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ABSTRACT 

 Traditional database concurrency control methods use locking, timestamp-

ordering, and optimistic-ordering to achieve DB consistency. However, these approaches 

are not suitable for long-running Web Service Compositions (WSCs) due to associated 

performance degradation. Our hypothesis asserts that, using transactional semantic and 

ordering information, the execution time of a WSC can be reduced, thus allowing the use 

of traditional database concurrency control methods while avoiding unacceptable 

performance degradation. Our solution is based on the following approaches:  

§ We model a WSC as WS-BPEL specification, i.e., a partial order of WS transactions.  

§ We allow some of the WS transactions in the WSC to execute in parallel.   

§ We use traditional locking mechanism for WSC to guarantee database consistency. 

To identify WS transactions that can execute parallel, we analyzed the WS-BPEL 

specification of the WSCs. The research tasks follow: 

§ Task 1: Identify WS transaction precedence relations  

§ Task 2: Build Parallel Execution Scenarios (PES)  

§ Task 3: Investigate possible further improvement of WSC execution schedule.  For 

Task 3, we propose the following sub-tasks: 

o Increase the number of WSs executing in parallel, and 

o Execute concurrently those WSs that have similar execution time   

In our work we will present our theoretical model and complexity calculation.   
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CHAPTER 1

INTRODUCTION 

  Within the field of information technology and computer science, concurrency 

controls play a vital role in triggering concurrent operations at the quickest speeds 

possible based on hardware and software system compilations defined by specified 

consistency rules. During interactivity, problems may arise. The general basis for these 

controls is to safeguard system integrity. Database systems are essential for a wealth of 

applications. A database state defines the value of the database objects and this state is 

changed when a user executes a transaction; individual transactions are assumed to be 

correct in that they are running in isolation but this assumption changes when multiple 

users access multiple database objects on multiple sites within the context of a distributed 

database system (Bhargava, 1999). At this point, problems arise.  

  In traditional database management systems, concurrency controls are used to 

ensure that executed transactions on the database system are running concurrently 

without causing any violation to the consistency of the database; to ensure the correctness 

of concurrency control mechanisms, the database management system must meet two 

criteria for correctness: 1) database integrity and 2) serializability (Bhargava, 1999). 

Simply stated, concurrency controls protect data simultaneous data modification from 

impeding on changes made by another user.  Simultaneous transaction executions over a 

shared database can erode data integrity and results in consistency problems, including 
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lost updates, uncommitted data, and inconsistent retrievals (Kung & Robinson, 1981). 

Techniques are needed to mitigate these risks through improved data management.  Many 

concurrency control algorithms can be leveraged to validate serializability, including 

using mechanisms such as locking, timestamp ordering, or optimistic ordering. 

Serializability architects sequential database transitions from one state to the next, based 

on the blueprinted serial execution of all transactions (Bhargava, 1999).   

  The idea of concurrency control mechanisms is to guarantee database consistency 

while improve the performance of the database systems. In this process, serializability is 

the universally accepted correctness criterion for processing multiple transactions within 

centralized high-performance multiple transaction processing systems (Thomasian, 

1998). Concurrency control mechanisms confirm serializability in centralized and 

distributed within traditional database management systems (DBMS) and this is achieved 

by verifying the reliability of database transactions by assuming that each transaction is 

ACID - that is, atomicity, consistency, isolation, and durability properties hold. Two-

Phase Locking (2PL) is the most widely used concurrency control mechanism (Al-

Jumaha et al., 2002). Yet these mechanisms are not suitable for long-running WSCs 

(Web Service Cluster) due to the associated performance degradation. That is, 

transactions in the service-oriented architecture are not ACID transactions due to the 

heterogeneous nature of the execution environment. The lack of concurrency control 

mechanisms in WSC causes a problem of WS-serializability (Web Service), which occurs 

when multiple transactions read and write the same data through independent services at 

the same time (i.e. allowing for dirty read and dirty write). The dirty reads and writes 

make the recovery in WSC more difficult, meaning that if a transaction fails and needs to 
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be aborted, it will affect the consistency of other concurrent transactions due to the lack 

of isolation levels (Gao et al., 2011).    

  In this thesis, the problem of concurrency control for WSCs is the target focal point. 

The study prioritizes the problem of WS-serializability given that current web service 

transactions do not ensure concurrency control due to the heterogeneous nature of the 

execution environment. In addition, the research proposes a concurrency control method 

that is suitable for WS-transactions. The research hypothesis predicts that, by reducing 

the execution time of WSCs, the applicability of concurrency control for WSCs can be 

improved, therefore enhancing both transaction correctness (i.e., serializability) and 

efficiency. 

  Our proposed solution is based on the following claims:  

§ We model a WSC as WS-BPEL (Web Services Business Process Execution 

Language) specification, i.e., a partial order of WS transactions.  

§ We allow some of the WS transactions in the WSC to execute in parallel.   

§ We use traditional locking mechanism for WSC to guarantee database consistency. 

  To identify WS transactions that can achieve parallel execution, we analyzed the 

WS-BPEL specification of the WSCs.   The research tasks follow: 

§ Task1: identify WS transaction precedence relations  

§ Task 2: build Parallel Execution Scenarios (PES) that do not violate the precedence 

relations identified in Task 1. 

§ Task 3: Investigate possible further improvement of WSC execution schedule.  For 

Task 3, we propose the following sub-tasks: 
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o Increase the number of WSs executing in parallel, and 

o Execute concurrently those WSs that have similar execution time.   

  This thesis is organized as follows: Section 2 presents an overview of the related 

work and limitations of current research. A Motivated Example is presented in Section 3. 

Sections 4 and 5 provide the research problem and the proposed solution. Finally, our 

conclusion and future work is presented in section 6.    
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CHAPTER 2	
  

RELATED WORK 

2.1 CONCURRENCY CONTROL MECHANISMS 

  The problem of violating the consistency in database systems appears within the 

context of executing multiple concurrent transactions in the same database. Concurrency 

control algorithms are introduced to solve the problem of inconsistency and to guarantee 

the correctness and integrity of the execution of concurrent transactions within these 

database systems. Three generic approaches are used when designing concurrency 

control algorithms to achieve synchronization: 1) Wait - If and when two transactions 

conflict, one must wait until the actions of the other have been completed; 2) Timestamp 

- Transaction selection order is determined by unique timestamps and processing is based 

on these rankings; and 3) Rollback - If two transactions conflict, some actions are undone 

or rolled back or one of the transactions is restarted (deemed optimistic due to 

expectations that conflicts require only a few transactions would require rollback) 

(Bhargava, 1999). In other words, concurrency control mechanisms are used to ensure 

serializability in database systems (Sheikhan et al., 2013).   

  Standard locking or two-phase locking (2PL) is the primary concurrency control 

method utilized in centralized databases; this method mandate lock release only when the 

transaction is committed or aborted, as this prevents cascading aborts that occur when a 

transaction accesses modified object initiated by an uncommitted transaction (Thomasian, 

1998). Locks are based on the wait strategy and characterized as pessimistic, meaning 
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that conflicts are assumed and common techniques involve detecting and resolving 

conflicts via blocking and as quickly as possible (Kung & Robinson, 1981). Waiting 

times can be reduced by employing readlocks or writelocks, each of which limits the 

entity’s actions until the competing transaction has completed the operation and the 

unlock is triggered, thus rendering these entities readily available for access. Lock and 

unlock operations may be embedded within the transaction by the user or may be 

transparent to the transaction; in the later method, the system is accountable for 

appropriately granting and enforcing lock/unlock activity for each transaction (Bhargava, 

1999). However, locking may create problems, including livelock and deadlock. In both 

instances, the lock mechanism fails in its function, resulting in either repeated failure to 

obtain a lock (livelock) or multiple, simultaneous locking on entities (deadlock) 

(Bhargava, 1999).   

  Timestamp ordering differs in that is based on the premise that the read set and 

write set of each transaction is known, thus allowing group transactions to be categorized. 

In this method, transaction execution is bound to timestamp ordering and clock 

synchronization safeguards system integrity. When transaction conflict arises, processing 

defaults to timestamp ordering (TSO), which produces serialization histories (Bhargava, 

1999). Finally, optimistic-ordering methods or rollback mechanisms is based on 

validation mechanisms, employing conflicts and timestamp data to guide validation.  

According to Bhargava (1999), “The optimistic approach maximizes the utilization of 

syntactic information and attempts to make use of some semantic information about each 

transaction;” the four phases of transaction execution within this optimistic concurrency 

control framework are: 1) Read, 2) Compute, 3) Validate, and 4) Commit and Write (p. 
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6). Optimistic methods are grounded in the perspective that locking results in 

disadvantages and potential costs that are unnecessary given the supposed rarity of 

conflict, thus contending that better performance may be achieved by instead managing 

conflicts at the commit time (Kung & Robinson, 1981). As such, optimistic concurrency 

controls allow transactions to be executed without restrictions and check for conflict just 

prior to occurrence.   

  Our proposed approach is closely related to lock-based concurrency control. As 

previously stated, 2PL is the most widely lock-based mechanism that can ensure 

serializability in traditional database systems. A transaction in 2PL needs to make a lock 

request to obtain a lock (Read or write) on any data item that this transaction needs to 

access (Al-Jumaha et al., 2002). 2PL has two kinds of locks: shared locks and exclusive 

locks. Shared locks are not typically the source of problems since many transactions can 

obtain shared locks without affecting the system performance; however, two-phase 

locking may be subjected to deadlocks when two or more transactions are waiting for 

each other to release the exclusive lock on a data item since no two transactions can 

obtain exclusive locks on the same data item according to the rules of 2PL (Thomasian, 

1998). Two-Phase Commit (2PC) is another protocol that is used to ensure serializability 

in distributed database systems. The goal of this protocol is to ensure the consistency of a 

transaction that executes in a distributed database. Therefore, all sites have the right to 

decide and reach the same final decision, whether committing the transition (if all sites 

say yes) or aborting the transaction (if there is a no vote or a failure in one site) 

(Lechtenbörger, 2009). In summary, these three basic methods define the current 
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concurrency control mechanisms used. Extensive research has been used to substantiate 

advantages and disadvantages of each method.  

2.2 WEB SERVICE COMPOSITION AND TRANSACTIONS 

  The aim of services oriented architecture (SOA) is the integration of Web services 

(WS) over the Web. In the article, “Composing aggregate web services in BPEL,” 

Ezenwoye and Sadjadi describe Web services (WS) as a software system that is designed 

with the purpose of simplifying machine-to-machine interaction over the Web. The 

service of each WS is described in the Web Service Description Language (WSDL), and 

the interaction with other WSs is through Simple Object Access Protocol (SOAP) 

messages (Ezenwoye and Sadjadi, 2006). Web Service Composition (WSC) is defined in 

the article, “Semantic Web Service Composition Approaches: Overview and 

Limitations,” as the process of composing available Web services (WS) in order to get 

new functionality that has to meet the description a technical process in business areas 

(Zeshan and Mohamad, 2011). 

  There are fundamental requirements related to the process of defining web 

services (WS) in the services-oriented architecture (SOA) framework. For instance, a 

major requirement in the process of defining a Web service in a services-oriented 

architecture (SOA) framework is composition of services into business processes. 

Composition of services into business processes provides benefits, including: the ability 

to provide flexible support for business process; increased ease of modification of 

business processes; ability to efficiently change costumers’ requirements (i.e., the 

changing the requirement after composition of services will be faster with less effort); 
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and use of Business Process Execution Language (BPEL), defined as an executable 

language that has the ability to work as an engine for action specification inside business 

processes (Juric, 2006). In total, the idea of web service composition is based on the 

understanding that web service composition aims to build a new composition that has 

specific goals set under specific constraints.        

  In “Transaction Compensation in Web Services,” Strandenaes and Karlsen (2003) 

describe transactions in web service composition as transactions that enable each web 

service to effectively interact with other web services within a shared business domain. 

These transactions are also known as conversational transactions since each transaction 

typically consists of multiple sub transactions. Conversational transactions do not enforce 

ACID properties due to the loosely coupled and heterogeneous nature of web service 

environment. Therefore, if anyone of the sub transactions within a conversational 

transaction aborted, every transaction inside this conversational transaction must be 

aborted as a result, thus enforcing the all-or-nothing property on which the transaction is 

contingent (Strandenaes and Karlsen, 2003).  

  Similarly, compensation transaction support is an important requirement in the 

composition of business processes. Strandenaes and Karlsen (2003) define the 

compensation transaction as a transaction that “semantically undoes the partial effect of a 

[conversional] transaction … without performing cascading aborts of dependent 

transactions, restoring the system to a consistent state.” Therefore, when aborting a 

conversational transaction, the compensation transaction can be used in the recovery of 

the committed sub transactions and thus assist in maintaining the total consistency of the 

database system.   
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  Web Service Business Process Execution Language (WS-BPEL) is an additional, 

critical requirement in the composition of business processes. In “Composing aggregate 

web services in BPEL,” researchers Ezenwoye and Sadjadi define WS-BPEL as a 

standard language that can be used to describing actions for web services within business 

processes. WS-BPEL must be able to meet stated standards such as supporting long 

running transactions, facilitating recovery after aborting conversational transactions, and 

managing various failures arising within the business process (Ezenwoye and Sadjadi, 

2006).  In conjunction, long-running processes support is another vital component. Long-

running transactions are those transactions capable of running for a long period of time, 

varying from hours to days in duration. Wang et al. define long running processes as 

transactions that avoid obtaining locks on non-local resources and use compensation in 

order to handle failure and enforce all-or-nothing (ACID) properties. Therefore, long 

running processes must meet fundamental requirements to foster endurance, including 

possessing short running processes properties (i.e. all-or-nothing properties), the ability to 

rollback long running processes automatically without human participation, and actively 

aborting short running processes if there is a conflict with long running processes since 

long running processes have higher priority over short running processes (Wang et al., 

2004).    

2.3 WEB SERVICE SERIALIZABILITY 

  In a service-oriented architecture (SOA), there is no support for serializability 

because of the inefficiency of traditional database concurrency support. As a result, we 

can conclude the limitations of the current research in service-oriented architectures, 

arguing: there is limited concurrency support for WS-transactions since there is currently 
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no serializability and therefore no consistency in business processes due to the 

heterogeneous nature on the Web service environment. In addition, feasibly, the use of 

traditional database concurrency control algorithms such two-phase locking (2PL) to 

enforce ACID properties in long running processes is undesirable given that the 

performance level is deemed unacceptable. Therefore, the proposed solution presented in 

this study is different from pervious research as it is based on the claim that we can 

reduce the Web Service Compositions (WSCs) execution time by allowing some of the 

WS transactions in the WSC to execute on parallel paths; we also use a traditional 

locking mechanism in partnership with the parallel WSs to guarantee database 

consistency.  
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CHAPTER 3 

MOTIVATED EXAMPLE 

   Consider a retailer X offering Web services with a service provider SPX, allowing 

for order placement (OP) and order cancellation (OC). Each one of these services is a 

compensation service of the other one. Suppose that two business processes (A and B) 

are invoked via these web services due to price differentiation: Process A – cancelled 

order in retailer X and placed order in retailer Y.  Process A aims to avoid dual order 

placement completion; this action seeks to preserve scope atomicity, meaning that 

compensate actions are able to run smoothly in that a block of actions can be completed 

and therefore compensated.  As such, the process designer creates a transaction process 

that maintains the atomicity property. The scenario is: 

1. Process A releases initial order by invoking OC in SPX. 

2. Process B reserves released by process A order by invoking OP in SPX. 

3. Process A is trying to place order at a retailor Y.  It invokes the web service OP in the 

service provider of retailor Y, SPY.  It can be assumed that this effort fails due to fact that 

Y is out of requested item stock.  

4. In the meantime, the process B, through payment, commits placing order at X. 

5. The lack of supply stock in Y leads to the fact that the process A wants to make Web 

service compensation invoked in step 1.  However, this compensation is not possible. 
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  There are limitations of the applicability of the proposed solution:  

• If we are dealing with fully automated WSC our pre-processing will reduce 

execution time; however,     

• If we are dealing with WSC that requires manual interaction our pre-processing 

may not be able to semantically reduce the execution time.    
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CHAPTER 4 

PERFORMANCE IMPROVEMENT: PAIR-WISE PARALLEL 

EXECUTION  

  The hypothesis of this research is that the execution time of WSC can be reduced 

and the efficiency of WS-concurrency control can be improved; thus enabling the use of 

locks based concurrency controls for WSCs.  

  The proposed solution is based on the observation that we can model a WSC as 

WS-BPEL specification (i.e., a partial order of WS transactions). This representation will 

allow us to identify WS transactions in the WSC that can be executed in parallel, and, 

therefore, reduce transaction execution time. Our expectation is that the reduced 

execution time will allow us to use traditional locking mechanism to guarantee database 

consistency. Furthermore, we are aiming to reduce the overhead created by data item 

locking by proposing semantically enhanced locks types.  

The research problem is: 

1. Identifying subgroups of WSs that can run concurrently without potential 

violation of consistency of the database. 

 To identify WS transactions that can execute parallel, we analyzed the WS-BPEL 

specification of the WSCs.   
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4.1 TASK 1: IDENTIFY WS TRANSACTIONS THAT CAN EXECUTE 

CONCURRENTLY 

  Let a WS composition be a directed acyclic graph (DAG), where the vertices are 

the WSs, and the links represent service request between the WSs, i.e., if WSi requests 

service from WSj, there is a directed edge from WSi to WSj. We evaluate each WS-

composition from the perspective of: 

• Precedence relation between WSs, and 

• Conflicting operations between WSs. 

  First: for the identification of the WS subgroups, we use the precedence relation 

among WS in a composition.   

Algorithm 1 finds all set of WS-pairs (WSP) that are not ordered by precedence 

and do not conflict.   

Algorithm 1: Finding-WSP(WSC)  

Input: WSC (WS-BPEL specification).  
Output: WSP= {(WS1, WS2), … , (WSi, WSj)}, such that there is no path between the 
WSs of any of the pairs.	
  	
  
 
1. // Subroutine to insert all possible pairs of WSC into WSP 
2. Inserting-all-possible-pairs(WSC) 
3. WSP ← Empty set that will contain all possible set of pairs 
4. WS ← Set of all nodes (Web services) in WSC  
5. WSC’← WSC 
6. while WS is non-empty do 
7.     choose WSa∈ WS such that WSa has no incoming edge in WSC’  
8.     remove WSa from WS and WSC’  
9.      if WS is non-empty then 
10.          for each WSb in WS do 
11.              insert(WSa, WSb)into WSP 
12.         endfor 
13.     endif 
14. endwhile 
15. return WSP (all possible set of pairs) 
16. // Subroutine to drop ordered pairs from WSP 
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17. Dropping ordered pairs from WSP (DAG, WSP) 
18. for each pair (WSa, WSb) ∈ WSP do 
19.    if there is a path from WSa to WSb then 
20.               remove(WSa, WSb)from WSP 
21.    endif 
22. endfor 
23. // we will return WSP 
24. return WSP  
25. // Subroutine Drop-conflicting-pairs 
26. Drop-conflicting-pairs-from-WSP (WSP) 
27. for all WSi in WSC do 
28. Write_set(WSi) = {A1, A2, …, Ak} such that WSi writes items 
A1, A2, …, Ak  
29. Read_set(WSi) = {A1, A2, …, Al} such that WSi reads items A1, 
A2, …, Al  
30. endfor 
31. For each pair (WSa, WSb) ∈ WSP do  
32.      if write set(WSa) ∩ write set(WSb) ≠ Φ  
33.      or write set(WSa) ∩ read set(WSb) ≠ Φ  
34.      or read set(WSa) ∩ write set(WSb) ≠ Φ then  
35.            WSa and WSb are conflicting  
36.             remove (WSa, WSb) from WSP 
37.      endif 
38. endfor 
39. return WSP  

 

THEOREM 1: ALGORITHM 1 GENERATES  

1) (Completeness) all pairs of WSs that do not have precedence relation with each other 

and do not conflict; and  

2) (Soundness) only those pairs of WSs that meet the above characteristics.   

 

 PROOF OF THEOREM 1:  

  (Completeness) Assume, by contradiction, that there is a pair (WSi, WSj) such 

that 

i. there is no precedence relations between WSi and WSj, 
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ii. WSi and WSj have no conflicting operations, and 

iii. (WSi, WSj) is not in WSP. 

  If WSi and WSj are in WSC, then by lines (6-14) there must be a pair (WSi, WSj) 

(or an equivalent pair (WSj, WSi)) in WSP. But then, by assumption iii (WSi, WSj) must 

have been removed from WSP if it is not in the final set. (WSi, WSj) could have been 

removed either during the process of dropping pairs that have 1) precedence relations in 

lines (18-22) or when 2) removing conflicting pairs in lines (27-38).    

  In the drop-order-subroutine, in lines (18-22), we only remove pairs from WSP if 

they have a precedence ordering. But then by assumption i, the pair (WSi, WSj) cannot be 

removed by this subroutine.  

  But then, the pairs (WSi, WSj) could have been removed only by the drop-

conflicting-pairs subroutine, in lines (27-38). However, this subroutine removes a pair 

from WSP only if WSi and WSj have conflicting operations. By assumption ii, WSi and 

WSj have no conflicting operation; therefore, the pair (WSi, WSj) cannot be removed 

from WSP.  

This illustrates that (WSi, WSj) must be in the final set WSP. This is a 

contradiction to our original assumption.  

  (Soundness) Assume, by contradiction, that the pair (WSi, WSj) is in WSP but 

either  

i. there is a precedence relation between WSi and WSj. 

or  
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ii. there is a conflicting operation between WSi and WSj.  

  In lines (6-14), Algorithm 1 creates a pair (WSi, WSj)  (or (WSj, WSi)) only if 

both WSi and WSj are in WSC. The pair (WSi, WSj) has not been removed from WSP 

since it is in the final set. (WSi, WSj) must be removed from WSP either during the 

process of dropping pairs that have 1) precedence relations in lines (18-22) or when 2) 

removing conflicting pairs in lines (27-38). In the drop-order-subroutine, in lines (16-24), 

we remove pairs if they have a precedence ordering. If WSi and WSj have precedence 

relation by assumption i, then the pair (WSi, WSj) must be removed by this subroutine, 

therefore, cannot be present in the final set WSP. This is a contradiction of our 

assumption. If (WSi, WSj) has conflicting operation (assumption ii), then the pair should 

have been removed by the drop-conflicting-pairs subroutine in lines (25-38), therefore, 

cannot be present in the final set WSP. This is a contradiction of our assumption.   

  This illustrates that (WSi, WSj) must not be in the final set WSP. This is a 

contradiction to our original assumption.  

TASK 1 OUTCOME: Set of WS-pairs (WSP) that are not ordered by precedence and do not 

conflict.  

4.2 TASK 2: BUILD ALL PARALLEL EXECUTION SCENARIOS (PES) 

Given a web service composition (WSC) as a partial order over web services 

{WS1, …, WSk}, and WSP as a set of web service pairs (WSi, WSj) such that WSi and 

WSj can execute concurrently. In this task we perform two subtasks. First, we generate a 

topological order (TO) of the web service in WSC. Next, we replace individual services 



19  

of TO with pairs of concurrently executing services. For the second subtask, we aim to 

maximize the number of parallel executing services.  

4.2.1 TOPOLOGICAL ORDER 

  In this section, we present algorithm 2 to find a topological order using Breadth 

First Search.  

Algorithm 2:  Find-Topological-Order(WSC)  

Input: WSC (WS-BPEL specification).  
Output: TO = {WS1, WS2, … , WSk)}, which is the BFS topological ordering of web 
services in WSC such that for any edge from WSi to WSj in WSC, WSi must precedes 
WSj in the total ordering TO.  	
  
1. // Find-topological-order(WSC) 
2. WS ← Set of all nodes (Web services) in WSC  
3. E ← Set of all edges in the WSC represented as (WSa, WSb)  
4.//indicating that there is a directed edge from WSa to WSb, i.e., WSa must 
preceed WSb    
5. TO ←	
  Empty list that will contain the topological order of 
WSC 
6. while WS is not empty do 
7.      for each WSi in WS do 
8.            if WSi has no incoming edges do 
9.              remove WSi from WS 
10.             append WSi to TO  
11.             for each edge e originating from WSi do 
12.                   remove e from E  
13.             endfor 
14.           endif 
15.      endfor 
16. endwhile 
17. return TO 
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4.2.2 OPTIMAL WEB SERVICE REPLACEMENT 

  In this section we develop Algorithm 3 to find the optimal set of WS-Pairs 

(WSPoptimal) that can be substituted in the topological order TO.  

Algorithm 3: Optimal-Pairs(WSP) 

Input: WSP  
Output: The optimal set of WS-Pairs (WSPoptimal) that that can be substituted in the 
topological order TO.	
  	
  	
  	
  	
  
1. Optimal-Pairs(WSP) 
2. L ← Empty set that will contain already used WSs while 
processing 
3. PAIRS ← Empty set that will contain the current calculated       
4. // set of pairs that might be WSPoptimal  
5. WSPoptimal ← An empty set that will contain the optimal set of 
pairs  
6. WEIGHT ← 0 // The corresponding weight for each set in Pairs  
7. MAX_WEIGHT ← 0 // the weight of the current maximum set of 
pairs 
8. for each pair (WSi, WSj) in WSP do 
9.     WSPWorking ← WSP 
10.    add WSi and WSj to L 
11.    add (WSi, WSj) to PAIRS  
12.    increase WEIGHT by one   
13.    drop (WSi, WSj) from WSPWorking 
14.    for each pair (WSa, WSb) in WSPWorking do 
15.  if WSa or WSb in L then 
16.   Drop (WSa, WSb) from WSPWorking 
17.        else 
18.               (WSi, WSj) ← (WSa, WSb) 
19.               goto line 11 
20.  endif 
21.    endfor 
22.    if WEIGHT is greater than MAX_WEIGHT then 
23.         WSPoptimal ← PAIRS 
24.         MAX_WEIGHT ←	
  WEIGHT 
25.    endif 
26.    set PAIRS ← empty 
27.    set L ← empty 
28.    set WEIGHT ←	
  0  
29. endfor 
30. return WSPoptimal 
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DEFINITION 1: CORRECTNESS CRITERIA: 

  Given a WS-pair, (WSi, WSj) in TO, we can rewrite TO denoted as 𝑇𝑂→ by 

replacing (WSi, WSj) with WSi à WSj , where à indicate a precedence in the 

topological order.  

We say that TO is correct if there exists a topological order, 𝑇𝑂→, of WS-

composition, such that  

to = 𝑇𝑂→   

DEFINITION 2: OPTIMALITY:  

Given a WS-composition, WSP, and a TO, we say that TO is optimal if there is 

no other correct topological orders to, such that  

𝑡𝑜  #  !"  !"#$%&"'  !"# > 𝑇𝑂  #  !"  !"#$%&"'  !"# 

• Generate a topological order 

• Select optimal replacement 

• Show properties 

 THEOREM 2: ALGORITHM 3 GENERATES  

1) Correct WS-Pairs (WSPoptimal) as (Definition 1)  

2) The optimal set of WS-Pairs (WSPoptimal) that can be substituted in the topological 

order TO as (Definition 2).      
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PROOF OF THEOREM 2:  

To prove correctness and optimality of algorithm 3, we need to show the 

following properties of the loop invariant: 1) initialization, where we have to show that 

the algorithm is true prior to the first iteration of the loop, 2) maintenance, where we have 

to show that if our algorithm is true before an iteration of the loop, then it remains true 

before the next iteration, and 3) termination, which means that when the loop terminates, 

the invariant gives a useful information that allows to show that the algorithm is correct 

and optimal, i.e., we have to show that the resulted pairs of this algorithm are the correct 

and optimal pairs that can be substituted in the topological order TO.   

Loop invariant: At the start of each iteration of the for loop of lines (8-29), the list 

WSPoptimal consists of the current optimal pairs of web services that might be substituted 

in the topological order TO. By the end of the last iteration, the list WSPoptimal will 

contain the optimal pairs of web services that will be substituted in the topological order 

TO.  

Initialization: Prior to the first iteration of the for loop in lines (8-29), the list 

WSPoptimal will be empty; therefore, we can say that the loop invariant holds prior to the 

first iteration. 

Maintenance: The body of the for loop works by picking up the first pair (WSi, 

WSj) from WSP, then adding the pair (WSi, WSj) to the list PAIRS, and the services WSi 

and WSj to the list L. The inner for loop in lines (14-21) will delete any pair from 

WSPworking that has either WSi or WSj (lines 14-16). In the inner for loop, if the current 

picked up pair does not have WSi or WSj, then we will assign this new pair (WSa, WSb) 
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to (WSi, WSj), and restart the inner for loop until WSPworking is empty (lines 11-19). By 

the end of the inner for loop, if the current weight is higher than the current maximum 

weight, then that means we find a new optimal set of pairs; therefore, we need to 1) 

assign the pairs in PAIRS to WSPoptimal (line 23), 2) assign the value of the variable 

WEIGHT to the variable MAX_ WEIGHT (line 24), and 3) reset the variables PAIRS, L, 

WEIGHT getting ready for the next iteration (lines 26-28). Hence, we can say the loop 

invariant is true before the next iteration the for loop.  

Termination: When the for loop terminates (lines 8-29), the list WSPoptimal has the 

correct and optimal pairs of WSP that can be substituted in the topological order TO.  

Hence, we can say that algorithm 3 is correct and optimal.   

COMPLEXITY:    

Let n denote the number of times the for loop iterates (lines 8-29) (the number of times 

this loop iterates is equal to the number of pairs in WSP). Also, the inner for loop (lines 

14-21) will iterate n-1 times in the worst case scenario since WSPworking may have all the 

pairs of WSP except the one dropped by line 13; therefore, the running time of algorithm 

3 in the worst case scenario is      

T(n) = n(n-1) = Θ(n2). 

4.2.3 TOPOLOGICAL ORDER WITH WEB SERVICE PAIRS 

  In this section we present Algorithm 4 that is based on the following claim. 

CLAIM 1: Given a topological order of the WSC (DAG), TO = {WS1, …, WSa, …, WSb, 

…, WSk}, and an unordered pair (WSa,WSb), then we can say that it is possible to move 



24  

WSb forward to immediately follow WSa or to move WSa backward to immediately 

proceed WSb in TO as follows:   

FORWARD MOVE: We can move WSb forward to immediately follow WSa in TO if and 

only if there is no WSi in TO such that  

• WSa proceeds WSi in TO 

• WSi proceeds WSb in TO, and 

• there is no path in WSC from in WSC from WSi to WSb.  

BACKWARD MOVE: We can move WSa backward to immediately proceed WSb in TO if 

and only if there is no WSi in TO such that  

• WSa proceeds WSi in TO 

• WSi proceeds WSb in TO, and 

• there is no path in WSC from in WSC from WSa to WSi. 

  Algorithm 4 generates Parallel Execution Scenarios (PES) that do not violate the 

precedence relations in WSC.   

Algorithm 4: Optimal-Topological-Order(WSC,TO,WSPoptimal) 

Input:  
• TO, a topological ordering of web services in WSC  
• WSPoptimal, all set of parallel optimized pairs  

Output:  
• Calculating the optimal topological order TOoptimal	
  

 
1. Optimal-Topological-Order(WSC,TO,WSPoptimal) 
2. TOoptimal ← TO 
3. for each pair (WSi, WSj) in WSPoptimal do 
4.    if WSi can be moved forward in TOoptimal then  
5.       // according to forward move definition in claim 1  
6.       move WSi forward to immediately follow WSj 
7.       substitute “WSi, WSj” in TO with the pair (WSi, WSj)     
8.    else 
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9.         // according to backward move definition in claim 1 
10.       move WSj backward to immediately proceed WSi  
11.       substitute “WSi, WSj” in TO with the pair (WSi, WSj) 
12.   endif  
13.endfor 
14.return TOoptimal 

 

PROOF OF ALGORITHM 4:	
  The	
  proof	
  is	
  trivial	
  according	
  to	
  claim	
  1.	
  	
  

EXAMPLE 1:	
  	
  Assume that we have the following WSC represented as a DAG in figure 

4.1, the corresponding topological order TO = {WS1 , WS5 , WS2 , WS3 , WS4 }, and the 

execution time of each web service, Execution time = {10 ,100 ,20 ,100 ,100}, then the 

execution time of the WSC can be calculated as follow:	
  	
  

	
  

Figure 4.1 DAG Graph of Example 1 

  The execution time of the topological TO without any enhancements is 10 +100  + 

20  + 100 + 100 = 330 units. After applying the concepts of Task 2, the optimal web 

service replacement (WSPoptimal) is { (S5 , S2), (S3 , S4) }; therefore, the topological order 

with web service pairs is { S1 , (S5 , S2), (S3 , S4) }, and the improved running time will be 

10 + 100 +100  = 210 units.  
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IMPROVEMENT OF WSC EXECUTION SCHEDULE AFTER USING THE PAIR-WISE PARALLEL 

EXECUTION:  

  In the above example (figure 4.1), the execution time of the web service schedule 

without any enhancements is 10 +100  + 20  + 100 + 100 = 330 units. The running time 

after using the WS-pairs approach is { S1 , (S5 , S2), (S3 , S4) } = 10 + 100 +100  = 210 

units.  

Therefore,  Speed upoverall  =  !"#$%&'()  !"#$  !"#
!"#$%&'()  !"#$  !"#

 

Speed upoverall  =  !!"
!"#

 

 Speed upoverall  =  1.57143 

Therefore, the execution time of web service schedule has improved after using the WS-

pairs approach by 57%.   
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CHAPTER 5 

PERFORMANCE IMPROVEMENT: MULTIPLE PARALLEL 
EXECUTION 

  In this chapter, we present Task 3 that investigates possible further improvement 

of WSC execution schedule. In this Task, we improve the execution performance of 

WSC of Task 2 by applying the following approaches:   

5.1 INCREASING THE NUMBER OF WSS EXECUTING IN PARALLEL.  

5.2 EXECUTE CONCURRENTLY THOSE WSS THAT HAVE SIMILAR EXECUTION TIME. 

 

5.1 INCREASING THE NUMBER OF WSS EXECUTING PARALLEL 

  Given a WS-composition and the corresponding WSP, find all arrangements of 

parallel WS execution WSS = {WSS1, … , WSSn} such that WSS contains all possible 

execution schedules, where each WSSi ( i = 1, … , n) contains sets of concurrent 

executing services that are not ordered by precedence and do not conflict.  

DEFINITION 3: OPTIMAL WEB SERVICE SET (WSS) 

Given a set WSS = {WSS1, … , WSSn}, and k number of parallel processors, we 

say that WSSi = {WS1, … , WSl} is optimal if the following conditions hold:   

1.) |WSj| ≤ k, that is the number of web services in each set is less than or equal to k,  

2.) there is no other WSSm (where, m = 1, … , n) that satisfies the first condition and has 

smaller execution time than WSSi.  
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DEFINITION 4: CORRECTNESS CRITERIA 

Given a WS-set, (WSi, … , WSj) in TO, we can rewrite TO denoted as TO’ by 

replacing (WSi, … ,WSj) with WSi à…à WSj , where à indicate a precedence in the 

topological order.  

We say that TO is correct if there exists a topological order, TO’, of WS-

composition, such that  

to = TO’ 

DEFINITION 5:  

Let WSP contains all pairs of web services that can execute parallel we say that if 

there are pairs (WSi,WSj), (WSj,WSk), and (WSi,WSk), then (WSi,WSj, WSk) can execute 

concurrently.       

Algorithm 5 generates the optimal WSS that has WS-sets that can be substitute in 

the topological order TO.   

Algorithm 5: Building WSS 

Input:  
• TO, the BFS topological ordering of web services in WSC  
• WSP, all possible Web service pairs 

Output:  
• Generation the optimal (WSS)	
  

1. Given WSC, WSP    
2.  WSSi = Φ ( i= 1, … , n) 
3. for each web service (Si) in WSC (i.e. each node in WSC) do 
4. WSSi = WSSi ∪ {(Si, Sj) | (Sj, Si) ∈ WSP} 
5. end for 
 
6.  set extension function // final parallel sets 
7.  for any two sets, Si, Sj in WSSi, extend Si as follows: 
8.  Let IS := Si ∩ Sj and  
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9.  DS := Sj – Si  
10. then for any services sd ∈ DS,  
11. Si := Si ∪ {d} if and only if for all services si in Si 
there is a     
12. pair (si,d) or (d, si) in WSP.       
13. Use the new set and repeat until no more changes   
14. end for	
  	
  	
  	
  

15. Drop any WSSi that has no sets 
 
16. for each WSSi // limited k number of processors 
17.     Drop all sets that have more than K elements where K is 
the  
18.     number of available processors 
19.     For each set in each WSSi, set the weight equal to 
execution time 20.     of the longest web service in that set 
21. end for 
 
22. Merge all WSSi sets into a new set denoted as WSSall 
 
23. set optimal_set ← empty // optimality part 
24. set optimal_weight ← 0 
25. set current_optimal_set ← empty 
26. set current_optimal_weight ← 0 
27. set WSSall’ ← WSSall 
28. tested_sets ← empty  
29. for each set { Si, …, Sk} in WSSall’    
30.        Drop all other sets that have Si, …, or Sk from 
WSSall’   
31.        Find all possible combinations between { Si, …, Sk} 
and the 32.        remaining sets in WSSall’ such that this 
combination is 
33.        feasible to be substituted in the topological order  
  
34.        Calculate the weight of each combination  
35.        if the least weight is less than 
current_optimal_weight then  
36.            Set current_optimal_weight equal to weight of 
this  
37.            combination 
38.            Set current_optimal_set equal to this 
combination 
39.        end if 
40.        if current_optimal_weight is less than 
optimal_weight then   
41.            set optimal_set = current_optimal_set 
42.            set optimal_weight = current_optimal_weight 
43.        end if 
44. add { Si, …, Sk} to tested_sets 
45. set current_optimal_set ← empty 
46. set current_optimal_weight ← 0  
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47. WSSall’ ← WSSall – sets that have been tested already 
48. end for 
49. set weight = optimal_weight 
50. set WSS = optimal_set 
 

THEOREM 3: Algorithm 5 generates  

1) (Completeness) all sets of WSs that do not have precedence relation with each other 

and do not conflict, i.e., generate all parallel execution schedules; and  

2) (Soundness) only those sets of WSs are generated that meet the above characteristics, 

i.e., each set of parallel execution i ≤ k.     

PROOF OF THEOREM 3: 

  (Completeness) Assume, by contradiction, that there is a set S’ of parallel 

execution services such that S’ is sound but not in WSSall. Assume that S’ contains {(si, 

…, sj, …)}. Service sj can run parallel with any other services in S’. But then, for any 

other service, si, there must be a pair (Si, Sj) (or the equivalent pair (sj, si) in WSP. 

Therefore, in our initial set WSSi, (line 6), there must be a pair (si,sj), WSSi = { … , (si,sj), 

… }. Since sj must be able to run concurrently with all other services in S’, and by the set 

extension function, our algorithm must produce S’ (lines 6-14). Therefore, if S’ is 

produced, then it must be removed from the final set. However, our algorithm allows the 

removal of a set only if its size is lager than k (lines 17-18) which is a contradiction of 

our assumption that S’ is a valid and sound selection.    

  (Soundness) Assume, by contradiction, that there is a set of sets S’ contains { …, 

si, …, sj,…} in WSSi, such that either  

i. there is a precedence relation between services si and sj 
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or   

ii. there is a conflicting operation between si and sj. 

PROOF OF SOUNDNESS: trivially follows from the algorithm of WSP and set extension 

function.   

  Algorithm 6 generates Parallel Execution Scenarios (PES) that do not violate the 

precedence relations in WSC by increasing the number of WSs executing concurrently.  

Algorithm 6: Optimal-Topological-Order-With-Sets (WSC, TO, WSS) 
	
  
Input:  

• TO, a topological ordering of web services in WSC  
• WSS, set of optimal WSS  

Output:  
• Calculating the optimal topological order TOc 

1. TOc ← TO 
2. for each set WSq in WSS do 
3. if  WSq has only two elements {WSi, WSj} then 
4.    if WSi can be moved forward in TOc then  
5.         // according to forward move definition in claim 1  
6.         move WSi forward to immediately follow WSj 
7.         substitute “WSi, WSj” in TOc with the set {WSi, WSj} 
8.    else 
9.         // according to backward move definition in claim 1 
10.        move WSj backward to immediately proceed WSi  
11.        substitute “WSi, WSj” in TOc with the set {WSi, WSj} 
12.   endif  
13. elseif WSq has more than two elements {WSi, WSj, WSt, …} then   
14.      if WSj can be moved forward to immediately follow WSi in TOc 
then  
15.               if WSt can be moved forward to immediately follow 
WSj then 
16.                  // according to forward move definition in 
claim 1  
17.                  move WSj forward to immediately follow WSi 
18.                  move WSt forward to immediately follow WSj 
19.                  substitute “WSi, WSj, WSt,…” in TOc with the set {WSi, WSj, 
WSt, …}  
20.             else   
21.                  // according to backward move definition 
in claim 1 
22.                  move WSi backward to immediately proceed 
WSj  
23.                  if WSt can be moved forward to immediately follow WSj 
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then  
24.            move WSi backward to immediately proceed WSj 
25.            move WSt forward to immediately follow WSj 
26.             substitute “WSi, WSj, WSt,…” in TOc with the set {WSi, WSj, WSt, …}  

27.                  else 
28.            move WSj backward to immediately proceed WSt 
29.            move WSi backward to immediately proceed WSj 
30.            substitute “WSi, WSj, WSt,…” in TOc with the set {WSi, WSj, WSt, …}  

31.                  endif 
32.              endif 
33.      endif 
34. else // WSS is empty  
35.     return TOc 
36. endif 
37. endfor 
38. return TOc 
	
  	
  

PROOF OF ALGORITHM 6: The proof is trivial according to claim 1 (Chapter 4).  

EXAMPLE 2: Given the WSC and the corresponding topological order (TO) in figure 4.1, 

the execution time of Task 2 can be improved by applying the concepts of Task 3 as 

follows: 

The optimal Web Service Set (WSS) ={(S5 , S3 , S4) }. Therefore, the topological 

order with web service sets (WSS) is ={ S1, S2, (S5 , S3 , S4) } and the improved running 

time will be = 10 + 20 + 100 = 130 units.   

 IMPROVEMENT OF WSC EXECUTION SCHEDULE AFTER INCREASING THE NUMBER OF WSS 

THAT EXECUTE CONCURRENTLY:  

Using the approach of WS-sets, the running time of the web service schedule can 

be improved since the new execution time = 10 + 20 + 100 = 130 units.  Therefore, we 

can compare the execution time after using the WSS approach to the execution time 

without any enhancement as follows:     
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Speed upoverall  =  !"#$%&'()  !"#$  !"#
!"#$%&'()  !"#$  !"!

 

Speed upoverall  =  !!"
!"#

 

Speed upoverall  =  2.5385 

Therefore, the execution time of web service schedule has improved 153% after using the 

WS-sets approach.     

5.2 EXECUTE CONCURRENTLY THOSE WSS THAT HAVE SIMILAR EXECUTION TIME 

  Given a WSC, the corresponding WSS, and the execution time for each WS, i.e., 

(WSi, ti), where ti is the execution time of web service WSi, find all arrangements of 

parallel WS execution WSS = {WSS1, … , WSSn} such that WSS contains all possible 

execution schedules, where each WSSi ( i = 1, … , n) contains sets of concurrent 

executing services that are not ordered by precedence, do not conflict, and have similar 

execution time.  

	
  

DEFINITION 6: OPTIMAL WEB SERVICE SET (WSS) WITH SIMILAR EXECUTION TIME  

Given a set WSS = {WSS1, … , WSSn}, and k number of parallel processors, we 

say that WSSi = {WS1, … , WSl} is optimal if the following conditions hold:   

1.) |WSj| ≤ k, that is the number of web services in each set is less than or equal to k,  

2.) there is no other WSSm (where, m = 1, … , n) that satisfies the first condition and has 

smaller threshold value than WSSi.  
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Algorithm 5 can be extended to generate the Optimal Web Service Set (WSS) 

with similar execution time that can be substitute in the topological order TO as follows:  

We define a threshold value, optimal_threshold, and require that the optimal WSS is the 

one with the least total threshold values.  

Extension of Algorithm 5  
 
23. set optimal_set ← empty  
24. set optimal_ threshold ← 0 
25. set current_optimal_set ← empty 
26. set current_optimal_ threshold ← 0 
27. set WSSall’ ← WSSall 
28. set tested_sets ← empty  
29. for each set { Si, …, Sk} in WSSall’    
30.     set threshold of this set equal to the difference    
31.     between the execution times of the largest and   
32.     smallest WSs   
33.     Drop all other sets that have Si, …, or Sk from WSSall’   
34.     Find all possible combinations between { Si, …, Sk} and the  
35.     remaining sets in WSSall’ such that this combination is 
36.     feasible to be substituted in the topological order    
37.     Calculate the weight of each combination  
38.        if the least threshold is less than 
current_optimal_threshold then  
39.            Set current_optimal_threshold equal to threshold of 
this   
40.            combination 
41.            Set current_optimal_set equal to this combination 
42.        end if 
43.        if current_optimal_threshold is less than optimal_threshold 
then   
44.            set optimal_set = current_optimal_set 
45.            set optimal_threshold = current_optimal_threshold 
46.        end if 
47. add { Si, …, Sk} to tested_sets 
48. set current_optimal_set ← empty 
49. set current_optimal_ threshold ← 0  
50. WSSall’ ← WSSall – sets that have been tested already 
51. end for 
52. set threshold = optimal_threshold 
53. set WSS = optimal_set 
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EXAMPLE 3: In the above example, WS5 , WS3 , and WS4 have similar execution times, 

100 units; therefore, this will give us the least possible threshold when executing those 

WSs together, the total execution time = 10 + 20 + 100 = 130 units.  

IMPROVEMENT OF WSC EXECUTION SCHEDULE AFTER EXECUTING CONCURRENTLY THOSE 

WSS THAT HAVE SIMILAR EXECUTION TIME:   

  Using the approach of executing concurrently WSs that have similar execution 

time, the running time of the web service schedule can be improved since the new 

execution time = 10 + 20 + 100 = 130 units.  Therefore,   

Speed upoverall  =  !"#$%&'()  !"#$  !"#
!"#$%&'()  !"#$  !"#

 

Speed upoverall  =  !!"
!"#

 

Speed upoverall  =  2.5385 

The execution time of web service schedule has improved 153% after using the approach 

of executing concurrently those WSs that have similar execution time.    
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CHAPTER 6

CONCLUSION 

In this thesis we have presented improvement of web service composition (WSC) 

execution time using pair-wise and multiple parallel execution schedules. We modeled a 

WSC as WS-BPEL specification, i.e., a partial order of WS transactions, thus allowing 

some of the WS transactions in the WSC to execute concurrently. We analyzed the WS-

BPEL specification of the WSCs to identify WS transactions that can execute parallel.  

In chapter 4, we identified subgroups of WSs that can run concurrently without 

potential violation of consistency of the database. Our algorithm generated an optimal set 

of WS-Pairs (WSPoptimal) and substituted web services with concurrently executing web 

services pairs in the Parallel Execution Scenarios (PES), thus reducing the total execution 

time of the WSC.     

In chapter 5, we investigated possible further improvement of WSC execution 

schedule. We increased the number of WSs that could execute concurrently, and we 

provided further improvement by scheduling services with similar execution time to run 

concurrently. In each case we generated optimal web service schedules, called Parallel 

Execution Scenarios (PES), thus further improving the total execution time of the WSC.  
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For future work, we will study possible further improvement of WSC execution 

schedule by balancing the workload of concurrent services over available processors. In 

addition, we will investigate the possibility of improving upon traditional locking 

mechanism for WSC to guarantee database consistency while avoiding unacceptable 

performance degradation.  
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