
University of South Carolina University of South Carolina

Scholar Commons Scholar Commons

Theses and Dissertations

12-15-2014

Practical Concurrency Support for Web Service Transactions Practical Concurrency Support for Web Service Transactions

Emad Alsuwat
University of South Carolina - Columbia

Follow this and additional works at: https://scholarcommons.sc.edu/etd

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Alsuwat, E.(2014). Practical Concurrency Support for Web Service Transactions. (Master's thesis).
Retrieved from https://scholarcommons.sc.edu/etd/3007

This Open Access Thesis is brought to you by Scholar Commons. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of Scholar Commons. For more information, please contact
digres@mailbox.sc.edu.

https://scholarcommons.sc.edu/
https://scholarcommons.sc.edu/etd
https://scholarcommons.sc.edu/etd?utm_source=scholarcommons.sc.edu%2Fetd%2F3007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=scholarcommons.sc.edu%2Fetd%2F3007&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarcommons.sc.edu/etd/3007?utm_source=scholarcommons.sc.edu%2Fetd%2F3007&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digres@mailbox.sc.edu

PRACTICAL CONCURRENCY SUPPORT FOR WEB SERVICE TRANSACTIONS

by

Emad Alsuwat

Bachelor of Computer Science
Taif University, 2008

Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science in

Computer Science and Engineering

College of Engineering and Computing

University of South Carolina

2014

Accepted by:

Csilla Farkas, Director of Thesis

Marco Valtorta, Reader

Manton M Matthews, Reader

Lacy Ford, Vice Provost and Dean of Graduate Studies

ii	

© Copyright by Emad Alsuwat, 2014
All Rights Reserved.

	
 iii

ACKNOWLEDGEMENTS

First and foremost I express my sincere gratitude for my advisor Prof. Csilla

Farkas. It has been an honor to be her master student. I am very thankful for her

motivation, immense knowledge, and continuous support. I appreciate all her

contributions of time, and ideas to make my master experience productive and

stimulating.

Besides my advisor, I would like to thank the rest of my thesis committee, Prof.

Manton M Matthews, and Prof. Marco Valtorta, for their insightful comments and

encouragement.

I would like to thank my family for all their unlimited encouragement and love. I

would like to sincerely thank my parents who raised me with a love of science and for

providing me the support I need. I also would like to thank my brothers and sisters for

supporting me spiritually throughout my life.

Last but not the least, I would like to thank my friends for all their love and true

friendship. My time at the University of South Carolina was made enjoyable in large part

due to the many friends that became a part of my life. I am grateful for time spent with

them and grateful for unforgettable memories.

	
 iv

ABSTRACT

 Traditional database concurrency control methods use locking, timestamp-

ordering, and optimistic-ordering to achieve DB consistency. However, these approaches

are not suitable for long-running Web Service Compositions (WSCs) due to associated

performance degradation. Our hypothesis asserts that, using transactional semantic and

ordering information, the execution time of a WSC can be reduced, thus allowing the use

of traditional database concurrency control methods while avoiding unacceptable

performance degradation. Our solution is based on the following approaches:

§ We model a WSC as WS-BPEL specification, i.e., a partial order of WS transactions.

§ We allow some of the WS transactions in the WSC to execute in parallel.

§ We use traditional locking mechanism for WSC to guarantee database consistency.

To identify WS transactions that can execute parallel, we analyzed the WS-BPEL

specification of the WSCs. The research tasks follow:

§ Task 1: Identify WS transaction precedence relations

§ Task 2: Build Parallel Execution Scenarios (PES)

§ Task 3: Investigate possible further improvement of WSC execution schedule. For

Task 3, we propose the following sub-tasks:

o Increase the number of WSs executing in parallel, and

o Execute concurrently those WSs that have similar execution time

In our work we will present our theoretical model and complexity calculation.

	
 v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. iii

ABSTRACT .. iv

LIST OF FIGURES ... vi

LIST OF ABBREVIATIONS .. vii

CHAPTER 1 INTRODUCTION ...1

CHAPTER 2 RELATED WORK ...5

 2.1 CONCURRENCY CONTROL MECHANISMS ..5

 2.2 WEB SERVICE COMPOSITION AND TRANSACTIONS ...8

 2.3 WEB SERVICE SERIALIZABILITY ..10

CHAPTER 3 MOTIVATED EXAMPLE ...12

CHAPTER 4 PERFORMANCE IMPROVEMENT: PAIR-WISE PARALLEL EXECUTION14

 4.1 TASK 1: IDENTIFY WS TRANSACTIONS THAT CAN EXECUTE CONCURRENTLY15

 4.2 TASK 2: BUILD ALL PARALLEL EXECUTION SCENARIOS (PES)18

CHAPTER 5 PERFORMANCE IMPROVEMENT: MULTIPLE PARALLEL EXECUTION27

 5.1 INCREASING THE NUMBER OF WSS EXECUTING PARALLEL 27

 5.2 EXECUTE CONCURRENTLY WSS THAT HAVE SIMILAR EXECUTION TIME33

CHAPTER 6 CONCLUSION ...36

BIBLIOGRAPHY ...38

vi

LIST OF FIGURES

Figure 4.1 DAG Graph of Example 1 ..25

vii

LIST OF ABBREVIATIONS

ACID ... Atomicity, Consistency, Isolation, Durability

DB ... Database

PES ... Parallel Execution Scenario

TO .. Topological Order

WS... Web Service

WSC .. Web Service Compositions

WSP .. WS-Pairs

WSS ... Web Service Set

WS-BPEL ... Web Services Business Process Execution Lang

1

CHAPTER 1

INTRODUCTION

 Within the field of information technology and computer science, concurrency

controls play a vital role in triggering concurrent operations at the quickest speeds

possible based on hardware and software system compilations defined by specified

consistency rules. During interactivity, problems may arise. The general basis for these

controls is to safeguard system integrity. Database systems are essential for a wealth of

applications. A database state defines the value of the database objects and this state is

changed when a user executes a transaction; individual transactions are assumed to be

correct in that they are running in isolation but this assumption changes when multiple

users access multiple database objects on multiple sites within the context of a distributed

database system (Bhargava, 1999). At this point, problems arise.

 In traditional database management systems, concurrency controls are used to

ensure that executed transactions on the database system are running concurrently

without causing any violation to the consistency of the database; to ensure the correctness

of concurrency control mechanisms, the database management system must meet two

criteria for correctness: 1) database integrity and 2) serializability (Bhargava, 1999).

Simply stated, concurrency controls protect data simultaneous data modification from

impeding on changes made by another user. Simultaneous transaction executions over a

shared database can erode data integrity and results in consistency problems, including

2

lost updates, uncommitted data, and inconsistent retrievals (Kung & Robinson, 1981).

Techniques are needed to mitigate these risks through improved data management. Many

concurrency control algorithms can be leveraged to validate serializability, including

using mechanisms such as locking, timestamp ordering, or optimistic ordering.

Serializability architects sequential database transitions from one state to the next, based

on the blueprinted serial execution of all transactions (Bhargava, 1999).

 The idea of concurrency control mechanisms is to guarantee database consistency

while improve the performance of the database systems. In this process, serializability is

the universally accepted correctness criterion for processing multiple transactions within

centralized high-performance multiple transaction processing systems (Thomasian,

1998). Concurrency control mechanisms confirm serializability in centralized and

distributed within traditional database management systems (DBMS) and this is achieved

by verifying the reliability of database transactions by assuming that each transaction is

ACID - that is, atomicity, consistency, isolation, and durability properties hold. Two-

Phase Locking (2PL) is the most widely used concurrency control mechanism (Al-

Jumaha et al., 2002). Yet these mechanisms are not suitable for long-running WSCs

(Web Service Cluster) due to the associated performance degradation. That is,

transactions in the service-oriented architecture are not ACID transactions due to the

heterogeneous nature of the execution environment. The lack of concurrency control

mechanisms in WSC causes a problem of WS-serializability (Web Service), which occurs

when multiple transactions read and write the same data through independent services at

the same time (i.e. allowing for dirty read and dirty write). The dirty reads and writes

make the recovery in WSC more difficult, meaning that if a transaction fails and needs to

3

be aborted, it will affect the consistency of other concurrent transactions due to the lack

of isolation levels (Gao et al., 2011).

 In this thesis, the problem of concurrency control for WSCs is the target focal point.

The study prioritizes the problem of WS-serializability given that current web service

transactions do not ensure concurrency control due to the heterogeneous nature of the

execution environment. In addition, the research proposes a concurrency control method

that is suitable for WS-transactions. The research hypothesis predicts that, by reducing

the execution time of WSCs, the applicability of concurrency control for WSCs can be

improved, therefore enhancing both transaction correctness (i.e., serializability) and

efficiency.

 Our proposed solution is based on the following claims:

§ We model a WSC as WS-BPEL (Web Services Business Process Execution

Language) specification, i.e., a partial order of WS transactions.

§ We allow some of the WS transactions in the WSC to execute in parallel.

§ We use traditional locking mechanism for WSC to guarantee database consistency.

 To identify WS transactions that can achieve parallel execution, we analyzed the

WS-BPEL specification of the WSCs. The research tasks follow:

§ Task1: identify WS transaction precedence relations

§ Task 2: build Parallel Execution Scenarios (PES) that do not violate the precedence

relations identified in Task 1.

§ Task 3: Investigate possible further improvement of WSC execution schedule. For

Task 3, we propose the following sub-tasks:

4

o Increase the number of WSs executing in parallel, and

o Execute concurrently those WSs that have similar execution time.

 This thesis is organized as follows: Section 2 presents an overview of the related

work and limitations of current research. A Motivated Example is presented in Section 3.

Sections 4 and 5 provide the research problem and the proposed solution. Finally, our

conclusion and future work is presented in section 6.

5

CHAPTER 2	

RELATED WORK

2.1 CONCURRENCY CONTROL MECHANISMS

 The problem of violating the consistency in database systems appears within the

context of executing multiple concurrent transactions in the same database. Concurrency

control algorithms are introduced to solve the problem of inconsistency and to guarantee

the correctness and integrity of the execution of concurrent transactions within these

database systems. Three generic approaches are used when designing concurrency

control algorithms to achieve synchronization: 1) Wait - If and when two transactions

conflict, one must wait until the actions of the other have been completed; 2) Timestamp

- Transaction selection order is determined by unique timestamps and processing is based

on these rankings; and 3) Rollback - If two transactions conflict, some actions are undone

or rolled back or one of the transactions is restarted (deemed optimistic due to

expectations that conflicts require only a few transactions would require rollback)

(Bhargava, 1999). In other words, concurrency control mechanisms are used to ensure

serializability in database systems (Sheikhan et al., 2013).

 Standard locking or two-phase locking (2PL) is the primary concurrency control

method utilized in centralized databases; this method mandate lock release only when the

transaction is committed or aborted, as this prevents cascading aborts that occur when a

transaction accesses modified object initiated by an uncommitted transaction (Thomasian,

1998). Locks are based on the wait strategy and characterized as pessimistic, meaning

6

that conflicts are assumed and common techniques involve detecting and resolving

conflicts via blocking and as quickly as possible (Kung & Robinson, 1981). Waiting

times can be reduced by employing readlocks or writelocks, each of which limits the

entity’s actions until the competing transaction has completed the operation and the

unlock is triggered, thus rendering these entities readily available for access. Lock and

unlock operations may be embedded within the transaction by the user or may be

transparent to the transaction; in the later method, the system is accountable for

appropriately granting and enforcing lock/unlock activity for each transaction (Bhargava,

1999). However, locking may create problems, including livelock and deadlock. In both

instances, the lock mechanism fails in its function, resulting in either repeated failure to

obtain a lock (livelock) or multiple, simultaneous locking on entities (deadlock)

(Bhargava, 1999).

 Timestamp ordering differs in that is based on the premise that the read set and

write set of each transaction is known, thus allowing group transactions to be categorized.

In this method, transaction execution is bound to timestamp ordering and clock

synchronization safeguards system integrity. When transaction conflict arises, processing

defaults to timestamp ordering (TSO), which produces serialization histories (Bhargava,

1999). Finally, optimistic-ordering methods or rollback mechanisms is based on

validation mechanisms, employing conflicts and timestamp data to guide validation.

According to Bhargava (1999), “The optimistic approach maximizes the utilization of

syntactic information and attempts to make use of some semantic information about each

transaction;” the four phases of transaction execution within this optimistic concurrency

control framework are: 1) Read, 2) Compute, 3) Validate, and 4) Commit and Write (p.

7

6). Optimistic methods are grounded in the perspective that locking results in

disadvantages and potential costs that are unnecessary given the supposed rarity of

conflict, thus contending that better performance may be achieved by instead managing

conflicts at the commit time (Kung & Robinson, 1981). As such, optimistic concurrency

controls allow transactions to be executed without restrictions and check for conflict just

prior to occurrence.

 Our proposed approach is closely related to lock-based concurrency control. As

previously stated, 2PL is the most widely lock-based mechanism that can ensure

serializability in traditional database systems. A transaction in 2PL needs to make a lock

request to obtain a lock (Read or write) on any data item that this transaction needs to

access (Al-Jumaha et al., 2002). 2PL has two kinds of locks: shared locks and exclusive

locks. Shared locks are not typically the source of problems since many transactions can

obtain shared locks without affecting the system performance; however, two-phase

locking may be subjected to deadlocks when two or more transactions are waiting for

each other to release the exclusive lock on a data item since no two transactions can

obtain exclusive locks on the same data item according to the rules of 2PL (Thomasian,

1998). Two-Phase Commit (2PC) is another protocol that is used to ensure serializability

in distributed database systems. The goal of this protocol is to ensure the consistency of a

transaction that executes in a distributed database. Therefore, all sites have the right to

decide and reach the same final decision, whether committing the transition (if all sites

say yes) or aborting the transaction (if there is a no vote or a failure in one site)

(Lechtenbörger, 2009). In summary, these three basic methods define the current

8

concurrency control mechanisms used. Extensive research has been used to substantiate

advantages and disadvantages of each method.

2.2 WEB SERVICE COMPOSITION AND TRANSACTIONS

 The aim of services oriented architecture (SOA) is the integration of Web services

(WS) over the Web. In the article, “Composing aggregate web services in BPEL,”

Ezenwoye and Sadjadi describe Web services (WS) as a software system that is designed

with the purpose of simplifying machine-to-machine interaction over the Web. The

service of each WS is described in the Web Service Description Language (WSDL), and

the interaction with other WSs is through Simple Object Access Protocol (SOAP)

messages (Ezenwoye and Sadjadi, 2006). Web Service Composition (WSC) is defined in

the article, “Semantic Web Service Composition Approaches: Overview and

Limitations,” as the process of composing available Web services (WS) in order to get

new functionality that has to meet the description a technical process in business areas

(Zeshan and Mohamad, 2011).

 There are fundamental requirements related to the process of defining web

services (WS) in the services-oriented architecture (SOA) framework. For instance, a

major requirement in the process of defining a Web service in a services-oriented

architecture (SOA) framework is composition of services into business processes.

Composition of services into business processes provides benefits, including: the ability

to provide flexible support for business process; increased ease of modification of

business processes; ability to efficiently change costumers’ requirements (i.e., the

changing the requirement after composition of services will be faster with less effort);

9

and use of Business Process Execution Language (BPEL), defined as an executable

language that has the ability to work as an engine for action specification inside business

processes (Juric, 2006). In total, the idea of web service composition is based on the

understanding that web service composition aims to build a new composition that has

specific goals set under specific constraints.

 In “Transaction Compensation in Web Services,” Strandenaes and Karlsen (2003)

describe transactions in web service composition as transactions that enable each web

service to effectively interact with other web services within a shared business domain.

These transactions are also known as conversational transactions since each transaction

typically consists of multiple sub transactions. Conversational transactions do not enforce

ACID properties due to the loosely coupled and heterogeneous nature of web service

environment. Therefore, if anyone of the sub transactions within a conversational

transaction aborted, every transaction inside this conversational transaction must be

aborted as a result, thus enforcing the all-or-nothing property on which the transaction is

contingent (Strandenaes and Karlsen, 2003).

 Similarly, compensation transaction support is an important requirement in the

composition of business processes. Strandenaes and Karlsen (2003) define the

compensation transaction as a transaction that “semantically undoes the partial effect of a

[conversional] transaction … without performing cascading aborts of dependent

transactions, restoring the system to a consistent state.” Therefore, when aborting a

conversational transaction, the compensation transaction can be used in the recovery of

the committed sub transactions and thus assist in maintaining the total consistency of the

database system.

10

 Web Service Business Process Execution Language (WS-BPEL) is an additional,

critical requirement in the composition of business processes. In “Composing aggregate

web services in BPEL,” researchers Ezenwoye and Sadjadi define WS-BPEL as a

standard language that can be used to describing actions for web services within business

processes. WS-BPEL must be able to meet stated standards such as supporting long

running transactions, facilitating recovery after aborting conversational transactions, and

managing various failures arising within the business process (Ezenwoye and Sadjadi,

2006). In conjunction, long-running processes support is another vital component. Long-

running transactions are those transactions capable of running for a long period of time,

varying from hours to days in duration. Wang et al. define long running processes as

transactions that avoid obtaining locks on non-local resources and use compensation in

order to handle failure and enforce all-or-nothing (ACID) properties. Therefore, long

running processes must meet fundamental requirements to foster endurance, including

possessing short running processes properties (i.e. all-or-nothing properties), the ability to

rollback long running processes automatically without human participation, and actively

aborting short running processes if there is a conflict with long running processes since

long running processes have higher priority over short running processes (Wang et al.,

2004).

2.3 WEB SERVICE SERIALIZABILITY

 In a service-oriented architecture (SOA), there is no support for serializability

because of the inefficiency of traditional database concurrency support. As a result, we

can conclude the limitations of the current research in service-oriented architectures,

arguing: there is limited concurrency support for WS-transactions since there is currently

11

no serializability and therefore no consistency in business processes due to the

heterogeneous nature on the Web service environment. In addition, feasibly, the use of

traditional database concurrency control algorithms such two-phase locking (2PL) to

enforce ACID properties in long running processes is undesirable given that the

performance level is deemed unacceptable. Therefore, the proposed solution presented in

this study is different from pervious research as it is based on the claim that we can

reduce the Web Service Compositions (WSCs) execution time by allowing some of the

WS transactions in the WSC to execute on parallel paths; we also use a traditional

locking mechanism in partnership with the parallel WSs to guarantee database

consistency.

12

CHAPTER 3

MOTIVATED EXAMPLE

 Consider a retailer X offering Web services with a service provider SPX, allowing

for order placement (OP) and order cancellation (OC). Each one of these services is a

compensation service of the other one. Suppose that two business processes (A and B)

are invoked via these web services due to price differentiation: Process A – cancelled

order in retailer X and placed order in retailer Y. Process A aims to avoid dual order

placement completion; this action seeks to preserve scope atomicity, meaning that

compensate actions are able to run smoothly in that a block of actions can be completed

and therefore compensated. As such, the process designer creates a transaction process

that maintains the atomicity property. The scenario is:

1. Process A releases initial order by invoking OC in SPX.

2. Process B reserves released by process A order by invoking OP in SPX.

3. Process A is trying to place order at a retailor Y. It invokes the web service OP in the

service provider of retailor Y, SPY. It can be assumed that this effort fails due to fact that

Y is out of requested item stock.

4. In the meantime, the process B, through payment, commits placing order at X.

5. The lack of supply stock in Y leads to the fact that the process A wants to make Web

service compensation invoked in step 1. However, this compensation is not possible.

13

 There are limitations of the applicability of the proposed solution:

• If we are dealing with fully automated WSC our pre-processing will reduce

execution time; however,

• If we are dealing with WSC that requires manual interaction our pre-processing

may not be able to semantically reduce the execution time.

14

CHAPTER 4

PERFORMANCE IMPROVEMENT: PAIR-WISE PARALLEL

EXECUTION

 The hypothesis of this research is that the execution time of WSC can be reduced

and the efficiency of WS-concurrency control can be improved; thus enabling the use of

locks based concurrency controls for WSCs.

 The proposed solution is based on the observation that we can model a WSC as

WS-BPEL specification (i.e., a partial order of WS transactions). This representation will

allow us to identify WS transactions in the WSC that can be executed in parallel, and,

therefore, reduce transaction execution time. Our expectation is that the reduced

execution time will allow us to use traditional locking mechanism to guarantee database

consistency. Furthermore, we are aiming to reduce the overhead created by data item

locking by proposing semantically enhanced locks types.

The research problem is:

1. Identifying subgroups of WSs that can run concurrently without potential

violation of consistency of the database.

 To identify WS transactions that can execute parallel, we analyzed the WS-BPEL

specification of the WSCs.

15

4.1 TASK 1: IDENTIFY WS TRANSACTIONS THAT CAN EXECUTE

CONCURRENTLY

 Let a WS composition be a directed acyclic graph (DAG), where the vertices are

the WSs, and the links represent service request between the WSs, i.e., if WSi requests

service from WSj, there is a directed edge from WSi to WSj. We evaluate each WS-

composition from the perspective of:

• Precedence relation between WSs, and

• Conflicting operations between WSs.

 First: for the identification of the WS subgroups, we use the precedence relation

among WS in a composition.

Algorithm 1 finds all set of WS-pairs (WSP) that are not ordered by precedence

and do not conflict.

Algorithm 1: Finding-WSP(WSC)

Input: WSC (WS-BPEL specification).
Output: WSP= {(WS1, WS2), … , (WSi, WSj)}, such that there is no path between the
WSs of any of the pairs.	
 	

1. // Subroutine to insert all possible pairs of WSC into WSP
2. Inserting-all-possible-pairs(WSC)
3. WSP ← Empty set that will contain all possible set of pairs
4. WS ← Set of all nodes (Web services) in WSC
5. WSC’← WSC
6. while WS is non-empty do
7. choose WSa∈ WS such that WSa has no incoming edge in WSC’
8. remove WSa from WS and WSC’
9. if WS is non-empty then
10. for each WSb in WS do
11. insert(WSa, WSb)into WSP
12. endfor
13. endif
14. endwhile
15. return WSP (all possible set of pairs)
16. // Subroutine to drop ordered pairs from WSP

16

17. Dropping ordered pairs from WSP (DAG, WSP)
18. for each pair (WSa, WSb) ∈ WSP do
19. if there is a path from WSa to WSb then
20. remove(WSa, WSb)from WSP
21. endif
22. endfor
23. // we will return WSP
24. return WSP
25. // Subroutine Drop-conflicting-pairs
26. Drop-conflicting-pairs-from-WSP (WSP)
27. for all WSi in WSC do
28. Write_set(WSi) = {A1, A2, …, Ak} such that WSi writes items
A1, A2, …, Ak
29. Read_set(WSi) = {A1, A2, …, Al} such that WSi reads items A1,
A2, …, Al
30. endfor
31. For each pair (WSa, WSb) ∈ WSP do
32. if write set(WSa) ∩ write set(WSb) ≠ Φ
33. or write set(WSa) ∩ read set(WSb) ≠ Φ
34. or read set(WSa) ∩ write set(WSb) ≠ Φ then
35. WSa and WSb are conflicting
36. remove (WSa, WSb) from WSP
37. endif
38. endfor
39. return WSP

THEOREM 1: ALGORITHM 1 GENERATES

1) (Completeness) all pairs of WSs that do not have precedence relation with each other

and do not conflict; and

2) (Soundness) only those pairs of WSs that meet the above characteristics.

 PROOF OF THEOREM 1:

 (Completeness) Assume, by contradiction, that there is a pair (WSi, WSj) such

that

i. there is no precedence relations between WSi and WSj,

17

ii. WSi and WSj have no conflicting operations, and

iii. (WSi, WSj) is not in WSP.

 If WSi and WSj are in WSC, then by lines (6-14) there must be a pair (WSi, WSj)

(or an equivalent pair (WSj, WSi)) in WSP. But then, by assumption iii (WSi, WSj) must

have been removed from WSP if it is not in the final set. (WSi, WSj) could have been

removed either during the process of dropping pairs that have 1) precedence relations in

lines (18-22) or when 2) removing conflicting pairs in lines (27-38).

 In the drop-order-subroutine, in lines (18-22), we only remove pairs from WSP if

they have a precedence ordering. But then by assumption i, the pair (WSi, WSj) cannot be

removed by this subroutine.

 But then, the pairs (WSi, WSj) could have been removed only by the drop-

conflicting-pairs subroutine, in lines (27-38). However, this subroutine removes a pair

from WSP only if WSi and WSj have conflicting operations. By assumption ii, WSi and

WSj have no conflicting operation; therefore, the pair (WSi, WSj) cannot be removed

from WSP.

This illustrates that (WSi, WSj) must be in the final set WSP. This is a

contradiction to our original assumption.

 (Soundness) Assume, by contradiction, that the pair (WSi, WSj) is in WSP but

either

i. there is a precedence relation between WSi and WSj.

or

18

ii. there is a conflicting operation between WSi and WSj.

 In lines (6-14), Algorithm 1 creates a pair (WSi, WSj) (or (WSj, WSi)) only if

both WSi and WSj are in WSC. The pair (WSi, WSj) has not been removed from WSP

since it is in the final set. (WSi, WSj) must be removed from WSP either during the

process of dropping pairs that have 1) precedence relations in lines (18-22) or when 2)

removing conflicting pairs in lines (27-38). In the drop-order-subroutine, in lines (16-24),

we remove pairs if they have a precedence ordering. If WSi and WSj have precedence

relation by assumption i, then the pair (WSi, WSj) must be removed by this subroutine,

therefore, cannot be present in the final set WSP. This is a contradiction of our

assumption. If (WSi, WSj) has conflicting operation (assumption ii), then the pair should

have been removed by the drop-conflicting-pairs subroutine in lines (25-38), therefore,

cannot be present in the final set WSP. This is a contradiction of our assumption.

 This illustrates that (WSi, WSj) must not be in the final set WSP. This is a

contradiction to our original assumption.

TASK 1 OUTCOME: Set of WS-pairs (WSP) that are not ordered by precedence and do not

conflict.

4.2 TASK 2: BUILD ALL PARALLEL EXECUTION SCENARIOS (PES)

Given a web service composition (WSC) as a partial order over web services

{WS1, …, WSk}, and WSP as a set of web service pairs (WSi, WSj) such that WSi and

WSj can execute concurrently. In this task we perform two subtasks. First, we generate a

topological order (TO) of the web service in WSC. Next, we replace individual services

19

of TO with pairs of concurrently executing services. For the second subtask, we aim to

maximize the number of parallel executing services.

4.2.1 TOPOLOGICAL ORDER

 In this section, we present algorithm 2 to find a topological order using Breadth

First Search.

Algorithm 2: Find-Topological-Order(WSC)

Input: WSC (WS-BPEL specification).
Output: TO = {WS1, WS2, … , WSk)}, which is the BFS topological ordering of web
services in WSC such that for any edge from WSi to WSj in WSC, WSi must precedes
WSj in the total ordering TO. 	

1. // Find-topological-order(WSC)
2. WS ← Set of all nodes (Web services) in WSC
3. E ← Set of all edges in the WSC represented as (WSa, WSb)
4.//indicating that there is a directed edge from WSa to WSb, i.e., WSa must
preceed WSb
5. TO ←	
 Empty list that will contain the topological order of
WSC
6. while WS is not empty do
7. for each WSi in WS do
8. if WSi has no incoming edges do
9. remove WSi from WS
10. append WSi to TO
11. for each edge e originating from WSi do
12. remove e from E
13. endfor
14. endif
15. endfor
16. endwhile
17. return TO

20

4.2.2 OPTIMAL WEB SERVICE REPLACEMENT

 In this section we develop Algorithm 3 to find the optimal set of WS-Pairs

(WSPoptimal) that can be substituted in the topological order TO.

Algorithm 3: Optimal-Pairs(WSP)

Input: WSP
Output: The optimal set of WS-Pairs (WSPoptimal) that that can be substituted in the
topological order TO.	
 	
 	
 	
 	

1. Optimal-Pairs(WSP)
2. L ← Empty set that will contain already used WSs while
processing
3. PAIRS ← Empty set that will contain the current calculated
4. // set of pairs that might be WSPoptimal
5. WSPoptimal ← An empty set that will contain the optimal set of
pairs
6. WEIGHT ← 0 // The corresponding weight for each set in Pairs
7. MAX_WEIGHT ← 0 // the weight of the current maximum set of
pairs
8. for each pair (WSi, WSj) in WSP do
9. WSPWorking ← WSP
10. add WSi and WSj to L
11. add (WSi, WSj) to PAIRS
12. increase WEIGHT by one
13. drop (WSi, WSj) from WSPWorking
14. for each pair (WSa, WSb) in WSPWorking do
15. if WSa or WSb in L then
16. Drop (WSa, WSb) from WSPWorking
17. else
18. (WSi, WSj) ← (WSa, WSb)
19. goto line 11
20. endif
21. endfor
22. if WEIGHT is greater than MAX_WEIGHT then
23. WSPoptimal ← PAIRS
24. MAX_WEIGHT ←	
 WEIGHT
25. endif
26. set PAIRS ← empty
27. set L ← empty
28. set WEIGHT ←	
 0
29. endfor
30. return WSPoptimal

21

DEFINITION 1: CORRECTNESS CRITERIA:

 Given a WS-pair, (WSi, WSj) in TO, we can rewrite TO denoted as 𝑇𝑂→ by

replacing (WSi, WSj) with WSi à WSj , where à indicate a precedence in the

topological order.

We say that TO is correct if there exists a topological order, 𝑇𝑂→, of WS-

composition, such that

to = 𝑇𝑂→

DEFINITION 2: OPTIMALITY:

Given a WS-composition, WSP, and a TO, we say that TO is optimal if there is

no other correct topological orders to, such that

𝑡𝑜 # !" !"#$%&"' !"# > 𝑇𝑂 # !" !"#$%&"' !"#

• Generate a topological order

• Select optimal replacement

• Show properties

 THEOREM 2: ALGORITHM 3 GENERATES

1) Correct WS-Pairs (WSPoptimal) as (Definition 1)

2) The optimal set of WS-Pairs (WSPoptimal) that can be substituted in the topological

order TO as (Definition 2).

22

PROOF OF THEOREM 2:

To prove correctness and optimality of algorithm 3, we need to show the

following properties of the loop invariant: 1) initialization, where we have to show that

the algorithm is true prior to the first iteration of the loop, 2) maintenance, where we have

to show that if our algorithm is true before an iteration of the loop, then it remains true

before the next iteration, and 3) termination, which means that when the loop terminates,

the invariant gives a useful information that allows to show that the algorithm is correct

and optimal, i.e., we have to show that the resulted pairs of this algorithm are the correct

and optimal pairs that can be substituted in the topological order TO.

Loop invariant: At the start of each iteration of the for loop of lines (8-29), the list

WSPoptimal consists of the current optimal pairs of web services that might be substituted

in the topological order TO. By the end of the last iteration, the list WSPoptimal will

contain the optimal pairs of web services that will be substituted in the topological order

TO.

Initialization: Prior to the first iteration of the for loop in lines (8-29), the list

WSPoptimal will be empty; therefore, we can say that the loop invariant holds prior to the

first iteration.

Maintenance: The body of the for loop works by picking up the first pair (WSi,

WSj) from WSP, then adding the pair (WSi, WSj) to the list PAIRS, and the services WSi

and WSj to the list L. The inner for loop in lines (14-21) will delete any pair from

WSPworking that has either WSi or WSj (lines 14-16). In the inner for loop, if the current

picked up pair does not have WSi or WSj, then we will assign this new pair (WSa, WSb)

23

to (WSi, WSj), and restart the inner for loop until WSPworking is empty (lines 11-19). By

the end of the inner for loop, if the current weight is higher than the current maximum

weight, then that means we find a new optimal set of pairs; therefore, we need to 1)

assign the pairs in PAIRS to WSPoptimal (line 23), 2) assign the value of the variable

WEIGHT to the variable MAX_ WEIGHT (line 24), and 3) reset the variables PAIRS, L,

WEIGHT getting ready for the next iteration (lines 26-28). Hence, we can say the loop

invariant is true before the next iteration the for loop.

Termination: When the for loop terminates (lines 8-29), the list WSPoptimal has the

correct and optimal pairs of WSP that can be substituted in the topological order TO.

Hence, we can say that algorithm 3 is correct and optimal.

COMPLEXITY:

Let n denote the number of times the for loop iterates (lines 8-29) (the number of times

this loop iterates is equal to the number of pairs in WSP). Also, the inner for loop (lines

14-21) will iterate n-1 times in the worst case scenario since WSPworking may have all the

pairs of WSP except the one dropped by line 13; therefore, the running time of algorithm

3 in the worst case scenario is

T(n) = n(n-1) = Θ(n2).

4.2.3 TOPOLOGICAL ORDER WITH WEB SERVICE PAIRS

 In this section we present Algorithm 4 that is based on the following claim.

CLAIM 1: Given a topological order of the WSC (DAG), TO = {WS1, …, WSa, …, WSb,

…, WSk}, and an unordered pair (WSa,WSb), then we can say that it is possible to move

24

WSb forward to immediately follow WSa or to move WSa backward to immediately

proceed WSb in TO as follows:

FORWARD MOVE: We can move WSb forward to immediately follow WSa in TO if and

only if there is no WSi in TO such that

• WSa proceeds WSi in TO

• WSi proceeds WSb in TO, and

• there is no path in WSC from in WSC from WSi to WSb.

BACKWARD MOVE: We can move WSa backward to immediately proceed WSb in TO if

and only if there is no WSi in TO such that

• WSa proceeds WSi in TO

• WSi proceeds WSb in TO, and

• there is no path in WSC from in WSC from WSa to WSi.

 Algorithm 4 generates Parallel Execution Scenarios (PES) that do not violate the

precedence relations in WSC.

Algorithm 4: Optimal-Topological-Order(WSC,TO,WSPoptimal)

Input:
• TO, a topological ordering of web services in WSC
• WSPoptimal, all set of parallel optimized pairs

Output:
• Calculating the optimal topological order TOoptimal	

1. Optimal-Topological-Order(WSC,TO,WSPoptimal)
2. TOoptimal ← TO
3. for each pair (WSi, WSj) in WSPoptimal do
4. if WSi can be moved forward in TOoptimal then
5. // according to forward move definition in claim 1
6. move WSi forward to immediately follow WSj
7. substitute “WSi, WSj” in TO with the pair (WSi, WSj)
8. else

25

9. // according to backward move definition in claim 1
10. move WSj backward to immediately proceed WSi
11. substitute “WSi, WSj” in TO with the pair (WSi, WSj)
12. endif
13.endfor
14.return TOoptimal

PROOF OF ALGORITHM 4:	
 The	
 proof	
 is	
 trivial	
 according	
 to	
 claim	
 1.	
 	

EXAMPLE 1:	
 	
 Assume that we have the following WSC represented as a DAG in figure

4.1, the corresponding topological order TO = {WS1 , WS5 , WS2 , WS3 , WS4 }, and the

execution time of each web service, Execution time = {10 ,100 ,20 ,100 ,100}, then the

execution time of the WSC can be calculated as follow:	
 	

	

Figure 4.1 DAG Graph of Example 1

 The execution time of the topological TO without any enhancements is 10 +100 +

20 + 100 + 100 = 330 units. After applying the concepts of Task 2, the optimal web

service replacement (WSPoptimal) is { (S5 , S2), (S3 , S4) }; therefore, the topological order

with web service pairs is { S1 , (S5 , S2), (S3 , S4) }, and the improved running time will be

10 + 100 +100 = 210 units.

26

IMPROVEMENT OF WSC EXECUTION SCHEDULE AFTER USING THE PAIR-WISE PARALLEL

EXECUTION:

 In the above example (figure 4.1), the execution time of the web service schedule

without any enhancements is 10 +100 + 20 + 100 + 100 = 330 units. The running time

after using the WS-pairs approach is { S1 , (S5 , S2), (S3 , S4) } = 10 + 100 +100 = 210

units.

Therefore, Speed upoverall = !"#$%&'() !"#$!"#
!"#$%&'() !"#$!"#

Speed upoverall = !!"
!"#

 Speed upoverall = 1.57143

Therefore, the execution time of web service schedule has improved after using the WS-

pairs approach by 57%.

27

CHAPTER 5

PERFORMANCE IMPROVEMENT: MULTIPLE PARALLEL
EXECUTION

 In this chapter, we present Task 3 that investigates possible further improvement

of WSC execution schedule. In this Task, we improve the execution performance of

WSC of Task 2 by applying the following approaches:

5.1 INCREASING THE NUMBER OF WSS EXECUTING IN PARALLEL.

5.2 EXECUTE CONCURRENTLY THOSE WSS THAT HAVE SIMILAR EXECUTION TIME.

5.1 INCREASING THE NUMBER OF WSS EXECUTING PARALLEL

 Given a WS-composition and the corresponding WSP, find all arrangements of

parallel WS execution WSS = {WSS1, … , WSSn} such that WSS contains all possible

execution schedules, where each WSSi (i = 1, … , n) contains sets of concurrent

executing services that are not ordered by precedence and do not conflict.

DEFINITION 3: OPTIMAL WEB SERVICE SET (WSS)

Given a set WSS = {WSS1, … , WSSn}, and k number of parallel processors, we

say that WSSi = {WS1, … , WSl} is optimal if the following conditions hold:

1.) |WSj| ≤ k, that is the number of web services in each set is less than or equal to k,

2.) there is no other WSSm (where, m = 1, … , n) that satisfies the first condition and has

smaller execution time than WSSi.

28

DEFINITION 4: CORRECTNESS CRITERIA

Given a WS-set, (WSi, … , WSj) in TO, we can rewrite TO denoted as TO’ by

replacing (WSi, … ,WSj) with WSi à…à WSj , where à indicate a precedence in the

topological order.

We say that TO is correct if there exists a topological order, TO’, of WS-

composition, such that

to = TO’

DEFINITION 5:

Let WSP contains all pairs of web services that can execute parallel we say that if

there are pairs (WSi,WSj), (WSj,WSk), and (WSi,WSk), then (WSi,WSj, WSk) can execute

concurrently.

Algorithm 5 generates the optimal WSS that has WS-sets that can be substitute in

the topological order TO.

Algorithm 5: Building WSS

Input:
• TO, the BFS topological ordering of web services in WSC
• WSP, all possible Web service pairs

Output:
• Generation the optimal (WSS)	

1. Given WSC, WSP
2. WSSi = Φ (i= 1, … , n)
3. for each web service (Si) in WSC (i.e. each node in WSC) do
4. WSSi = WSSi ∪ {(Si, Sj) | (Sj, Si) ∈ WSP}
5. end for

6. set extension function // final parallel sets
7. for any two sets, Si, Sj in WSSi, extend Si as follows:
8. Let IS := Si ∩ Sj and

29

9. DS := Sj – Si
10. then for any services sd ∈ DS,
11. Si := Si ∪ {d} if and only if for all services si in Si
there is a
12. pair (si,d) or (d, si) in WSP.
13. Use the new set and repeat until no more changes
14. end for	
 	
 	
 	

15. Drop any WSSi that has no sets

16. for each WSSi // limited k number of processors
17. Drop all sets that have more than K elements where K is
the
18. number of available processors
19. For each set in each WSSi, set the weight equal to
execution time 20. of the longest web service in that set
21. end for

22. Merge all WSSi sets into a new set denoted as WSSall

23. set optimal_set ← empty // optimality part
24. set optimal_weight ← 0
25. set current_optimal_set ← empty
26. set current_optimal_weight ← 0
27. set WSSall’ ← WSSall
28. tested_sets ← empty
29. for each set { Si, …, Sk} in WSSall’
30. Drop all other sets that have Si, …, or Sk from
WSSall’
31. Find all possible combinations between { Si, …, Sk}
and the 32. remaining sets in WSSall’ such that this
combination is
33. feasible to be substituted in the topological order

34. Calculate the weight of each combination
35. if the least weight is less than
current_optimal_weight then
36. Set current_optimal_weight equal to weight of
this
37. combination
38. Set current_optimal_set equal to this
combination
39. end if
40. if current_optimal_weight is less than
optimal_weight then
41. set optimal_set = current_optimal_set
42. set optimal_weight = current_optimal_weight
43. end if
44. add { Si, …, Sk} to tested_sets
45. set current_optimal_set ← empty
46. set current_optimal_weight ← 0

30

47. WSSall’ ← WSSall – sets that have been tested already
48. end for
49. set weight = optimal_weight
50. set WSS = optimal_set

THEOREM 3: Algorithm 5 generates

1) (Completeness) all sets of WSs that do not have precedence relation with each other

and do not conflict, i.e., generate all parallel execution schedules; and

2) (Soundness) only those sets of WSs are generated that meet the above characteristics,

i.e., each set of parallel execution i ≤ k.

PROOF OF THEOREM 3:

 (Completeness) Assume, by contradiction, that there is a set S’ of parallel

execution services such that S’ is sound but not in WSSall. Assume that S’ contains {(si,

…, sj, …)}. Service sj can run parallel with any other services in S’. But then, for any

other service, si, there must be a pair (Si, Sj) (or the equivalent pair (sj, si) in WSP.

Therefore, in our initial set WSSi, (line 6), there must be a pair (si,sj), WSSi = { … , (si,sj),

… }. Since sj must be able to run concurrently with all other services in S’, and by the set

extension function, our algorithm must produce S’ (lines 6-14). Therefore, if S’ is

produced, then it must be removed from the final set. However, our algorithm allows the

removal of a set only if its size is lager than k (lines 17-18) which is a contradiction of

our assumption that S’ is a valid and sound selection.

 (Soundness) Assume, by contradiction, that there is a set of sets S’ contains { …,

si, …, sj,…} in WSSi, such that either

i. there is a precedence relation between services si and sj

31

or

ii. there is a conflicting operation between si and sj.

PROOF OF SOUNDNESS: trivially follows from the algorithm of WSP and set extension

function.

 Algorithm 6 generates Parallel Execution Scenarios (PES) that do not violate the

precedence relations in WSC by increasing the number of WSs executing concurrently.

Algorithm 6: Optimal-Topological-Order-With-Sets (WSC, TO, WSS)
	

Input:

• TO, a topological ordering of web services in WSC
• WSS, set of optimal WSS

Output:
• Calculating the optimal topological order TOc

1. TOc ← TO
2. for each set WSq in WSS do
3. if WSq has only two elements {WSi, WSj} then
4. if WSi can be moved forward in TOc then
5. // according to forward move definition in claim 1
6. move WSi forward to immediately follow WSj
7. substitute “WSi, WSj” in TOc with the set {WSi, WSj}
8. else
9. // according to backward move definition in claim 1
10. move WSj backward to immediately proceed WSi
11. substitute “WSi, WSj” in TOc with the set {WSi, WSj}
12. endif
13. elseif WSq has more than two elements {WSi, WSj, WSt, …} then
14. if WSj can be moved forward to immediately follow WSi in TOc
then
15. if WSt can be moved forward to immediately follow
WSj then
16. // according to forward move definition in
claim 1
17. move WSj forward to immediately follow WSi
18. move WSt forward to immediately follow WSj
19. substitute “WSi, WSj, WSt,…” in TOc with the set {WSi, WSj,
WSt, …}
20. else
21. // according to backward move definition
in claim 1
22. move WSi backward to immediately proceed
WSj
23. if WSt can be moved forward to immediately follow WSj

32

then
24. move WSi backward to immediately proceed WSj
25. move WSt forward to immediately follow WSj
26. substitute “WSi, WSj, WSt,…” in TOc with the set {WSi, WSj, WSt, …}

27. else
28. move WSj backward to immediately proceed WSt
29. move WSi backward to immediately proceed WSj
30. substitute “WSi, WSj, WSt,…” in TOc with the set {WSi, WSj, WSt, …}

31. endif
32. endif
33. endif
34. else // WSS is empty
35. return TOc
36. endif
37. endfor
38. return TOc
	
 	

PROOF OF ALGORITHM 6: The proof is trivial according to claim 1 (Chapter 4).

EXAMPLE 2: Given the WSC and the corresponding topological order (TO) in figure 4.1,

the execution time of Task 2 can be improved by applying the concepts of Task 3 as

follows:

The optimal Web Service Set (WSS) ={(S5 , S3 , S4) }. Therefore, the topological

order with web service sets (WSS) is ={ S1, S2, (S5 , S3 , S4) } and the improved running

time will be = 10 + 20 + 100 = 130 units.

 IMPROVEMENT OF WSC EXECUTION SCHEDULE AFTER INCREASING THE NUMBER OF WSS

THAT EXECUTE CONCURRENTLY:

Using the approach of WS-sets, the running time of the web service schedule can

be improved since the new execution time = 10 + 20 + 100 = 130 units. Therefore, we

can compare the execution time after using the WSS approach to the execution time

without any enhancement as follows:

33

Speed upoverall = !"#$%&'() !"#$!"#
!"#$%&'() !"#$!"!

Speed upoverall = !!"
!"#

Speed upoverall = 2.5385

Therefore, the execution time of web service schedule has improved 153% after using the

WS-sets approach.

5.2 EXECUTE CONCURRENTLY THOSE WSS THAT HAVE SIMILAR EXECUTION TIME

 Given a WSC, the corresponding WSS, and the execution time for each WS, i.e.,

(WSi, ti), where ti is the execution time of web service WSi, find all arrangements of

parallel WS execution WSS = {WSS1, … , WSSn} such that WSS contains all possible

execution schedules, where each WSSi (i = 1, … , n) contains sets of concurrent

executing services that are not ordered by precedence, do not conflict, and have similar

execution time.

	

DEFINITION 6: OPTIMAL WEB SERVICE SET (WSS) WITH SIMILAR EXECUTION TIME

Given a set WSS = {WSS1, … , WSSn}, and k number of parallel processors, we

say that WSSi = {WS1, … , WSl} is optimal if the following conditions hold:

1.) |WSj| ≤ k, that is the number of web services in each set is less than or equal to k,

2.) there is no other WSSm (where, m = 1, … , n) that satisfies the first condition and has

smaller threshold value than WSSi.

34

Algorithm 5 can be extended to generate the Optimal Web Service Set (WSS)

with similar execution time that can be substitute in the topological order TO as follows:

We define a threshold value, optimal_threshold, and require that the optimal WSS is the

one with the least total threshold values.

Extension of Algorithm 5

23. set optimal_set ← empty
24. set optimal_ threshold ← 0
25. set current_optimal_set ← empty
26. set current_optimal_ threshold ← 0
27. set WSSall’ ← WSSall
28. set tested_sets ← empty
29. for each set { Si, …, Sk} in WSSall’
30. set threshold of this set equal to the difference
31. between the execution times of the largest and
32. smallest WSs
33. Drop all other sets that have Si, …, or Sk from WSSall’
34. Find all possible combinations between { Si, …, Sk} and the
35. remaining sets in WSSall’ such that this combination is
36. feasible to be substituted in the topological order
37. Calculate the weight of each combination
38. if the least threshold is less than
current_optimal_threshold then
39. Set current_optimal_threshold equal to threshold of
this
40. combination
41. Set current_optimal_set equal to this combination
42. end if
43. if current_optimal_threshold is less than optimal_threshold
then
44. set optimal_set = current_optimal_set
45. set optimal_threshold = current_optimal_threshold
46. end if
47. add { Si, …, Sk} to tested_sets
48. set current_optimal_set ← empty
49. set current_optimal_ threshold ← 0
50. WSSall’ ← WSSall – sets that have been tested already
51. end for
52. set threshold = optimal_threshold
53. set WSS = optimal_set

	

35

EXAMPLE 3: In the above example, WS5 , WS3 , and WS4 have similar execution times,

100 units; therefore, this will give us the least possible threshold when executing those

WSs together, the total execution time = 10 + 20 + 100 = 130 units.

IMPROVEMENT OF WSC EXECUTION SCHEDULE AFTER EXECUTING CONCURRENTLY THOSE

WSS THAT HAVE SIMILAR EXECUTION TIME:

 Using the approach of executing concurrently WSs that have similar execution

time, the running time of the web service schedule can be improved since the new

execution time = 10 + 20 + 100 = 130 units. Therefore,

Speed upoverall = !"#$%&'() !"#$!"#
!"#$%&'() !"#$!"#

Speed upoverall = !!"
!"#

Speed upoverall = 2.5385

The execution time of web service schedule has improved 153% after using the approach

of executing concurrently those WSs that have similar execution time.

	

	

36

CHAPTER 6

CONCLUSION

In this thesis we have presented improvement of web service composition (WSC)

execution time using pair-wise and multiple parallel execution schedules. We modeled a

WSC as WS-BPEL specification, i.e., a partial order of WS transactions, thus allowing

some of the WS transactions in the WSC to execute concurrently. We analyzed the WS-

BPEL specification of the WSCs to identify WS transactions that can execute parallel.

In chapter 4, we identified subgroups of WSs that can run concurrently without

potential violation of consistency of the database. Our algorithm generated an optimal set

of WS-Pairs (WSPoptimal) and substituted web services with concurrently executing web

services pairs in the Parallel Execution Scenarios (PES), thus reducing the total execution

time of the WSC.

In chapter 5, we investigated possible further improvement of WSC execution

schedule. We increased the number of WSs that could execute concurrently, and we

provided further improvement by scheduling services with similar execution time to run

concurrently. In each case we generated optimal web service schedules, called Parallel

Execution Scenarios (PES), thus further improving the total execution time of the WSC.

37

For future work, we will study possible further improvement of WSC execution

schedule by balancing the workload of concurrent services over available processors. In

addition, we will investigate the possibility of improving upon traditional locking

mechanism for WSC to guarantee database consistency while avoiding unacceptable

performance degradation.

	

	
 38

BIBLIOGRAPHY	

Al-Jumaha, N.B., Hassaneinb, H.S., & El-Sharkawia M. (2002). Implementation and

modeling of two-phase locking concurrency control—a performance study.

Information and Software Technology, 42 (2000), 257–273.

Bhargava, B. (1999, Jan/Feb). Concurrency control in database systems. IEEE

Transactions on Knowledge and Data Engineering, 11(1), 3-16.

Ezenwoye, O. and S.M. Sadjadi, Composing aggregate web services in BPEL, Proc. 44th

ACM Southeast Conference (ACMSE), March 2006, Melbourne, FL.

Juric, M. B., Business Process Execution Language for Web Services. 2nd Edition. Packt

Publishing, 2006.

Kung, H. T., & Robinson, J. T. (1981, June). On optimistic methods for concurrency

control. ACM Transactions on Database Systems, 6(2), 213-226.

Le, Gao, Susan Darling Urban, Janani Ramachandran: A survey of transactional issues

for Web Service composition and recovery. IJWGS 7(4): 331-356 (2011).

Lechtenbörger, Jens: Two-Phase Commit Protocol. Encyclopedia of Database Systems

2009: 3209-3213.

	

	
 39

Sheikhan, Mansour, Mohsen Rohani, and Saeed Ahmadluei: A neural-based concurrency

control algorithm for database systems. Neural Computing and Applications

22(1): 161-174 (2013).

Strandenaes, Thomas, and Randi Karlsen, Transaction Compensation in Web Services,

IEEE 2003.

Thomasian, A. (1998). Concurrency Control: Methods, Performance, and Analysis. ACM

Computing Surveys, 30(1), 70-119.

Wang, Jinling, Beihong Jin, and Jing Li: A Transaction Model for Long Running

Business Processes. ICEIS (1) 2004: 267-274.

 Zeshan Furkh and Radziah Mohamad, “ Semantic Web Service Composition

Approaches: Overview and Limitations”, International Journal on New Computer

Architectures and Their Applications (IJNCAA) 1(3): 64The Society of Digital

Information and Wireless Communications, 2011 (ISSN: 2220-9085), pp 640-

651.

	Practical Concurrency Support for Web Service Transactions
	Recommended Citation

	Microsoft Word - 4_1_1.docx

