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ABSTRACT 

 Woolsey Mound is a thermogenic gas hydrate and cold seep system in the 

deepwater (900m) Gulf of Mexico. A set of sub-bottom seismic profiles acquired at MC-

118 Woolsey Mound provide decimeter-scale vertical resolution of the upper ~50m of the 

subsurface throughout the lease block. Integration of these data with radiocarbon, 

lithostratigraphic, and biostratigraphic data from shallow gravity cores provides the basis 

for detailed interpretation of the mound evolution within the last 12,000 years. Uniform 

sedimentation during the Last Glacial Maximum and following changes in sediment 

distribution over MC-118 suggests modern mound activity did not begin until at least 

~12ka. Development of the mound system appears to be related to salt tectonism, and 

was characterized in sequence by (1) formation of NNE-trending folds (~10 m structural 

relief), (2) shallow normal faulting (1-2 m apparent offsets), (3) subsea erosion of the 

mound superstructure, and (4) deposition of a sedimentary drape across the entire modern 

mound edifice. The base of the sedimentary drape sits in angular unconformity with the 

underlying folded, faulted, and eroded strata, and is dated to be no younger than 4 ka, 

suggesting the modern mound developed within a period of <8ka, and had assumed its 

current configuration by 4 ka. If correct, the mound, and by analogy, the cold seep and 

hydrate system, was entirely inactive until after the Last Glacial Maximum. These data 

place the first quantitative temporal constraints on the development of an episodic 

hydrate mound and associated cold seep system. 
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INTRODUCTION 

Deep-water cold seeps are geologic feature expressed by gas leaking through the 

hydrate stability zone and to the seafloor.  This process is observed in marine 

environments worldwide (Judd and Hovland, 2007 and reference therein).  These sites are 

the interest of multiple disciplines because they may affect climate change by the release 

of the potent greenhouse gas methane (Solomon et al., 2009, Dickens et al., 1995), and 

ocean acidification by the release of hydrocarbons into the water column (Biastoch et al., 

2011).  Furthermore, chemosynthetic life is dependent on the leaking gas, economical 

concentrates of gas hydrates may be present where there are free gas conduits through the 

hydrate stability zone (Nouze et al., 2004), and slope stability may be effected by gas 

hydrate dissociation (Hornbach et al., 2007).   
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CHAPTER 1 

 TEMPORAL CONSTRAINTS ON HOLOCENE INITIATION AND TERMINATION OF 

MOUND DEVELOPMENT AT AN EPISODIC GAS HYDRATE AND COLD SEEP 

SYSTEM, WOOLSEY MOUND, NORTHERN GULF OF MEXICO 

 

1.1 INTRODUCTION  

Currently, cold seeps are temporally poorly understood on a long-term (hundreds 

to millions of years) time scale (Bangs et al. 2013 ), but are better understood on a short-

term time scale (Bangs et al. 2013; Kannberg et al. 2013; Boles et al. 2001; Macelloni et 

al., 2013).  On a short-term time scale, cold seep flux of hydrocarbons are affected by 

hydrate formation/dissociation, temperature and pressure variations exerted on the 

systems, and temperature, salinity, and pressure variations within the system.   

Addressing the long-term mechanisms controlling cold seeps, and the time-frame in 

which cold seeps operate may provide insight into how these geologic features affect 

climate change, chemosynthetic life, and ocean acidifications.   

Favorable conditions for methane seepage have been proposed during sea-level 

lowstands due to relatively low hydrostatic pressure on gas hydrates and seep systems 

(Tong et al., 2013; Watanabe et al., 2008; Kiel et al., 2009; Teichert et al., 2003; Wirsig 

et al., 2012).  Other favorable conditions may include changes in bottom-water 

temperatures that affect gas hydrates (Kiel, 2009) salt diapirism (Roberts and Aharon, 

1994; Aharon et al., 1997; Feng et al., 2010; Roberts and Carney, 1997; Bian et al., 2013; 

Roberts et al., 1990) and other structural/sediment deformation (Bangs et al., 2010; 
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Bayon et al., 2009a, Bayon et al., 2009b; Mazumdar et al., 2009).  Methane 

derived authigenic carbonates are often used as chronometers for methane seepage 

(Kutterolf et al., 2008; Tong et al., 2013, Aharon et al., 1997 and references therein).  

Previous studies have dated seepage by U/Th dating of these authigenic carbonates and 

have found seepage activation to have occurred both within sea-level high and sea-level 

lows (Aharon et al., 1997; Bayon et al., 2009; Kutterolf, 2008; Teichert et al., 2003; 

Mazumdar et al., 2009; Feng et al., 2010; Liebetrau et al., 2010; Tong et al., 2013, Wirsig 

et al., 2012).  This study provides a unique approach of temporal constraints based off 

integration of published sediment core data, radiocarbon, biostratigraphic, and δ 18O 

isotopic data with high-resolution seismic data.  An interdisciplinary approach of stable 

isotope chemistry, sedimentology, and seismic analysis provides a dynamic 

understanding of this system. This method provides an understanding of time-variant 

mechanism affecting mound activity and geological forcing of seep activity.  

Understanding the relationship between cold seep activity and sea level will provide 

insight into the past and future of cold seeps and their relationship to tectonics. 

1.2 REGIONAL SETTING 

The Gulf of Mexico is a prolific hydrocarbon basin dominated by salt movement which 

complicate subsurface structures and seafloor bathymetry.  There are over 21,000 cold 

seep sites (Shedd, 2012), and ~22,000 TCF of gas hydrates in the Gulf of Mexico 

(Bosewell et al., 2012). Woolsey Mound is a cold seep site located on the continental 

slope ~170 km south of Pascagoula, Mississippi and ~50 km from the Mississippi River 

delta in the lease block Mississippi Canyon-118 (MC-118) (Figure 1).  It is located on the 

salt-dominated continental slope in ~900m water depth.  MC-118 lease block has been 
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assigned by the Bureau of Ocean Energy Management as the long-term research reserve 

for the Gulf of Mexico Hydrates Research Consortium and has a seafloor observatory 

with a variety of apparatuses that measure biological, geochemical and geophysical data 

associated with Woolsey Mound (Simonetti et al., 2013; Lutkne et al., 2006 and 2011; 

Sassen et al., 2006; Ingram et al., 2010, 2013).  The ~1km2  field exhibits features 

diagnostic of a cold seep where hydrocarbon rich fluid migrate to the seafloor and create 

authigenic carbonates, chemosynthetic communities, gas hydrates, natural gas vents, and 

reefs (Woolsey et. al., 2005; Sassen et al., 2006; Macelloni et al, 2013, 2012; Sleeper et 

al., 2006).  Salt tectonics have generated an intricate network of faults (Figure 2), creating 

hydrocarbon migration pathways for thermogenic gas from deep petroleum reservoirs up 

to the seafloor (Macelloni et al., 2012; Sassen et al., 2006).  Transient hydrocarbon 

migration processes along the faults may lead to temporary instability for gas hydrates, 

making Woolsey Mound a very dynamic setting. Gas hydrate/carbonate mounds formed 

by cold seeps contain many structural and stratigraphic components that may be used to 

evaluate time-variant mechanisms affecting cold seep related activity.  Current short-term 

hydrocarbon flux at Woolsey Mound is influenced by hydrates that have been collected 

through cores along the faults and imaged with seismic (Macelloni et al., 2012, Simonetti 

et al., 2013).  This study attempts to address the long-term flux of hydrocarbons at 

Woolsey Mound and will be compared with other cold-seep sites in the Gulf of Mexico.  

1.3 MATERIALS AND METHODS 

1.3.1 SEISMIC DATA 

In 2005 C&C Technology Autonomous Underwater Vehicle Hugin 3000 collected 25 E-

W and 2 N-S lines CHIRP reflection lines over the MC-118 lease block with an E-W line 
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spacing of 200 meters. This CHIRP seismic data has a vertical resolution of ~0.1 m, 

providing a very high resolution image of the subsurface.  Acquisition parameters include 

a frequency modulated between 2 and 8 kHz, a record length of 300 ms, and a 63-ms 

sampling interval.  Details about CHIRP collection can be found at Sleeper et al. (2006).   

CHIRP seismic data was outputted in SEG-Y format and imported into Kingdom Suite 

SMT for further analysis.  A time-depth conversion was applied to the seismic data using 

an average velocity of 1500 m/s in order to tie sediment cores with seismic data.  There is 

an uncertainty in the degree of precision, but this does not significantly change structural 

and stratigraphic relationships. Depth converted seismic data was integrated with the 

sediment cores and was used to relate seismic signatures with different lithologies and 

ages, providing chronostratigraphic boundaries.  This provides a mechanism to 

understand sedimentation throughout the area in time. Temporal constraints on structural 

and stratigraphic features of the mound system are inferred by dated horizons provided 

by published sediment cores (Ingram et al. 2010, Ingram et al. 2013) and sediment core 

analysis done through this project. Isochore maps are made by subtracting mapped 

horizons depths from each other, revealing sediment thickness throughout the study area. 

Comparing sediment thickness with the associated times of the horizons reveals 

variations in deposition rates.  Understanding these components can further constrain 

mound activity and associated sedimentation surrounding the mound.  Focus was given 

on the shallow sediment and structure which appears to reveal operations of the most 

recent phase of Woolsey Mound.  Further seismic analysis of data collected over 

Woolsey Mound can be found in Macelloni et al., (2012). Previous phases of mound 

activity in the area is documented with deeper seismic data (Simonetti, Antonello, 2013). 
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1.3.2 “RED BAND” AND CHRONOSTRATIGRAPHY 

 Ingram et al. (2010, 2013) provides lithostratigraphy, biostratigraphy, and 

chronostratigraphy for MC-118 shallow sediment cores.  These studies provided insight 

into sedimentation and stratigraphy surrounding Woolsey Mound (Ingram et al. 2010, 

2013). Particular focus was given to a red band, identified by a negative δ18O excursion 

and visibly red oxidized terrigenous sediment (Ingram et al. 2010, Ingram et al. 2013).  

This band has been linked to the deglaciation and meltwater pulse 1A (Ingram et al. 

2010, Ingram et al. 2013).  Biostratigraphic and radiocarbon dates constrain deposition of 

this ~1-2cm thick unit to ~14.5ky (Ingram et al. 2010). Meltwater pulse 1A was a period 

of rapid sea-level rise during the latest sea-level transgression and occurred within ~14.5-

13 ky ago (Richard Fairbanks, 1989).   The red band is marked by a distinct horizon in 

the seismic data and was mapped throughout the study area as a key horizon. 

1.3.3 AUTHIGENIC CARBONATES 

 Methane derived authigenic carbonates precipitate in deep water cold seep 

settings and are used as an indicator of methane seepage. Anaerobic oxidation of methane 

causes favorable conditions for authigenic carbonate precipitation (Bayon et al., 2009).  

Authigenic carbonates are distinguishable from surrounding sediments because their high 

acoustic impedance compared to unconsolidated slope sediments (Taylor et al., 2010). 

Radiometric dating of authigenic carbonates has been used as a proxy for dating methane 

seepage, but this type of study has not been done in our study area. 

1.3.4 JUMBO PISTON CORES 

 Jumbo Piston Cores (JPC) were collected over the mound in January, 2011 to 

acquire deep (up to 20 m b.s.f) geological, geochemical and geophysical data (Simonetti 
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et al., 2013).  Specifically, these cores targeted locations with seismic indications of 

hydrates, gas, and deep sediments of interest (Simonetti et al., 2013).  JPC-3 (Figure 5, 6) 

acts as a background control site, due to its location, being up-dip from the mound and 

the least affected by mound activity, but still close to the mound.  JPC-6 targeted a gas 

chimney along a synthetic fault.  Sediments recovered were slightly disturbed and gassy.  

JPC-2 did not have free gas or gas hydrate and was collected to find the oldest 

stratigraphic constraint with a 20 m core.  This study will focus on the upper 2 meters of 

these three cores, which record erosional and depositional processes of the most recent 

mound activity.   

1.3.5 δ 18O ANALYSIS 

 Oxygen stable isotope stratigraphy is based on the relationship between 18O 

and 16O in a given sample.  Foraminifera shells of calcium carbonate contain oxygen of 

different isotopic composition depending on water salinity, temperature of surrounding 

water, and the amount of water in ice sheets (Williams, 1984).  Glacial-interglacial 

paleoclimatic cycles, associated eustatic change, and relative dating can be done using 

oxygen isotope analysis in the Gulf of Mexico.  The 18O /16O of seawater becomes more 

positive during glacial times due to Rayleigh Distillation of oxygen isotopes where more 

light 16O molecules are being stored in glacial ice (Williams, 1984).  These ratios become 

more negative during interglacial periods when glacial water is returned to the oceans 

(Williams, 1984).  Glacial sediments are represented by more positive δ 18O values and 

Holocene interglacial sediments have a stronger negative δ 18O isotope ratio (Williams, 

1984).   δ18O sediment core analysis was done using Isoprime stable isotope ratio mass 

spectrometer.  The upper 2 meters of JPC-2, JPC-3, and JPC-6 were sampled for 20 cc’s 
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at a 5 cm interval.  Foraminifera were cleaned of fine-grained sediments using water and 

a 63 micron sieve.  The sediment was dried and picked for the species Globigerinoides 

Ruber due to its presence throughout the Last Glacial Maximum (LGM) and the most 

recent deglaciation.  This species is then washed in methanol and sonicated.  The 

foraminifera are transferred to vials and put into the mass spectrometer. The mass 

spectrometer ionizes the CO2 molecules into positively charged ions and separated into 

different ion beams.  The ratio of the beam intensities yields the 18O /16O ratio. δ 18O  

values are reported relative to a universal powdered belemnite from the Cretaceous Pee 

Dee Formation of South Carolina.  δ 18O data from the Hat-03 core published in Ingram 

et al. (2010, 2013) was given to us courtesy of Dr. Wes Ingram and Dr. Stephen Meyers 

and is included in the results section.   

1.3.6 BIOSTRATIGRAPHY 

 The species Globigerinoides Menardii repopulated the Atlantic ~7,000 years ago 

(Broeker et al., 2014).  This species was not present during the LGM or before until 

Marine Isotope Stage 5 (Martinez et al., 2007).  The presence of this species in the 

shallow gravity cores is used as an indicator of deposition during the Holocene.  This is 

used in conjunction with oxygen stable isotope stratigraphy.  

1.3.7 RADIOCARBON DATING 

 5 mg of planktonic foraminifera were picked from the sediment for radiocarbon 

dating.  Radiocarbon dating was done by Keck Carbon Cycle AMS Facility at UC Irvine 

as fractions of the Modern standard, D14C, using the conventions of Stuiver and Polach 

(1977).  Backgrounds of sample preparation were subtracted based on measurements of 

14C-free calcite.   
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1.3.8 SOURCES OF ERROR/UNCERTAINTY 

 The use of the constant time-depth conversion of 1500 m/s represents an 

inaccuracy in isochore maps and depth to horizons.  Lack of velocity data for the 

sediment requires a time-depth conversion to be done based off a constant velocity which 

is a misrepresentation of the actual velocity of the sediment.  This sediment velocity 

could be inaccurate which changes the depth to horizons and stratigraphic layers.  By 

correlating the red band in the sediment with the horizon picked as the red band in the 

time-depth converted seismic data there is an inaccuracy of up to 30 cm between the 

depth to horizon and depth to red band.  The average inaccuracy of this was +/- 11%.  

This could be a result using a constant time-depth conversion or sediment cores not 

located directly on the seismic line collected or inclination of cores. 

 The methods of collecting sediment cores could cause mixing within the cores 

and the cores may not be collected perpendicular to the seabed.  An inclination of 30 

degrees with a sample of interest at 2 meters depth could cause the sediment recovered to 

appear to be from the depth of 2.3 meters.  This could cause a mismatch between the 

depth to the sediment of interests in the seismic and sediment sampled in the cores.   

There is a degree of uncertainty in the radiocarbon data (Figure 8) and the process 

of using different planktonic species could cause inaccuracies in the sediment time of 

deposition.  In sampling foraminifera for radiocarbon dating, there is bioturbation and we 

may have sampled on the unconformity and as a result have sediment from both above 

and below the unconformity used to radiocarbon date the gap in sediment, specifically 

sample 3 from JPC-02 (Figure 6, 8).   
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1.4 RESULTS 

1.4.1 EVIDENCE OF MOUND INITATION AFTER LAST GLACIAL MAXIMUM 

Prior to deposition of the red band, or meltwater pulse 1A (Figure 3, 4), there is quiescent 

sedimentation (Figure 4) and no evidence for recent methane derived authigenic 

carbonates.  After the red band there is a change in depositional patterns at MC-118 with 

stratigraphic thinning onto the mound and the red band truncating the sea bed in an 

angular unconformity (Figure 3).  Bathymetric relief and structural components of the 

mound (Figure 3, 4) appear to have developed after the deposition of the red band 

because there is predominately uniform sedimentation prior to the red band and the faults 

cut through the red band with uniform offset to the underlying stratigraphy (Figure 3). 

Authigenic carbonates are present at the seabed, but there is no evidence for recent 

authigenic carbonate deposition before the red band chronostratigraphic boundary.  

Predominately uniform deposition over the study area is observed in the CHIRP data 

throughout the LGM and prior to the LGM (Figure 4).  After the LGM and deposition of 

the red band, structural and stratigraphic features of the cold seep system were created.  

Results based on integrating seismic data and published core data (Ingram et al., 2010, 

Ingram et al., 2013) suggests tectonic activity and consequentially Woolsey Mound’s 

initiation occurred within the last ~12ky after deposition of the red band (Figure 3, 4).   

1.4.2 EVIDENCE OF SEDIMENTARY DRAPE AND TECTONIC TERMINATION 

 There is a shallow sedimentary drape visible in the seismic data that overlays 

faults and eroded sediment on the mound and is in angular unconformity with the 

underlying stratigraphy (Figure 3).  The drape is in unconformity over the mound and 

disconformity moving out of the uplifted mound area to a conformable surface further out 
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from the mound superstructure (Figure 3). The thickness of the drape varies from ~10 to 

~30 cm over Woolsey Mound and most of the MC-118 lease block based off seismic, δ 

18O, radiocarbon dates, and biostratigraphy (Figure 3, 4, 5, 6).  δ 18O, radiocarbon dates, 

and biostratigraphy of the JPC’s reveals glacial sediment unconformably overlain by 

Holocene sediment, confirming the presence of a sedimentary drape (Figure 6). JPC-3 

and Hat-03 δ 18O, and radiocarbon values show a conformable section and record the 

sea-level transgression (Figure 6).  The red band correlates in Hat-03 and JPC-03 with 

spikes of more negative δ 18O values (Figure 6).  The unconformable cores JPC-2 and 

JPC-6 record sediments deposited during the LGM overlain by recent Holocene 

sedimentary drape material without the visible red band (Figure 6). JPC-06 radiocarbon 

dates suggest a gap of ~9.5kya over the unconformity (Figure 6).  The JPC-02 

radiocarbon dates do not effectively record the unconformity, likely due to bioturbation 

of sediment, however biostratigraphy and δ 18O values record the unconformity. The 

presence of the unconformity suggests that uplift and faulting is no longer occurring at 

Woolsey Mound.   

1.5 DISCUSSION 

1.5.1 INITIATION OF THE WOOLSEY MOUND COLD SEEP SYSTEM 

Though there are currently no radiometrically derived chronological data of authigenic 

minerals at this site, chronostratigraphic and structural relationships provide a reliable 

interpretation for cold seep activation.  Previous Gulf of Mexico studies have dated cold 

seeps by U/Th and radiocarbon dating of methane derived authigenic carbonates and have 

found the timing of carbonate precipitation at cold seeps to vary (Bian et al., 2013, Feng 

et al., 2010, Aharon et al., 1997).  Woolsey Mound appears to have become active after 
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the LGM and into the most recent sea-level high stand.  This signifies that the 

depressurization of gas hydrates as a result of a decreased hydrostatic pressure and a drop 

in sea level or changes in water temperatures during the LGM was not the trigger for 

Woolsey Mound initiation.   Based off correlating structural features of the mound and 

the creation of hydrocarbon migration pathways through faults, salt-tectonism appears to 

have been the trigger for mound initiation.  High sediment input into the study area 

(Ingram 2010) combined with a rise in sea level may have changed the stress field of the 

subsurface near Woolsey Mound and caused the salt to move due to its unique rheology.  

Salt may have been sourced from the submarine canyon observed in the NE corner of 

MC-118 where there is faulting that appears to have occurred at the same time as 

Woolsey Mound formation.  Salt withdrawal from this area and subsequent Woolsey 

Mound uplift may have created the migration pathways for this cold seep and gas hydrate 

system to become active.  Further constraints on mound initiation could be made by 

radiometrically dating the authigenic carbonates present at Woolsey Mound.  This would 

provide the time at which methane flux and resulting authigenic carbonate precipitation 

began and an archive of fluid flow at the hydrate and cold seep site. 

1.5.2 GULF OF MEXICO COLD SEEPS 

 Roberts and Carney (1997) propose a model by which increased cold-seep 

initiation is linked to salt tectonism, sea level, and sedimentation where salt movement is 

a function of sea-level and sediment input in the Gulf of Mexico.  Therefore, hydrocarbon 

flux into the oceans and subsequently the atmosphere is affected by increased salt 

movement in the Gulf of Mexico and may be related to sea-level fluctuations.  In this 

model, cold seep activation is a result of salt tectonism which creates the migration 
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pathways for thermogenically derived hydrocarbons to leak from reservoirs.  Increased 

sediment loading during the sea-level lowstand followed by a rise in sea level may cause 

activation of salt tectonism due to changes in stress fields on underlying salt bodies in the 

Gulf of Mexico. U/Th dating of Gulf of Mexico authigenic carbonates have identified 

precipitation of authigenic carbonates at two deepwater cold seep sites between 12 and 13 

ky.  (Feng et al., 2010) which appear to have become active through this process.  Aharon 

et al. (1997) and Roberts et al. (1990) identifies other seep sites initiated following the 

LGM at ~12 ky linked to similar processes.  Chen et al. (2007) identified carbonate 

precipitation during the middle Holocene attributed to fracture induced fluid flow from 

thermogenic sources.  Furthermore this increased in thermogenic hydrocarbon flux 

associated with increased salt movement and sea-level has been observed at non-hydrate 

bearing shallow (260 m b.s.f.) sites (Bian et al., 2013).  This study provides structural 

evidence of salt driven tectonic activity initiated seep flow within the last ~12ky that may 

be linked to these processes.  However, salt tectonics is a complicated process that may 

not be affected by a uniform increase in hydrostatic pressure.    

1.5.3 TECTONIC TERMINATION OF WOOLSEY MOUND COLD SEEP SYSTEM 

AND CURRENT HYDROCARBON FLUX 

 Tectonic activity at Woolsey Mound appears to have occurred within a short 

geologic time of <8ky and has since ceased (Figure 7).  The presence of a sedimentary 

drape that is not faulted is indicative of tectonic termination (Figure 3, 5, 6, 7).  Based off 

deposition rates (Ingram et al., 2010) and radiocarbon dates we expect this drape to have 

been depositing over the mound and surrounding areas for ~4ky.  Erosional processes are 

interpreted to be related to deep sea currents visible in channels (Figure 3).  The 
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unconformable sediment overlaying eroded sediment is indicative that these currents no 

longer are significantly eroding the mound, suggesting that bathymetric relief is no longer 

being created by salt tectonism and salt movement has ceased (Figure 3, 4, 6, and 7).  

This is observable where there is visible offset on the fault leading up towards the 

seafloor, but no fault scarp at the seafloor or through the sedimentary drape (Figure 3).  

Since there is no active observable fault movement, current hydrocarbon flux through 

faults to the seafloor may be controlled by hydrate formation/dissociation along theses 

faults, reservoir sourcing, or other factors discussed by Macelloni et al. (2013) and 

Simonetti et al. (2013).   

1.6 CONCLUSION 

This study constrains tectonic activity at a cold seep site, documenting the onset and 

tectonic termination of mound activity.  Tectonic activity, associated with the underlying 

salt body, appears to be the reason for the onset of Woolsey Mound cold seep system.  

This occurred after the LGM, within the last ~12ky and was therefore likely not caused 

by the depressurization of gas hydrates during a sea level lowstand.  This study provides 

insight into the tectonic governance of thermogenic cold seep initiation.  Documentation 

of overlying unconformable sediment suggests quiescent tectonism at Woolsey Mound.  

Short-term time variant hydrocarbon flux may be a result of hydrate 

formation/dissociation, but initiation of hydrocarbon flux to the seafloor may be 

attributed to salt driven seismic activity after the LGM. 
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FIGURES 

 

Figure 1.1. Location map of Woolsey Mound (lease block MC118) on middle slope, 

Northern Gulf of Mexico (Simonetti et al., 2013).

 
Figure 1.2. Salt dome ~300 m b.s.f. and master faults that act as migration pathways for 

hydrocarbons to the sea floor where they form craters, authigenic carbonates, gas 

hydrates and other stratigraphic features (Macelloni et al., 2012).
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Figure 1.3. Cross section A-A’ shows the presence of the red band ~14ka horizon within 

the mound superstructure (left) suggesting uplift post-dates deposition of the red band 

and overlying stratigraphy that is not part of the drape providing an age constraint to 

mound formation ~12ka based off deposition rates.  Also, the red band truncating the 

drape in an angular unconformity suggesting mound formation is post-deposition of this 

stratigraphic unit.  Cross section B-B’ shows faulting goes through the red band and 

underlying stratigraphy with uniform offset, but not the drape or seafloor suggesting 

faulting precluded deposition of the drape and occurred after deposition of the red band. 
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Figure 1.4. Isochore maps (true vertical thickness) for Late Pleistocene to Recent section 

at MC-118 (exclusive of NE corner of lease block).  Quiescent sedimentation prior to 

deposition of “red band” (Left) ~19ka-14ka sedimentation showing a variance of only 

~1m. ~14ka-present sedimentation showing a variance of ~4m and the truncation of the 

red band with the seabed (Middle). Presence of drape over the entire mound indicates 

erosional processes and tectonic uplift has ceased providing an age constraint of mound 

termination to ~4ka (Right). 
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Figure 1.5. Projection on CHIRP profiles of four cores (Hat-3, JPC-2, JPC-3, and JPC-6) 

analyzed for oxygen isotope stratigraphy, radiocarbon dating, and biostratigraphy.  

Where preserved, red, yellow, and pink horizons are shown; base of drape shown in 

purple, section appears conformable at locations of Hat-3 and JPC-3, but clearly 

unconformable at locations of JPC-2 and JPC-6.  Core locations relative to the mound 

structure can be seen in Figure 3. 
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Figure 1.6. N-S core cross section over Woolsey Mound.  δ 18 O data from G. Rubers 

showing the unconformable sediment on Woolsey Mound (JPC-2 and JPC-6), the 

deposition of the warm climate species G. Mernardii, and radiocarbon dates in calendar 

age written in red with associated locations highlighted in red dots.  Hat-03 oxygen 

isotope stratigraphy and radiocarbon dates were provided by Dr. Wes Ingram and Dr. 

Stephen Meyers.  Hat-03 radiocarbon date of 4,162 calendar age does not have an 

associated δ 18 O data point.   G. Mernardii were picked to give biostratigraphic 

constraint of warm climate deposition (Broeker et al., 2014).  The horizons locations are 

based off seismic data, and used to understand the extent of erosion.  The red band is 

visible within the sediment and is recorded based off its location within the sediment 

cores.     Seismic analysis suggests that JPC-6 has been eroded to a greater extent than 

JPC-2 (Figure 5), but radiocarbon dates below the unconformity in these cores suggests 

otherwise which may be related to sampling uncertainties discussed earlier.
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Figure 1.7. Sequence of geologic events at Woolsey Mound in relation to sea level 

(modified after Fleming et al, 1998).  Modern mound activity began no earlier than ~12ka 

and concluded no later than ~4ka based on the presence of the sedimentary drape. 

Question marks represent an unknown age but known relative age, and dashed lines 

represent a known age.  The time of deposition associated with different horizons is 

represented by color on the graph and the age of the pink and yellow horizons are based 

off radiocarbon dates and expected sedimentation from Ingram et al., (2010). 
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Sample # 1 2 3 4 5 6 

Core JPC-06 JPC-06 JPC-02 JPC-02 JPC-03 JPC-03 

Depth (cm) 25 40 15 25 50 60 

Sample weight for o18 

and c13 analysis(mg) 

5.5565 6.0125 5.521 5.6614 5.6832 5.1772 

c13 1.645 1.518 1.151 1.462 1.172 1.03 

o18 -1.693 -1.128 -2.542 -1.266 -2.744 -2.666 

G. Mernardi Presence x o x o x o 

Fraction Modern 0.574 0.2078 0.2859 0.1463 0.3714 0.2457 

+/- 0.001 0.0008 0.0008 0.0007 0.001 0.0008 

D14C -426 -792.2 -714.1 -853.7 -628.6 -754.3 

+/- 1 0.8 0.8 0.7 1 0.8 
14C age (BP) 4460 12620 1055 15440 7955 11275 

+/- 15 35 25 45 25 30 

Median Probability -2695 -12157 -9122 -16322 -6458 -10792 

Calendar Age 4645 14107 11072 18272 8408 12742 

 

Figure 1.8. Table of data collected and used to identify and characterize the 

unconformity.  Sampling intervals for the unconformity were done based off δ18O results 

and biostratigraphy.  A reservoir calibration was applied the BP 14C dates to convert into 

Calendar Age before present.  
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APPENDIX A SUPPLEMENTARY DATA 

TABLE A.1 δ18O AND δ 13C ANALYSIS 

 
 

depthjpc-02 c13 o18 depthhat-03 c13 o18 depthjpc-03 c13 o18 depthjpc-06 13C 18O

0 1.361 -2.443 10 1.06 -1.74 5 1.425 -1.779

5 1.306 -2.087 20 1.42 -0.96 10 1.639 -1.502 10 1.636 -1.562

10 1.353 -1.592 40 0.82 -0.86 15 1.730 -1.445 15 1.559 -1.573

15 1.151 -2.542 45 0.80 -1.67 20 1.627 -1.875 20 1.599 -1.277

20 1.485 -2.057 50 0.44 -0.79 25 1.391 -2.313 25 1.645 -1.693

25 1.462 -1.266 55 1.16 -0.81 30 1.067 -2.259 30 0.968 -0.976

30 1.678 -1.574 60 0.68 -0.80 35 1.285 -1.870 35 1.188 -0.559

40 1.377 -1.505 65 0.67 -0.97 40 0.934 -2.741 40 1.518 -1.128

45 1.528 -0.814 70 1.05 -0.02 45 0.900 -2.633 45 1.300 -1.713

50 1.355 -1.138 75 0.18 -0.31 50 1.172 -2.744 50 1.341 -1.472

55 1.425 -0.803 80 0.74 -0.95 60 1.030 -2.666 55 0.972 -2.142

60 1.352 -1.865 85 0.85 -1.37 65 0.904 -2.532 65 1.365 -1.208

65 1.257 -0.968 90 -0.19 -1.06 70 1.036 -1.377 70 1.219 -1.694

70 1.430 -1.397 95 0.88 -1.20 75 1.105 -2.495 75 1.737 -0.925

75 1.221 -1.836 100 0.25 -0.65 80 0.903 -2.466 80 1.564 -1.178

80 1.259 -0.775 110 1.13 -2.19 90 1.364 -1.688 85 1.563 -1.172

85 1.526 -1.447 112 0.61 -0.72 95 1.192 -1.931 90 1.571 -1.098

90 1.412 -1.418 120 0.52 -0.16 100 0.994 -1.344 95 1.498 -1.203

95 1.490 -1.391 122 0.47 -1.00 105 1.140 -1.749 100 1.670 -1.219

100 1.390 -0.691 125 0.92 -0.91 110 1.172 -2.539 105 1.604 -0.792

105 1.340 -0.761 130 0.42 0.37 115 0.945 -2.767 110 1.644 -1.215

110 1.321 -1.988 170 0.84 0.49 120 0.908 -3.541 115 1.491 -0.397

115 1.313 -2.003 190 0.72 0.44 125 0.931 -1.846 120 1.559 -1.820

120 1.150 -2.090 210 0.94 0.40 130 1.155 -3.049 125 1.370 -1.578

125 1.294 -0.881 230 0.79 0.12 135 0.817 -3.006 130 1.136 -1.052

130 1.423 -0.500 250 0.71 0.65 137 1.062 -1.798 135 1.249 -0.910

135 1.080 -1.216 270 0.86 0.17 138 0.741 -1.411 140 1.249 -1.472

140 1.503 -1.352 140 0.943 -2.131 145 0.888 -1.226

145 1.178 -1.029 145 1.048 -1.737 150 1.301 -1.054

150 1.461 -1.226 150 0.729 -2.124 155 0.967 -1.206

155 0.992 -0.282 155 0.946 -1.443 160 1.311 -1.160

160 1.348 -0.804 160 0.447 -0.336 175 0.972 0.005

165 1.122 -0.561 170 0.748 -0.582 180 0.906 0.127

170 1.326 -1.275 175 1.300 -0.797 185 1.403 -1.243

175 1.377 -0.074 180 0.889 -0.816 190 1.400 -1.046

180 1.344 -1.202 185 1.162 -1.304 195 0.677 -0.485

185 1.577 -1.195 190 1.120 -0.295 200 1.497 -0.930

190 1.403 -0.793 195 1.286 -0.384

195 1.247 -0.671 200 1.384 -1.028

200 1.794 -0.786
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FIGURE A.1 STRUCTURAL AND BATHYMETRIC MAP OVER WOOLSEY MOUND   
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