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ABSTRACT 

Staple cereal crops provide the majority of nutrients to the world's population, and 

thus, can significantly impact human nutrition and health. Phenotypic and genetic 

diversity within a crop can be useful for biofortification and crop improvement, but 

quantitative phenotyping is needed to identify varieties with high or low concentrations 

of a nutrient of interest, and to identify alleles responsible for quantitative trait variation 

of the nutrient. Sorghum [Sorghum bicolor (L.) Moench] is a diverse and widely adapted 

cereal crop that provides food for more than 500 million people in sub-Saharan Africa 

and Asia, and is becoming increasingly popular in specialty grain products in the United 

States. Sorghum is a valuable resource for nutrient diversity, as adaptation to different 

environments has led to extensive phenotypic and genetic diversity in the crop.  

Many sorghum varieties are rich in flavonoids, primarily 3-deoxyanthocyanidins 

and proanthocyanidins, which appear to protect against chronic inflammatory diseases.  

Most studies have only explored the health benefits of a small number of sorghum 

accessions, but over 45,000 sorghum accessions exist in crop gene banks. A large 

genetically diverse sorghum panel can be used to identify varieties with high 

concentrations of flavonoids and to explore the effects of natural variation of sorghum 

flavonoids on inflammation.  This same resource can also be used to identify varieties 

with high concentrations of protein, fat, or starch, which can lead to improved nutritional 

value of sorghum grain. 
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The overall aim of my dissertation project was to quantify sorghum flavonoids 

and identify allelic variants controlling them; quantify grain composition more broadly 

(protein, fat, and starch) and identify allelic variants controlling them; and investigate 

anti-inflammatory properties of sorghum extracts with contrasting levels of flavonoids. 

Using a large germplasm resource (USDA National Plant Germplasm System), high-

throughput methods of phenotyping (near-infrared spectroscopy) and genotyping 

(genotyping-by-sequencing), association mapping (genome-wide association studies), 

and in vitro inflammation models, the work presented here provides new insights into the 

diversity, genetics, and anti-inflammatory properties of sorghum nutrients that are 

important to human health.  It provides a survey of grain nutrient diversity in a large 

global panel of sorghum, identifies quantitative trait loci and candidate genes for 

underlying controls of these nutrients, and demonstrates that a larger variety of sorghum 

accessions than previously thought have anti-inflammatory properties. 
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1.1 BACKGROUND 

Undernutrition is present in many regions of the world, and leads to increased risk 

of infectious disease, stunted growth, and severe wasting.  At the same time, 

overnutrition has also become prevalent in the global population, and is strongly 

correlated with chronic diseases such as type 2 diabetes, cardiovascular disease, and 

cancer. Staple cereal crops provide the majority of nutrients to the world's population, 

and thus have significant impact on human nutrition and the negative health effects of 

undernutrition and overnutrition.  

Many studies are now focusing on the health benefits of whole grains, especially 

in relation to the chronic inflammatory diseases seen in overnutrition 4–10.  Flavonoids, a 

large diverse group of polyphenols comprised of more than 8,000 compounds, appear to 

contribute to the beneficial health effects of whole grains11–13. Most plant-based foods 

contain flavonoids, making them some of the most ubiquitous polyphenols in the human 

diet. Fruits, tea, chocolate, red wine, and coffee are rich sources of flavonoids, but are 

only small contributions to our daily calorie intake compared to grain, which provides 

between 24% and 80% of our daily energy14.  In humans, dietary flavonoids are thought 

to act as antioxidants and signaling molecules, and their consumption is correlated with 

lower incidence of cardiovascular disease, cancer, type II diabetes, neurodegenerative 

disease, and other chronic diseases.15 Potential anti-inflammatory effects of flavonoids 

have been studied extensively in the last decade, with particular focus on validating 

observed health benefits in green tea, grapes, and cranberries16–20.  The anti-inflammatory 

mechanisms are not fully understood, but are thought to involve scavenging of free 

radicals, prevention of lipid peroxidation, inhibition of pro-inflammatory cytokines, and 
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modulation of gene expression 21–23.  Certain varieties of grains also contain polyphenols, 

including varieties of wheat, rice, maize, and sorghum 12,24–27.    

Sorghum [Sorghum bicolor (L.) Moench] is one of the world's major cereal crops 

and a dietary staple for more than 500 million people in Asia and sub-Saharan Africa28. 

In the United States, it is used primarily as livestock feed and, increasingly for ethanol 

production. However, it is beginning to be used in food products, due to a rise in demand 

for specialty grains, especially those that are gluten free29–33. Sorghum’s grain 

composition is similar to maize and wheat, providing, on average, 70% carbohydrate, 

12% protein, and 3% fat. As in other cereals, the sorghum grain is predominantly starchy. 

The endosperm contains the majority of the starch and protein, while the germ contains 

the majority of the fat. Protein deficiency is a major cause of undernutrition in regions 

where a single cereal crop is the primary source of protein. Sorghum, as with other serial 

crops, does not provide adequate protein to meet nutritional needs on its own, so 

understanding the genetic controls of high protein could lead to improved nutritional 

quality of sorghum.  

Sorghum’s two major flavonoids—proanthocyanidins and 3-

deoxyanthocyanidins—appear to have health-protective effects that may be superior to 

many of the more popularly consumed grains34, fruits and vegetables 35. This is possibly 

because sorghum, which evolved in a tropical climate with an exposed grain, contains 

some of the highest concentrations of proanthocyanidins in any plant-based food 36, and 

is the only known dietary source of 3-deoxyanthocyanidins37–39. Sorghum has the 

potential to alleviate negative health effects of obesity 40,41, diabetes 42,43, cancer 44–47, 

cardiovascular disease 48,49, and other chronic diseases 34,50.  The bulk of research on 
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sorghum health effects has been on its powerful antioxidant activity, but recent studies 

suggest that sorghum flavonoids also possess anti-inflammatory activity 34,50–52. Some 

varieties of sorghum do not contain measurable amounts of polyphenols, while others 

contain high levels of polyphenols 35,53 Most studies have only explored the health 

benefits of a small number of sorghum accessions (distinct varieties of plants), but over 

45,000 sorghum accessions are available from the U.S. National Plant Germplasm 

System's Germplasm Resources Information Network (GRIN) 54.  Utilizing accessions 

that are readily available from a crop gene bank allows for authentication of the 

accessions and reproducibility of the experiments. Using a large genetically diverse 

sorghum panel to explore the effects of natural variation of sorghum polyphenols on 

inflammation will help in discovering particularly beneficial accessions.  Additionally, 

although several studies comparing health effects between sorghums with or without 

proanthocyanidins and 3-deoxyanthocyanidins have been conducted, none of them 

controlled for genetic background of the sorghums or utilized accessions that were 

readily available from crop gene banks 34,41,43,50. Without adequate control of other 

genetic factors it may not be possible to attribute health effects to polyphenols per se.   

Investigations into the health-benefits of food crops need to be conducted in 

parallel to an exploration of the natural diversity and genetic controls of important 

nutrients in food crops. Sorghum is a good system for cereal genomics, with a small 

genome (at ~730 Mb) that is fully sequenced. Crop improvement efforts aim to move 

desirable traits (such as high protein or flavonoids) found in underutilized germplasm into 

existing elite varieties that already contain traits needed for agricultural production (e.g., 

high yield). High concentrations of flavonoids are not found in many commonly 
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consumed cereals, such as wheat, rice, and maize 55, however, sorghum provides a 

valuable resource for flavonoids, as adaptation to different environments has led to 

extensive phenotypic and genetic diversity in the crop.56,57  This diversity can be useful 

for crop improvement, but quantitative phenotyping is needed to identify accessions with 

high concentrations of flavonoids, as well as protein, and to identify quantitative trait loci 

(QTL; loci that are linked to the allele responsible for the trait variation) associated with 

variation in grain nutrients (reviewed by Flint-Garcia58). These QTL can be used in 

marker-assisted selection to accurately and efficiently breed for the trait of interest.  

1.2 GOALS AND SIGNIFICANCE 

The long-term goal of my research is to identify natural variation in food-plant 

nutrients that is useful for human health, specifically by connecting crop genomic 

resources with human nutrition research. The overall aim of my dissertation project is to 

quantify sorghum grain composition traits (protein, fat, starch, and polyphenols) and 

identify allelic variants controlling them (chapters 2 and 3), and to investigate the anti-

inflammatory properties of sorghum extracts with contrasting levels of polyphenols 

(chapter 4).  

1.3 CHAPTER SUMMARIES 

In Chapter 2, the genetics of flavonoids are reviewed. I quantify total phenols, 

proanthocyanidins, and 3-deoxyanthocyanidins in a global sorghum diversity panel using 

near-infrared spectroscopy (NIRS) and characterize the patterns of variation with respect 

to geographic origin and botanical race. I identify novel quantitative trait loci for 

sorghum polyphenols, some of which colocalize with homologs of flavonoid pathway 
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genes from other crops, including an ortholog of maize (Zea mays) Pr1 and a homolog of 

Arabidopsis (Arabidopsis thaliana) TT16. This survey of grain polyphenol variation in 

sorghum germplasm and catalog of flavonoid pathway-associated loci contributes toward 

the goal of producing sorghum crops that will contribute to marker-assisted breeding of 

sorghum crops that will benefit human health. 

In Chapter 3, I quantify protein, fat, and starch in a global sorghum diversity 

panel using NIRS, identify novel QTL for sorghum grain composition using GWAS with 

404,628 SNP markers, and use a published sorghum transcriptome atlas to identify 

candidate genes within the GWAS QTL regions, including NAM-B1, AMY3, and SSIIb. 

This survey of grain composition in sorghum germplasm and identification of QTL 

significantly associated with protein, fat, and starch, contributes to our understanding of 

the genetic basis of natural variation in sorghum grain composition. 

In Chapter 4, features of inflammation are reviewed. I evaluate the anti-

inflammatory effects of ethanol extracts from the bran of twenty sorghum accessions with 

comparable genetic backgrounds, using lipopolysaccharide (LPS)-induced mouse 

macrophage cells. The results demonstrate that sorghum accessions differentially 

modulate inflammation, with many accessions reducing the production of pro-

inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6, possibly by 

decreasing phosphorylation of NF-κB. Additionally, the results demonstrate that the 

RAW 264.7 model of inflammation is a good method for high throughput screening of 

sorghum accessions. The chapter on sorghum grain protein, fat and starch (chapter 3) was 

conducted with undernutrition in mind, while the chapters on sorghum grain polyphenols 

(chapters 2 and 4) were conducted with overnutrition in mind.  
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CHAPTER 2 

GENOME-WIDE ASSOCIATION STUDY OF GRAIN POLYPHENOL CONCENTRATIONS 

IN GLOBAL SORGHUM [SORGHUM BICOLOR (L.) MOENCH] GERMPLASM
1

                                                           
1
 Reproduced with permission from Rhodes, D. H. et al. Genome-wide association study of 

grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] 
germplasm. J. Agric. Food Chem. (2014), 62, 10916–10927. Copyright 2014 American 
Chemical Society. 
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2.1 ABSTRACT 

Identifying natural variation of health-promoting compounds in staple crops and 

characterizing its genetic basis can help improve human nutrition through crop 

biofortification.  Some varieties of sorghum, a staple cereal crop grown worldwide, have 

high concentrations of proanthocyanidins and 3-deoxyanthocyanidins, polyphenols with 

antioxidant and anti-inflammatory properties. We quantified total phenols, 

proanthocyanidins, and 3-deoxyanthocyanidins in a global sorghum diversity panel (n = 

381) using near-infrared spectroscopy (NIRS), and characterized the patterns of variation 

with respect to geographic origin and botanical race. A genome-wide association study 

(GWAS) with 404,628 SNP markers identified novel quantitative trait loci for sorghum 

polyphenols, some of which colocalized with homologs of flavonoid pathway genes from 

other plants, including an ortholog of maize (Zea mays) Pr1 and a homolog of 

Arabidopsis (Arabidopsis thaliana) TT16.  This survey of grain polyphenol variation in 

sorghum germplasm and catalog of flavonoid pathway loci may be useful to guide future 

enhancement of cereal polyphenols. 

2.2 INTRODUCTION 

Polyphenols are a large diverse group of phytochemicals that include phenolic 

acids, stilbenes, lignans, isoflavonoids, and flavonoids.1 All flavonoids share a common 

C6-C3-C6 backbone structure but differ in their oxidation level, glycosylation, acylation, 

and hydroxyl and methyl substitutions, allowing for an enormous variety of structure and 

function.2 In plants, flavonoid secondary metabolites are involved in growth, 

pigmentation, pollination, and defense against pathogens, predators, and physical 
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factors.3 In humans, dietary flavonoids are thought to act as antioxidants and signaling 

molecules, and their consumption is correlated with lower incidence of cardiovascular 

disease, cancer, type II diabetes, neurodegenerative disease, and other chronic illnesses.4 

Most plant-based foods contain flavonoids, making them some of the most ubiquitous 

polyphenols in the human diet. Polymerization of flavonoids yields complex compounds 

including proanthocyanidins, flavonoid polymers predominantly composed of flavan-3-

ols, which are abundant in food plants. Proanthocyanidins contribute to the astringency 

and bitterness found in foods such as wine, cocoa, beans, and fruits, but they are not 

present in most commonly consumed vegetables and cereals.5 They are also often 

considered anti-nutrients due to their nutrient binding capacity, especially to proteins and 

iron.6 In the last decade, however, potential health protective effects of proanthocyanidins 

have been studied extensively, with particular focus on their contributions to observed 

health benefits of grape and cranberry. 7 

Sorghum is one of the world's major cereal crops and a dietary staple for more 

than 500 million people in sub-Saharan Africa and Asia.8 In the Unites States, it is 

primarily used as animal feed, but is becoming more popular in food products due to a 

rise in demand for specialty grains, especially those that are gluten-free.9–12 Domesticated 

sorghum has been classified into five major races (bicolor, guinea, caudatum, kafir, and 

durra) and 10 intermediate races (all combinations of the major races), based on 

morphological differences.13 Two of the major polyphenol compounds in sorghum grain 

are proanthocyanidin and 3-deoxyanthocyanidin. Consumption of these two polyphenols 

has been correlated with several health benefits including protection against oxidative 

damage, inflammation, obesity, and diabetes.14 Proanthocyanidins are constitutively 
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expressed, while 3-deoxyanthocyanidins are phytoalexins, expressed only in response to 

fungal infection.15,16 Sorghum grain is the only known dietary source of 3-

deoxyanthocyanidins, which otherwise have only been found in the flowers of sinningia 

(Sinningia cardinalis), the silk tissues of maize (Zea mays), and the stalks of sugarcane 

(Saccharum sp.).17–19 

In sorghum grains, polyphenol compounds can be found in the pericarp (outer 

seed coat) and the testa (inner layer of tissue between the pericarp and the endosperm). A 

number of classical loci identified by their effects on grain color and testa presence 

control the presence or absence of polyphenol compounds in sorghum. 20 Genotypes with 

dominant alleles at the B1 and B2 loci have proanthocyanidins in the testa. Genotypes 

with a dominant allele at the spreader (S) locus, as well as dominant alleles at the B1 and 

B2 loci, have proanthocyanidins in both the pericarp and the testa, often, but not always, 

resulting in a brown appearance to the grain. The base pericarp color is red, yellow or 

white, and these colors are controlled by the R and Y loci.  The S locus, and additional 

loci such as intensifier (I) and mesocarp thickness (Z), modify the base pericarp color, 

resulting in a range of colors from brilliant white to black with various shades of red, 

yellow, pink, orange, and brown among sorghum genotypes (see Figure 2.1). Using 

mutants for seed color traits, the biochemical and regulatory pathways underlying 

flavonoids and flavonoid products have been almost completely elucidated in 

Arabidopsis and maize, and extensively studied in other species (Table 2.1).21 Therefore, 

homology can be used as a guide to discover genes involved in the sorghum flavonoid 

pathway. The gene underlying the B2 locus was recently cloned and designated Tannin1, 

along with two nonfunctional alleles of Tannin1, tan1-a and tan1-b.22 Tannin1 encodes a 
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WD40 protein homologous to the Arabidopsis proanthocyanidin regulator transparent 

testa glabra1 (TTG1). The gene underlying the Y locus has also been cloned and 

designated Yellow seed1. Yellow seed1 encodes a MYB protein, orthologous to the maize 

3-deoxyanthocyanidin regulator P1, that is needed for accumulation of 3-

deoxyanthocyanidins in the sorghum pericarp.23 The R locus has been mapped to 

chromosome 3 between 57-59 Mb and the Z locus has been mapped to chromosome 2 

between 56-57 Mb 24, but the underlying genes have not been identified.   

While the genetic controls of polyphenol presence/absence have been well-

studied using mutant lines and nonfunctional polymorphisms, there has been little study 

of quantitative natural variation in polyphenols.25 Polyphenol nonfunctional mutations 

were strongly selected during cereal domestication, when bitter tasting and/or dark 

compounds were partly or completely lost in most cereals, including wheat, rice, and 

maize.26 However, sorghum provides a valuable resource for polyphenol diversity, as 

adaptation to different environments has led to extensive phenotypic and genetic diversity 

in the crop.13,27 This diversity can be useful for biofortification and crop improvement 

(e.g. desirable traits can be bred into existing elite varieties), but quantitative phenotyping 

is needed to identify alleles responsible for quantitative trait variation in grain 

polyphenols (reviewed by Flint-Garcia 28). The goals of this study were to quantify the 

natural variation of two of the major sorghum grain polyphenols (proanthocyanidins and 

3-deoxyanthocyanidins) and to identify single-nucleotide polymorphisms (SNPs) that are 

associated with low or high polyphenol concentrations using genome-wide association 

studies (GWAS). GWAS are used to map the genomic regions underlying phenotypic 

variation (known as quantitative trait loci) by scanning the genome for statistical 
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associations between genetic variation and phenotypic variation.29 In contrast to the 

biparental linkage mapping approach, GWAS takes advantage of historical 

recombinations in a diverse panel and linkage disequilibrium between causal variants and 

nearby SNP markers.  Although it has been used extensively to identify putative genetic 

controls of human disease, 30 it is a relatively new but promising tool in plant 

genomics.27,31,32 Here we present a survey of the quantitative natural variation of 

polyphenols in a diverse worldwide panel of sorghum and a catalog of flavonoid-

associated loci across the sorghum genome.    

2.3 MATERIALS AND METHODS 

2.3.1 Plant Materials 

We investigated a total of 381 sorghum accessions, comprising 308 accessions 

from the Sorghum Association Panel (SAP) 33 and an additional 73 accessions selected 

based on presence of a pigmented testa using the U.S. National Plant Germplasm 

System's Germplasm Resources Information Network (GRIN).34 The SAP includes 

accessions from all major cultivated races and geographic centers of diversity in sub-

Saharan Africa and Asia, as well as important breeding lines from the United States. The 

73 additional accessions were included to increase the proportion of accessions with high 

proanthocyanidins. 

Seeds were obtained through GRIN and planted in late April 2012 at Clemson 

University Pee Dee Research and Education Center in Florence, SC. A twofold replicated 

complete randomized block design was used. Panicles from each plot were collected at 

physiological maturity (signified by a black layer at the base of the seed that normally 
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forms about 35 days after anthesis). Due to differences in maturity among these 

accessions, harvest occurred between September and October.  Once harvested, panicles 

were air dried in a greenhouse and then mechanically threshed and any remaining glumes 

were removed with a Wheat Head Thresher (Precision Machine Company, Lincoln, NE).  

2.3.2 Phenotyping 

Twenty grams of cleaned whole grain from one replicate were scanned with a 

FOSS XDS spectrometer (FOSS North America, Eden Prairie, MN, USA) at a 

wavelength range of 400-2500 nm.  To determine reproducibility, duplicates on a subset 

of 218 accessions available from replicate plots were also scanned. The NIR reflectance 

spectra were recorded using the ISIscan software (Version 3.10.05933) and converted to 

estimates of total phenol, proanthocyanidin, and 3-deoxyanthocyanidin concentrations. 

The spectrometer, software, and calibration curves used in this study were recently 

described.35 Samples with unusual reflectance were visually inspected and near-infrared 

spectroscopy (NIRS), was repeated.  Seventeen samples were removed from further 

analysis either because they contained mixed grain (mixed size, shape, or color) or 

because their readings were outside the range of the available NIRS calibration curve. 

Total phenol, proanthocyanidin, and 3-deoxyanthocyanidin data are expressed as mg 

gallic acid equivalent (GAE)/g, mg catechin equivalents (CE)/g, and absorbance 

(abs)/mL/g, respectively. These were the units used in creating the calibration curves, 

which measured total phenols with the Folin-Ciocalteu method, 3-deoxyanthocyanidins 

with the colorimetric method of Fuleki and Francis, and proanthocyanidins with the 

modified vanillin/HCl assay.35 For the purposes of this study, we use a cutoff of greater 
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than 10.00 mg CE/g to define proanthocyanidin-containing varieties and greater than 

50.00 abs/mL/g to define 3-deoxyanthocyanidin-containing varieties. 

Visual appearance of grain was classified independently by two people by 

visually scoring three seeds per accession as white, yellow, red or brown. Testa presence 

was identified with three seeds per accession by cutting a thin layer off the pericarp and 

examining under a dissecting microscope. The total grain weight of 100 seeds per 

accession was recorded.   

2.3.3 Genomic Analysis 

Genotypes were available for the 324 accessions that were part of the SAP.27 

Genotyping-by-sequencing (GBS) was performed for the 73 additional accessions by the 

Institute for Genomic Diversity using the methods by Elshire et al.36 Briefly, we provided 

seeds of the 73 additional accessions (the same seeds obtained from GRIN that we used 

to grow our panel) to the Institute for Genomic Diversity, where the following work was 

performed: Seedlings were grown to obtain tissue, DNA was isolated using the Qiagen 

DNeasy Plant kit, genomic DNA was digested individually using ApeKI, 96X 

multiplexed GBS libraries were constructed, and DNA sequencing was performed on the 

Illumina Genome Analyzer IIx. To extract SNP genotypes from sequence data, the GBS 

pipeline 3.0 in the TASSEL software package (Glaubitz, 2014) was used, with mapping 

to the BTx623 sorghum reference genome.37 Missing genotype calls were imputed using 

the FastImputationBitFixedWindow plugin in TASSEL 4.0.38 

GWAS was carried out on 404,628 SNP markers, using the statistical genetics 

package Genome Association and Prediction Integrated Tool (GAPIT).39 with both a 
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general linear model (GLM) and a mixed linear model (MLM) with kinship. In a 

previous study we found that an MLM40 with kinship (K), which controls for relatedness 

among the accessions in the panel, performs well to identify causative loci for sorghum 

polyphenols.41 Bonferroni correction (Family-wise P-value of 0.01, P < 10-6) was used to 

identify significant associations. Pseudo-heritability (proportion of phenotypic variation 

explained by genotype) was estimated from the kinship (K) model in GAPIT.42 as the R-

squared of a model with no SNP affects.  A previously developed a priori candidate gene 

list was used and 35 additional candidate genes were added.41 

2.4 RESULTS 

2.4.1 Quantitative Variation in Grain Polyphenols 

We first sought to determine the reliability of the NIRS estimates across the 

diverse material in the panel. Phenotypic variation for grain polyphenol concentrations 

was determined using a diverse association panel with 381 accessions (Figure 2.2).  The 

standard deviation between the duplicates was similar across all concentrations of 

polyphenols (r2 = 0.06, P = 0.0001) and proanthocyanidins (r2 = 0.01, P = 0.12), with an 

average difference of 47% and 4%, respectively. However, the standard deviation 

between the 3-deoxyanthocyanidin duplicates becomes much larger for samples with 

higher 3-deoxyanthocyanidin concentrations (r2 = 0.32, P = 10-17), with an average 

difference of 72% (Figure 2.2C). To determine if the NIRS measurements of 

proanthocyanidin concentration were concordant with the known distribution of testa and 

tan1-a nonfunctional allele22, we plotted proanthocyanidin concentration of accessions 

with or without a pigmented testa (Figure 2.3A), and accessions with the wild-type 
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Tannin1 allele or the tan1-a allele (Figure 2.3B). As expected, the absence of a testa and 

presence of tan1-a were primarily found in accessions containing less than 10 mg CE/g 

of proanthocyanidins.  The mean proanthocyanidin concentrations in accessions with a 

pigmented testa were significantly higher than in accessions without a pigmented testa 

(18.17 versus 1.45 mg CE/g; P = 10-17), and the mean proanthocyanidin concentrations in 

accessions with the wild-type Tannin1 were significantly higher than in accessions with 

tan1-a (12.28 versus 0.86 mg CE/g; P = 10-11).  

Next we investigated the range of total phenol, proanthocyanidin, and 3-

deoxyanthocyanidin concentrations and their covariation with each other and grain 

weight (Figure 2.4). Overall, proanthocyanidins were detected in 55% of the samples, 

while only 13% contained 3-deoxyanthocyanidins, and only 6% contained both 

polyphenols. The mean total polyphenol concentration was 7.00 mg (GAE)/g, the mean 

proanthocyanidin concentration was 7.73 mg CE/g, and the mean 3-deoxyanthocyanidin 

concentration was 27.40 abs/mL/g (Table 2.2 and Figure 2.4). Pearson's correlations were 

calculated between total phenols, proanthocyanidins, and 3-deoxyanthocyanidins. There 

was no significant correlation between proanthocyanidins and 3-deoxyanthocyanidins 

(0.02, P = 0.7), consistent with independent genetic control. In contrast, there was a 

strong positive correlation between total phenols and proanthocyanidins  (0.95, P < 10-

15), and a weak positive correlation between total phenols and 3-deoxyanthocyanidins 

(0.12, P = 0.02).  Variance in proanthocyanidins accounted for 90% of all the variance in 

total phenols (Figure 2.4). Since the seed coat (pericarp and testa) contains most of the 

polyphenols in the grain, and the ratio of seed coat (surface area) to endosperm is 

generally greater in smaller grains, we wondered if differences in grain size might be 
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underlying variation in polyphenol concentrations. In other words, are high grain 

polyphenol concentrations limited to small-grain varieties, which have a high proportion 

of seed coat to endosperm? No significant correlation was found between grain weight 

and either proanthocyanidins (-0.02, P = 0.7) or 3-deoxyanthocyanidins (-0.02, P = 0.7), 

and a small negative correlation was found between grain weight and total polyphenols (-

0.10, P = 0.04). Pseudo-heritability was 81.7% for proanthocyanidins and 66.5% for 3-

deoxyanthocyanidins. 

2.4.2 Population Structuring of Polyphenol Concentrations 

To determine the distribution of polyphenol traits with respect to global genetic 

diversity, we conducted a principal component analysis and highlighted the variation in 

polyphenol concentration (Figure 2.5A and Figure 2.5B), as well as morphological races 

(Figure 2.5C).  At least some high proanthocyanidin accessions were found in most 

subpopulations, whereas high 3-deoxyanthocyanidin accessions were more restricted 

(Table 2.3). Bicolor (21.18 mg CE/g) and guinea-caudatum (17.89 mg CE/g) had the 

highest mean concentration of proanthocyanidins. Caudatum had moderate 

concentrations (13.20 mg CE/g) and the other botanical races and intermediate groups 

showed an average less than 10.00 mg CE/g. The highest mean concentrations of 3-

deoxyanthocyanidins were found in bicolor-durra (36.95 abs/mL/g) and guinea (35.63 

abs/mL/g) accessions (Table 2.3). We also determined the mean concentrations by 

country to better understand the geographic patterns for sorghum polyphenols (Table 

2.4). Accessions from Uganda (19.03 mg CE/g) had the highest mean proanthocyanidin 

concentrations, accessions from South Africa (12.23 mg CE/g) and Sudan (10.33 mg 

CE/g) had moderate concentrations, while accessions from the other countries showed an 
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average less than 10.00 mg CE/g. The highest mean concentrations of 3-

deoxyanthocyanidins were found in accessions from Nigeria (36.39 abs/mL/g) and 

Ethiopia 32.87 abs/mL/g). 

2.4.3 Genome-Wide Association Studies 

To investigate the genetic basis of natural variation in sorghum grain polyphenols, 

we conducted GWAS using 404,628 SNP markers. We were able to obtain genotype data 

for 373 out of the 381 phenotyped accessions. As a data quality check, we first collapsed 

the quantitative proanthocyanidin data to qualitative (presence or absence) data, and were 

able to repeat findings from previous GWAS and linkage studies (Figure 2.6 and Figure 

2.7; Appendix B.1-B.2). Next, to identify novel alleles associated with quantitative 

variation of proanthocyanidins, we conducted a GWAS on the 373 accessions (Figure 

2.8; Appendix B.3).  A GLM identified 3,272 significant SNPs (Figure 2.8A), while the 

MLM identified 24 significant SNPs after accounting for population structure (Figure 

2.8B). The genomic locations of the association peaks were generally similar between 

methods. A peak on chromosome 4 at ~61 Mb co-localized with Tannin1 

(Sb04g031730), as well as three a priori candidate genes in the region: a putative Zm1 

homolog (Sb04g031110), a putative TTG1 homolog (Sb04g030840), and a putative TT16 

homolog (Sb04g031750) (Figure 2.8C). The GLM identified a peak at 58.6 Mb on 

chromosome 7 (S7_58603858; P < 10-15), which was not present in the MLM.  

In order to reduce the effects of known Tannin1 nonfunctional alleles and identify 

additional quantitative loci, samples with the tan1-a and tan1-b alleles were removed and 

a GWAS was conducted on the remaining samples (Figure 2.9 and Appendix B.4). The 
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GLM identified 2,641 significant SNPs (Figure 2.9A). The association peak on 

chromosome 7 was again identified in the GLM and not in the MLM (Figure 5B). 

Additionally, there was a peak on chromosome 2 around 8 Mb (S2_8258226; P < 10-11) 

identified in the GLM, near a putative TT8 homolog (Sb02g006390). Both the GLM and 

the MLM identified a peak on chromosome 4, again around 61 Mb, and another peak on 

chromosome 4 between 53 Mb and 55 Mb, close to an F3'H Pr1 coortholog.  

To further map loci controlling quantitative proanthocyanidin variation, we ran a 

GWAS only on samples that contained proanthocyanidins (greater than 10.00 mg CE/g) 

and/or had a visible pigmented testa (Figure 2.10 and Appendix B.5).  With this subset, 

there were 676 significant SNPs identified in the GLM, but association peaks were more 

diffuse (Figure 2.10A).  The most significant SNP was on chromosome 6 (S6_56992521, 

P < 3 x 10-10) near a TT16 a priori candidate (Sb06g028420). The MLM identified two 

significant SNPs, with a peak on chromosome 4, again around 61 Mb, and another peak 

on chromosome 4 between 53 Mb and 55 Mb (Figure 2.10B).  Both the GLM and the 

MLM identified significant SNPs around 61.1 Mb on chromosome 1, which is near 

yellow seed1. 

Next, a GWAS was conducted to identify genetic controls of 3-

deoxyanthocyanidin variation among the 373 accessions (Figure 2.11 and Appendix B.6). 

The GLM identified 233 significant SNPs, with distinct association peaks on 

chromosomes 3 and 4 (Figure 2.11A). The peak on chromosome 3 was between 71-72 

Mb and co-localized with a gene (Sb03g045170) homologous to both TT18 (ANS) and 

TT6 (F3H). The peak on chromosome 4 was between 53 Mb and 55 Mb, close to TT1 and 

TT2 homologs, and an F3'H Pr1 coortholog. While there was not a distinct peak on 
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chromosome 1, the strongest association signal in the GWAS was found in a diffuse peak 

on chromosome 1 around 55 Mb (P < 10-9). The closest a priori candidates were putative 

TTG2 (Sb01g032120) and TT2 (Sb01g032770) homologs. There were no distinct peaks 

or significant associations identified in the MLM (Figure 2.11B).  

2.4.4 Grain Color 

Since grain color is commonly used as a visual marker for sorghum polyphenol 

content, we used our data set to better understand both the correlation between visually 

scored grain color and polyphenol concentration, and the potential shared genetic basis 

for these traits. Based on visual assessment of grain appearance, we designated 142 

white, 35 yellow, 48 red, and 152 brown grain accessions. An analysis of variance 

(ANOVA) showed significant variation among the grain color groups, so we conducted a 

post hoc Tukey test. Grain classified as red contained significantly more 3-

deoxyanthocyanidins than brown (P < 10-5) or white grain (P < 10-5) accessions, but no 

significant difference was found between red and yellow accessions (Figure 2.12A and 

Table 2.5). Brown grain accessions contained significantly more proanthocyanidins than 

accessions with red (P = 0.0001), white (P = 0.001), or yellow (P = 0.001) grain (Figure 

2.12B and Table 2.5).  This was expected as most of the sorghums with testa layers were 

classified as brown (57%).  We also compared proanthocyanidin concentrations between 

grain color in proanthocyanidin-containing (greater than 10.00 mg CE/g or presence of 

pigmented testa) accessions.  Brown grain color classes contained significantly more 

proanthocyanidins than non-brown (brown n = 120, non-brown n = 85, P < 10-13).  

However, when brown grain color classes were compared to each color class 

individually, they only contained significantly more proanthocyanidins than white color 
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classes (P < 10-4).  Red and yellow grain color classes also contained significantly more 

proanthocyanidins than white in the proanthocyanidin-containing accessions (P = 0.001 

and P = 0.02).  

To identify genes associated with brown grain, we conducted a presence/absence 

(brown versus non-brown) GWAS on all 373 of the accessions (Figure 2.13A-B and 

Appendix B.7) and another presence/absence (brown versus non-brown) GWAS on the 

203 proanthocyanidin-containing accessions (Figures 2.13C-D; Appendix B.8). A distinct 

association peak on chromosome 8 at 52.9 Mb was observed in both GWAS. The nearest 

a priori candidate was a putative TT12 homolog within 400 Kb (Sb08g021640). The 

GWAS conducted on all 373 accessions identified a peak on chromosome 3 at 63.6 Mb, 

within 100 kb of another putative TT12 homolog (Sb03g035610), and also a peak on 

chromosome 6 (S6_56992521, P < 3 x 10-10) near a TT16 a priori candidate 

(Sb06g028420) (Figures S2.4A and S2.4B). The GWAS conducted on the 

proanthocyanidin-containing accessions identified a peak on chromosome 2 around 69.6 

Mb, very near another TT12 homolog (Sb02g034720) (Figure 2.13C-D). This peak was 

also identified in the GWAS conducted on all 373 accessions, but was more diffuse. 

There were no peaks on chromosome 4 around Tannin1 or on chromosome 2 around the 

Z locus. 

To identify genes associated with red grain, we conducted a presence/absence (red 

versus non-red) GWAS on all of the samples (Figure 2.14 and Appendix B.9).  Two 

association peaks on chromosome 4 were identified by both the GLM and MLM, in the 

same region as the peak in the 3-deoxyanthocyanidin GWAS. The first peak, at 54.5 Mb, 

colocalized with a priori candidate Sb04g024710, the F3'H Pr1 coortholog that was also 
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in one of the 3-deoxyanthocyanidin GWAS peaks. The second peak, at 55.9 Mb, was 

very close to a priori candidate Sb04g026480, a putative MYB homolog. There was also 

a peak around 72 Mb on chromosome 3, in the same region as the peak in the 3-

deoxyanthocyanidin GWAS, near a priori candidate Sb03g044980, a putative TT19 

homolog. A peak was identified on chromosome 6 between 7-8 Mb, which was not near 

any a priori genes, but was near a putative vacuolar sorting protein gene (Sb06g003780). 

There were no peaks on chromosome 3 around the R locus. 

2.5 DISCUSSION 

2.5.1 Genetic Controls of Sorghum Polyphenols  

The genetic controls of the flavonoid pathway (Figure 2.15) have been well 

studied in many economically important food plants, including grape (Vitis vinifera), 

barley (Hordeum vulgare), maize (Zea mays), rice (Oryza sativa) and wheat (Triticum 

spp.).43 Much of our understanding of flavonoid genetics, including biosynthetic 

enzymes, transporters, and regulatory proteins, come from analysis of Transparent Testa 

(TT) mutants in Arabidopsis.44 Transcriptional regulation occurs through a ternary 

complex made up of TT2, TT8, and TTG1, which encode for MYB, bHLH and WD40 

proteins (MBW complex), respectively.44 This ternary complex is highly conserved 

among plant species.45 In the sorghum proanthocyanidin pathway, the WD40 (Tannin1) 

component of the MBW complex has been identified, as well as a likely candidate for the 

bHLH; several studies have found a significant linkage and association on sorghum 

chromosome 2 around 8 Mb, near a putative bHLH transcription factor orthologous to 

Arabidopsis TT8.22,24,41,46,47 The MYB transcription factor that would complete the 
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ternary complex has not been found in sorghum. The Zm1 homolog on chromosome 4 at 

61.1 Mb (Sb04g031110, 66.8% similarity), which was mapped in all of our 

proanthocyanidin GWAS, is a possible candidate for the missing MYB. The maize Zm1 

gene is a MYB transcription factor, homologous to classical maize grain pigmentation 

gene C1 that can induce transcription of DFR, an essential structural enzyme in the 

flavonoid pathway.48 Another possible explanation for the significant SNPs at this 

location is an indirect association with an undescribed allele at Tannin-1. 

About two-thirds of the SAP accessions we studied were "converted" tropical 

accessions, meaning that alleles for reduced height and early flowering have been 

introgressed so they can be grown in temperate regions.49 Surprisingly, the 

proanthocyanidin GWAS association peak on chromosome 7 (~58.6 Kb) precisely 

colocalizes with dw3 (Sb07g023730), a dwarfing loci used in the conversion, in 

conjunction with dw1, dw2, and dw4.27 Smaller peaks on chromosomes 6 (~39 Kb) and 9 

(~57 Kb) were near the dw2 and dw1 loci.  The association peaks on chromosomes 6, 7, 

and 9 may be artifacts arising from a lower mean proanthocyanidin concentration in the 

converted lines (4.4 mg CE/g) which all shared the same dw alleles, compared to the 

unconverted lines  (11.0 mg CE/g). Accordingly, when we conducted a proanthocyanidin 

GWAS using only converted accessions to control for this spurious phenotypic 

covariation between proanthocyanidin and height, the peaks near dw1, dw2, and dw3 

disappeared, while the Tannin1 peak remained (Figure 2.16). 

As a phytoalexin.15,16, the effect of the environment may make it more difficult to 

map the genetic basis of 3-deoxyanthocyanidins than the genetic basis of 

proanthocyanidins. Although the GLM was able to identify significant SNP associations 
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for 3-deoxyanthocyanidins, there were few peaks, and the MLM did not identify any 

significant associations. Detection of alleles contributing to variance of 3-

deoxyanthocyanidins may require a larger sample size, additional replication, a biparental 

mapping population, or controlled fungal inoculations to induce biosynthesis of 

polyphenol compounds23. However, our results did provide a promising candidate for 

follow-up. A Pr1 ortholog (Sb04g024750) lies within a distinct peak on chromosome 4, 

about 400 kb from the top SNP identified in the 3-deoxyanthocyanidin GWAS 

(S4_54975391; P < 10-8), and 100 kb from the top SNP in the red grain GWAS 

(S4_54555458, P < 10-13).  Pr1 is a maize F3'H enzyme, homologous to TT7 in 

Arabidopsis. The F3'H enzyme is essential for production of 3-deoxyanthocyanidins, as 

well as the red phlobaphene pigments visible in maize18, and has been implicated in 

production of these compounds in sorghum.50 Overall, we observe a 1.6-fold difference 

in 3-deoxyanthocyanidin concentrations between accessions carrying the high 

concentration alleles and low concentration alleles for the top red grain-associated SNP 

(P = 0.001). F3'H is necessary for proanthocyanidin production as well, and, indeed, 

significant associations with SNPs in the ~54 Mb region on chromosome 4 were also 

identified in the GWAS with tan1-a and tan1-b samples removed, as well as the GWAS 

with only proanthocyanidin-containing samples.  

Our study identified many peaks and SNPs significantly associated with 

proanthocyanidins and 3-deoxyanthocyanidins, hence there appear to be many small 

effect genes controlling natural variation of these traits.  Consequently, a larger 

association panel, or a targeted biparental mapping population may be more effective in 

precisely identifying causal alleles.  Moving forward, sequence analysis and expression 
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analysis of the candidate genes are needed to identify causal polymorphisms, and lay the 

groundwork for the use of polyphenol genetic variation in crop improvement.  

2.5.2 Crop Improvement for Sorghum Polyphenols 

Efforts to characterize polyphenols, with the goal of producing high polyphenol 

specialty varieties, have been undertaken in several grain crops, including purple wheat,51 

black rice,52 multi-colored maize,53 multi-colored barley,54 and black sorghum.55 Our 

diverse association panel contained a wide range of proanthocyanidin and 3-

deoxyanthocyanidin concentrations, and this genetic variation may be useful in breeding 

programs to produce high polyphenol specialty varieties. Bicolor sorghums had the 

highest mean proanthocyanidin concentrations, but their grain weight is significantly less 

(20% less) than non-bicolor sorghums (P < 10-9). Combined with low yield potential, the 

small grain size makes it difficult to use bicolor race sorghums in a grain sorghum 

breeding program, but may still be of interest to breeders wanting to produce specialty 

varieties. In addition to bicolor sorghums, caudatum and guinea-caudatum sorghums also 

had high mean proanthocyanidin concentrations, and are promising sources for increasing 

proanthocyanidin concentrations in sorghum. In particular, among the caudatum and 

guinea-caudatum sorghums, caudatum sorghums from tropical climates such as Uganda 

had the highest mean proanthocyanidin concentrations, so may be good material for 

breeding high polyphenol sorghums. While bicolor-durra and guinea sorghums had the 

highest mean 3-deoxyanthocyanidin concentrations, the difference among all the races 

was not significant, so it may be more important to simply identify unique genotypes 

across the sorghum collection. Chemical analysis is underway on the samples that were 
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outside of the NIRS calibration curves, and true biological outliers may open up new 

avenues for future work on sorghum varieties with extreme polyphenol concentrations. 

Increasing 3-deoxyanthocyanidin production may be challenging, since, as 

phytoalexins, they are not constitutively expressed, but rather synthesized by plants under 

pathogen attack.15,16 We note in our comparison of 3-deoxyanthocyanidin concentrations 

from duplicate samples that the difference between duplicates becomes larger for 

accessions with higher 3-deoxyanthocyanidin concentrations. One possibility is that there 

is greater technical variation in the 3-deoxyanthocyanidin NIRS estimates, but Dykes et 

al.35 demonstrated the same correlation coefficient between the NIRS-predicted values 

and the values in the validation set for proanthocyanidins (r = 0.81) and 3-

deoxyanthocyanidins (r = 0.82). Therefore, we would not expect to see differences in 

accuracy of the NIRS predictions for proanthocyanidins and 3-deoxyanthocyanidins in 

our study. As this was a field study, another possibility is that uncontrolled environmental 

variation may have contributed to the difference between the duplicate samples. 

Accessions with the genetic capability to produce grain 3-deoxyanthocyanidins may be 

producing low or high 3-deoxyanthocyanidin concentrations depending on the exposure 

to inducing agents on a given panicle. Controlled inoculation studies are needed to further 

explore this possibility23. 

The spreader gene is a promising target for increasing grain proanthocyanidin 

concentrations, and a previous report using a small number of varieties has shown higher 

proanthocyanidin concentrations in varieties with a functional spreader.56 Given that 

three peak SNP associations in the brown grain GWAS were near putative MATE 

transporter TT12 homologs, we propose that the spreader gene may be a MATE 
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transporter. A biparental mapping population segregating the spreader gene would be 

needed to confirm this hypothesis.  To get a sense of the effect these loci may have on 

proanthocyanidin concentrations, we compared concentrations of each allele in 

proanthocyanidin-containing accessions. There was a 1.8-fold (S3_63633634, P = 0.04), 

a 1.5-fold (S2_69656067, P = 0.0003), and a 1.7-fold (S8_52906014, P = 0.0002) 

difference between accessions carrying the high concentration alleles and low 

concentration alleles. When the three polymorphisms are considered together, accessions 

with all three high-alleles (S2_69656067 = "A", S3_63633634 = "A", S8_52906014 = 

"G") have 1.7 to 2.7-fold higher proanthocyanidin concentrations (P = 10-8), consistent 

with an additive effect more than doubling the concentration of proanthocyanidins in 

sorghum grain. 

Appearance of grain color is predominantly due to polyphenols, but can also be 

influenced by endosperm color and grain weathering. Taken in total, the color classes 

used for our analysis represent general groups and are not definitive descriptors of any 

specific trait.  For example, it is possible to have a sorghum classified as brown that does 

not have a testa layer, as well to have a sorghum classified as white that has a testa layer 

(see Figure 2.1). However, our results support the use of visual categorization of grain 

color as a simple assessment of polyphenol concentrations in crop improvement 

programs; brown grain has significantly higher proanthocyanidin concentrations than 

non-brown, red grain has significantly higher 3-deoxyanthocyanidin concentrations than 

non-red, and white grain has significantly lower concentrations of these polyphenols than 

non-white. Additionally, the genetic architecture of grain color reflects, to an extent, that 

of the polyphenols with which they are associated. For instance, the red grain GWAS and 
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the 3-deoxyanthocyanidin GWAS produced similar association peaks on chromosomes 4 

(~54 Mb), which may map to the sorghum Pr1 ortholog, and chromosome 3 (~72 Mb), 

which colocalizes with putative homologs of ANS, F3H, and TT19. The brown grain 

GWAS and the proanthocyanidin-containing GWAS produced similar association peaks 

on chromosome 6 (~57 Mb) near a priori candidate TT16, a key regulatory protein in the 

proanthocyanidin branch of the flavonoid pathway. Overall, to increase sorghum 

proanthocyanidin and 3-deoxyanthocyanidin concentrations quantitatively, there are 

many associated alleles available, but none of them have large effect. This survey of 

grain polyphenol variation in sorghum germplasm and catalog of flavonoid pathway-

associated loci contributes toward the goal of producing sorghum crops that will 

contribute to marker-assisted breeding of sorghum crops that will benefit human health.
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2.6 TABLES 

Table 2.1 Summary of flavonoid pathway genesa 

Function of reference gene 
Reference gene name 
A. thaliana 

Reference gene name 
Z. mays 

Reference gene name  
other species Functional category 

Chalcone synthase (CHS) TT4 C2 Biosynthesis 
Chalcone isomerase (CHI) TT5 CHI1 Biosynthesis 
Flavone 3-hydroxylase (F3H) TT6 F3H Biosynthesis 
Flavone 3'-hydroxylase (F3'H) TT7 Pr1 Biosynthesis 
Dihydroflavonol reductase (DFR) TT3 A1 Biosynthesis 
Anthocyanidin synthase (ANS/LDOX) TT18 A2 Biosynthesis 
UDP-flavonoid glucosyl transferase (UFGT) TT15 Bz1 Biosynthesis 
Anthocyanidin reductase (ANR) Banyuls (BAN) Biosynthesis 
Flavonoid oxidase TT10 Biosynthesis 
Leucoanthocyanin reductase (LAR) VvLARa Biosynthesis 
MYB transcription factor TT2, MYB11/12/111 P1, C1, Zm1 Yellow seed1 (Y locus)b Regulation 
bHLH transcription factor TT8 B1 Regulation 
WD40 repeat protein TTG1 Tannin1 (B2 locus)b Regulation 
WRKY transcription factor TTG2 Regulation 
MADS-box transcription factor TT16 Regulation 
Zn-finger transcription factor TT1 Regulation 
MATE vacuolar transport TT12 Transport 
Glutathione-S-transferase TT19 BZ2 Transport 
H+-ATPase proton pump aha10 Transport 
MRP anthocyanin transporter ZmMRP3 Transport 

 

aVitis vinifera; bSorghum bicolor 
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Table 2.2 Polyphenol concentrations in 373 sorghum varieties 

constituent mean range SD 

total phenols (mg GAE/g) 7.00 ND – 37.46 ± 5.92 

proanthocyanidins (mg CE/g) 7.73 ND – 78.51 ± 15.45 

3-deoxyanthocyanidins (abs/mL/g) 27.40 ND - 149.21 ± 24.05 
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Table 2.3 Polyphenol concentrations by race 

 

racea n total phenols mean 
(mg GAE/g) 

total phenols range 
(mg GAE/g) 

PA mean  
(mg CE/g) 

PA range  
(mg CE/g) 

3-DA mean 
(abs/mL/g) 

3-DA range  
(abs/mL/g) 

bicolor   15 13.68 ± 6.69 0.74 - 24.49 21.18 ± 17.68 ND - 50.16 26.91 ± 33.65 ND - 102.96 

bicolor-durra   19 6.59 ± 4.28 ND - 13.38 3.89 ± 12.06 ND - 23.35 36.95 ± 28.24 1.30 - 113.42 

caudatum  86 9.08 ± 5.86 ND - 27.32 13.20 ± 14.15 ND - 52.83 28.22 ± 21.06 ND - 110.73 

caudatum-kafir 20 6.27 ± 5.41 ND - 15.68 7.00 ± 15.13 ND - 31.98 26.65 ± 16.87 6.70 - 58.25 

durra  15 2.17 ± 3.61 ND - 11.68 ND  ND - 17.64 22.17 ± 21.33 ND - 71.10 

guinea  11 1.95 ± 5.25 ND - 15.44 ND  ND - 33.45 35.63 ± 36.88 0.93 - 135.34 

guinea-caudatum 15 10.01 ± 3.13 2.54 - 15.87 17.89 ± 9.76 ND - 34.92 19.72 ± 15.69 0.40 - 60.10 

kafir  29 6.02 ± 4.05 1.32 - 14.71 6.50 ± 10.20 ND - 28.72 17.59 ± 20.65 ND - 94.49 

 

aIf a race contained a small sample size (less than 10 accessions), it was not included in this analysis. PA, proanthocyanidins; 3-DA, 3-
deoxyanthocyanidins; ND, not detected (absorbance was less than 0.001)
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Table 2.4 Polyphenol concentrations by geographic origin 

countrya n total phenols mean 
(mg GAE/g) 

total phenols range 
(mg GAE/g) 

PA mean  
(mg CE/g) 

PA range  
(mg CE/g) 

3-DA mean 
(abs/mL/g) 

3-DA range  
(abs/mL/g) 

Uganda  44 10.99 ± 5.17 1.17 - 27.32 19.03 ± 12.02 ND - 52.83 27.37 ± 20.8 1.30 - 110.73 

South Africa  31 9.11 ± 5.21 1.11 - 20.63 12.23 ± 12.37 ND - 43.75 13.52 ± 14.1 ND - 38.82 

Sudan  31 7.50 ± 3.34 ND - 14.67 10.33 ± 8.93 ND -25.26 27.15 ± 15.1 4.13 - 60.10 

Nigeria  21 5.0 ± 6.46 ND - 24.49 1.21 ± 21.36 ND - 50.16 36.39 ± 35.8 ND - 135.34 

Ethiopia  29 5.71 ± 5.43 ND - 15.94 1.53 ± 13.13 ND - 23.53 32.87 ± 21.1 ND - 77.59 

India  21 3.90 ± 5.09 ND - 16.98 ND ND - 32.13 28.74 ± 28.7 ND - 113.42 

USA  71 5.09 ± 5.25 ND - 29.93 3.6 ± 12.55 ND - 63.80 27.50 ± 24.2 ND - 95.20 
 

aIf a country contained a small sample size (less than 10 accessions), it was not included in this analysis. PA, proanthocyanidins; 3-
DA, 3-deoxyanthocyanidins; ND, not detected (absorbance was less than 0.001).
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Table 2.5 Polyphenol concentrations by color 

 

color n total phenols mean 
(mg GAE/g) 

total phenols range 
(mg GAE/g) 

PA mean  
(mg CE/g) 

PA range  
(mg CE/g) 

3-DA mean 
(abs/mL/g) 

3-DA range  
(abs/mL/g) 

white  142 4.0 ± 3.10 ND – 14.67 2.00 ± 8.84 ND – 25.26 22.74 ± 14.03 ND – 58.41 

yellow 35 6.0 3± 6.18 ND – 23.69 4.60 ± 15.98 ND – 42.30 29.30 ± 27.89 ND – 98.90 

red 48 6.97 ± 7.30 ND – 27.32 4.48 ± 21.10 ND – 52.83 42.21 ± 30.43 ND - 135.34 

brown 152 10.01 ± 6.01 ND – 37.46 14.74 ± 
15.63 

ND – 78.51 26.46 ± 26.64 ND - 149.21 

 

proanthocyanidins; 3-DA, 3-deoxyanthocyanidins; ND, not detected (absorbance was less than 0.001).



 

 39

2.7 FIGURES 

 

 
Figure 2.1 Natural variation in sorghum grain color.  Three accessions (with three 
seeds of each accession) of grain with the appearance of (A) brown (PI597965, 
PI533927, PI35038), (B) white (PI533755, PI533845, PI534028), (C) yellow (PI659691, 
PI656011, PI533776), and (D) red (PI576418, PI534047, PI564165) pericarps.  The outer 
coat has been scraped off of some samples, revealing the presence or absence of a 
pigmented testa. 



 

 

 

 

Figure 2.2 Phenotypic variation
varieties. Samples are ordered on the x
accession. The observed value for each replicate is given on the y
value of the duplicates in red an
polyphenols, (B) proanthocyanidins
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Phenotypic variation of grain polyphenol concentrations in 381 sorghum 
Samples are ordered on the x-axis according to their mean value for the 

accession. The observed value for each replicate is given on the y-axis, with the higher 
value of the duplicates in red and the lower value of the duplicates in blue. 
polyphenols, (B) proanthocyanidins (PAs), and (C) 3-deoxyanthocyanidins

of grain polyphenol concentrations in 381 sorghum 
axis according to their mean value for the 

axis, with the higher 
d the lower value of the duplicates in blue.  (A) total 

deoxyanthocyanidins (3-DAs).



 

 

 

Figure 2.3 Variation of proanthocyanidin concentrations in testa phenotype and 
Tannin1 genotype. Comparison of 
between accessions with and without a pigmented testa, and (B) between accessions 
containing the wild type Tannin1
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Variation of proanthocyanidin concentrations in testa phenotype and 
Comparison of estimates of proanthocyanidin concentration

between accessions with and without a pigmented testa, and (B) between accessions 
Tannin1 allele or the tan1-a null allele.   

Variation of proanthocyanidin concentrations in testa phenotype and 
estimates of proanthocyanidin concentration (A) 

between accessions with and without a pigmented testa, and (B) between accessions 
 



 

 

 

Figure 2.4 Relationship within and between grain poly
sorghum germplasm collection
concentrations of each trait.  
showing the relationships between the traits. 
correlations between the traits. Units are mg GAE/g for total phenols, mg CE/g for 
proanthocyanidins, and abs/mL/g for 3
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Relationship within and between grain polyphenol traits in a global 
sorghum germplasm collection. The center diagonal presents histograms of the mean 

 The lower corner contains scatter plots with regression lines 
showing the relationships between the traits.  The upper corner shows Pearson's 
correlations between the traits. Units are mg GAE/g for total phenols, mg CE/g for 
proanthocyanidins, and abs/mL/g for 3-deoxyanthocyanidins. (n =381) 

phenol traits in a global 
. The center diagonal presents histograms of the mean 

The lower corner contains scatter plots with regression lines 
upper corner shows Pearson's 

correlations between the traits. Units are mg GAE/g for total phenols, mg CE/g for 
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Figure 2.5 Population structure of grain polyphenol traits in a global 
sorghum germplasm collection. Accessions plotted according to the first 
two principal components of sorghum population structure based on the SNP 
data, showing (A) proanthocyanidin concentration  (mg CE/g), (B) 3-
deoxyanthocyanidin concentrations (abs/mL/g), and (C) morphological race, 
where the SAP are squares, the 74 additional accessions are circles, and   
accessions of unknown races are in gray 
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Figure 2.6 GWAS for proanthocyanidin presence/absence in sorghum grain. 
Manhattan plot of association results from (A) a GLM analysis and (B) an MLM analysis 
using ~404,628 SNP markers and 373 accessions  (146 proanthocyanidin accessions, 227 
non-proanthocyanidin accessions). Presence is defined as proanthocyanidins greater than 
10.00 mg CE/g and absence is defined as proanthocyanidins less than 10.00 mg CE/g.
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Figure 2.7 GWAS for proanthocyanidin presence/absence in sorghum grain with 
accessions containing tan1-a and tan1-b removed.  Manhattan plot of association 
results from (A) a GLM analysis and (B) an MLM analysis using ~404,628 SNP markers 
and 312 accessions (150 proanthocyanidin accessions, 162 non-proanthocyanidin 
accessions). Presence is defined as proanthocyanidins greater than 10.00 mg CE/g and 
absence is defined as proanthocyanidins less than 10.00 mg CE/g.  



 

 

Figure 2.8 GWAS for proanthocyanidin concentration in sorghum grain. 
plot of association results from (A) a GLM analysis, (B) an MLM analysis, and (C) a 
closeup of the peak on chromosome 4 showing 
region, using 404,628 SNP markers and 373 accessions. Axes: the 
plotted against the position on each chromosome (x axis). Each circle represents a S
The dashed horizontal line represents the genome
determined by Bonferroni correction. Regions with 
candidates. The vertical lines indicate the location of 
genes in the Tannin-1 region (~61 Mb).
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Figure 2.8 GWAS for proanthocyanidin concentration in sorghum grain. 
plot of association results from (A) a GLM analysis, (B) an MLM analysis, and (C) a 

oseup of the peak on chromosome 4 showing Tannin1 and other candidate genes in the 
region, using 404,628 SNP markers and 373 accessions. Axes: the -log10 p-values (y axis) 
plotted against the position on each chromosome (x axis). Each circle represents a S
The dashed horizontal line represents the genome-wide significance threshold as 
determined by Bonferroni correction. Regions with -log10 p-values above the threshold are 
candidates. The vertical lines indicate the location of Tannin-1 and a priori 

region (~61 Mb).  

Figure 2.8 GWAS for proanthocyanidin concentration in sorghum grain. Manhattan 
plot of association results from (A) a GLM analysis, (B) an MLM analysis, and (C) a 

and other candidate genes in the 
values (y axis) 

plotted against the position on each chromosome (x axis). Each circle represents a SNP. 
wide significance threshold as 

values above the threshold are 
a priori candidate 
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Figure 2.9 GWAS for proanthocyanidin concentration in sorghum grain with 
accessions containing tan1-a and tan1-b nonfunctional alleles removed. Manhattan 
plot of association results from (A) a GLM analysis, and (B) an MLM analysis, using 
404,628 SNP markers and 312 accessions. Axes: the -log10 p-values (y axis) plotted 
against the position on each chromosome (x axis). Each circle represents a SNP. The 
dashed horizontal line represents the genome-wide significance threshold as determined 
by Bonferroni correction. Regions with -log10 p-values above the threshold are candidates. 
The red vertical lines highlight the location of candidate genes (TT8 on chrm. 2 and 
TTG1, Zm1, and TT16 on chrm. 4).  
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Figure 2.10 GWAS for proanthocyanidin concentration in proanthocyanidin-
containing sorghum grain (greater than 10.00 mg CE/g or pigmented testa). Manhattan 
plot of association results from (A) a GLM analysis, and (B) an MLM analysis, using 
404,628 SNP markers and 208 accessions. Axes: the -log10 p-values (y axis) plotted 
against the position on each chromosome (x axis). Each circle represents a SNP. The 
dashed horizontal line represents the genome-wide significance threshold as determined 
by Bonferroni correction. Regions with -log10 p-values above the threshold are candidates. 
The red vertical lines highlight the location of candidate genes (TT16, Tannin1 region, 
Pr1/TT7).   
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Figure 2.11 GWAS for 3-deoxyanthocyanidin concentration in sorghum grain. 
Manhattan plot of association results from (A) a GLM analysis, and (B) an MLM 
analysis, using 404,628 SNP markers and 373 accessions. Axes: the -log10 p-values (y 
axis) plotted against the position on each chromosome (x axis). Each circle represents a 
SNP. The dashed horizontal line represents the genome-wide significance threshold as 
determined by Bonferroni correction. Regions with -log10 p-values above the threshold are 
candidates. The red vertical lines highlight the location of candidate genes (TT18/ANS, 
TT6/F3H, Pr1/TT7). 
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Figure 2.12 Polyphenol differences between grain colors.  Mean concentrations of (A) 
proanthocyanidins and (B) 3-deoxyanthocyanidins in accessions of each grain color. 
Color categories share the same letter if they are not significantly different from each 
other, based on a  post hoc Tukey HSD test (brown, n = 152; red, n = 48; white,  n  = 142; 
yellow,n=35) 
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Figure 2.13 GWAS for brown grain sorghum. Manhattan plot of association results 
from (A) a GLM analysis in all accessions, (B) an MLM analysis in all accessions, (C) a 
GLM analysis in proanthocyanidin-containing accessions, (D) and an MLM analysis in 
proanthocyanidin-containing accessions, using ~404,628 SNP markers and 373 (148 
brown, 225 not brown) accessions for A and B, and 203 (116 brown, 87 not brown) 
accessions for C and D. Proanthocyanidin-containing sorghum grain is defined as 
proanthocyanidins greater than 10.00 mg CE/g or having a pigmented testa. 
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Figure 2.14 GWAS for red grain sorghum. Manhattan plot of association results from 
(A) a GLM analysis, and (B) an MLM analysis using ~404,628 SNP markers and 373 (48 
red, 325 non-red) accessions. 

  



 

 

 

Figure 2.15 Simplified scheme of flavonoid biosynthetic pathway. 
abbreviations are in uppercase letters, while gene abbreviations are in italics. Question 
marks depict unknown steps. Chalcone synthase (CHS), chalcone
(CHI), flavanone 3-hydr
dihydroflavonol-4-reductase (DFR), anthocyanidin synthase (ANS), anthocyanidin 
reductase (ANR), leucoanthocyanidin red
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Simplified scheme of flavonoid biosynthetic pathway. 
abbreviations are in uppercase letters, while gene abbreviations are in italics. Question 
marks depict unknown steps. Chalcone synthase (CHS), chalcone-flavanone isomerase 

hydroxylase (F3H), flavanone 3'-hydroxylase (F3'H), 
reductase (DFR), anthocyanidin synthase (ANS), anthocyanidin 

reductase (ANR), leucoanthocyanidin reductase (LAR); MYB-bHLH-WD40 (MBW

 

 

Simplified scheme of flavonoid biosynthetic pathway. Enzyme 
abbreviations are in uppercase letters, while gene abbreviations are in italics. Question 

flavanone isomerase 
hydroxylase (F3'H), 

reductase (DFR), anthocyanidin synthase (ANS), anthocyanidin 
WD40 (MBW).  
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Figure 2.16 GWAS for proanthocyanidins in entire panel versus converted lines. 
 Manhattan plot of association results from (A) a GLM analysis using all 373 accessions, 
and (B) a GLM analysis using only the 190 converted accessions. 
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3.1 ABSTRACT 

Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop for dryland 

areas in the United States and for small-holder farmers in Africa. Natural variation of 

sorghum grain composition (protein, fat, and starch) between accessions can be used for 

crop improvement, but the genetic controls are still unresolved. The goals of this study 

were to quantify natural variation of sorghum grain composition and to identify single-

nucleotide polymorphisms (SNPs) associated with variation in their concentrations. In 

this study, we quantified protein, fat, and starch in a global sorghum diversity panel (n = 

381) using near-infrared spectroscopy (NIRS). Protein content ranged from 7.5% to 

20.9%, fat content ranged from 1.1% to 4.9%, and starch content ranged from 60.8% to 

73.2%. Among the sorghum races, bicolor accessions had the highest mean protein 

(14.7%) and fat (3.7%), and the lowest mean starch (65%). Kafir accessions had the 

lowest mean protein (10.5%) and fat (2.6%), and the highest mean starch (68.3%). A 

genome-wide association study (GWAS) with 404,628 SNP markers identified 81, 81, 

and 11 significant single nucleotide polymorphism (SNP) markers for sorghum protein, 

fat, and starch, respectively. Published RNAseq data, generated as a community resource 

for transcriptomic analyses, was used to identify candidate genes within a GWAS 

quantitative trait loci (QTL) region. Candidate genes identified include NAM-B1, AMY3, 

and SSIIb, genes previously shown to be associated with grain composition traits. This 

survey of grain composition in sorghum germplasm and identification of QTL 

significantly associated with protein, fat, and starch, contributes to our understanding of 

the genetic basis of natural variation in sorghum grain composition. 
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3.2 INTRODUCTION 

The 1996 World Food summit announced a goal of halving the number of 

undernourished people in the world by the year 2015.  Although much progress has been 

made towards this goal, one in eight people still suffer from chronic hunger 1. This can be 

alleviated by improving the nutrition of staple cereal crops, which provide the majority of 

nutrients to the world's population, especially in developing countries. Sorghum, one of 

the world's most important cereal crops, feeds millions of people in sub-Saharan Africa 2, 

where the highest prevalence of undernourishment in the world is found 1.  

Understanding the natural variation of protein, fat, and starch, and identifying 

quantitative trait loci (QTL) associated with their natural variation in sorghum grain can 

help improve its nutritional quality through crop improvement programs and marker 

assisted selection.   

Seeds contain protein, fat, and starch stores in order to support the developing 

seedling until it can sustain itself.  Since these nutrient stores are also critical components 

of the human diet, many researchers have focused on improving the nutrient composition 

of seeds from food plants 3. For instance, the Illinois long-term selection experiment, 

which began in 1896, has increased the oil and protein content of maize inbred lines to 

20% and 27%, respectively, compared to ~6% and ~12%, in an average maize line 4–7. 

The composition of grain is controlled by complex regulation that takes place during the 

seed filling stage of seed maturation, when protein, fat, and starch storage compounds 

accumulate 8. Due to the importance that grain holds in the world food system, this 

process has been extensively studied in cereal crops 9,10. Key insights have been 

discovered through several rice and maize mutations with altered grain composition, 
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including opaque-2 and floury-2, which affect protein content 11–14;  linoleic1 and fad2, 

which affect fat content 15–17; and shrunken1 and amylose extender1, which affect starch 

content 18–20. Mutations that modify sorghum grain composition include waxy, which 

lacks amylose and has increased protein and starch digestibility 21,22; sugary, which has 

increased sucrose content 23,24; and high-lysine, which has increased lysine content and 

protein digestibility 25.  

QTL and association studies have detected several loci controlling sorghum grain 

composition 26–30, and the waxy mutation has been mapped to 1.8 Mb on chromosome 10 

31, but more work needs to be done to precisely identify genes responsible for natural 

variation of grain composition. Recently, GWAS studies have been successful in 

identifying allelic polymorphisms for important agronomic traits in cereal crops 32–35, 

including alleles responsible for variation in grain composition 33,35–39, but a GWAS study 

on sorghum grain composition has not been conducted.  

Surveying the natural variation of grain composition in the sorghum germplasm 

and finding the molecular basis underlying the variation are necessary for understanding 

how to improve the nutritional value of sorghum. New sources of genetic variation can be 

used for crop improvement, especially in developing countries where technologies that 

exist for improving the nutritional value of grain, such as commercial fortification, are 

not accessible and/or affordable 40–42. The goals of this study were to quantify natural 

variation of sorghum grain composition and to identify SNPs that are associated with 

variation in grain composition. Here, we characterize the natural variation of sorghum 

grain composition in a global diversity panel of ~400 sorghum varieties, and use GWAS 
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with 404,628 SNP markers to identify allelic variation associated with variation in grain 

composition. 

3.3 MATERIALS AND METHODS 

3.3.1 Plant Materials 

We investigated a total of 381 sorghum accessions, comprising 308 accessions 

from the Sorghum Association Panel (SAP) 43 and an additional 73 accessions selected to 

supplement the panel. The panel includes domesticated sorghum from all five major races 

(bicolor, guinea, caudatum, kafir, and durra) and 10 intermediate races (all combinations 

of the major races), which are based on morphological differences 44, as well as important 

breeding lines from the United States. Seeds were obtained from the U.S. National Plant 

Germplasm System's Germplasm Resources Information Network (GRIN) 45 and planted 

in late April 2012 at Clemson University Pee Dee Research and Education Center in 

Florence, SC. A two-fold replicated complete randomized block design was used. 

Panicles from each plot were collected at physiological maturity, which occurs once grain 

filling is complete. Due to differences in maturity among these accessions, harvest 

occurred between September and October.  Once harvested, panicles were air dried in a 

greenhouse and then mechanically threshed and any remaining glumes were removed 

with a Wheat Head Thresher (Precision Machine Company, Lincoln, NE). This panel is 

referred to as SC2012. 

3.3.2 Phenotyping 

Protein, fat, and starch content were predicted using NIRS. Twenty grams of 

cleaned whole grain from one replicate were scanned with a FOSS XDS spectrometer 



 

 64

(FOSS North America, Eden Prairie, MN, USA).  To determine reproducibility, 

duplicates on a subset of 218 accessions available from replicate plots were also scanned. 

The NIR reflectance spectra were recorded using the ISIscan software (Version 

3.10.05933) and converted to estimates of protein, fat, and starch concentrations. Samples 

with unusual reflectance were visually inspected and NIRS was repeated.  Seventeen 

samples were removed from further analysis either because they contained mixed grain 

(mixed size, shape, or color) or because their readings were outside the range of the 

available NIRS calibration curve. Flowering-date was determined by the number of days 

from planting until the start of anthesis. The total grain weight of 100 grains per 

accession was recorded.  Chemical analysis for protein, fat, and starch concentrations in a 

subset of 34 samples (17 accessions with duplicates) was performed by Ward 

Laboratories, Inc. (Kearney, NE).  

3.3.3 Genomic Analysis 

Genotypes were available for all of the accessions 32,46.  GWAS was carried out 

on 404,628 SNP markers, using the statistical genetics package Genome Association and 

Prediction Integrated Tool (GAPIT) 47. A standard mixed linear model (MLM) 48 with 

kinship (K), which controls for relatedness among the accessions in the panel, was 

performed 49. GAPIT corrected for multiple testing error by controlling the false 

discovery rate (FDR) at 5% using the Benjamini and Hochberg procedure 50. Pseudo-

heritability (proportion of phenotypic variation explained by genotype) was estimated 

from the kinship (K) model in GAPIT 49 as the R-squared of a model with no SNP 

affects.  An a priori candidate gene list with 521 candidates was developed. 
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3.3.4 Expression data 

To identify candidate genes within the GWAS QTL regions, we used a published 

sorghum transcriptome atlas that included tissues from young leaves, primordial 

inflorescences, inflorescences, anthers, pistils, whole seeds 5 days after pollination, 

whole seeds 10 days after pollination, developing embryo, and developing endosperm 51 

(Appendix C). We used the definitions of Davidson et al, as follows: FPKM < or = 1 = 

"not expressed"; FPKM < or = 4 = "low-expressed"; FPKM between 4 and 24 = 

"intermediate-expressed"; and FPKM > or = 24 = "high-expressed".  

3.4 RESULTS 

3.4.1 Phenotypic variation of sorghum grain composition 

We first investigated the range of protein, fat, and starch content and their 

covariation with each other. We found that the germplasm showed a wide range of 

diversity in grain composition. Protein content ranged from 7.5% to 20.9%, fat content 

ranged from 1.1% to 4.9%, and starch content ranged from 60.8% to 73.2% (Figure 3.1). 

Pearson's correlations were calculated between protein, fat, and starch (Figure 3.1). There 

was a strong negative correlation between starch and both protein (r = -0.88, p < 10-17) 

and fat (r = -0.73, p < 10-17), and a strong positive correlation between protein and fat (r = 

0.75, p < 10-17). Grain composition concentrations are expressed as percentage by total 

seed weight, therefore an increase in one component necessitates a decrease in another 

component. The negative correlations with starch may, in part, be driven by this method. 

In order to account for differences in seed weight, we multiplied the percent 

concentration by the seed weight of each accession to get absolute estimates of the mass 
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of each constituent per grain, and recalculated Pearson's correlations. Using these 

estimates, there was a moderate positive correlation between starch and both protein (r = 

0.58, p < 10-17) and fat (r = 0.50, p < 10-17), and a strong positive correlation between 

protein and fat (r = 0.84, p < 10-17). These positive correlations between the traits reflect 

that total amounts of protein, fat, and starch increase with increases in total seed weight. 

  Next we investigated grain protein, fat, and starch covariation with factors that 

could reduce their biological availability for human consumption. Since the digestibility 

of protein and starch can be decreased by proanthocyanidins, and possibly other 

polyphenols52, it is useful to know if there is a pattern of covariation between grain 

composition traits and polyphenol content. To this end, we used polyphenol data 

previously generated by our group46 to calculate Pearson's correlations with protein, fat, 

and starch concentrations (using the weight adjusted concentrations). Total phenolics had 

a small positive correlation with protein (0.13, P = 0.01) and a small negative correlation 

with starch (-0.13, P = 0.01). The 3-deoxyanthocyanidins had a small positive correlation 

with protein (0.14, P = 0.01) and fat (0.12, P = 0.02).  Proanthocyanidins were not 

significantly correlated with protein, fat or starch. 

 Since NIRS estimates rely on predictive equations developed through chemical 

analysis of a calibration population, concentrations that are outside of the range of the 

calibration population, or at the high or low extremes of the calibration population, may 

not be accurately predicted. Therefore, in order to verify the accuracy of the NIRS 

estimates, chemical analyses were conducted on a subset of 34 samples (17 accessions in 

duplicate) with very high or very low estimates of protein, fat, and starch. Pearson’s 

correlations between the NIRS and chemical analyses results found that there were 
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significant correlations with protein (0.43, P = 0.01) and with starch (0.56, P = 0.001), 

but not with fat (-0.02, P = 0.91; Figure 3.2). These results suggest that NIRS predictions 

may not be as accurate when measuring high or low extremes of protein and starch 

concentrations, and may not be at all accurate when measuring fat concentrations. 

Absolute levels of fat are much lower than protein and starch (on average, fat made up 

only 2.9% of the grain constituents, compared to 11.8% protein and 67.1% starch), which 

may be the cause of the measurement error in fat. 

3.4.2 Population structure of grain composition traits 

Knowledge of variation in grain composition across the sorghum races can be applied to 

germplasm utilization. Among the sorghum races (Figure 3.3A), bicolor accessions had 

the highest mean protein (14.7%) and fat (3.7%), and the lowest mean starch (65%). 

Bicolor-durra (12.9%) and durra (12.7%) accessions also had high mean protein. Guinea 

(3.2%) and durra (3.2%) accessions also had high mean fat.  Kafir accessions had the 

lowest mean protein (10.5%) and fat (2.6%), and the highest mean starch (68.3%). 

Guinea (67.2%) and caudatum-kafir (67.2%) accessions also had high mean starch.  

We also determined the mean concentrations by country to better understand the 

geographic patterns for protein, fat, and starch in sorghum grain (Figure 3.3B).  

Accessions from Ethiopia had the highest mean protein (13.8%) and the lowest mean 

starch (65.8%).  There were no significant differences in fat content in accessions 

between countries.  

3.4.3 Genome wide association study 

We had GBS data for 373 out of the 381 phenotyped accessions. Pseudo-



 

 68

heritability, the proportion of variance explained by genotype in the mixed model, was 

95.7% for protein, 73% for fat, and 91.2% for starch. The lower heritability of fat may be 

due to the NIRS measurement error discussed in the previous section.  

Prior to running GWAS, we conducted an extensive literature search to identify 

potential candidate genes, and compiled a list of previously identified candidate genes 

associated with grain composition 37,38,53, as well as genes known to be involved in grain 

maturation and grain filling 8,10,54,55,55 in Arabidopsis, rice, and maize, resulting in a list of 

520 a priori candidate genes. To investigate the genetic basis of natural variation of 

protein, fat, and starch in sorghum grain, we conducted a GWAS using the diverse 

association panel with 404,628 SNP markers. Again, we first multiplied the percent 

concentration by the seed weight of each accession in order to control for differences in 

seed weight.  The MLM identified 81, 81, and 11 significant SNPs for protein, fat, and 

starch, respectively, at a genome-wide FDR of 5%  (Appendix D). To identify candidate 

genes within a GWAS QTL region, we used RNAseq data that was generated as a 

community resource for transcriptomic analyses 51. Genes in a QTL region that were 

expressed during grain maturation were considered good candidates. 

The MLM for both protein and fat identified 81 significant SNPs at a genome-

wide FDR of 5%  (Figure 3.4A-B, Appendix D.1-D.2), with two highly significant 

association peaks. There was a large association peak on chromosome 2 at ~57.7 Mb. 

Close to this peak is an a priori candidate gene that is a putative homolog of alpha-

amylase 3 (AMY3, Sb02g023790; 57,701,214-57,703,517 bp). The expression data for 

this gene shows no induction in the leaves or in the day 5 seeds, but a low expression (2.1 

FPKM) in the day 10 seeds and in the endosperm (5.8 FPKM; Appendix C.1).  Also near 
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this peak is an a priori candidate gene that is a putative homolog of NAC2 

(Sb02g023960; 57,931,636-57,703,517 bp). The expression data shows this gene is only 

expressed in the seed, with no induction on day 5, but highly expressed by day 10 at 62.4 

FPKM. It is also highly expressed in the endosperm (65.3 FPKM), but not in the embryo 

(1.6 FPKM; Appendix C.1).    

The second highly significant association peak in the protein and fat GWAS was 

on chromosome 4 at ~57.7 Mb (Figure 3.4A-B, Appendix D.1-D.2). It was much more 

significant in the protein GWAS. The closest a priori candidate is a putative wrinkled1 

homolog (Sb04g027940; 57,859,449-57,863,521 bp). This gene has moderate expression 

in the leaves (13.5 FPKM), and high expression in the day 5 seeds (27.4 FPKM) with a 

decrease by day 10 (14.1 FPKM; Appendix C.2).  The embryo has moderate levels (18.7 

FPKM), while the endosperm has high levels (31.2 FPKM). The peak is also near a gene 

that has homology to starch synthase IIb (SSIIb, Sb04g028060; 57,999,747-58,003,544 

bp). Expression is particularly high in leaves (80.7 FPKM) and still elevated in day 5 

seeds (21.1 FPKM), but lower by day 10 (3.5 FPKM).  The embryo and endosperm have 

the same levels at ~ 5 FPKM (Appendix C.2).  

The starch GWAS identified 11 significant SNP associations (Figure 3.4C, 

Appendix D.3). The top SNP was on chromosome 6 at 48.9 Mb. The a priori candidate is 

another putative NAC homolog at 48.6 Mb (Sb06g019010; 48,600,551-48,601,945 bp), 

which has high expression in the day 5 (78.7 FPKM) and day 10 (62.1 FPKM) seeds, as 

well as in the endosperm (39.3 FPKM) (Appendix C.3). The most defined peak in the 

GWAS was on chromosome 2, with SNP associations from 66.2 Mb to 68.2 Mb. The 

closest a priori candidate was a chromatin remodeling factor gene (PICKLE; 
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Sb02g033850) at 68.4 Mb, with moderate expression in all tissues. 

Since starch makes up the majority of the grain composition, it is possible that 

some variation in protein and fat are driven by variation in starch. To determine if starch 

could be influencing the values, we ran two linear models in which we fit either protein 

or fat as the dependent variable and starch as the independent variable (using the weight 

adjusted values). We hypothesized that natural variation in starch pathways might be 

affecting protein and fat content in the grain due to a limited pool of carbon. If we assume 

that patterns in protein and fat are driven by starch, then starch could account for a 

significant proportion of the variance—34% of all the variance in protein (p < 10-17) and 

21% of the variance in fat (p < 10-17)—but there is a large portion of variance in protein 

and fat is still unexplained. Therefore, we conducted GWAS on the residuals (the amount 

of variation in fat and protein that could not be explained by starch) from the linear 

models to determine if there was anything left to map after accounting for covariation in 

starch (Figure 3.5).  The GWAS on protein residuals identified 82 significant SNPs at the 

FDR adjusted significance threshold, with a peak on chromosome 2 at ~57.6 Mb and 

chromosome 4 at ~57.8 Mb (Figure 3.5A). The fat residuals GWAS identified 73 

significant SNPs at the FDR adjusted significance threshold, also with a large peak on 

chromosome 2 at ~57.6 Mb and a smaller peak on chromosome 4 at ~57.8 Mb (Figure 

3.5B).   

3.4.4 Control Analysis on GWAS QTL 

To test if the GWAS QTL are stable across environments, we conducted a GWAS 

using phenotype data from a sorghum panel grown in Kansas in 2007 (hereafter referred 
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to as KS2007) that primarily consisted of the SAP 26. No SNPs reached the FDR adjusted 

significance threshold and there were no obvious association peaks (Figure 3.6). The 

replicate samples from our dataset were grown in a two-fold block design, so as a control 

analysis, we conducted a GWAS separately on data from each block. We had genotype 

data for 213 of the 218 duplicate accessions. The GWAS identified the same association 

peaks when run separately on each block (Figure 3.7).  Phenotypic covariates are another 

potential source of misleading associations 56. Maturity differences across the panel can 

potentially lead to grain composition differences. If maturity was a confounding factor in 

the panel, then we could expect that one or more of the QTL identified in the SC2012 

GWAS was actually maturity loci instead of grain composition loci. With this in mind, 

we conducted a GWAS using flowering time data for the SC2012 panel.  We had 

genotype data for 230 of the 234 phenotyped accessions. The major peak in the GWAS 

mapped to the previously identified maturity locus, ma1 32,57, and, importantly, did not 

map to significant associations identified in the SC2012 GWAS (Figure 3.8).  

3.5 DISCUSSION 

3.5.1 Covariation of starch fat and protein in sorghum grain  

GWAS revealed that protein, fat, and starch variation in the sorghum global diversity 

panel appear to be controlled by many small effect genes, some of which are significantly 

associated with more than one grain composition trait.  GWAS for protein and fat 

identified two major peaks in common, one on chromosome 2 at 57.7 Mb and the other 

on chromosome 4 at 57.7 Mb. The starch GWAS only identified 11 significant 

associations with small peak, none of which were in common with protein and fat. 
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We believe that the large peak on chromosome 2 at 57.7 Mb is a true association. 

The peak remained when GWAS was performed on the individual biological replicates, 

suggesting that, given that environment, we have the correct phenotypes and associations. 

Additionally, the peak does not appear to be related to flowering time differences among 

the accessions in the panel. The peak is near a QTL that was significantly associated with 

fat in a sorghum linkage study that used a biparental population derived from the cultivar 

Rio and BTx623, which was grown in Texas (hereafter referred to as TX2008) 28. 

TX2008 identified a QTL on chromosome 2 near the genetic marker txp298, which is 

located at ~57.1 Mb 58. Promising a priori candidates near this peak are the AMY3 and 

NAM-B1 homologs. AMY3 is an alpha-amylase debranching enzyme that hydrolyzes the 

glucosidic bonds that make up starch. AMY1 was previously identified as a candidate 

gene in a maize grain composition GWAS study 38. A recent study using AMY3 

overexpression lines found that the increased levels of AMY3 did not significantly affect 

starch content, but fat content was increased in the mature endosperm where starch had 

been partially degraded 59. The authors suggested that starch degradation during grain 

maturation led to the release of sucrose that was then shunted into the Kennedy pathway 

for fat synthesis 59. The other candidate genes near the peak on chromosome 2 is a 

putative NAC gene with homology to NAM-B1. NAM-B1 is a wheat gene that was found 

to be involved in nutrient remobilization from senescing leaves to the developing grain, 

leading to alterations in grain protein, iron, and zinc content 60. In this same study, two 

stay-green plants showed significant reduction of RNA levels in different NAM 

homologs, compared to control lines, and these stay-green plants exhibited delayed 

chlorophyll degradation in flag leaves 60. Allelic variation in several other NAC genes has 
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been implicated in senescence regulation 61. Interestingly, a functional sorghum stay-

green gene (SG3a) has been mapped to a region near the txp298 genetic marker, (which 

is located on chromosome 2 at ~57.1 Mb) 62–64. Stg3 is related to delayed onset of leaf 

senescence during post-anthesis water deficit, as well as lower rates of leaf senescence 65. 

The significant association peak on chromosome 4, at 57.7 Mb also colocalized 

with a QTL identified in the TX2008 study, which was significantly associated with 

protein and corneous endosperm 28. The TX2008 QTL was near the genetic markers 

txp41 located on chromosome 4 at ~58.6 Mb 58, which is near an SSIIb gene 

(Sb04g028060; 57,999,747-58,003,544 bp). Studies in both maize and rice have found 

that SSIIb, a starch branching enzyme, is primarily expressed in the leaves, with weaker 

expression in the seeds, while SSIIa is primarily expressed in the endosperm 66,67. The 

sorghum expression data for this gene is consistent with these patterns, with very high 

expression in the leaves and moderate expression in the seeds, embryo and endosperm 

(Appendix C.2). The KS2007 study used the QTL identified in the TX2008 study to 

conduct a candidate gene assay, in which they looked for SNP associations with grain 

composition traits. The KS2007 study, primarily composed of SAP lines, found a 

significant association between starch and the SNP (58,000,108 bp) within the SSIIb gene 

26, suggesting that this may be the gene responsible for the peak in the SC2012 GWAS. 

Another candidate gene possibility is a wrinkled1 (Sb04g027940; 57,859,449-

57,863,521) a priori candidate that is 140 kb closer to the significant SNP identified in 

the SC2012 GWAS. Wrinkled1 is a key regulator controlling seed oil biosynthesis, and 

has been found to alter fatty acid and amino acid content in maize when overexpressed 68. 

We have identified many candidate genes for the peaks shared between grain 
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composition traits, but further studies are required to validate their involvement in grain 

composition variation between sorghum varieties. Since sorghum grain composition traits 

appear to be controlled by many small effect genes, biparental mapping or nested 

association mapping may be helpful in further refining candidate genes 38. Additionally, 

sequence analysis of the candidate genes is needed to identify causal polymorphisms.  

3.5.2 Improvement of sorghum grain composition for human nutrition 

The range of protein, fat, and starch content found in our diverse association panel 

may be useful for sorghum improvement. Bicolor sorghums had significantly higher 

mean protein levels (14.7%) than any other sorghum race, and are promising sources of 

genetic material for high protein sorghums. Cereals are predominantly used as sources of 

starch. Bicolor is the least derived race (i.e., retains most similarity to wild ancestors 

among the races), and high protein varieties may have been inadvertently counter-

selected during cereal domestication when high starch varieties were selected. It may be 

that human selection for different food uses influenced the patterns of grain composition 

distribution among the races (e.g., thick porridge in one region requires a certain grain 

composition, while flat bread in another region requires a different grain composition).  

This study provides genetic trait association loci that can be explored further for 

their potential use in molecular breeding to modify the composition of grain sorghum. 

The high heritability of each trait suggests the genetic contribution to variation is strong, 

however, the GWAS with the KS2007 SAP accessions did not identify the same large 

association peaks identified in the GWAS with the SC2012 SAP accessions, suggesting 

that a year-to-year or site-to-site environmental effect may be responsible for the 
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difference. This is not surprising since many studies have found grain composition 

variation between environments, indicating that at least some genes may only be 

significantly influential in a particular environment 28,69. For example, in one study, fifty-

one sorghum cultivars grown in five locations over two years exhibited protein and fat 

concentrations that were inconsistent across environments and years 70. In another study, 

nine sorghum cultivars grown in three locations (two in Kansas and one in Texas) in one 

year were found to have significantly higher starch and lower protein and fat 

concentrations in Kansas compared to Texas, but composition was not affected by 

irrigation differences 71. However, in another study that investigated grain composition 

differences between differing irrigation levels in ten sorghum cultivars, significant 

differences were found, with starch increasing as irrigation levels increased, and protein 

increasing as irrigation levels decreased 72.  In a study that evaluated waxy sorghum 

hybrids in two locations in Nebraska over two years, a significant difference was found in 

starch concentrations between locations and years 73. NIRS and GWAS on SAP 

accessions grown in two subsequent years is currently underway and may help to confirm 

the results presented here, as well as provide a greater understanding of the heritability of 

protein, fat, and starch in sorghum grain. 

Overall, we have identified promising sources of genetic material for 

manipulation of grain composition traits, and several loci and candidate genes that may 

control sorghum grain composition. Identification of SNPs that were previously found to 

have significant associations with protein, fat, and starch in sorghum grain suggests that 

GWAS is capable of detecting functional polymorphisms associated with sorghum grain 

composition traits. This survey of grain composition in sorghum germplasm and 
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identification of QTL significantly associated with protein, fat, and starch, contributes to 

our understanding of the genetic basis of natural variation in sorghum grain composition. 



 

3.6 FIGURES 

 

Figure 3.1 Relationship within and between grain composition traits in a global 
sorghum germplasm collection.  
The scatter plots with regression lines show the relationships between the traits. (
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Relationship within and between grain composition traits in a global 
sorghum germplasm collection.  The center diagonal presents histograms of each trait.  
The scatter plots with regression lines show the relationships between the traits. (

 

Relationship within and between grain composition traits in a global 
The center diagonal presents histograms of each trait.  

The scatter plots with regression lines show the relationships between the traits. (n = 373)



 

Figure 3.2 Correlations between NIRS estimates and chemical analysis
grain samples (17 accessions in duplicate) were analy
were compared to NIRS results for concentrations of 

78 

 

Correlations between NIRS estimates and chemical analysis. 34 
samples (17 accessions in duplicate) were analyzed by chemical analysis and

were compared to NIRS results for concentrations of (A) protein, (B) fat, and (C) sta

34 sorghum 
zed by chemical analysis and results 

rotein, (B) fat, and (C) starch. 



 

 

Figure 3.3 Population structure of grain composition traits in a global sorghum 
germplasm collection. Mean grain composition concentrations among (A) races and (B) 
geographic origin. 
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Population structure of grain composition traits in a global sorghum 
Mean grain composition concentrations among (A) races and (B) 

 

 

 

Population structure of grain composition traits in a global sorghum 
Mean grain composition concentrations among (A) races and (B) 
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Figure 3.4 GWAS for protein, fat, and starch content in sorghum grain. Manhattan 
plots of association results from a MLM analysis using 404,627 SNP markers and 373 
accessions.  Each point represents a SNP, with the -log10 p-values plotted against the 
position on each chromosome. The red vertical lines indicate the positions of candidate 
genes. The horizontal dashed line represents the genome-wide significance threshold at 
5% FDR. (A) protein; (B) fat; (C) starch.  
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Figure 3.5 Residuals GWAS for protein and fat content in sorghum grain. Manhattan 
plots of association results from a MLM analysis using 404,627 SNP markers and 373 
accessions.  Each point represents a SNP, with the -log10 p-values plotted against the 
position on each chromosome. The red vertical lines indicate the positions of candidate 
genes. The horizontal dashed line represents the genome-wide significance threshold at 
5% FDR. (A) protein and (B) fat. 
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Figure 3.6 GWAS for protein, fat, and starch content in sorghum grain grown in 
Kansas in 200726. Manhattan plots of association results from a MLM analysis using 
404,627 SNP markers and 239 accessions.  Each point represents a SNP, with the -log10 
p-values plotted against the position on each chromosome. The red vertical lines indicate 
the positions of the major peaks that were identified with the data from the South 
Carolina panel. The horizontal dashed line represents the genome-wide significance 
threshold at 5% FDR. (A) protein; (B) fat; (C) starch.  
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Figure 3.7 GWAS for protein, fat, and starch content in replicate sets 1 and 2. 
Manhattan plots of association results from a CMLM analysis using 404,627 SNP 
markers and 213 accessions.  Each point represents a SNP, with the -log10 p-values 
plotted against the position on each chromosome. The red vertical lines indicate the 
positions of peaks that were common between protein, fat, and starch. The horizontal 
dashed line represents the genome-wide significance threshold at 5% FDR. (A) protein 
replicate 1; (B) fat replicate 1; (C) starch replicate 1; (D) protein replicate 2; (E) fat 
replicate 2; (F) starch replicate 2. 
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Figure 3.8 GWAS for flowering time in sorghum grain. Manhattan plot of association 
results from a MLM analysis using 404,627 SNP markers and 230 accessions.  Each 
point represents a SNP, with the -log10 p-values plotted against the position on each 
chromosome. The red vertical non-dashed line indicates the positions of ma1. The red 
vertical dashed line indicates the position of the highly significant peak identified in the 
grain composition GWAS. The horizontal dashed line represents the genome-wide 
significance threshold at 5% FDR. 
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CHAPTER 4 

SORGHUM [SORGHUM BICOLOR (L.) MOENCH] GENOTYPE DETERMINES DEGREE 

OF ANTI-INFLAMMATORY  PROPERTIES OF SORGHUM BRAN
3 

 

                                                           
3
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4.1 ABSTRACT 

Inflammation is the underlying cause of many chronic diseases, including obesity, 

type 2 diabetes, cardiovascular disease, and cancer.  Identifying foods with anti-

inflammatory properties may help to prevent or attenuate damage caused by 

inflammation. Grain makes up the majority of the human diet, so identifying grain 

varieties with significant anti-inflammatory effects can aid in the selection of grains for a 

health-promoting diet. Sorghum, a major cereal crop grown worldwide, has been reported 

to have anti-inflammatory properties related to its polyphenol content.  There are over 

45,000 sorghum accessions (distinct varieties of plants) available through the USDA's 

National Plant Germplasm System, providing an enormous resource for screening the 

anti-inflammatory properties of the natural variation of sorghum polyphenols.  

This study evaluated the anti-inflammatory effects of ethanol extracts from the 

bran of twenty sorghum accessions with comparable genetic backgrounds. Correlations 

were calculated between anti-inflammatory effects and total polyphenol, 

proanthocyanidin, and 3-deoxyanthocyanidin concentrations. Cell viability, tumor 

necrosis factor (TNF)-α production and interleukin (IL)-6 production were measured 

using lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophage cells. Using a 

subset of five sorghum extracts, nuclear transcription factor kappaB (NF-κB) 

phosphorylation was measured in LPS-stimulated RAW 264.7 cells. 

The addition of varying concentrations of sorghum extracts, both with and 

without LPS stimulation, did not reduce viability of RAW 264.7 cells. Thirteen of the 

sorghum extracts significantly reduced TNF-α and/or IL-6 at varying extract 
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concentrations. One of the extracts significantly increased TNF-α and IL-6 at 

concentrations of 60 ug/mL. Two accessions had no effect on cytokine levels. NF-κB 

phosphorylation was significantly reduced by extracts at concentrations of 30 ug/mL and 

15 ug/mL. Averaging results from all of the sorghum accessions, there was a negative 

correlation between IL-6 and 3-deoxyanthocyanidins at extract concentrations of 60 

ug/mL. In contrast, there was a positive correlation between TNF-α and both total 

polyphenols and proanthocyanidins at concentrations of 60 ug/mL.  Our results 

demonstrate that sorghum accessions differentially modulate inflammation, with many 

accessions reducing pro-inflammatory cytokines, possibly by decreasing phosphorylation 

of NF-κB. Additionally, we demonstrate that the RAW 264.7 model of inflammation is a 

good method for high throughput screening of anti-inflammatory effects of sorghum 

extracts. 

4.2 INTRODUCTION 

Grain makes up the majority of the American diet, contributing 24% of our daily 

energy.1 Consumption of whole grain has been correlated with protective health effects 

related to several chronic inflammatory diseases, including obesity, type 2 diabetes, 

cancer, and cardiovascular disease.2–7 However, the protective mechanisms involved in 

these beneficial effects are still unresolved. Inflammation is known to be the underlying 

cause of many chronic diseases 8,9 and identifying foods with anti-inflammatory 

properties may help to prevent or attenuate the damage caused by inflammation. There is 

a large body of research demonstrating the anti-inflammatory effects of a variety of fruits 

10–12, but these foods are a small contribution to daily food intake compared to grain 

products. Therefore, understanding the anti-inflammatory effects of cereal grains can help 
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in the selection of foods for a health-promoting diet. Some studies suggest that many of 

the beneficial health effects of whole grain may be due to polyphenols in the bran.13–15 

Polyphenols are a large diverse group of phytochemicals found in abundance in fruits, 

vegetables, tea, chocolate, red wine, and coffee.  Certain varieties of grains also contain 

polyphenols, including varieties of wheat, rice, maize, and sorghum.14,16–18 

Based on worldwide production, sorghum is one of the world's major cereal 

crops.19 Half of the sorghum produced is used for human food consumption, feeding 

millions of people in Asian and sub-Saharan Africa.19 In the United States, it is used 

primarily as livestock feed, but it is also used in many specialty grain products and 

gluten-free food products.20–23
 Flavonoids, primarily 3-deoxyanthocyanidins and 

proanthocyanidins, are the major polyphenols found in sorghum.24 The 3-

deoxyanthocyanidins are not widely found in nature, and sorghum is their only known 

dietary source.25–27 Proanthocyanidins are not commonly found in high concentrations in 

cereal crops, but many sorghum varieties are rich sources of this flavonoid.28  

Polyphenols are predominantly located in the outer seed coat (the bran) of the sorghum 

seed.  The majority of research on sorghum polyphenol health benefits has been on its 

high antioxidant activity compared to commonly consumed fruits29,30, but some studies 

have also suggested that sorghum grain may have anti-inflammatory activity.31, 32  

Inflammation is a complex physiological response to harmful stimuli such as 

pathogens, damaged cells, or irritants.  The mediators of inflammation are involved in 

defense and repair mechanisms, but in some instances dysregulation of their production 

can lead to chronic inflammation, which is implicated in the pathophysiology of most 

chronic diseases, including cardiovascular disease, cancer, obesity and type 2 diabetes.33, 
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34 A key feature of inflammation is the activation of inflammatory cells, especially 

monocytes and macrophages, which produce pro-inflammatory cytokines, including 

TNF-α and IL-6.  The RAW 264.7 mouse macrophage cell line is commonly used to 

screen natural products for potential anti-inflammatory properties.35,36–40 

Lipopolysaccharide (LPS), the outer coat of Gram-negative bacteria, is applied to the 

RAW 264.7 cells to induce an array of inflammatory responses. Upon macrophage 

activation by LPS, cytoplasmic NF-κB is phosphorylated and translocates to the nucleus, 

where it binds to promoter and enhancer regions of target genes, inducing transcription of 

key mediators of inflammation, including IL-6 and TNF-α.  The NF-κB signal 

transduction pathway plays a crucial role in inflammation, and excessive activation of the 

pathway can lead to chronic inflammation.41,42 Although the RAW 264.7 inflammation 

model is a reductive one, it provides useful information about the potential health benefits 

of a test compound and is a good high-throughput screening method for anti-

inflammatory effects of natural variation within a food plant species. This can act as a 

guide in the selection of a subset of varieties to use in more complex disease models.   

In vitro, sorghum bran extracts, especially polyphenol-rich varieties, inhibit 

hyaluronidase, an enzyme that is increased in certain inflammatory diseases32; decrease 

TNF-α and IL-1β in LPS-challenged human peripheral blood mononuclear cells (PBMC) 

31; and reduce production of nitric oxide in RAW 264.7 cells.43 In vivo, red sorghum grain 

reduces production of TNF-α when consumed by male Wistar rats on a high fat diet44; 

and sorghum extracts significantly reduce inflammatory molecules, including inducible 

nitric oxide (iNOS) and cyclooxygenase (COX)-2, in 12-O-tetradecanoylphorbol-13-

acetate (TPA)-induced ear models of inflammation, and the anti-inflammatory activity 



 

96 

correlates with phenolic level and antioxidant level.31,43 While there is evidence of 

benefits of sorghum polyphenols on human health, more studies are needed to 

characterize the physiological effects and mechanisms of action.  

Some varieties of sorghum do not contain measurable amounts of polyphenols, 

while others contain high levels of polyphenols.24,45 Most studies have only explored the 

health benefits of a small number of sorghum accessions (distinct varieties of plants), but 

over 45,000 sorghum accessions are available from the U.S. National Plant Germplasm 

System's Germplasm Resources Information Network (GRIN).46  Utilizing accessions 

that are readily available from a crop gene bank allows for authentication of the 

accessions and reproducibility of the experiments. Using a large genetically diverse 

sorghum panel to explore the effects of natural variation of sorghum polyphenols on 

inflammation will help in discovering particularly beneficial varieties.  Additionally, 

although several studies comparing health effects between sorghums with or without 

proanthocyanidins and 3-deoxyanthocyanidins have been conducted, none of them 

controlled for genetic background of the sorghums or utilized accessions that were 

readily available from crop gene banks.31,32,44,47 Without adequate control of other genetic 

factors it may not be possible to attribute health effects to polyphenols per se.  The goals 

of this study were to identify and compare the anti-inflammatory effects of twenty 

genetically similar sorghum varieties with contrasting grain flavonoid concentrations, and 

to gain a broader understanding of the diversity of anti-inflammatory effects available 

among sorghum accessions. 
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4.3 MATERIALS AND METHODS 

4.3.1 Plant Materials 

We selected 20 sorghum accessions from a panel of 381 sorghum accessions that 

we previously evaluated for flavonoid concentrations 45. The panel primarily consisted of 

the Sorghum Association Panel (SAP)48, which includes accessions from all major 

cultivated races and geographic centers of diversity in sub-Saharan Africa and Asia, as 

well as important breeding lines from the United States. Also included were 73 

accessions selected based on the presence of proanthocyanidins using GRIN. Seeds for 

all the sorghum accessions came from GRIN and are readily available through GRIN. To 

select the subset of 20 accessions from the 381 accessions that had been grown, we 

identified accessions with high concentrations of proanthocyanidins and/or 3-

deoxyanthocyanidins and used a kinship matrix to identify accessions with similar 

genetic background (high kinship value) but contrasting flavonoid content. 

The grain samples used for this experiment have previously been described.45 

Briefly, the panel was planted in late April 2012 at Clemson University Pee Dee 

Research and Education Center in Florence, SC, in a twofold replicated complete 

randomized block design. Panicles were collected at physiological maturity between 

September and October, and mechanically threshed. Samples were phenotyped by near 

infrared spectroscopy (NIRS) as previously described.45 Total phenol, proanthocyanidin, 

and 3-deoxyanthocyanidin data are expressed as mg gallic acid equivalent (GAE)/g, mg 

catechin equivalents (CE)/g, and absorbance (abs)/mL/g, respectively.  Data are 

presented as the mean of the replicates. 
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4.3.2 Genomic Analysis 

To select accessions with comparable genetic backgrounds, we used the 

genotypes of each accession to assess relatedness.  Genotypes were available for the 381 

accessions.45,49 Based on 404,628 SNP markers, cryptic relatedness (kinship among the 

sorghum accessions unknown to the investigator)50 between accessions was calculated in 

a kinship matrix in a unified mixed linear model51 using the statistical genetics package 

Genome Association and Prediction Integrated Tool (GAPIT).52  

4.3.3 Preparation of sorghum bran extracts 

A tangential abrasive dehulling device (TADD; Venables Machine Works, 

Saskatoon, Canada) equipped with an 80-grit abrasive disk was used to remove the bran 

from the grain.53 Bran was mixed with 50% ethanol (1g/mL) and placed on a shaker at 

room temperature for three hours. Samples were then centrifuged at 5000 rpm for 15 

minutes and supernatant was poured through a 0.2 micromolar filter into a sterile 

container. Samples were refrigerated and protected from light until ready to use. 

4.3.4 Cell Cultures 

The mouse macrophage cell line RAW 264.7 (TIB-71 from American Type 

Culture Collection (ATCC)) was cultured on 100 mm culture dishes and maintained in 

Dulbecco's modified Eagle's medium (DMEM, ATCC), supplemented with 10% fetal 

bovine serum (ATCC) and 100 I.U./mL penicillin and 100 ug/mL streptomycin (ATCC) 

at 37 � in a humidified incubator with 5% CO2.   
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4.3.5 Cell Viability Assay 

Cell viability was measured using the MTT Cell Proliferation Assay (R&D 

Systems), an indirect method of measuring metabolically active cells. RAW 264.7 cells 

were seeded in a 96-well plate (1 x 105 cells/well) and incubated for two hours to allow 

cells to recover and adhere to the cell culture plate. Cells were pretreated for one hour 

with sorghum extracts at concentrations of 125 ug/mL, 60 ug/mL, 30 ug/mL, and 15 

ug/mL and then activated with LPS at 1 µg/mL or vehicle for an additional 18 hours. The 

MTT reagent was added to each well and cells were incubated for an additional 2 hours 

until purple dye was visible under the microscope. Detergent Reagent was added and the 

plates were left in the dark at room temperature for 4 hours. Absorbance was measured at 

570 nm in a Synergy H1 Hybrid Multi-Mode Microplate Reader (BioTek). Results are 

expressed as the ratio of absorbance in extract treated cells versus untreated cells. 

4.3.6 Cytokine assays 

Cells were seeded in 12-well plates at 1 x 106 and incubated for 2 hours to allow 

time to recover and adhere to the substrate. Cells were pretreated for 1 hour with sorghum 

bran extracts at concentrations of 60 ug/mL, 30 ug/mL, and 15 ug/mL, or with a negative 

control (50% EtOH or sorghum extracts without LPS) and then stimulated with LPS at 1 

µg/mL or vehicle for an additional 18 hours. Cell culture medium was collected and 

tested using TNF-α and IL-6 ELISA Ready-Set-Go! kits purchased from eBioscience. 

Assays were carried out according to kit instructions. Absorbance was measured at 450 

nm with wavelength subtraction at 570 nm in a Synergy H1 Hybrid Multi-Mode 

Microplate Reader (BioTek). Results are expressed as the percent of cytokine level in 
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extract-treated cells versus LPS-only treated cells. 

4.3.7 NF-κB assay 

Phospho-RelA/NF-κB p65 (S536) Cell-Based fluorogenic ELISA kit was 

purchased from R&D Systems. Cells were seeded in 96-well plates at 1 x 106 and 

incubated for 2 hours to allow time to recover and adhere to the substrate. Cells were 

pretreated for 1 hour with sorghum bran extracts, at concentrations of 60 ug/mL, 30 

ug/mL, and 15 ug/mL, and then stimulated with LPS at 1 µg/mL for 1 hour. Cells were 

fixed and permeabilized in the 96-well plate and the assay was carried out according to 

kit instructions. Using a Synergy H1 Hybrid Multi-Mode Microplate Reader (BioTek), 

fluorescence for phosphorylated NF-κB was measured with excitation at 540 nm and 

emission at 600 nm, and fluorescence for total NF-κB was measured with excitation at 

360 nm and emission at 450 nm. Results were normalized by dividing the phosphorylated 

NF-κB fluorescence by the total NF-κB fluorescence. Results are expressed as the 

percent of phosphorylated NF-κB in extract-treated cells versus LPS-only treated cells. 

4.3.8 Statistical Analysis 

Differences were assessed using analysis of variance (ANOVA) followed by post 

hoc Tukey HSD test. Pearson's correlation coefficient was also used. Results are 

expressed as mean values ± standard deviation (SD). All calculations were performed 

using R.54 
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4.4 RESULTS 

4.4.1 Selection of target sorghum accessions 

Twenty sorghum accessions with varying polyphenol concentrations were chosen 

to investigate the anti-inflammatory properties of sorghum bran extract (Figure 4.1). The 

panel contained eleven proanthocyanidin-containing accessions (based on NIRS values 

greater than 10 mg CE/g or presence of a pigmented testa), seven 3-deoxyanthocyanidin-

containing accessions (based on NIRS values greater than 50 abs/mL/g), and five low 

polyphenol accessions that did not contain either of the flavonoids (Table 4.1). Three of 

the accessions contained both flavonoids. Total polyphenol concentrations in the panel 

ranged from 0 to 24 GAE/g, proanthocyanidin concentrations ranged from 0 to 42 mg 

CE/g, and 3-deoxyanthocyanidin concentrations ranged from 0 to 110 abs/mL/g, and 

(Figure 4.2).  

4.4.2 Sorghum extracts improve viability in LPS-stimulated RAW 264.7 cells 

To investigate the anti-inflammatory effects of sorghum bran extracts, we used 

LPS to induce an inflammatory state in RAW 264.7 mouse macrophage cells. We first 

conducted an MTT assay to assess the effects of varying concentrations of sorghum bran 

extracts on cell toxicity. RAW 264.7 macrophages were pretreated with sorghum extracts 

or vehicle for one hour, followed by LPS or vehicle for 18 hours. Averaged over all 

extracts, cell viability was not significantly different for cells treated with extracts at all 

concentrations compared to cells treated with cell media vehicle (Figure 4.3A).  

Additionally, when cells were treated with both LPS and the extracts, cell viability was 

not significantly different for cells treated with extracts at all concentrations compared to 
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cells treated with LPS alone (Figure 4.3B).  

4.4.3 Sorghum extracts differentially modulate IL-6 and TNF-α 

We examined the effects of varying concentrations of sorghum extracts on the 

secretion of pro-inflammatory cytokines TNF-α and IL-6 in LPS-stimulated RAW 264.7 

macrophage cells. We first tested the effects of sorghum extracts without the addition of 

LPS, and found that on average IL-6 and TNF-α were induced at extract concentrations 

of 125 ug/mL and above. Therefore, in subsequent experiments, we used extract 

concentrations of 15 ug/mL, 30 ug/mL, and 60 ug/mL. Next, we pretreated RAW 264.7 

macrophages with the twenty sorghum bran extracts for one hour, followed by 

stimulation with LPS for 18 hours. There was a range of responses among the accessions 

(Figure 4.4A-B).  Thirteen of the sorghum accessions significantly inhibited TNF-α 

and/or IL-6 at varying extract concentrations. One of the accessions (PI656038) 

significantly increased both IL-6 (P = 0.001) and TNF-α (P = 0.001) at extract 

concentrations of 60 ug/mL. Two accessions (PI221619, PI533991, and PI533957) did 

not significantly affect cytokine levels at any extract concentration. Averaged over all of 

the sorghum accessions, cells treated with 30 ug/mL of sorghum extract produced 

significantly less IL-6 (P = 6 x 10-4) and TNF-α (P = 0.002) than those treated with LPS 

alone (Figure 4.4C-D).  In contrast, TNF-α was significantly increased in cells with 

extract concentrations of 60 ug/mL (P = 0.02) compared to cells treated with LPS alone 

(Figure 4.4D). 

We hypothesized that the flavonoid composition of the sorghum extracts was 

influencing cytokine levels in LPS-stimulated RAW 264.7 cells, so Pearson's correlations 
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were calculated between concentrations of cytokines and flavonoids. There was a 

significant negative correlation between IL-6 levels and 3-deoxyanthocyanidins (-0.44, P 

= 0.05) when extract concentrations of 60 ug/mL were used. In contrast, there was a 

significant positive correlation between TNF-α levels and both total polyphenols (0.52, P 

= 0.02) and proanthocyanidins (0.60, P = 0.006) when extract concentrations of 60 

ug/mL were used, and a significant positive correlation between TNF-α levels and 

proanthocyanidins when extract concentrations of 30 ug/mL were used (0.51, P = 0.02). 

Figure 4.4E-F, shows the effects of the sorghum extracts, grouped by their flavonoid 

content, on TNF-α and IL-6 secretions, but there were no significant differences in 

cytokine levels found between the flavonoid groups. 

4.4.4 Sorghum extracts suppress NF-κB activation  

To determine if sorghum extracts might be reducing IL-6 and TNF-α by 

suppressing NF-κB activation, we examined the effects of extracts from five sorghum 

accessions of varying flavonoid concentrations (Figure 4.5A-B) on NF-κB 

phosphorylation in LPS-stimulated RAW 264.7 macrophages. Averaged over all extracts, 

NF-κB phosphorylation was significantly decreased, compared to LPS alone, at extract 

concentrations of 30 ug/mL (P = 0.04) and 15 ug/mL (P = 0.04; Figure 4.6A). Among 

individual extracts, NF-κB phosphorylation was significantly decreased by PI221619, a 

high proanthocyanidin accession, at a concentration of 30 ug/mL (P = 0.02), and 

PI656079, a high 3-deoxyanthocyanidin accession, at a concentration of 15 ug/mL (P = 

0.05; Figure 4.6B). 
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4.5 DISCUSSION 

In this study, sorghum bran extracts from several different sorghum genotypes 

attenuated cytokine production in RAW 264.7 macrophage cells.  IL-6 and TNF-α were, 

on average, significantly reduced at a sorghum extract concentration of 30 ug/mL. 

Among the individual accessions tested, there was large variation in cytokine inhibition, 

but the majority of extracts exhibited anti-inflammatory properties. NF-κB 

phophorylation was significantly decreased when LPS-activated RAW 264.7 cells were 

pretreated with sorghum bran extracts at concentrations of 30 ug/mL and 15 ug/mL.  

Sorghum 3-deoxyanthocyanidin concentrations had a significant negative correlation 

with IL-6 levels when extract concentrations of 60 ug/mL were used. In contrast, 

proanthocyanidin and total polyphenol concentrations were positively correlated with 

TNF-α at extract concentrations of 60 ug/mL. This suggests that sorghum 

proanthocyanidins can be pro-inflammatory at higher concentrations. This is in 

agreement with a study that found that high concentrations of a proanthocyanidin-

containing sorghum slightly induced COX-2 production in PBMC cells 31.  Taken all 

together, this data suggests that sorghum extract concentrations of 30 ug/mL generally 

have the most inhibitory effect on inflammation, but the large variation between 

accessions indicate that accessions need to be tested individually in order to determine 

the most effective concentration. 

Given that most of the sorghum accessions possessed some degree of anti-

inflammatory properties, including the low polyphenol sorghums, it is likely that 

constituents in the bran other than the flavonoids that were measured are also 

contributing to the anti-inflammatory effects of sorghum extracts. In a recent study, 
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phenolic acid derivatives isolated from sorghum grains decreased LPS-stimulated NO, 

iNOS, and COX-2 in RAW 264.7 cells55. Other phenolic compounds have been identified 

in sorghum bran, including flavones, flavanones, phlobaphenes, and anthocyanins24,56, 

which may be contributing to the anti-inflammatory effects demonstrated in this study. It 

is interesting that the proanthocyanidin-containing accession and the 3-

deoxyanthocyanidin-containing accession were the only two accessions out of the five 

that were tested that significantly reduced NF-κB phosphorylation, despite the fact that 

other accessions decreased IL-6 and TNF- α to a greater degree. It may be that sorghum 

proanthocyanidins and 3-deoxyanthocyanidins are able to attenuate inflammation through 

this pathway, while samples containing other types of polyphenols attenuate 

inflammation through different signaling pathways. Other pathways found to be inhibited 

by flavonoids include the signal transducer and activator of transcription (STAT)-1, 

activated protein (AP)-1, and mitogen-activated protein kinases (MAPK). High-

performance liquid chromatography and mass spectrometry  (HPLC-MS) is currently 

underway to identify the precise polyphenol content of each of the twenty sorghum 

extracts, which may provide more information as to what compounds are responsible for 

the anti-inflammatory effects. If there is a particular polyphenol identified that appears to 

be responsible for the greatest effect, it would be interesting to phenotype the entire SAP 

(~400 sorghum accessions) for this polyphenol to investigate its natural variation.  

Though there is some debate as to the biological relevance of in vitro anti-

inflammatory studies, such as the common RAW 264.7 model, many studies have found 

similar effects in animal models.57–60 The negative correlation between 3-

deoxyanthocyanidin concentrations in sorghum extracts and IL-6 levels in LPS-
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stimulated cells makes 3-deoxyanthocyanidin-containing sorghum accessions attractive 

candidates for in vivo follow up studies. Questions to be addressed for these and 

proanthocyanidin-containing accessions, in addition to their anti-inflammatory effects, 

are degree of intestinal absorption and pre-and post-absorption modifications. Little is 

known about absorption of 3-deoxyanthocyanidins, but in proanthocyanidins, degree of 

polymerization highly influences absorption. Small proanthocyanidin compounds are 

absorbed in the small intestine, while large ones pass through the small intestine into the 

large intestine where they are catabolized by intestinal bacteria before they are 

absorbed.61 For this reason, it has been suggested that health benefits derived from 

proanthocyanidins may be largely due to their effects on intestinal bacteria.62 Therefore, 

the proanthocyanidin-containing sorghum accessions that had anti-inflammatory effects 

in this study are good candidates for in vivo  follow up studies in disease models such as 

ulcerative colitis.  In fact, several studies have found that proanthocyanidins from grape 

seeds attenuate inflammation in colitis animal models by modulating NF-κB 

pathways.63,63 

The sorghum panel was planted in two independent field blocks. It is interesting 

to note that there was a block effect between the sorghum replicates. IL-6, TNF-α, and 

NF-κB were significantly different between the replicates. One possible explanation is 

that there may have been some differences in growing environment between the blocks. 

These were field-grown samples, so there was weathering (i.e. fungus on the surface of 

the grains) that could contribute to variation of anti-inflammatory effects. Another 

possibility is that the duplicates may have inadvertently been treated differently during 

preparation of extracts, leading to differences in composition of the final extracts. This 
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difference between the duplicates can be investigated further through repeat experiments, 

and through greenhouse experiments to test environmental effects. 

This study provides evidence of sorghum grain anti-inflammatory activity through 

modulation of IL-6, TNF-α, and NF-κB, which was partly related to flavonoid content. 

Additionally, it shows that sorghum bran extracts possess anti-inflammatory properties 

that vary by genotype, demonstrating the importance of exploring genetic diversity within 

a crop to discover its full anti-inflammatory potential.  
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 4.6 TABLES 

 Table 4.1 Polyphenol concentrations and categories for 20 sorghum accessionsa 

Taxa 

 

Total Phenols 

(GAE/g) 

 

PAs 

(CE/g) 

 

3-DAs 

(abs/mL/g 

 

Flavonoid 
Categoryb,c,d,e 

PI221610 23.69 ± 3.56 42.30 ± 9.91 14.57 ± 10.8 PA 
PI221619 11.49 ± 0.08 28.59 ± 0.05 0 PA 
PI221723 18.06 ± 0.45 40.19 ± 2.42 59.42 ± 16.4 PA + 3DA 
PI229830 16.54 ± 2.65 29.69 ± 10.42 11.18 ± 1.64 PA 
PI229838 9.31 ± 0.96 7.19 ± 4.94 0 low 
PI229875 7.31 ± 0.61 11.12 ± 0.60 19.86 ± 0.49 PA 
PI297139 22.60  ± 1.99 41.66 ± 6.38 110.73 ± 29.9 PA + 3DA 
PI329440 0 0 19.36 ± 15.3 Low 
PI35038 18.79 ± 0.64 30.78 ± 4.84 11.35 ± 9.37 PA 
PI533792 0 0 41.71 ± 28.66 3DA 

PI533902 9.69 ± 0.64 5.89 ± 1.68 77.59 ± 47.3 PA + 3DA 
PI533957 16.48 ± 0.99 24.91 ± 0.04 80.63 ± 37.6 PA + 3DA 
PI533991 2.54 ± 1.49 0 9.51 ± 4.32 low 
PI542718 15.93 ± 0.54 40.94 ± 0.15 34.39 ± 9.91 PA 
PI561072 2.53 ± 2.23 0.50 ± 0.62 19.35 ± 3.03 low 
PI576426 2.48 ± 0.78 0  72.69 ± 5.58 3DA 
PI655978 4.99 ± 1.36 2.42 ± 3.16 95.20 ± 80.80 3DA 
PI656007 1.95 ± 1.69 2.80 ± 1.58 3.98 ± 5.59 low 
PI656038 13.36 ± 1.12 28.84 ± 1.94 0.72 ± 2.29 PA 
PI656079 4.25 ± 1.63 1.67 ± 2.69 42.97 ± 52.76 3DA 

 

a Concentrations are the mean of  NIR values on accession grown in duplicate plots  ± SD 

b If one of the replicates had a 3DA NIRS value >50 abs/mL/g, then it was designated as a 
“3DA” flavonoid category, even if the average of the replicates was <50 abs/mL/g. 

c If the accession contained a pigmented testa, then it was designated as a “PA” flavonoid 
category, even if the average of the replicates was <10 CE/g. 

d ”low” indicates that proanthocyanidins and 3-deoxyanthocyanidins were not detected by 
NIR 

e Proanthocyanidin (PA); 3-deoxyanthocyanidin (3DA) 
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4.7 FIGURES 

 

Figure 4.1 Heatmap and dendrogram of hierarchical clustering showing the 
estimated kinship among 20 sorghum accessions. Based on 404,628 SNP markers, 
cryptic relatedness between accessions was calculated in a kinship matrix using a unified 
mixed linear model in GAPIT.  
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Figure 4.2 Polyphenol concentrations in the grain of 20 sorghum accessions. 
(GAE/g), (B) proanthocyanidin concentrations (CE/g), and (C) 3
total phenols to highest. Error bars represent the mean

Polyphenol concentrations in the grain of 20 sorghum accessions. NIRS estimates of (A) total phenol concentrations 
(GAE/g), (B) proanthocyanidin concentrations (CE/g), and (C) 3-deoxyanthocyanidin concentrations (abs/mL/g), ordered from lowe

Error bars represent the mean of accession grown in duplicate plots  ± SD. 

NIRS estimates of (A) total phenol concentrations 
deoxyanthocyanidin concentrations (abs/mL/g), ordered from lowest 
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Figure 4.3 MTT cell viability assays of RAW 264.7 cells treated with sorghum bran 
extracts. Cell were seeded in 96-well plates, incubated for two hours, and then treated 
with sorghum extracts at concentrations of 125 ug/mL, 60 ug/mL, 30 ug/mL, and 15 
ug/mL. Error bars represent the means of triplicate experiments ± SD. (A) Cells 
incubated with sorghum extracts for 18 hours, with results expressed as percent of 
absorbance in extract-treated cells versus untreated cells. (B) Cells pretreated with 
sorghum extracts for 1 hour and then stimulated with LPS for an additional 18 hours, 
with results expressed as percent of absorbance in extract-treated cells versus LPS-only 
treated cells. Accessions are ordered from lowest total phenols to highest. 
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Figure 4.4 Sorghum bran extracts differentially modulate TNF
production in RAW 264.7 cells. 
hours, and pretreated with sorghum bran extracts for 1 hour before LPS stimulation (1 
µg/mL) for 18 hours. (A) IL
accessions (* = P-values < 0.05). (C) Average IL
concentrations of extracts, (E) Average IL
group. Results expressed as ratio of extract treated cells versus LPS
Error bars represent the means of triplicate experiments 
from lowest total phenols to highest
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Sorghum bran extracts differentially modulate TNF-α
production in RAW 264.7 cells. Cells were seeded in 12-well plates, incubated for 2 
hours, and pretreated with sorghum bran extracts for 1 hour before LPS stimulation (1 

IL-6 and (B) TNF-α response for each of the twenty sorghum 
values < 0.05). (C) Average IL-6 and (D) TNF-α response with varying 

concentrations of extracts, (E) Average IL-6 and (F) TNF-α response for polyphenol 
s ratio of extract treated cells versus LPS-only treated cells. 

Error bars represent the means of triplicate experiments ± SD. Accessions are ordered 
from lowest total phenols to highest. 

 

α and IL-6 
well plates, incubated for 2 

hours, and pretreated with sorghum bran extracts for 1 hour before LPS stimulation (1 
 response for each of the twenty sorghum 

 response with varying 
 response for polyphenol 

only treated cells. 
SD. Accessions are ordered 



 

 

Figure 4.5 Polyphenol concentrations in the grain of five sorghum accessions. 
estimates of (A) total polyphenol concentrations (GAE/g), (B) proanthocyanidin 
concentrations (CE/g), and (C) 3
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Figure 4.5 Polyphenol concentrations in the grain of five sorghum accessions. 
estimates of (A) total polyphenol concentrations (GAE/g), (B) proanthocyanidin 
concentrations (CE/g), and (C) 3-deoxyanthocyanidin concentrations (abs/mL/g).

 

 

Figure 4.5 Polyphenol concentrations in the grain of five sorghum accessions. NIRS 
estimates of (A) total polyphenol concentrations (GAE/g), (B) proanthocyanidin 

deoxyanthocyanidin concentrations (abs/mL/g). 



 

Figure 4.6 Sorghum bran extracts reduce NF
Cells were seeded in 96-well plates, incubated for 2 hours, and pretreated with sorghum 
bran extracts for 1 hour before LPS stimulation (1 
κB response with varying concentrations of extracts, (B) NF
five sorghum accessions (* = P
treated cells versus LPS-only treated cells. Error bars represent the means of triplicate 
experiments ± SD. 
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Sorghum bran extracts reduce NF-κB activation in RAW 264.7 cells. 
well plates, incubated for 2 hours, and pretreated with sorghum 

bran extracts for 1 hour before LPS stimulation (1 µg/mL) for 1 hour. (A) Average NF
varying concentrations of extracts, (B) NF-κB response for each of the 

(* = P-values < 0.05). Results expressed as percentage
only treated cells. Error bars represent the means of triplicate 

B activation in RAW 264.7 cells. 
well plates, incubated for 2 hours, and pretreated with sorghum 

g/mL) for 1 hour. (A) Average NF-
B response for each of the 

values < 0.05). Results expressed as percentage of extract 
only treated cells. Error bars represent the means of triplicate 
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CHAPTER 5 

CONCLUSION
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The work presented here provides new insights into the diversity, genetics, and 

anti-inflammatory properties of sorghum nutrients that are important to human health.  It 

provides a survey of flavonoid (chapter 2) and protein, fat, and starch (chapter 3) 

diversity in a large global panel of sorghum; identifies QTL and candidate genes for 

underlying controls of these nutrients (chapters 2 and 3); and demonstrates that a larger 

variety of sorghum accessions than previously thought have anti-inflammatory properties 

(chapter 4).  

This project also sought to address a broader question on how to navigate a large 

germplasm collection in order to investigate a trait of interest. To answer questions about 

the anti-inflammatory effects of sorghum grain in specific disease states, it is only 

feasible to test two or three accessions in a single in vivo experiment. How then do we 

decide which two to three accessions out of over 45,000 to use? Taking advantage of 

tools designed for high throughput phenotyping and trait mapping (e.g., GBS, NIRS, 

RAW 264.7 inflammation model), this daunting task becomes potentially feasible. In the 

work presented here, hundreds of sorghum accessions were screened relatively quickly 

and cost-effectively, providing one of the largest surveys of natural variation of grain 

composition traits and flavonoids in sorghum, the first GWAS of quantitative natural 

variation of grain composition traits and flavonoids in sorghum, and permitted targeted 

studies on anti-inflammatory properties of sorghum grain.  

These techniques, however, are not without their limitations. Although GBS is a 

powerful and cost-effective sequencing tool, it can produce datasets with missing SNPs 

due to low coverage of sequencing, thus, reducing power in association studies1. The 
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GBS for the work presented here dealt with this issue through imputation, a common 

method by which the missing nucleotides are replaced with predictions through statistical 

inference 2. This method has been shown to have relatively high levels of accuracy in 

specific plant systems, but not all3. With the ever decreasing cost of high throughput 

sequencing, follow-up studies with more complete SNP coverage will be possible. 

GWAS also has its limitations. The two major problems in GWAS are 1) false positives 

dues to population structure, and 2) allelic heterogeneity (multiple independent alleles at 

the same gene) or genetic heterogeneity (multiple genes controlling the trait) which may 

interfere with the detection of SNPs linked to phenotypic variation 4,5.  Following up a 

GWAS with biparental linkage mapping can help resolve the issue by breaking up the 

genotype and phenotype covariance6. Nested association mapping (NAM) also addresses 

these issues by combining the advantages of linkage mapping and association mapping. 

This approach increases statistical power and mapping resolution, while generating fewer 

false positives and false negatives 7–9. NIRS is cost-effective, rapid, and non-destructive, 

making it ideal for high-throughput phenotyping10. However, the tradeoff is reduced 

accuracy and a reliance on only the variation found within the calibration population used 

to produce the predictive equations11. Samples that are outside of the range of the 

calibration population, or at the high or low extremes of the calibration population, may 

not have accurate predictions. These accessions may be the most valuable accessions for 

crop improvement and human nutrition, and need to be validated through chemical 

analysis. Finally, a concern with the RAW 264.7 model of inflammation is its ability to 

accurately predict effects of biological relevance to human health and disease. Results 

can provide information about the potential of the test agent, but in vivo follow up studies 
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must be performed to verify the effects seen in vitro.  

The results and limitations of this dissertation provide a guide for future research 

in several focus areas, including plant genetics, plant breeding, chemistry, and human 

nutrition. GWAS identifies SNPs that are in linkage disequilibrium with functional 

variants, but is not expected to identify the functional alleles themselves. To identify 

putative functional alleles for the high or low levels of grain composition traits in 

sorghum grain, sequencing of candidate genes should be performed. Previously identified 

functional variants in sorghum genes include “obvious” loss-of-function mutations such 

as premature stop codons or missense mutations.  Additional methods for confirmation of 

candidate genes could include the use of Arabidopsis (Arabidopsis thaliana) knockouts, 

or, as transformation in sorghum becomes more routine, knockdown studies with RNA 

interference (RNAi) can be conducted.   

Plant breeding can help to reduce covarying or confounding factors in grain 

composition.  A surprising result from the in vitro studies in chapter 4 was that the 

majority of sorghum accessions, regardless of flavonoid content, demonstrated anti-

inflammatory properties. Several previous studies, conducted with a small number of 

sorghum varieties, did not find significant anti-inflammatory effects in their low-

polyphenol controls12,13. A powerful way to reduce confounding factors is to control for 

differences in genetic background using near isogenic lines. These are pairs of lines, 

developed through backcrossing, that only differ in the genomic region of interest. 

Chemical analysis of the sorghum bran extracts to identify additional polyphenol 

compounds will provide more clues regarding what might be driving the anti-
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inflammatory effects seen in the RAW 264.7 macrophage cells. We might find that a 

particular set of sorghum bran polyphenols modulate one pro-inflammatory signal 

transduction pathway, while another set modulates a different pathway. This could 

present the opportunity to breed sorghum varieties for the purpose of targeting specific 

pro-inflammatory signaling pathways in human disease. 

Follow up studies in vivo will be the key for discovering the anti-inflammatory 

effects of sorghum grain in specific disease states. Proanthocyanidins have been shown to 

be beneficial in colon disease14, so testing proanthocyanidin-containing sorghum 

accessions in a colitis model would be a good starting point. Additionally, sorghum 3-

deoxyanthocyanidins have shown potential anti-cancer properties15–17, so testing 3-

deoxyanthocyanidin-containing accessions in a cancer model is another route to take.  

This research brings together new tools in order to gain insight into the health 

benefits of bioactive compounds in plants through the use of crop genomic diversity, and 

helps lay the groundwork for the use of natural variation of sorghum nutrients in crop and 

human nutrition improvement. 
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APPENDIX B: FLAVONOID SNP ASSOCIATIONS
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Table B.1. The 20 most statistically significant SNPs associated with proanthocyanidins 
using qualitative (presence/absence) phenotypea,b 

GLM 

SNP p-value 
closest a priori gene 

(location) 
homolog 

% 
similarity 

to 
homolog 

S4_62353772 8.46E-16 Sb04g032140 (62,146,623-62,155,642) TT1 22.8 

S4_62353785 8.46E-16 Sb04g032140 (62,146,623-62,155,642) TT1 22.8 

S4_61815549 2.55E-15 Sb04g031750 (61,676,174-61,682,528) TT16 42.9 

S4_54197180 1.02E-14 Sb04g024710 (54,540,924-54,542,759) Pr1 69 

S1_39378307 8.29E-14 Nothing close   

S4_61619739 2.68E-13 Sb04g031730 (61,667,040-61,668,067) Tan1 66.6 

S7_58603858 4.99E-13 Sb07g023840 (58,814,239-58,816,555) TT12 51.3 

S4_61121403 1.16E-12 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61122392 1.32E-12 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61835734 1.36E-12 Sb04g031750 (61,676,174-61,682,528) TT16 42.9 

S4_61122503 2.36E-12 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S9_52833941 5.16E-12 Sb09g023270 (52,888,054-52,890,562) TTG2 31.5 

S4_61122769 5.26E-12 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S3_58240976 5.52E-12 Sb03g029820 (58,069,805-58,070,945) VvLAR1 43.9 

S5_59459035 5.57E-12 Sb05g026490 (60,376,700-60,377,964) BZ2 55.6 

S4_57401071 8.46E-12 
Sb04g027540 (57461668-57463298) 

TT2 37.6 

S7_58598713 1.33E-11 Sb07g023840 (58,814,239-58,816,555) TT12 51.3 

S4_57440178 1.37E-11 Sb04g027540 (57461668-57463298) TT2 37.6 

S4_61122741 1.39E-11 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61170405 1.43E-11 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

MLM 

SNP p-value 
closest a priori gene 

(location) 
homolog 

% 
similarity 

to 
homolog 
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S4_61815549 4.82E-09 Sb04g031750 (61,676,174-61,682,528) TT16 42.9 

S4_61121403 5.50E-09 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61122392 8.01E-09 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61122503 9.11E-09 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61122769 9.62E-09 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61122463 1.50E-08 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61170405 6.32E-08 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_59629619 6.50E-08 Sb04g030570 (60,539,878-60,541,963) VvLAR1 49.7 

S3_59791550 7.44E-08 Sb03g031780 (60,152,738-60,153,745) BZ2 49.4 

S4_60811893 7.97E-08 Sb04g030840 (60,836,442-60,839,338) TTG1 32.6 

S4_61170190 8.07E-08 Sb04g031110  (61115048-61116356) Zm1/TT2 66.8 

S4_60825369 9.69E-08 Sb04g030840 (60,836,442-60,839,338) TTG1 32.6 

S4_59071280 9.81E-08 Sb04g030570 (60,539,878-60,541,963) VvLAR1 49.7 

S4_59070937 1.33E-07 Sb04g030570 (60,539,878-60,541,963) VvLAR1 49.7 

S4_61122741 1.92E-07 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_62353772 1.95E-07 Sb04g032140 (62,146,623-62,155,642) TT1 22.8 

S4_62353785 1.95E-07 Sb04g032140 (62,146,623-62,155,642) TT1 22.8 

S4_60812946 2.47E-07 Sb04g030840 (60,836,442-60,839,338) TTG1 32.6 

S9_4414223 2.58E-07 Sb09g003750 (4,251,107-4,252,160) TT19 42.1 

S4_61667908 4.84E-07 Sb04g031730 (61,667,040-61,668,067) Tan1 66.6 
an = 373; 204 proanthocyanidin accessions, 169 non-proanthocyanidin accessions 

bSNPs within 100kb of the candidate gene are in bold text.  
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Table B.2. The 20 most statistically significant SNPs associated with proanthocyanidins, with 
accessions containing tan1-a and tan1-b null alleles removed, using qualitative 
(presence/absence) phenotype a,b  

GLM 

SNP p-value 
closest a priori gene 

(location) 
homolog 

% 
similarity 

to 
homolog 

S2_8258226 5.02E-12 Sb02g006390 (8,003,227-8,008,714) TT8 19.3 

S7_58390034 2.00E-11 Sb07g023840 (58,814,239-58,816,555) TT12 51.3 

S2_66685741 2.17E-11 Sb02g031190 (66,677935-66682300) TT18/ANS 48.1 

S2_66685788 2.17E-11 Sb02g031190 (66,677935-66682300) TT18/ANS 48.1 

S2_57862726 2.34E-11 
Sb02g024250 (58453163-58454123) 

MYB5 41.4 

S2_66684971 5.53E-11 Sb02g031190 (66,677935-66682300) TT18/ANS 48.1 

S2_66680971 2.31E-10 Sb02g031190 (66,677935-66682300) TT18 (ANS) 48.1 

S4_61115792 2.35E-10 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61115781 2.44E-10 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S6_41070539 2.66E-10 Sb06g014550 (40,216,040-40,217,587) TT6 42.7 

S4_54197180 2.84E-10 Sb04g024710 (54,540,924-54,542,759) Pr1  69 

S3_58240976 3.27E-10 Sb03g029820 (58,069,805-58,070,945) VvLAR1 43.9 

S2_8182066 3.51E-10 Sb02g006390 (8,003,227-8,008,714) TT8 19.3 

S4_61074352 3.60E-10 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S7_59242217 5.46E-10 Sb07g024260 (59,291,132-59,293,418) TT4 62.3 

S4_5016773 6.43E-10 Sb04g004736 (4,527,943-4,530,433) TT16 53.6 

S4_5016793 6.43E-10 Sb04g004736 (4,527,943-4,530,433) TT16 53.6 

S4_61077385 7.45E-10 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61077412 7.45E-10 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61100543 1.04E-09 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

MLM 

SNP p-value 
closest a priori gene 

(location) 
homolog 

% 
similarity 

to 
homolog 
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S4_61115792 3.14E-07 Sb04g031110  (61115048-61116356) Zm1/TT2 66.8 

S6_41070539 3.69E-07 Sb06g014550 (40,216,040-40,217,587) TT6 42.7 

S3_59791550 4.06E-07 Sb03g031780 (60,152,738-60,153,745) BZ2 49.4 

S4_6213041 5.55E-07 Nothing close   

S2_66685741 5.94E-07 Sb02g031190 (66,677935-66682300) TT18/ANS 48.1 

S2_66685788 5.94E-07 Sb02g031190 (66,677935-66682300) TT18/ANS 48.1 

S4_61115781 7.88E-07 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61060973 9.33E-07 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S9_58158124 9.33E-07 Sb09g028860 (57,658,680-57,661,148) TT4 39.7 

S9_57272292 1.10E-06 Sb09g028860 (57,658,680-57,661,148) TT4 39.7 

S2_57862726 1.34E-06 Sb02g024250 (58453163-58454123) MYB5 41.4 

S4_61100543 1.56E-06 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61074352 1.57E-06 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S2_66684971 1.67E-06 Sb02g031190 (66,677935-66682300) TT18/ANS 48.1 

S9_58474437 2.09E-06 Sb09g028860 (57,658,680-57,661,148) TT4 39.7 

S4_60811893 2.92E-06 Sb04g030840 (60,836,442-60,839,338) TTG1 32.6 

S4_61023448 2.99E-06 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_60825369 3.10E-06 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S6_29795989 3.53E-06 Nothing close   

S9_5199160 3.73E-06 Sb09g003750 (4,251,107-4,252,160) TT19 42.1 

 

an = 304; 146 proanthocyanidin accessions, 158 non-proanthocyanidin accessions 

bSNPs within 100kb of the candidate gene are in bold text, and SNPs within the candidate gene 
are in blue text. 
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Table B.3. The 20 most statistically significant SNPs associated with quantitative 
proanthocyanidins (n = 373), identified by GLM and MLM analysis. SNPs within 100kb of the 
candidate gene are in bold text, and SNPs within the candidate gene are in blue text. 

GLM 

SNP p-value 
closest a priori gene 

(location) 
homolog 

% 
similarity 

to 
homolog 

S7_58603858 2.49E-16 Sb07g023840 (58,814,239-58,816,555) TT12 51.3 

S4_61815549 8.32E-16 Sb04g031750 (61,676,174-61,682,528) TT16 42.9 

S1_39378307 3.23E-15 Nothing close   

S1_53978849 1.10E-14 Sb01g031050  (53,615,438-53,616,246) BZ2 47.5 

S4_54197180 1.37E-14 Sb04g024710 (54,540,924-54,542,759) Pr1 69 

S4_61619739 1.63E-14 Sb04g031730 (61,667,040-61,668,067) Tan1 66.6 

S4_61667908 2.56E-14 Sb04g031730 (61,667,040-61,668,067) Tan1 66.6 

S4_61835734 2.60E-14 Sb04g031750 (61,676,174-61,682,528) TT16 42.9 

S7_58598713 3.59E-14 Sb07g023840 (58,814,239-58,816,555) TT12 51.3 

S6_39193058 5.82E-14 Sb06g014250 (39,313,831-39,320,550) MRP3 57.2 

S7_58598684 8.01E-14 Sb07g023840 (58,814,239-58,816,555) TT12 51.3 

S6_41988201 9.92E-14 Sb06g014550 (40,216,040-40,217,587) TT6 42.7 

S9_54293541 1.11E-13 Sb09g024300 (53,852,476-53,858,301) aha10 31.8 

S4_62353772 1.19E-13 Sb04g032140 (62,146,623-62,155,642) TT1 22.8 

S4_62353785 1.19E-13 Sb04g032140 (62,146,623-62,155,642) TT1 22.8 

S9_57185867 1.56E-13 Sb09g028860 (57,658,680-57,661,148) TT4 39.7 

S4_61122392 1.57E-13 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61121403 1.58E-13 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S6_39309082 2.22E-13 Sb06g014250 (39,313,831-39,320,550) MRP3 57.2 

S6_39193160 2.36E-13 Sb06g014250 (39,313,831-39,320,550) MRP3 57.2 

MLM 

SNP 
p-value  closest a priori gene 

(location) 
homolog 

% 
similarity 

to 
homolog 
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S4_61121403 1.14E-09 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61122392 2.76E-09 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61122503 3.54E-09 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61122769 7.05E-09 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61122463 1.04E-08 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S1_53978857 1.50E-08 Sb01g031050 (53,615,438-53,616,246) BZ2 47.5 

S4_60837496 1.69E-08 Sb04g030840 (60,836,442-60,839,338) TTG1 32.6 

S4_60985684 1.73E-08 Sb04g030840 (60,836,442-60,839,338) TTG1 32.6 

S4_61815549 1.76E-08 Sb04g031750 (61,676,174-61,682,528) TT16 42.9 

S4_61122741 1.95E-08 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S4_61667908 2.60E-08 Sb04g031730 (61,667,040-61,668,067) Tan1 66.6 

S4_60837673 2.83E-08 Sb04g030840 (60,836,442-60,839,338) TTG1 32.6 

S4_62933630 2.94E-08 Sb04g032140 (62,146,623-62,155,642) TT1 22.8 

S3_59791550 3.47E-08 Sb03g031780 (60,152,738-60,153,745) BZ2 49.4 

S5_8500513 3.67E-08 Nothing close   

S5_8500525 5.45E-08 Nothing close   

S1_4155554 7.23E-08 Nothing close   

S1_4155549 9.62E-08 Nothing close   

S1_4155558 9.62E-08 Nothing close   

S4_59070803 1.10E-07 Sb04g030570 (60,539,878-60,541,963) VvLAR1 49.7 

 

 

 

  



 

138 

Table B.4. The 20 most statistically significant SNPs associated with quantitative 
proanthocyanidins, with accessions containing tan1-a and tan1-b null alleles removeda,b  

GLM 

SNP p-value 
closest a priori gene 

(location) 
homolog 

% 
similarity 

to 
homolog 

S7_58390034 2.44E-13 Sb07g023840 (58,814,239-58,816,555) TT12 51.3 

S6_40279893 8.28E-12 Sb06g014550 (40,216,040-40,217,587) TT6 42.7 

S2_8258226 9.23E-12 Sb02g006390 (8,003,227-8,008,714) TT8 19.3 

S7_59242217 1.55E-11 Sb07g024260 (59,291,132-59,293,418) TT4 62.3 

S7_59533160 2.10E-11 Sb07g024550 (59,614,356-59,621,625) TT4 62.3 

S6_50528364 2.21E-11 
Sb06g019650 (49209408-49210630) 

MYBL2 34.9 

S3_7160483 2.62E-11 Sb03g008740 (9403274-9404860) VvLAR 46.2 

S6_29795989 2.68E-11 Nothing close   

S7_58603858 2.78E-11 Sb07g023840 (58,814,239-58,816,555) TT12 51.3 

S6_49582290 3.22E-11 Sb06g019710 (49,279,763-49,283,771) TTG2 31.5 

S4_54197180 3.67E-11 Sb04g024710 (54,540,924-54,542,759) Pr1  69 

S2_2647622 4.17E-11 Sb02g001870 (1,832,991-1,837,334) TT4 56.5 

S6_40783545 4.57E-11 Sb06g014550 (40,216,040-40,217,587) TT6 42.7 

S9_57185867 5.49E-11 Sb09g028860 (57,658,680-57,661,148) TT4 39.7 

S6_39331101 5.62E-11 Sb06g014250 (39,313,831-39,320,550) ZmMRP3 57.2 

S6_39331116 5.62E-11 Sb06g014250 (39,313,831-39,320,550) ZmMRP3 57.2 

S1_39378307 5.63E-11 Nothing close   

S1_11176525 5.73E-11 Sb01g011610 (10,430,260-10,439,085) aha10 58.2 

S6_39193058 6.36E-11 Sb06g014250 (39,313,831-39,320,550) ZmMRP3 57.2 

S6_56992521 6.38E-11 Sb06g028420 (57,199,780-57,202,049) TT16 47.6 

MLM 

SNP p-value 
closest a priori gene 

(location) 
homolog 

% 
similarity 

to 
homolog 



 

139 

S1_4155549 1.54E-07 Nothing close   

S1_4155558 1.54E-07 Nothing close   

S1_4155554 1.73E-07 Nothing close   

S3_59791550 2.52E-07 Sb03g031780 (60,152,738-60,153,745) BZ2 49.4 

S6_40279893 3.41E-07 Sb06g014550 (40,216,040-40,217,587) TT6 42.7 

S4_54183440 6.29E-07 Sb04g024710 (54,540,924-54,542,759) Pr1 69 

S4_54183441 6.29E-07 Sb04g024710 (54,540,924-54,542,759) Pr1 69 

S1_11176525 7.59E-07 Sb01g011610 (10,430,260-10,439,085) aha10 58.2 

S1_53978857 8.37E-07 Sb01g031050 (53,615,438-53,616,246) BZ2 47.5 

S9_58927171 8.61E-07 Sb09g028860 (57,658,680-57,661,148) TT4 39.7 

S9_57272292 9.01E-07 Sb09g028860 (57,658,680-57,661,148) TT4 39.7 

S2_57780837 1.06E-06 Sb02g024250 (58453163-58454123) MYB5 41.4 

S4_61048857 1.09E-06 Sb04g031110 (61115048-61116356) Zm1/TT2 66.8 

S9_57231987 1.19E-06 Sb09g028860 (57,658,680-57,661,148) TT4 39.7 

S7_58390034 1.20E-06 Sb07g023840 (58,814,239-58,816,555) TT12 51.3 

S9_57236791 1.93E-06 Sb09g028860 (57,658,680-57,661,148) TT4 39.7 

S9_57236778 1.96E-06 Sb09g028860 (57,658,680-57,661,148) TT4 39.7 

S4_60956965 2.30E-06 Sb04g030840 (60,836,442-60,839,338) TTG1 32.6 

S9_57240634 2.47E-06 Sb09g028860 (57,658,680-57,661,148) TT4 39.7 

S1_6923595 2.61E-06 Sb01g007780 (6,694,707-6,701,002) TT16 40.1 

 

an = 312 

bSNPs within 100kb of the candidate gene are in bold text 
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Table B.5. The 20 most statistically significant SNPs associated with proanthocyanidins in 
proanthocyanidin-containing samplesa,b ,c  

GLM 

SNP p-value 
closest a priori gene 

(location) 
homolog 

% 
similarity 

to 
homolog 

S6_56992521 2.79E-10 Sb06g028420 (57199780-57202049) TT16 47.6 

S5_7528053 4.45E-10 Nothing close   

S4_55064203 7.50E-10 Sb04g024750 (54577319-54579415) 
Pr1 

69.8 

S10_55871365 9.22E-10 
Sb10g025470 (54782097-54786374) 

Aha10 79.2 

S8_1556705 9.67E-10 
Sb08g001710 (1717743-1722003) 

TT12 53.1 

S1_58929618 1.09E-09 
Sb01g034730 (58188566-58192353) 

TT2 52.4 

S1_61195857 1.46E-09 Sb01g037670 (61237360-61241520) 
TT2 

(Y1) 
33.3 

S6_49644262 1.49E-09 Sb06g019710 (49,279,763-49,283,771) TTG2 31.5 

S6_56992652 1.51E-09 Sb06g028420 (57199780-57202049) TT16 47.6 

S1_22691799 1.55E-09 Nothing close   

S1_59704922 1.74E-09 Sb01g034730 (58188566-58192353) TT2 52.4 

S5_8884346 1.74E-09 
Nothing close 

  

S1_61135449 1.74E-09 Sb01g037670 (61237360-61241520) TT2 (Y1) 33.3 

S5_18851072 1.74E-09 Nothing close   

S5_26558086 1.74E-09 Nothing close   

S6_56342445 2.04E-09 Sb06g027180 (56113254-56114668) TT2 (Zm1)  

S8_1556679 2.06E-09 Sb08g001710 (1717743-1722003) TT12 53.1 

S1_61786623 2.06E-09 Sb01g038250 (61790324- 61792661) MYBL2 31.8 

S7_35431682 2.10E-09 Nothing close   

S7_35751604 2.10E-09 Nothing close   
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MLM 

SNP p-value 
closest a priori gene 

(location) 
homolog 

% 
similarity 

to 
homolog 

S4_60949342 1.46E-07 Sb04g030840 (60836442-60839338) TTG1 32.6 

S4_60957038 1.93E-07 Sb04g030840 (60836442-60839338) TTG1 32.6 

S4_61078555 2.35E-07 Sb04g031110 (61115048-61116356) Zm1 (TT2) 66.8 

S4_54183440 2.54E-07 Sb04g024710 (54540924-54542759) Pr1 69 

S4_54183441 2.54E-07 Sb04g024710 (54540924-54542759) Pr1  69 

S4_61048857 2.75E-07 Sb04g031110 (61115048-61116356) Zm1 (TT2) 66.8 

S1_61195857 5.57E-07 Sb01g037670 (61237360-61241520) TT2 (Y1) 33.3 

S1_68346744 5.58E-07 Sb01g045000 (68161437- 68166405) Aha10 65.4 

S6_56992521 5.95E-07 Sb06g028420 (57199780-57202049) TT16 47.6 

S4_61115792 5.99E-07 Sb04g031110 (61115048-61116356) Zm1 66.8 

S2_72791558 6.56E-07 Sb02g038530 (72749789- 72752961) BAN 47.6 

S7_59864685 7.04E-07 Sb07g024890 (59864926-59866468) TT2 (Zm38) 34.1 

S4_57593469 7.75E-07 Sb04g027540 (57461668- 57463298) TT2 37.6 

S5_7528053 8.22E-07 Nothing close   

S6_50558023 9.18E-07 Sb06g019650 (49209408-49210630) MybL2 34.9 

S4_55064203 9.64E-07 Sb04g024710 (54540924-54542759) Pr1  69 

S6_50623578 1.02E-06 Sb06g019650 (49209408-49210630) MybL2 34.9 

S6_50623586 1.02E-06 Sb06g019650 (49209408-49210630) MybL2 34.9 

S6_50623588 1.02E-06 Sb06g019650 (49209408-49210630) MybL2 34.9 

S6_50623581 1.02E-06 Sb06g019650 (49209408-49210630) MybL2 34.9 

an = 204 

bProanthocyanidin-containing is defined as > 10 mg CE/g or pigmented testa 

cSNPs within 100kb of the candidate gene are in bold text.  
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Table B.6. The 20 most statistically significant SNPs associated with 3-deoxyanthocyanidins  

GLM 

SNP p-value 
closest a priori gene 

(location) 
homolog 

% 
similarity 

to homolog 

S1_55090837 5.54E-10 Sb01g032120 (54,964,329-54,971,032) TTG2 31.5 

S4_53602929 1.05E-09 Sb04g024000 (53677619-53679332) TT2 39.1 

S2_52398162 1.36E-09 Sb02g020840 (51,245,183-51,246,425) TT1 44.9 

S2_52428322 1.48E-09 Sb02g020840 (51,245,183-51,246,425) TT1 44.9 

S4_54975391 1.49E-09 Sb04g024750 (54,577,319-54,579,415) Pr1 69.8 

S3_71992658 1.77E-09 Sb03g044310 (71,642,586-71,647,590) TTG1 22.3 

S3_71451623 1.77E-09 Sb03g044310 (71,642,586-71,647,590) TTG1 22.3 

S3_71451622 1.77E-09 Sb03g044310 (71,642,586-71,647,590) TTG1 22.3 

S3_71451639 2.76E-09 Sb03g044310 (71,642,586-71,647,590) TTG1 22.3 

S1_56106667 2.81E-09 Sb01g032770 (55,688,190-55,689,966) TT2 32.2 

S3_72439585 3.19E-09 Sb03g045170 (72,438,235-72,439,721) 
TT18 (ANS) 

or TT6 (F3H) 
53.7 and 

43.6 

S2_55517998 3.42E-09 Sb02g020840 (51,245,183-51,246,425) TT1 44.9 

S2_47975089 3.84E-09 Sb02g019110 (46,364,670-46,367,910) TT1 44.2 

S7_62456631 4.32E-09 Sb07g027340 (62,417,921-62,419,759) 
TT3 (DFR) or 

ban (ANR) 
53.1 and 

53.2 

S4_53207632 4.70E-09 Sb04g023670 (53,325,993-53,331,790) TT1 26.1 

S4_53238118 4.93E-09 Sb04g023670 (53,325,993-53,331,790) TT1 26.1 

S3_71344598 4.95E-09 Sb03g044310 (71,642,586-71,647,590) TTG1 22.3 

S9_2058373 4.95E-09 Sb09g002350 (2,560,223-2,564,930 TT18 53.4 

S10_57946114 5.23E-09 Sb10g029090 (58,901,962-58,902,681) BZ2 44.4 

S6_57486103 5.32E-09 Sb06g028630 (57,389,363-57,390,325) TT19 51.9 

MLM 

SNP p-value 
closest a priori gene 

(location) 
homolog 

% 
similarity 

to homolog 

S1_28347083 5.36E-07 Sb01g022080 (27,064,644-27,065,491) BZ2 77.2 
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S6_11701409 5.55E-07 Nothing close   

S3_59641176 9.77E-07 Sb03g031780 (60,152,738-60,153,745) BZ2 49.4 

S5_18600463 1.27E-06 Sb05g008850 (17,836,989-17,839,307) TT4 60.3 

S10_5605417 1.59E-06 Sb10g005940 (5379135-5380662) TT6 46.1 

S10_7508355 2.48E-06 Sb10g006700 (6330484- 6331579) ZmMRP3 56.1 

S10_44404082 3.72E-06 Nothing close   

S4_55097941 3.77E-06 Sb04g024750 (54,577,319-54,579,415) Pr1 69.8 

S1_66585370 4.49E-06 Sb01g043620 (66764553- 66770308) aha10 34.6 

S2_59315745 7.00E-06 Sb02g024260 (58500434-58501503) MYB5 43.8 

S4_51221699 8.08E-06 Sb04g022250 (51691231-51692495) TT19 53.3 

S6_50558023 8.37E-06 Sb06g019650 (49209408-49210630) MybL2 34.9 

S8_41806375 8.84E-06 Sb08g016160 (42830918- 42833876) VvLAR1 46.2 

S6_1689167 1.09E-05 Sb06g001270 (1828896-1841084) TT15 61.5 

S10_44365942 1.17E-05 Nothing close   

S7_38576434 1.22E-05 Nothing close   

S10_44535863 1.38E-05 Nothing close   

S4_9998328 1.93E-05 Sb04g008710 (10243964- 10245183) TTG1 34.3 

S9_39939122 2.00E-05 Sb09g015900 (39917155- 39919621) TTG2 29.1 

S8_45086484 2.54E-05 Sb08g016160 (42830918- 42833876)  VvLAR1 46.2 

 

an = 373 

bSNPs within 100kb of the candidate gene are in bold text, and SNPs within the candidate gene 
are in blue text. 
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Table B.7. The 20 most statistically significant SNPs associated with brown grain in all samplesa,b  

GLM 

SNP p-value 
closest a priori gene 

(location) 
homolog 

% similarity 
to homolog 

S8_52906292 4.88E-11 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S8_52906290 4.88E-11 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S8_52905638 8.65E-11 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S8_52905789 9.40E-11 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S8_52905746 9.40E-11 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S8_52905782 9.40E-11 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S8_52906014 4.47E-10 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S8_52905903 7.61E-10 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S5_58872647 1.90E-09 Nothing close   

S8_52905887 2.56E-09 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S3_63,632,556 2.56E-09 Sb03g035610 (63,636,898-63,639,676) TT12 52.3 

S6_57354543 4.09E-09 Sb06g028630 (57389363-57390325) TT19 51.9 

S8_52905918 4.18E-09 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S3_63633611 6.46E-09 Sb03g035610 (63636898-63639676) TT12 52.3 

S3_63633634 6.46E-09 Sb03g035610 (63636898-63639676) TT12 52.3 

S3_63633534 6.46E-09 Sb03g035610 (63636898-63639676) TT12 52.3 

S3_63632616 6.70E-09 Sb03g035610 (63636898-63639676) TT12 52.3 

S8_53641265 7.07E-09 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S1_25948962 7.75E-09 
Sb01g021480 (25195290-25198691) 

TT1 23.4 

S6_61020370 9.05E-09 Sb06g031790 (60106108-60107732) 
TT6 

SbF3H 
76.8 

MLM 

SNP p-value 
closest a priori gene 

(location) 
homolog 

% similarity 
to homolog 

S2_65858236 5.06E-06 Sb02g030900 (65890970-65895810) MYB5 41 

S7_61285102 6.20E-06 Sb07g026200 (61402853-61410316) TT16 47.6 
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S1_64705875 8.92E-06 Sb01g039690 (63184945-63187783) TT10 56.6 

S2_59208527 9.06E-06 Sb02g024260 (58500434-58501503) MYB5 43.8 

S4_54284947 1.40E-05 Sb04g024750 (54,577,319-54,579,415) Pr1 69.8 

S8_52906292 1.51E-05 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S8_52906290 1.51E-05 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S2_65506207 1.58E-05 Sb02g030900 (65890970-65895810) MYB5 41 

S3_49074666 1.63E-05 Sb03g024610 (49271787-49272639) BZ2 51.4 

S8_52496098 1.71E-05 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S3_66976497 1.84E-05 Nothing close   

S8_52905638 1.88E-05 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S8_52905789 2.39E-05 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S8_52905746 2.39E-05 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S8_52905782 2.39E-05 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S3_62988188 2.64E-05 Sb03g035420 (63530165- 63532952) TT19 52.8 

S6_57354543 2.84E-05 Sb06g028630 (57,389,363-57,390,325) TT19 51.9 

S1_64705774 2.89E-05 Sb01g039690 (63184945-63187783) TT10 56.6 

S1_28300277 2.94E-05 Sb01g022080 (270064644-27065491) BZ2 77.2 

S6_48708854 3.15E-05 Sb06g019710 (49,279,763-49,283,771) TTG2 31.5 

 

an = 373 

bSNPs within 100kb of the candidate gene are in bold text. 
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Table B.8. The 20 most statistically significant SNPs associated with brown grain in 
proanthocyanidin-containing samplesa,b 

GLM 

SNP p-value 
closest a priori gene 

(location) 
homolog 

% similarity 
to homolog 

S1_43750629 1.05E-08 Not close   

S2_70534763 3.23E-08 Sb02g036250 (70669178-70671026) TT2 36.9 

S1_28300277 3.52E-08 Sb01g022080 (270064644-27065491) BZ2 77.2 

S1_43795821 3.76E-08 Nothing close   

S1_43795823 3.76E-08 Nothing close   

S1_25645929 4.47E-08 Sb01g021480 (25195290-25198691) TT1 23.4 

S6_60932972 4.79E-08 Sb06g031790 (60106108-60107732) 
TT6 

SbF3H 
76.8 

S1_27137629 5.39E-08 Sb01g022080 (270064644-27065491) BZ2 77.2 

S1_21753836 5.81E-08 
Sb01g019270 (20498918-20501026) 

TT2 32.1 

S8_52905638 6.84E-08 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S1_19240247 7.64E-08 Sb01g018950 (19886314-19990009) TT4 53.7 

S6_47977310 7.84E-08 
Sb04g021220 (49989704-49993123) 

TTG2 31.5 

S1_27140285 7.96E-08 Sb01g022080 (270064644-27065491) BZ2 77.2 

S1_19240248 8.26E-08 Sb01g018950 (19886314-19990009) TT4 53.7 

S2_69656067 8.42E-08 
Sb02g034720 (69218784-69221644) 

TT12 51.1 

S1_25790756 9.26E-08 Sb01g021480 (25195290-25198691) TT1 23.4 

S6_55368461 9.51E-08 
Sb06g026350 (55388316-55390216) 

TT6 49.4 

S1_19194280 1.06E-07 Sb01g018950 (19886314-19990009) TT4 53.7 

S8_52905746 1.12E-07 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S8_52905782 1.12E-07 Sb08g021640 (53,297,815-53299964) TT12 60.6 

MLM 

SNP p-value 
closest a priori gene 

(location) 
homolog 

% similarity 
to homolog 
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S1_25645929 1.34E-07 Sb01g021480 (25195290-25198691) TT1 23.4 

S1_43750629 1.94E-07 Nothing close   

S8_52713649 4.57E-07 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S1_28300277 5.17E-07 Sb01g022080 (270064644-27065491) BZ2 77.2 

S1_43795821 5.40E-07 Nothing close   

S1_43795823 5.40E-07 Nothing close   

S1_29200037 5.57E-07 Sb01g022080 (270064644-27065491) BZ2 77.2 

S2_70534763 7.86E-07 Sb02g036250 (70669178-70671026) TT2 36.9 

S6_60932972 1.46E-06 Sb06g031790 (60106108-60107732) TT6 76.8 

S1_29531896 1.54E-06 Sb01g022080 (270064644-27065491) BZ2 77.2 

S8_52905638 2.00E-06 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S6_61020370 2.14E-06 Sb06g031790 (60106108-60107732) TT6 76.8 

S1_29462834 2.15E-06 Sb01g022080 (270064644-27065491) BZ2 77.2 

S1_28844833 2.62E-06 Sb01g022080 (270064644-27065491) BZ2 77.2 

S1_25790756 2.63E-06 Sb01g022080 (270064644-27065491) BZ2 77.2 

S1_28582280 2.71E-06 Sb01g022080 (270064644-27065491) BZ2 77.2 

S1_29420103 2.87E-06 Sb01g022080 (270064644-27065491) BZ2 77.2 

S1_28554765 3.11E-06 Sb01g022080 (270064644-27065491) BZ2 77.2 

S8_52906290 3.13E-06 Sb08g021640 (53,297,815-53299964) TT12 60.6 

S8_52906292 3.13E-06 Sb08g021640 (53,297,815-53299964) TT12 60.6 

 

an = 204 

bProanthocyanidin-containing is defined as > 10 mg CE/g or pigmented testa 

cSNPs within 100kb of the candidate gene are in bold text. 
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Table B.9. The 20 most statistically significant SNPs associated with red graina,b 

GLM 

SNP p-value 
closest a priori gene 
(location) 

homolog 

% 
similarity 
to 
homolog 

S4_54493561 3.49E-14 Sb04g024750 (54,577,319-54,579,415) Pr1 69.8 

S4_55902677 8.00E-14 Sb04g026480 (56291313-56292251) MYB111 38.8 

S4_54555458 8.10E-14 Sb04g024750 (54,577,319-54,579,415) Pr1 69.8 

S4_55747640 1.11E-13 Sb04g026480 (56291313-56292251) MYB111 38.8 

S4_55882791 1.26E-13 Sb04g026480 (56291313-56292251) MYB111 38.8 

S4_55867630 2.70E-13 Sb04g026480 (56291313-56292251) MYB111 38.8 

S4_55867633 2.70E-13 Sb04g026480 (56291313-56292251) MYB111 38.8 

S4_55713265 5.04E-13 Sb04g026480 (56291313-56292251) MYB111 38.8 

S4_55900173 6.32E-13 Sb04g026480 (56291313-56292251) MYB111 38.8 

S4_55747610 7.91E-13 Sb04g026480 (56291313-56292251) MYB111 38.8 

S4_55747632 7.91E-13 Sb04g026480 (56291313-56292251) MYB111 38.8 

S4_55747565 1.23E-12 Sb04g026480 (56291313-56292251) MYB111 38.8 

S3_72346264 1.82E-12 Sb03g044980 (72307409-72308922) TT19 54.7 

S4_55900636 1.88E-12 Sb04g026480 (56291313-56292251) MYB111 38.8 

S4_53815136 2.56E-12 Sb04g024000 (53677619-53679332) Pr1 39.1 

S4_55156807 8.35E-12 Sb04g026480 (56291313-56292251) MYB111 38.8 

S2_14401715 1.01E-11 Sb02g010030 (14563011-14570104) TT15 59.7 

S4_55760426 1.09E-11 Sb04g026480 (56291313-56292251) MYB111 38.8 

S4_55710493 1.33E-11 Sb04g026480 (56291313-56292251) MYB111 38.8 

S4_55156795 2.24E-11 Sb04g024750 (54,577,319-54,579,415) MYB111 38.8 

MLM 

SNP p-value 
closest a priori gene 
(location) 

homolog 

% 
similarity 
to 
homolog 

S4_54555458 1.37E-09 Sb04g024750 (54,577,319-54,579,415) Pr1 69.8 
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S4_54493561 8.30E-09 Sb04g024750 (54,577,319-54,579,415) Pr1 69.8 

S4_64587640 4.63E-08 Sb04g034620 (64455176- 64457720) TT10 57 

S4_65817192 4.99E-08 Sb04g036040 (65831134-65834278) aha10 75.7 

S4_55156807 9.65E-08 Sb04g024750 (54,577,319-54,579,415) Pr1 69.8 

S6_8129134 1.07E-07 Nothing close   

S4_64635899 1.45E-07 Sb04g034620 (64455176- 64457720) TT10 57 

S4_55747640 1.46E-07 Sb04g026480 (56291313-56292251) MYB111 38.8 

S4_55882791 1.64E-07 Sb04g026480 (56291313-56292251) MYB111 38.8 

S6_8336655 2.21E-07 Nothing close   

S4_55156795 2.32E-07 Sb04g024750 (54,577,319-54,579,415) Pr1 69.8 

S6_7640589 2.63E-07 Nothing close   

S6_7539209 2.66E-07 Nothing close   

S4_55902677 2.67E-07 Sb04g026480 (56291313-56292251) MYB111 38.8 

S2_70842527 2.84E-07 Sb02g036250 (70669178-70671026) TT2 36.9 

S6_7726594 3.11E-07 Nothing close   

S4_55867630 3.85E-07 Sb04g026480 (56291313-56292251) MYB111 38.8 

S4_55867633 3.85E-07 Sb04g026480 (56291313-56292251) MYB111 38.8 

S6_53856417 5.15E-07 Sb06g025020 (54009597- 54014513) TT8 50.2 

S6_7640690 5.90E-07 Nothing close   

 

an = 373 

bSNPs within 100kb of the candidate gene are in bold text.
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APPENDIX C: EXPRESSION DATA
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Table C.1. Expression data for candidate genes near the significant SNP on Chrm2 , 7.7Mb 

 

gene_ID leaves inflor1 inflor2 anther pistil seed5 seed10 embr
yo 

endosperm 

Sb02g023680 0 2.33069 0 0 0 0.670766 1.55299 4.296 0 
Sb02g023690 5.9953 20.3048 34.2138 7.9720 19.4546 14.0674 17.3198 37.83 16.3391 
Sb02g023700 0 0 19.9321 252.24 2.06251 6.61183 16.9653 0 12.1629 
Sb02g023710 8.00116 10.6773 17.5759 41.157 15.6181 15.9528 12.4378 22.28 12.723 
Sb02g023720 14.727 37.443 62.3528 3.6441 28.7085 31.3496 13.167 108.6 10.4572 
Sb02g023730 0 0.784739 3.47564 3.3886 0 0 0 0 0 
Sb02g023740 10.0312 4.35748 7.36153 40.462 3.0888 2.36443 7.05754 15.35 8.27954 
Sb02g023750 0 1.86859 1.94506 0.9864 2.8889 3.61537 0.360628 2.786 0.317303 
Sb02g023755 0 0 0 0 0 0 0 0 0 
Sb02g023760 2.8041 9.74789 9.39109 0 5.51813 5.48551 3.42333 2.168 0 
Sb02g023765 0 0 0 0 0 0 0 0 0 
Sb02g023770 22.8519 0 0.151196 0.3753 0.17611 0.319654 0.228533 2.554 0.920474 
Sb02g023780 0 2.11993 1.58853 2.9521 1.42408 1.5162 0.420499 1.455 0 
Sb02g023790 0 2.44529 1.02772 0 0 0 2.07284 0 5.75006 
Sb02g023800 0 12.6653 2.28424 19.878 5.77448 1.40064 0.726751 2.025 0 
Sb02g023810 8.55662 16.1504 11.3857 3.8117 15.1159 18.6172 5.40596 6.086 10.4291 
Sb02g023820 22.1742 44.8399 56.0609 84.116 43.6109 82.664 26.3481 27.17 19.3189 
Sb02g023830 0 6.59185 2.79825 3.7731 8.61071 7.47094 1.43201 4.797 0.788552 
Sb02g023840 1.903 9.7713 13.3864 11.431 8.79515 8.22447 4.55728 7.288 3.92795 
Sb02g023850 0 0 0 0 0 0 0 0 0 
Sb02g023860 0 0 0 0 0 0 0 0 0 
Sb02g023870 0 0 0 0 0 0 0 0 0.700349 
Sb02g023880 0 0 0 0 0 0 0 0 0 
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gene_ID leaves inflor1 inflor2 anther pistil seed5 seed10 embr
yo 

endosperm 

Sb02g023890 0 0 0 0 0 0 0 0 0 
Sb02g023892 0 0 0 0 0 0 0 0 0 
Sb02g023895 0 0 0 0 0 0 0 0 0 
Sb02g023897 0 0 0 0 0 0 0 0 0 
Sb02g023900 0 0 0 0 0 0 0 0 0 
Sb02g023910 1.25733 1.96357 2.64888 4.7739 1.09286 1.73258 0 0 7.18001 
Sb02g023920 1.12847 28.0138 4.99207 0.7111 20.2752 5.3753 0.702854 1.193 5.05168 
Sb02g023930 5.70017 12.8674 18.062 7.5488 17.3888 22.7002 12.4516 16.91 8.4293 
Sb02g023940 8.43646 38.287 28.7814 9.2484 41.3633 34.9809 9.87075 22.87 8.06112 
Sb02g023950 0 0 0 0 0 0 0 0 0 
Sb02g023955 0 0 0 0 0 0 0 0 0 
Sb02g023960 0 0 0 0 0 0.676488 62.4068 1.642 65.289 
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Table C.2. Expression data for candidate genes near the significant SNP on Chrm4, 57.7Mb 

 

gene_ID leaves inflor1 inflor2 anther pistil seed5 seed10 embry
o 

endosperm 

Sb04g027650 0.73133 4.26973 1.63284 0 7.13977 5.4527 0 0 0 
Sb04g027660 188.546 57.1422 112.676 89.421 87.8698 86.4094 86.3187 7.5989 57.8603 
Sb04g027670 2.53335 2.31188 1.16451 0 1.46615 0.631974 0.760041 6.0354 0 
Sb04g027680 0 1.68389 0 0 1.68558 0 0 6.7550 0 
Sb04g027690 2.0943 18.5169 12.7806 13.117 23.9244 18.5843 4.22904 13.091 4.77923 
Sb04g027700 3.16185 156.809 33.2842 1.5776 94.5522 40.7492 27.7802 100.06 5.12776 
Sb04g027705 0 0 0 0 0 0 0 0 0 
Sb04g027710 7.74616 16.2274 23.3784 4.9658 21.3814 14.0704 3.19389 32.023 4.93014 
Sb04g027720 4.4102 7.71401 9.46648 24.659 11.7321 17.6894 5.24778 16.355 3.87536 
Sb04g027730 108.669 3.72498 32.7003 2.7696 3.41543 7.23709 2.03196 6.6726 0.798253 
Sb04g027740 0 53.9924 54.9759 19.719 32.5054 35.3426 7.72419 96.532 21.8408 
Sb04g027750 0 6.81907 0 0 1.59609 0 0 0 0 
Sb04g027760 0 37.4204 13.3888 1.8410 29.5497 27.2916 7.71662 28.394 2.8771 
Sb04g027763 0 5.27185 10.2028 2.1452 24.3643 33.2616 6.86241 4.5695 4.60036 
Sb04g027766 0 7.24242 10.0652 1.2731 33.9948 23.3235 7.64669 5.5024 3.31526 
Sb04g027770 0 0 1.2577 8.1781 0 0 0 0 0 
Sb04g027771 0 0 0 0 0 0 0 0 0 
Sb04g027773 0 0 0 0 0 0 0 0 0 
Sb04g027775 0 0 0 0 0 0 0 0 0 
Sb04g027776 5.83346 0 0.140652 0 0 0 0 0.2815 0 
Sb04g027778 0 0 0 0 0 0 0 0 0 
Sb04g027780 61.7812 27.0869 34.1836 21.025 22.8289 27.6869 7.75636 14.163 9.44638 
Sb04g027790 8.01227 10.5371 11.5947 7.1947 11.5555 10.5041 5.69906 12.518 5.98454 
Sb04g027800 8.5806 10.8173 11.7671 0 12.7604 7.8703 2.42028 10.861 2.70414 
Sb04g027810 1278.6 27.2237 88.867 8.7663 46.2582 69.68 39.0455 3.8307 18.0047 
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gene_ID leaves inflor1 inflor2 anther pistil seed5 seed10 embry
o 

endosperm 

Sb04g027815 1.94015 6.12821 4.43369 2.3419 7.01663 4.46855 2.85394 5.4223 1.32529 
Sb04g027820 2.30924 6.63729 5.10568 6.1364 4.61184 5.43002 6.83531 9.9250 5.45184 
Sb04g027830 8.96736 3.30603 3.70324 1.5768 4.62597 3.81609 2.83086 1.7211 1.63032 
Sb04g027840 2.50108 0.836148 1.49807 1.2026 0.92270 0.744119 0 0 0 
Sb04g027843 0 0 0 0 0 0 0 0 0 
Sb04g027846 0 0 0 0 0 0 0 0 0 
Sb04g027850 0 0 0 0 0 0 0 0 0 
Sb04g027860 0.56449 0 0 0 0 1.96159 8.73977 0 2.80423 
Sb04g027870 7.09031 30.8035 36.8057 52.770 24.1789 31.6686 12.0743 27.696 11.2593 
Sb04g027880 198.428 58.9054 71.1705 73.714 74.7104 118.005 26.2183 49.648 26.7136 
Sb04g027890 16.1457 20.4031 23.4735 30.302 19.5986 25.1393 14.7792 25.428 12.215 
Sb04g027900 0.88662 15.2006 4.39256 1.0410 34.1873 31.1038 6.60782 4.4459 12.4031 
Sb04g027910 2.28452 24.6923 58.8269 51.617 30.6533 44.4812 8.43038 5.6706 10.6943 
Sb04g027920 3.53631 7.41364 11.0236 10.088 6.89128 8.51964 6.6762 7.4032 5.55642 
Sb04g027925 0 0 0 0 0 0 0 0 0 
Sb04g027930 0 89.0026 19.0844 25.066 195.795 67.5163 11.7598 1.5445 2.75919 
Sb04g027940 13.4855 25.3132 24.6645 14.683 27.0335 27.3917 14.149 18.742 31.1764 
Sb04g027950 13.2928 65.9596 20.2752 2.5892 68.4315 57.8658 32.4856 64.309 63.9801 
Sb04g027960 0 15.3189 1.81792 0 18.4058 5.88915 0.4053 3.5933 0 
Sb04g027970 16.2721 30.5997 36.3126 30.066 22.4896 31.2146 29.1253 20.113 37.942 
Sb04g027980 0.93355 2.9024 2.64631 7.5892 1.92674 2.97485 4.01138 2.3287 1.91179 
Sb04g027990 14.8272 8.59989 14.6025 26.760 8.99914 9.25894 7.73246 8.538 7.1487 
Sb04g028000 15.8315 35.8274 37.2271 23.727 39.9063 24.241 15.8366 40.901 16.3728 
Sb04g028010 0 0.559678 1.35391 0 1.21904 1.79474 0 0 0 
Sb04g028015 0 0.676973 0.719732 0.3896 1.18907 0.653495 0.420828 2.1321 0 
Sb04g028020 214.137 0.774813 1.55421 0.9933 0 0.790386 0 0 0 
Sb04g028030 39.2943 7.42981 13.8686 9.9932 11.399 22.6709 12.2489 21.272 12.2932 
Sb04g028040 0 0 0 0 0 0 0 0 0 
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gene_ID leaves inflor1 inflor2 anther pistil seed5 seed10 embry
o 

endosperm 

Sb04g028050 767.24 36.2032 40.2015 13.657 140.866 82.0592 18.432 86.977 19.9151 
Sb04g028060 80.6905 17.2847 4.47903 3.9450 40.9066 21.0613 3.50636 5.3521 5.08887 
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Table C.3. Expression data for candidate genes near the significant SNP on Chrm6, 48.8Mb 

 

gene_ID leaves inflor1 inflor2 anther pistil seed5 seed10 embryo endosperm 

Sb06g019010 1.0787 19.8095 23.5318 1.4969 5.63451 78.6608 62.0977 5.11923 39.2647 
Sb06g019015 0 0 0 0 0 0 0 0 0 
Sb06g019020 0 28.0475 2.34575 0.8735 29.5048 26.15 1.93895 1.73359 0.869728 
Sb06g019030 167.60 35.9534 65.5943 1.5072 27.9022 52.4701 9.83391 13.8034 10.1455 
Sb06g019040 0 1.89623 0 0 0 0 0 0 0 
Sb06g019043 0 0 0 0 0 0 0 0 0 
Sb06g019046 0 1.39149 1.28464 1.4948 0 0 0 2.01371 0 
Sb06g019050 0 0 0 0 0 1.97889 10.3375 56.0965 17.3933 
Sb06g019060 0 9.13901 2.62463 0 13.6169 7.1539 1.45194 4.93426 0.461682 
Sb06g019070 0 88.1934 1.07513 0 0 8.76246 0 0 0 
Sb06g019080 13.942 4.27086 3.32156 1.7409 3.88611 4.16478 1.09393 1.15886 1.57501 
Sb06g019085 0 0 0 0 0 0 0 0 0 
Sb06g019090 0.5816 1.11565 0 0 0 0 0 0 0 
Sb06g019100 379.77 653.703 367.613 95.533 652.354 489.726 329.187 341.131 291.376 
Sb06g019105 0 4.38968 1.46853 0 6.87291 2.51216 0 4.97549 0 
Sb06g019110 11.474 111.522 46.628 32.543 110.383 112.309 81.1536 130.975 60.9299 
Sb06g019120 1.1712 46.63 14.9212 1.2467 14.3896 5.41831 0.779662 1.48891 0.879481 
Sb06g019130 37.560 4.18819 3.82466 1.8824 11.4045 6.20356 22.3028 3.42221 48.068 
Sb06g019140 0.8430 2.46611 2.13152 1.4875 3.66841 1.40035 0.323714 2.13213 0.379765 
Sb06g019150 15.647 38.1188 18.8009 17.872 16.2661 13.6899 6.71654 8.57036 6.61489 
Sb06g019160 37.416 22.6099 21.2094 163.46 21.2621 35.9644 31.6271 59.8787 17.6973 
Sb06g019170 12.443 11.4223 15.2383 10.039 15.1396 12.4181 6.62713 6.76693 13.9943 
Sb06g019180 32.346 42.3676 38.1915 25.224 64.0169 53.6291 27.3556 29.2114 37.0469 
Sb06g019190 0 1.51381 0.96479 0.8702 1.22313 1.01062 0.359188 0.85791 0 
Sb06g019200 10.35 55.6172 73.4476 55.148 60.7769 55.7958 34.7427 31.8607 48.6426 
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gene_ID leaves inflor1 inflor2 anther pistil seed5 seed10 embryo endosperm 

Sb06g019210 2.4253 26.4266 21.2916 29.917 26.5723 7.07552 18.1732 16.7602 15.1294 
Sb06g019215 0 0 0 0 0 0 0 0 0 
Sb06g019220 0 0 0 0.2518 0 0 0 0 0 
Sb06g019230 37.222 73.4043 81.8889 71.077 91.3867 82.3839 40.6072 48.5786 47.8507 
Sb06g019240 0 5.25338 1.80915 0 8.99107 6.18722 0.506669 1.87243 0.804186 
Sb06g019245 6.6781 20.2955 23.9005 5.2305 16.7144 32.7837 10.5675 18.3567 7.67451 
Sb06g019250 1.7942 8.40965 8.60721 2.5451 8.99324 4.89734 2.4994 7.0212 2.93217 
Sb06g019260 7.6546 18.102 20.9162 15.099 29.3711 23.9525 11.7477 21.0342 15.7889 
Sb06g019270 6.4553 14.5577 24.126 21.037 31.2323 21.4287 7.57784 25.2134 8.88994 
Sb06g019275 0 1.47963 1.95627 2.9293 1.63872 2.59347 2.38775 3.66054 0 
Sb06g019280 2.8713 57.3062 22.2902 29.048 62.4483 70.1156 28.4198 22.4816 27.8322 
Sb06g019290 0 166.793 3.95845 0 81.1638 16.3163 11.3494 93.5597 9.00988 
Sb06g019300 2.3507 0.837201 1.68086 0 0.788441 1.2417 1.06488 3.63468 0 
Sb06g019310 9.5576 7.54925 5.627 2.9306 8.0575 7.68804 2.88069 3.48233 3.37948 
Sb06g019320 3.0550 1223.47 1720.13 29.206 1873.29 4979.89 806.416 799.895 293.703 
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APPENDIX D: GRAIN COMPOSITION SNP ASSOCIATIONS 
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Table D.1 Statistically significant SNPs associated with protein  

 

SNPa p-valueb MAFc R2 d closest a priori gene 
(location) Homolog Homolog description % e 

S4_57657983 4.43E-06 0.17 0.29 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57656443 4.43E-06 0.41 0.29 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57656473 1.09E-05 0.41 0.28 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57656457 1.09E-05 0.41 0.28 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57663731 1.22E-05 0.41 0.28 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57645574 1.51E-05 0.41 0.28 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57663557 1.69E-05 0.41 0.28 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57645884 1.69E-05 0.44 0.28 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57609482 1.69E-05 0.40 0.27 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57662361 1.69E-05 0.41 0.27 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57662551 2.19E-05 0.38 0.27 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57662409 2.19E-05 0.40 0.27 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57662424 2.19E-05 0.40 0.27 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57645089 2.62E-05 0.39 0.27 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57644830 2.62E-05 0.40 0.27 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57663773 2.65E-05 0.40 0.27 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57663934 4.87E-05 0.40 0.27 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57663936 4.87E-05 0.40 0.27 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S4_57641319 1.02E-04 0.15 0.26 Sb04g027940 (57,859,449-57,863,521) AT3G54320 WRL1 30.6 
S9_53422385 1.79E-04 0.06 0.26     
S2_57679376 1.79E-04 0.22 0.26 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57610561 2.49E-04 0.39 0.26 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57645073 3.93E-04 0.38 0.26 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57678951 1.66E-03 0.44 0.25 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
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SNPa p-valueb MAFc R2 d closest a priori gene 
(location) Homolog Homolog description % e 

S3_72664832 1.66E-03 0.40 0.25     
S3_72664834 1.66E-03 0.40 0.25     
S3_72664833 1.66E-03 0.40 0.25     
S3_72664835 1.66E-03 0.40 0.25     
S2_57729868 1.68E-03 0.34 0.25 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S4_57619802 1.68E-03 0.36 0.25 Sb04g027940 (57,859,449-57,863,521) AT3G54320 WRL1 30.6 
S2_57605117 1.83E-03 0.39 0.25 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57605132 1.83E-03 0.39 0.25 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57605139 1.83E-03 0.39 0.25 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S4_57619784 2.25E-03 0.36 0.25 Sb04g027940 (57,859,449-57,863,521) AT3G54320 WRL1 30.6 
S2_57679247 2.39E-03 0.34 0.25 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57721916 2.86E-03 0.39 0.24 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S1_64583413 3.34E-03 0.02 0.24     
S1_15018832 3.81E-03 0.06 0.24     
S2_57728934 4.33E-03 0.37 0.24 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S3_11828757 4.48E-03 0.37 0.24 None close    
S10_11107326 6.08E-03 0.02 0.24     
S1_58114305 6.09E-03 0.01 0.24     
S2_57726523 6.23E-03 0.41 0.24 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S4_57594856 9.12E-03 0.41 0.24 Sb04g027940 (57,859,449-57,863,521) AT3G54320 WRL1 30.6 
S5_55916389 9.69E-03 0.01 0.24     
S2_57679565 9.89E-03 0.30 0.24 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3  
S4_57635555 1.02E-02 0.42 0.24 Sb04g027940 (57,859,449-57,863,521) AT3G54320 WRL1 30.6 
S2_57726615 1.26E-02 0.40 0.24 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 30.6 
S3_68275529 1.86E-02 0.05 0.23     
S4_57619661 1.87E-02 0.35 0.23 Sb04g027940 (57,859,449-57,863,521) AT3G54320 WRL1 30.6 
S9_54885754 1.92E-02 0.22 0.23     
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SNPa p-valueb MAFc R2 d closest a priori gene 
(location) Homolog Homolog description % e 

S2_57727196 1.92E-02 0.40 0.23 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S4_55666106 1.97E-02 0.12 0.23     
S1_21499901 2.01E-02 0.03 0.23     
S2_57727421 2.12E-02 0.40 0.23 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S1_15018913 2.14E-02 0.05 0.23     
S7_9235696 2.28E-02 0.02 0.23     
S9_53407206 2.33E-02 0.01 0.23     
S3_72152710 2.41E-02 0.38 0.23     
S10_12029907 2.77E-02 0.01 0.23     
S2_57728715 2.84E-02 0.27 0.23 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S7_7073656 2.93E-02 0.11 0.23     
S2_7407872 2.93E-02 0.02 0.23     
S4_57774278 2.97E-02 0.21 0.23     
S1_58060924 3.04E-02 0.35 0.23     
S1_57287903 3.04E-02 0.07 0.23     
S6_4717038 3.20E-02 0.00 0.23     
S2_57695323 3.20E-02 0.49 0.23 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_58954943 3.27E-02 0.21 0.23     
S9_56662775 3.43E-02 0.19 0.23     
S2_66625727 3.43E-02 0.43 0.23     
S4_57794439 3.69E-02 0.22 0.23 Sb04g027940 (57,859,449-57,863,521) AT3G54320 WRL1 30.6 
S10_50000241 3.91E-02 0.05 0.23     
S4_57593430 3.93E-02 0.39 0.23 Sb04g027940 (57,859,449-57,863,521) AT3G54320 WRL1 30.6 
S1_45833251 4.02E-02 0.02 0.23     
S2_70911685 4.18E-02 0.01 0.23     
S7_6730549 4.23E-02 0.06 0.23     
S1_61652914 4.28E-02 0.06 0.23     
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SNPa p-valueb MAFc R2 d closest a priori gene 
(location) Homolog Homolog description % e 

S6_51716811 4.36E-02 0.09 0.23     
S6_48889838 4.58E-02 0.10 0.23     
S3_69921718 4.66E-02 0.08 0.23     

 

a 81 significant SNPs found using MLM 

b FDR adjusted P-value 

cMinor allele frequency 

d R2 of model with SNP 

ePercent similarity to homolog 
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Table D.2 Statistically significant SNPs associated with fat 

 

SNPa p-valueb MAFc R2 d 
closest a priori gene 

(location) Homolog Homolog description % e 

S2_57645574 3.73E-09 0.41 0.29 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57663731 3.73E-09 0.41 0.29 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57656443 3.73E-09 0.41 0.29 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57645089 3.73E-09 0.39 0.29 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57656473 3.73E-09 0.41 0.29 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57656457 3.73E-09 0.41 0.29 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57663557 3.73E-09 0.41 0.28 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57663773 3.73E-09 0.40 0.28 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57662409 6.26E-09 0.40 0.28 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57662424 6.26E-09 0.40 0.28 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57609482 8.68E-09 0.40 0.28 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57662551 1.14E-08 0.38 0.28 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57645884 1.86E-08 0.44 0.27 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57662361 2.57E-08 0.41 0.27 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57645073 3.06E-08 0.38 0.27 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57663934 4.77E-08 0.40 0.27 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57663936 4.77E-08 0.40 0.27 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57644830 7.66E-08 0.40 0.26 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57610561 7.97E-08 0.39 0.26 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57729868 2.93E-07 0.34 0.26 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57679247 2.99E-07 0.34 0.26 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57728934 8.84E-07 0.37 0.25 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57678951 8.84E-07 0.44 0.25 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57721916 1.58E-06 0.39 0.25 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
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SNPa p-valueb MAFc R2 d 
closest a priori gene 

(location) Homolog Homolog description % e 

S2_57727196 1.58E-06 0.40 0.25 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57679376 1.82E-06 0.22 0.25 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57726523 3.61E-06 0.41 0.24 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57605117 4.68E-06 0.39 0.24 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57605132 4.68E-06 0.39 0.24 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57605139 4.68E-06 0.39 0.24 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57679565 6.28E-06 0.30 0.24 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57726615 1.02E-05 0.40 0.24 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57727421 1.06E-05 0.40 0.24 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57727066 4.09E-05 0.41 0.23 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57727065 4.09E-05 0.41 0.23 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57732524 6.81E-05 0.28 0.23 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57695323 1.16E-04 0.49 0.22 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57728715 1.74E-04 0.27 0.22 Sb02g023690 (57,547,760-57,552,542) AT5G36880 Acyl coA synthetase 34.3 
S4_57657983 8.90E-04 0.17 0.21 Sb04g027940 (57,859,449-57,863,521) AT3G54320 WRL1 30.6 
S9_53422385 1.22E-03 0.06 0.21     
S3_11828757 1.77E-03 0.37 0.21 None close    
S2_66671179 2.26E-03 0.45 0.21     
S10_50000241 3.63E-03 0.05 0.21     
S8_6611311 5.85E-03 0.13 0.20     
S4_57619802 7.55E-03 0.36 0.20 Sb04g027940 (57,859,449-57,863,521) AT3G54320 WRL1 30.6 
S4_55666106 9.00E-03 0.12 0.20     
S4_57641319 9.20E-03 0.15 0.20 Sb04g027940 (57,859,449-57,863,521) AT3G54320 WRL1 30.6 
S10_11463179 9.42E-03 0.18 0.20     
S2_66625727 9.64E-03 0.43 0.20     
S2_57703534 9.64E-03 0.23 0.20     
S4_57619784 1.38E-02 0.36 0.20 Sb04g027940 (57,859,449-57,863,521) AT3G54320 WRL1 30.6 
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SNPa p-valueb MAFc R2 d 
closest a priori gene 

(location) Homolog Homolog description % e 

S10_12029907 1.51E-02 0.01 0.20     
S2_57721957 1.85E-02 0.23 0.20 Sb02g023790 (57,701,214-57,703,517) AT1G69830 AMY3 29 
S2_57678376 2.01E-02 0.19 0.20     
S3_11909508 2.01E-02 0.36 0.20     
S2_70911685 2.03E-02 0.01 0.20     
S8_6611198 2.13E-02 0.13 0.20     
S3_11944753 2.20E-02 0.05 0.20 None close    
S5_21101672 2.21E-02 0.08 0.20     
S6_48889838 2.35E-02 0.10 0.20     
S7_62603146 2.35E-02 0.17 0.20     
S7_59483342 2.35E-02 0.02 0.20     
S7_59483390 2.35E-02 0.02 0.20     
S2_2696401 2.35E-02 0.40 0.19     
S1_15096821 2.42E-02 0.01 0.19     
S1_15018832 2.64E-02 0.06 0.19     
S2_7407872 2.72E-02 0.02 0.19     
S5_21322403 2.92E-02 0.07 0.19     
S9_18260324 2.92E-02 0.01 0.19     
S1_64583413 3.05E-02 0.02 0.19     
S6_4442676 3.31E-02 0.00 0.19     
S2_66670880 3.31E-02 0.39 0.19     
S7_549037 3.38E-02 0.40 0.19     

S2_73097110 3.41E-02 0.01 0.19     
S3_11960725 3.59E-02 0.34 0.19     
S6_4717038 3.83E-02 0.00 0.19     
S9_50532933 3.85E-02 0.01 0.19     
S1_44209436 4.27E-02 0.04 0.19     
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SNPa p-valueb MAFc R2 d 
closest a priori gene 

(location) Homolog Homolog description % e 

S2_76371136 4.37E-02 0.02 0.19     
S4_12581504 4.47E-02 0.13 0.19     
S1_58114305 4.58E-02 0.01 0.19     

 

a 81 significant SNPs found using MLM 

b FDR adjusted P-value 

cMinor allele frequency 

d R2 of model with SNP 

ePercent similarity to homolog 
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Table D.3 Statistically significant SNPs associated with starch 

 

SNPa p-valueb MAFc R2 d 
closest a priori gene 

(location) Homolog Homolog description % e 

S6_48889838 0.007 0.10 0.33     
S2_66166782 0.007 0.04 0.33     
S3_72588175 0.018 0.31 0.33     
S3_69127635 0.018 0.05 0.32     
S2_68167599 0.018 0.02 0.32     
S10_4811966 0.020 0.01 0.32     
S4_50643504 0.036 0.26 0.32     
S3_309287 0.036 0.14 0.32     

S10_5870897 0.036 0.01 0.32     
S2_67321333 0.036 0.01 0.32     
S2_66166766 0.049 0.04 0.32     

 

a 11 significant SNPs found using MLM 

b FDR adjusted P-value 

cMinor allele frequency 

d R2 of model with SNP 

ePercent similarity to homolog 
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