) Mo clusters and b) MoS2 cluster 

on TiO2 before and after oxidation of 1 x10-7 Torr O2 for 5 min at room 

temperature. 

 

XPS data for Mo (3d) peak after exposing the MoS2 clusters to CH3OH, O2 and H2O are 

shown in Figure 8.10. The binding energy shfits are not prominent when the surface was 

exposed to CH3OH and H2O.  



 

239 

 

 

Figure 8.10. XPS data for the Mo(3d) region for MoS2 

on TiO2 exposed to different gases at a pressure of 10 

Torr. 

 

A significant shift in Mo (3d) was observed when MoS2 was exposed to O2. A complete 

cluster collapse (Figure 8.6) was observed in highly oxidizing conditions such as 250 Torr 

of O2 and in air. Under these oxidizing conditions, the Mo(3d) peak has shifted 

significantly in the MoS2 clusters which was resistant to oxidation in mildly oxidizing 

conditions such as at 1 x 10-7 Torr O2.  

CO-TPD data are shown in Figure 8.12. A significant desorption CO peak was not 

observed on clean titania or on sulfided titania except for the multilayer desorption peak at 

low temperatures. A broad CO desorption feature at ~ 280 K was observed for Mo clusters 

deposited on TiO2 at room temperature. However, Mo clusters deposited at 400 K and 

heated to 950 K, the exact same procedure of synthesizing MoS2 except the H2S 

environment, did not show the broad feature for CO desorption. Encapsulation of Mo was 
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not extensively studied, but metals such as Pt, Co and Re become encapuslated by titania 

at higher temperatures.25, 26, 29 Therefore, it could be that the Mo has encapsulated by titania 

during the deposition and subsequent annealing in the preparation, and consequently the 

sites responsible for CO desorption at high temperature are blocked. For MoS2, there was 

a significant desorption peak that appeared at 280 K. This desorption peak falls around the 

desorption peak that was observed on Mo/TiO2 therefore, could be attributed to desorption 

of CO from the metallic sites present in the MoS2 structures.  

 

Figure 8.11. XPS data for the Mo(3d) region for MoS2 on 

titania exposed to O2 and air for 2.5 hours.  
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Figure 8.12. TPD data for CO desorption  

 

8.4 Discussion 

MoS2 nanoclusters were formed on a titania support using previously adopted 

synthetic procedure.18,24 Characteristic widths and lengths of the prepared MoS2 

nanoclusters were comparable with the literature studies. The differences in the 

characteristic measurements could be due to the changes in the temperature and the 

sulfiding atmosphere. It has been shown that the subtle changes in these parameters have 

an effect on the width and the length of the MoS2 nanoclusters.14,18 XPS data for Mo(3d) 

peak for MoS2 single crystal compard to the clusters supported on titania were different. 

Cluster support interactions may have an affect on this change in the binidng energy. 

Cluster support interactions have been observed for MoS2 nanoclusters synthesized on 
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various supports.10,18,24 High-resolution STM experiments has shown that the cluster 

support interactions control the shape of the MoS2 structures.18 MoS2 clusters on titania 

were stable upon heating to temperatures up to 800 K. Metals such as Co, Pt, Au and Ni 

show cluster sintering therefore a decrease in surface area at high temperatures such as at 

800 K.25-29 MoS2 did not show such effects upon annealing, possibly due the chemical 

linkage between the MoS2 structure and the support.18  

Mo reduces the support upon deposition due to the oxophillic nature of Mo. When 

MoS2 was synthessized on titania, a reduction of the titania support was not observed. Mo 

in MoS2 is metallic in nature compared to the bare Mo clusters on titania. The metallic brim 

sites in MoS2 has been previously reported in many studies.5,8,10,14,15,17,18,20,24,30  Oxidation 

of Mo/TiO2 was easily achieved compared to the oxidation of Mo in MoS2. Stability of 

MoS2 appeared to be excellent at pressures of 1 x 10-7 Torr with reactant molecules such 

as D2, CH3OH, CO, O2, and H2O. The height of the clusters that correspond to one layer of 

MoS2 did not change upon exposing to these molecules which implies that the layered 

structure remained stable. Under these conditions MOS2 retained its structure and chemical 

nature. However, oxidizing environments, such as exposing to O2 at pressures of 250 Torr 

was able to destroy the structures of MoS2. Furthermore, exposing the MoS2 clusters to air 

also completely destroyed the characteristic structure and oxidized the Mo. Oxidation of 

MoS2, however, could not be achieved at mild oxidation conditions that oxidized the pure 

Mo. The metallic edges present in these structures which is known to be the reactive site 

seem susceptible towards oxidation at highly oxidizing conditions.  

CO-TPD studies which were done on MoS2 has showed a distinct desorption peak 

at 280 K. A broader desorption peak of CO was observed for pure Mo on titania as well, 
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but this feature was disappeared when the Mo is deposited at 400 K and heated to 950 K 

for 12 mins. The latter experiment, when Mo surface was prepared in the same way as 

MoS2 except for the H2S environment, was done inorder to make sure that the distinct 

desorption that was observed on MoS2 does not arise from Mo itself. Encapsulation of Mo 

by titania could explain the absence of metallic Mo to adsorb CO. The metallic edge that 

present in MoS2 nano clusters can be explained by adsorption of CO on MoS2. It has been 

reported that the metallic edge sites present in MoS2 nano structures exhibit adsorption 

properties of reactants.14 DFT calculations were done by our collaborators to calculate the 

binding energy of CO to unsupported MoS2 and supported MoS2.
31 DFT studies also shows 

that CO adsorb on both supported MoS2 and unsupported MoS2 clusters. DFT studies did 

not show strong evidence to show a significant role of the support in the CO adsorption. 

8.5 Conclusions 

 MoS2 nanostructures were successfully prepared on a TiO2(110) single crystal. 

Heating to temperatures up to 800 K did not disintegrate the characteristic structure of the 

MoS2 which shows the stability of MoS2 at this conditions. Exposing MoS2 clusters show 

great stabiliyt upon exposure to rectant gassses (D2, CO, CH3OH, H2O and O2) at low 

pressures but disintegrated at highly oxidizing conditions. MoS2 was able to adsorb CO 

which could attributed to metallic characteristic of the clusters.  
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Appendix A. Supplemental figures for chapter 4 

Average cluster heights and height distributions for Co-Au clusters of various 

compositions at 295 K and after heating to 800 K; and the most stable structures for the 

50%M-50%Au (M=Pt, Ni, Co) bimetallic surfaces used in the DFT calculations for CO 

adsorption.   

 

Figure A.1. Cluster height distributions for the 

pure and bimetallic clusters after room 

temperature deposition.  Total coverages were 

all 0.25 ML.  Distributions were determined by 

measuring all of the clusters in: 1000Å x1000Å 

images for the 100% Au, 25% Co and 50% Co 

clusters; and 500Å x1000Å images for the 

100% Co and 75% Co clusters. 
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Figure A.2. The most stable structures for the 50%M/50%Au (M = Co, Ni) bimetallic 

surfaces in the presence of CO. (a)-(c) correspond to the structures 1Co···1CO, 2Co···2CO, 

and 3Co···3CO, respectively, shown in the phase diagram of Figure 11a. (d)- (g) 

correspond to the structures 1Ni···1CO, 2Ni···2CO, 3Ni···3CO, and 4Ni···4CO, 

respectively,  shown in the phase diagram of Figure 11b.  For all these structures, the most 

stable positions for the exchanged Au atoms were found to be in the third layer.   
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Figure A.3. The most stable structures for the 50% Pt/50% Au surface in the presence of 

CO. (a)-(e) correspond to the structures 1Pt···1CO, 2Pt···2CO, 3Pt···3CO, 4Pt···4CO, and 

9Pt···9CO, respectively, shown in the phase diagram of Figure 11c.  In contrast to the Co-

Au and Ni-Au cases, the structures with exchanged Au atoms in the second or third layer 

have very similar energies. In the presence of 1ML CO (9CO), the structure with all Pt 

atoms in the first two layers becomes more stable due to the strong Pt-Pt and Pt-CO bonds.   

 

 

 

 



 

252 

 

 

 

 

Appendix B. Supplemental figures for chapter 7 

 

 

Figure  B.1.  Histograms of cluster heights for various metals 

on modified HOPG (m-HOPG).  Surfaces exposed to the ED 

baths were heated to 130 °C for 3 min. 
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