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ABSTRACT 

Ubiquitylation is a post-translational modification that influences a wide variety 

of cellular processes including protein degradation, protein subcellular localization, cell 

cycle progression, transcription, and DNA damage repair. Covalent attachment of the 

small ubiquitin molecule to a target protein involves the sequential action of three 

enzymes (E1, E2, and E3).  In this process, substrate specificity is conferred by the E3 

ligase. Our work has focused on the function of one such E3 ubiquitin ligase, WWP1.  

Known targets of WWP1 include cell cycle proteins, tumor suppressors, and transcription 

factors that promote differentiation of mesenchymal stem cells to the osteoid lineage. 

Recently, we have identified a novel target of WWP1 – the gap junction protein connexin 

(CX) 43.  In particular, we found that mice overexpressing WWP1 had a 90% reduction 

in CX43 within the myocardium and died from ventricular arrhythmias as a consequence. 

CX43 is a transmembrane protein that oligomerizes to form intercellular channels 

which facilitate communication between adjacent cells via the transfer of small 

molecules. This metabolic and electrical coupling of adjacent cells plays a vital role in 

almost all cellular processes including growth and differentiation, cell division, and 

homeostasis as well as in electroconduction of the heart. Therefore, it is not surprising 

that CX43 is broadly expressed in nearly every cell type, and it is likely that there are 

commonalities underlying the regulation of CX43 in all cells that express it.  Of 

particular interest is the fact that CX43 has a remarkably short half-life for an integral 

membrane protein (on the order of 1-5 hours) in all cell types examined. 
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To investigate the molecular mechanisms involved in CX43 turnover, we used an 

established tissue culture system to examine the effects of changes in expression of 

WWP1 on the stability and subcellular localization of CX43. We found that CX43 could 

co-immunoprecipitate with WWP1, and this interaction was dependent on the PPXY 

motif of CX43. This association promoted the K27- and K29-linked polyubiquitylation of 

CX43 by WWP1. Co-immunoprecipitation of WWP1 with CX43 and subsequent 

ubiquitylation of CX43 was enhanced in the presence of phorbol 12-myristate 13-acetate 

(PMA) which has been reported to induce mitogen activated protein kinase (MAPK)-

dependent phosphorylation and subsequent internalization of CX43 from the cell 

membrane to the early endosomes. WWP1-mediated ubiquitylation was found to 

destabilize CX43, as the overexpression of wild type WWP1 in HeLa-CX43 cells 

reduced the half-life of CX43 from 2 hours to less than 1 hour, while a mutant version of 

WWP1 lacking ubiquitin ligase activity (C866S) had no significant effect on the stability 

of CX43. The increased turnover of CX43 associated with the overexpression of WWP1 

also significantly reduced gap junction-mediated intercellular communication.   Further 

investigation of the role of WWP1-mediated ubiquitylation on CX43 trafficking revealed 

that the ligase activity of WWP1 promoted trafficking of WWP1 from the early 

endosome to the late endosome with subsequent delivery to the lysosome for degradation.  

These observations were corroborated when endogenous WWP1 was knocked 

down using a siRNA pool that targets WWP1. Specifically, loss of WWP1 was associated 

with increased levels of CX43 on the plasma membrane and with decreased trafficking of 

CX43 from the early endosome to the late endosome.  Instead, with WWP1 knockdown, 

increased co-localization of CX43 with the recycling endosome marker RAB11 was 
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noted.  These data, in conjunction with our overexpression studies, suggest that WWP1 

ubiquitylates CX43 in the early endosome, and this signal is required for trafficking to 

the lysosome for degradation. In the absence of functional WWP1, CX43 is trafficked 

back to the plasma membrane via an endogenous recycling pathway whose existence 

hitherto has been sparsely described in the literature.   

Collectively, this study has identified a novel role for WWP1-mediated 

ubiquitylation in the trafficking and lysosomal degradation of CX43 involving an atypical 

ubiquitin linkage. Gap junction dysregulation is associated numerous pathological 

conditions including arrhythmia, skin defects, cataracts and carcinogenesis.  Therefore, 

studies like this one that elucidate the molecular mechanisms underlying the regulation of 

CX43 will greatly contribute towards the development of novel therapeutics. 
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Ubiquitylation is a post-translational modification that influences protein stability, 

protein activity, protein-protein interactions and subcellular localization and, 

consequently, plays a critical role in the regulation of many cellular processes such as cell 

signaling, transcription, translation, DNA repair and cellular homeostasis (Heride et al., 

2014; Metzger et al., 2012; Weissman, 2001). The term ubiquitylation (or ubiquitination) 

refers to the covalent addition of ubiquitin to proteins. Ubiquitin is a small, highly 

conserved 76 amino acid long polypeptide expressed in all eukaryotic cells (Fang and 

Weissman, 2004). The ubiquitin moiety is primarily conjugated to the NH2 group of 

lysine residues in target proteins or, rarely, ubiquitin can be attached to the NH2 group of 

the first amino acid in a protein (Bonifacino and Weissman, 1998; Lorick et al., 2006). 

Ubiquitin is attached to substrates through an isopeptide bond between the carboxyl-

terminal glycine of ubiquitin and the ε-amino group of a lysine residue in substrates 

(Trempe, 2011; Weissman, 2001). The process of ubiquitylation involves the sequential 

action of three enzymes (E1, E2 and E3). The ubiquitin activating enzyme (E1) forms a 

thiol-ester bond between a highly conserved cysteine residue in its active site and the 

COOH group of glycine 76 of ubiquitin. This reaction requires ATP and results in the 

activation of ubiquitin. The activated ubiquitin is then transferred to the active site 

cysteine residue of the ubiquitin conjugating enzyme (E2) though a transesterification 

reaction (Clague and Urbe, 2010; Weissman, 2001). The activated ubiquitin is then either 

conjugated to the substrate by the E2 or transferred to an ubiquitin ligase (E3) depending 

on the type of E3 involved in the reaction. The HECT (Homologues to E6-AP Carboxyl-

Terminus) family of E3 ligases have a cysteine residue at the active site capable of 

making a high energy thioester bond with the activated ubiquitin to directly conjugate the 
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ubiquitin to the substrate. The RING (Really Interesting New Gene) and RING-related 

E3 ligases (van Wijk and Timmers, 2010) have no catalytic activity and bind both the 

Ub-loaded E2s and the substrate at the same time and act like scaffolds to bring the E2 

and the substrate in close proximity (Metzger et al., 2012)(Fig. 1.1). To date, more than 

600 E3 ubiquitin ligases, 40 E2s and three E1 enzymes have been identified in mammals 

(Metzger et al., 2012). Of the more than 600 E3 ligases encoded by the mammalian 

genome, the majority belong to the RING and RING related family of E3 ligases with 

only about 30 HECT E3 ligases identified so far (Metzger et al., 2012). 

In the ubiquitylation process, substrates are conjugated with a single ubiquitin 

(mono-ubiquitylation), multiple ubiquitin molecules to multiple different lysine residues 

(multi-mono-ubiquitylation) or a polyubiquitin chain. Polyubiquitylation occurs by the 

conjugation of ubiquitin to one of the seven internal lysine residues within ubiquitin (K6, 

K11, K27, K29, K33, K48, and K63). Polyubiquitin chains with these varying linkages 

adopt distinct conformations that are differentially recognized by ubiquitin interacting 

motif (UIM) containing proteins which function in 26S proteasomal degradation, 

membrane protein endocytosis, and intracellular trafficking (Andersen et al., 2005; Di 

Fiore et al., 2003) (Hurley et al., 2006); (Hicke and Dunn, 2003; Hurley et al., 2006). 

The fate of ubiquitylated proteins depends on the length and type of linkage in a 

polyubiquitin chain. Generally, mono-ubiquitylation or multi-mono-ubiquitylation is 

associated with internalization of membrane proteins (Clague and Urbe, 2010). K48-

linked polyubiquitin chains are associated with degradation by the 26S proteasome 

whereas K63-linked polyubiquitin chains are implicated in endocytosis, post endocytic 

trafficking of proteins leading to lysosomal degradation as well as in non-degradative 
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outcomes of ubiquitylation such as change in subcellular localization, signaling and 

activation of protein function (Trempe, 2011) (Fig.1.2). The role of atypical polyubiquitin 

chains (i.e., K6, K11, K27, K29 and K33 linkages) is less well characterized although the 

function of these linkages is starting to come to light. For instance, K11-linked 

polyubiquitin chains have been implicated in cell signaling events as well as promoting 

changes in subcellular localization (Bremm et al., 2010), whereas K29-linked 

polyubiquitin chains have been associated with enhanced trafficking of target towards the 

lysosome for degradation (Chastagner et al., 2006).  

The HECT E3 ubiquitin ligase WWP1 

Because E3 ubiquitin ligases dictate substrate specificity in the ubiquitylation 

process, it is not surprising that they play key regulatory roles in a myriad of cellular 

processes such as membrane trafficking, transcription, translation, DNA repair and 

homeostasis (Bernassola et al., 2008; Chen and Matesic, 2007; Zhi and Chen, 2011). Our 

work is focused on one such E3 ubiquitin ligase, WWP1.  In mammals, WWP1 is one of 

nine members of the NEDD4 family of E3 ligases (Table 1). Dysregulation in the 

functions of many members of this family has been associated with many pathologies 

including cancer, osteoporosis, viral infections, as well as neurodegenerative and cardiac 

diseases (Chen and Matesic, 2007; Zhi and Chen, 2012). 

All members of the NEDD4 family of E3 ligases share three functional domains: 

a C2 domain on the NH2 terminus, between two to four tandem WW domains, and a 

carboxyl-terminal catalytic HECT domain The C2 domain is a phospholipid binding 

domain which is required for membrane localization (Macias et al., 2002; Plant et al., 

1997). Based on studies conducted with the C2 domains derived from the NEDD4 and 



  

5 

 

SMURF1 E3 ligases, (Ogunjimi et al., 2005; Plant et al., 1997) it is hypothesized that the 

membrane associative function of the C2 domain of these proteins is responsive to 

changes in intracellular Ca2+ (Wiesner et al., 2007). The WW domains are approximately 

40 amino acid long motifs that mediate protein-protein interaction through recognition of 

proline-rich sequences such as PPXY, PPLP, PPR, and phosphorylated serine/threonine-

proline motifs (Chen and Matesic, 2007; Salah et al., 2012; Staub et al., 1996). The 

domain name originates from the presence of two highly conserved tryptophan (W) 

residues spaced between 20 and 22 amino acids apart (Macias et al., 2002; Salah et al., 

2012). Finally, the HECT domain made of about 350 amino acids has a conserved 

cysteine residue involved in the transfer of activated ubiquitin to substrates (Kee and 

Huibregtse, 2007) (Fig.1.3). 

The human WWP1 gene maps to chromosome 8q21 and codes for a 920 amino 

acid long protein with a molecular weight of ~110 kDa (Chen and Matesic, 2007; Ingham 

et al., 2004; Zhi and Chen, 2011). WWP1 targets a wide range of proteins that are 

involved in multiple cellular processes including protein trafficking, apoptotic signaling, 

transcription, DNA damage repair, and viral budding (Chen and Matesic, 2007; Zhi and 

Chen, 2011).  The list of previously identified targets of WWP1 include: SMAD2, KLF5, 

p63, p53, ERBB4/HER4, RUNX2, JUNB, RNF11, SPG20, TBR1, SMAD4, KLF4, 

EPS15 and GAG (Chen and Matesic, 2007; Chen et al., 2008; Komuro et al., 2004; 

Moren et al., 2005; Zhi and Chen, 2012) (Table 2). WWP1 has been shown to negatively 

regulate the TGF-β tumor suppressor pathway through ubiquitylation and degradation of 

TGF-β receptor 1, SMAD2 and SMAD4 (Komuro et al., 2004; Moren et al., 2005). 

WWP1 has also been shown to target p53 for proteasomal degradation (Laine and Ronai, 
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2007) and hence, WWP1 is suggested to function as a proto-oncogene (Chen and 

Matesic, 2007; Chen et al., 2008). Recent studies in C. elegans showed that WWP1 

mediates dietary-restriction induced longevity, and loss of function of WWP1 is 

associated with a decline in longevity (Carrano et al., 2014; Carrano et al., 2009). Finally, 

WWP1 has been implicated in bone formation by negatively regulating proteins involved 

in osteoblast functions such Runt-related transcription factor 2 (RUNX2), the 

transcription factor JUNB and the chemokine receptor CXCR4 (Shu et al., 2013). A study 

by (Shu et al., 2013) showed that WWP1 negatively regulates osteoblast differentiation 

and migration based on the observation that lack of functional WWP1 in mice was 

associated with increased bone formation rates. 

Because of its diverse functions, it is not surprising that dysfunction of WWP1 

has been associated with a number of pathologies including prostate and breast 

carcinogenesis, neuropathology, osteoporosis and viral infections (Chen et al., 2008; Li et 

al., 2009; Salah et al., 2012; Shu et al., 2013; Zhi and Chen, 2012). Indeed, our previous 

work with a mouse model of global WWP1 overexpression demonstrated that WWP1 

dysfunction also plays a role in arrhythmogenesis via its regulation of a novel target, the 

gap junction (GJ) protein connexin (CX) 43.  Specifically, mice overexpressing WWP1 

either globally or in the myocardium alone displayed a significant reduction (90%) in 

CX43 in the heart and die suddenly during early adulthood due to ventricular 

arrhythmias. In this study described here, we extend upon these observations by 

elucidating the molecular mechanism underlying the regulation of CX43 by WWP1.  
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Gap junctions 

GJs are clusters of intercellular channels that allow the direct exchange of 

cytoplasmic contents between adjacent cells (Goodenough and Paul, 2009). These 

channels are permeable to ions and small molecules less than approximately 1 kDa in size 

such as cAMP, glucose, ATP, glutathione and inositol 1, 4, 5-triphosphate (IP3). Gap 

junction intercellular communication (GJIC) enables metabolic and electrical coupling of 

cells and plays critical roles in cellular processes such growth, differentiation and 

homeostasis (Goodenough and Paul, 2009). In the heart, gap junctions allow electrical 

impulse propagation between adjacent cardiomyocytes enabling the heart muscle to be 

electrically synchronized (Desplantez et al., 2007). Gap junctions are also involved in 

wound healing and carcinogenesis (Goliger and Paul, 1995; Leithe et al., 2006). 

GJs are made up of a family of membrane proteins called connexins (vertebrates) 

or innexins (invertebrates). CXs are expressed in all tissue types except in differentiated 

skeletal muscle, erythrocytes and mature sperm cells (Nielsen et al., 2012). In humans, 

there are 21 known isoforms of CXs and they are designated by their approximate 

molecular weight in kDa. Many cell and tissue types express more than one CX isoform. 

For instance, keratinocytes co-express CX26, CX30, CX30.3, CX31, CX31.1 and CX43; 

cardiomyocytes co-express CX40, CX43, and CX45; hepatocytes co-express CX26 and 

CX32 (Laird, 2006; Severs et al., 2004). Co-expression of multiple connexin isoforms is 

believed to be a potential compensatory mechanism if mutations or loss of function arises 

in one of the isoforms (Gittens and Kidder, 2005). Among these isoforms, CX43 is the 

best described since it is expressed in the vast majority of cell types including 
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cardiomyocytes, keratinocytes, astrocytes, endothelial cells and smooth muscle cells 

among others (Laird, 2006). 

Mutations in CX family members are linked to a number of diseases including 

deafness, skin defects and neuropathology (Gerido and White, 2004). Mutations in the 

gene encoding CX43 (GJA1) are linked with a rare, variable developmental abnormality 

termed as oculo-dento-digital dysplasia  characterized by craniofacial defects, deafness, 

malformations of the limbs, skin, eye, neurological and heart defects (Debeer et al., 2005; 

McLachlan et al., 2005; McLachlan et al., 2008; Pizzuti et al., 2004). Mutations in CX32 

are linked with Charcot-Marie-Tooth disease which presents with  progressive peripheral 

axon demyelination and limb weakness (Krutovskikh and Yamasaki, 2000). Hence, 

understanding the molecular mechanisms involved in regulating gap junction function is 

critical to understanding the pathophysiology of a number of different diseases. 

Life cycle of CX43 

GJA1 is located on chromosome 6 in humans and encodes for a 382 amino acid 

long CX43 protein. CX43 is a four-pass integral membrane protein with two extracellular 

loops, an intracellular loop and the amino and carboxyl termini facing the cytoplasmic 

side (Fig.1.4).  While the amino acid composition of the two extracellular loops is 

relatively conserved among the CXs, the number and composition of amino acids at the 

NH2 and carboxyl termini are highly variable (Laird, 2006; Laird and Revel, 1990).  

As an integral membrane protein, CX43 is co-translationally inserted into the 

endoplasmic reticulum and undergoes oligomerization in the Golgi or in the trans-Golgi 

network to form a hexameric ring like structure known as a hemi-channel or connexon. 

Once a hemichannel reaches the cell membrane, it docks with a hemichannel from the 
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adjacent cell to make a complete channel (Goodenough and Paul, 2009). A hemichannel 

can be homomeric (composed of a single connexin isoform) or heteromeric (composed of 

two connexin isoforms). Between a few hundred to thousands of these channels are 

deposited on the plasma membrane to form a gap junction plaque (Fig.1.4) (Ahmad et al., 

1999).   

GJs are dynamic structures and CX43 in gap junctions has a short half-life, 

ranging from one to five hours depending on the cell or tissue type (Beardslee et al., 

1998; Laird et al., 1991). Newly synthesized GJ channels are deposited at the edges of the 

already existing gap junction plaque while the old ones are internalized from the center of 

the plaque (Gaietta et al., 2002; Lauf et al., 2002).  GJ endocytosis involves the 

internalization of the plasma membranes from both cells forming the GJ channel into one 

of the cells as a double membrane vesicle called an annular junction or connexosome 

(Gumpert et al., 2008; Jordan et al., 2001) (Fig.1.5). Previous studies have indicated a 

role for clathrin-mediated endocytosis in GJ internalization (Fong et al., 2012; Gumpert 

et al., 2008). siRNA-mediated knockdown of the vesicle coating protein clathrin, 

clathrin-adaptor proteins AP2 and DAB2, or the GTPase DYNAMIN significantly 

inhibited GJ internalization (Fong et al., 2012; Gumpert et al., 2008). However the 

precise details of the molecular pathway involved in CX43 endocytosis and trafficking 

remain to be fully elucidated. 

 Some ultrastructural studies have suggested that , once internalized into a cell, 

annular junctions are further modified into single membrane bound organelles which can 

fuse with the early endosome  (Falk and Lauf, 2001). Alternatively, internalized 

connexosmes can directly fuse with the lysosome or become sequestered in 
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autophagosomes to eventually be degraded by the lysosome (Piehl et al., 2007). 

Additionally, recent work has highlighted the possibility that undocked connexosomes 

can be endocytosed and trafficked to the early endosome (Falk et al., 2012).  Thus, a 

variety of alternative pathways exist to account for the internalization and turnover of 

CX43. 

Early endosomal sorting 

Early endosomes are dynamic membrane bound compartments undergoing 

constant fusion with vesicles coming from the plasma membrane as well as vesicles 

budding off for recycling back to the plasma membrane. As such, early endosomes serve 

as sorting stations where endocytosed cargo arriving from the plasma membrane is 

directed to either the degradation or recycling pathway (Raiborg and Stenmark, 2009). 

This characteristic function of early endosomes is accomplished by utilizing distinct 

domains of the early endosomes for various functions. Cargo destined for recycling back 

to the plasma membrane is sequestered in the tubular subdomains of the early endosome 

(recycling endosomes) whereas cargo destined for the degradation pathway is captured 

by small vesicles that bud from the limiting membrane into the endosomal lumen to 

create multivesicular bodies (MVB) also known as late endosomes (Fig. 1.5). The 

contents of the MVB are degraded by the lysosomal hydrolytic enzymes upon fusion with 

the lysosome. Sorting in the early endosome is mediated in part by the endosomal sorting 

complex for transport (ESCRT) machinery, and ubiquitin serves as a sorting tag in this 

process.  In particular, cargo conjugated with ubiquitin is recognized by the ESCRT 

machinery, facilitating its trafficking to the late endosome for lysosomal degradation 

(Luzio et al., 2009; Raiborg and Stenmark, 2009).  
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Regulation of CX43 through post-translational modification  

The role of post-translational modification in regulating the life cycle of GJs has 

been documented (Leithe and Rivedal, 2007). Specifically, GJs have been reported to be 

modified through phosphorylation, ubiquitylation, acetylation, hydroxylation and 

SUMOylation (Colussi et al., 2011; Kjenseth et al., 2012; Solan and Lampe, 2005; 

Thevenin et al., 2013). Of these, phosphorylation of CX43 has been well described, and 

the regulation of the life cycle of CX43 by ubiquitylation is also emerging. 

CX43 phosphorylation  

Phosphorylation is a post-translational modification that affects protein 

hydrophobicity, charge and conformation. Phosphorylation is mediated by kinases that 

target serine (S), threonine (T) and tyrosine (Y) residues and is a major regulatory event 

both under physiological and pathological conditions. The COOH-terminus of CX43 has 

21 amino acid residues that have been described to be targeted by several kinases, and 

CX43 phosphorylation at several sites has been reported to play a role in GJ assembly, 

plaque size and turnover (Solan and Lampe, 2009, 2014; Solan et al., 2007). In general, 

phosphorylation by AKT (PKB), PKA and casein kinase 1 (CK1) is associated with 

increased trafficking of CX43 to the plasma membrane and stability of CX43 within GJ 

(Gap junction) plaques (Dunn et al., 2012; Solan and Lampe, 2014). Specifically, 

phosphorylation of CX43 by PKA at S364, S365, S369, and S373 has been reported to 

increase GJIC and stabilize GJ plaques (Solan et al., 2007). CK1 phosphorylates CX43 

on S325, S328 and S330 and its inhibition in vivo results in accumulation of connexons 

on the plasma membrane but reduction in the overall size of GJ plaques (Cooper and 

Lampe, 2002) suggesting a role for CK1 phosphorylation in GJ channel assembly. 

Phosphorylation of CX43 by CDC2 on S255 and S262 has been associated with down 
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regulation of GJIC through increased internalization of CX43 (Laird, 2005; Laird et al., 

1991; Lampe and Lau, 2004).  

Several in vivo stimuli such as wounding and ischemia have been associated with 

the induction of CX43 phosphorylation and internalization. CX43 is highly expressed in 

the skin and plays a primary role in the early stages of wound healing. Upon skin 

wounding, CX43 undergoes phosphorylation and subsequent internalization with 

increased keratinocyte migration to the site of wounding (Goliger and Paul, 1995). 

Similarly, during acute ischemia, CX43 undergoes increased phosphorylation by PKC at 

S368 and dephosphorylation at the CK1 sites. This altered phosphorylation profile is 

followed by increased CX43 internalization and lateralization of the channels from the 

intercalated discs (sites of end-to-end joining of cardiomyocytes) to the lateral membrane 

of the cardiomyocytes (Solan and Lampe, 2009, 2014; Solan et al., 2007; Tanguy et al., 

2000), a condition termed GJ remodeling. GJ remodeling, in turn, alters electrical 

impulse propagation and creates a substrate for arrhythmia initiation (Saffitz et al., 2007).  

In vitro, exposure of cells to tumor promoting agent phorbol 12-myristate 13-

acetate (PMA), which is an analogue of the second messenger diacylglycerol (DAG), or 

to epidermal growth factor (EGF) induces cascades of CX43 phosphorylation events 

mediated mainly by MAPK, SRC and PKC kinases (Leithe and Rivedal, 2004b); (Sirnes 

et al., 2009; Sirnes et al., 2008). Phosphorylation of CX43 by PKC at S262 and S368 and 

by MAPK at S255 and S279/282 has been shown to induce CX43 internalization and 

increased CX43 ubiquitylation (Leithe and Rivedal, 2004b; Sirnes et al., 2009; Sirnes et 

al., 2008). Interestingly, it has been noted that enhanced CX43 phosphorylation is 
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associated with increased ubiquitylation, suggesting possible cross talk between these 

post-translational pathways (Laird, 2005; Laird et al., 1991). 

CX43 ubiquitylation  

Several lines of evidence indicate that CX43 undergoes ubiquitylation (Fykerud et 

al., 2012; Girao et al., 2009; Hertzberg et al., 1996; Leithe and Rivedal, 2004b). Tumor 

promoting agents EGF and PMA enhance CX43 phosphorylation, which, in turn, is 

associated with increased recruitment of ubiquitin to the plasma membrane (Leithe and 

Rivedal, 2004a, c). The first E3 ubiquitin ligase identified to target CX43 was NEDD4 

(Leykauf et al., 2006). NEDD4 binds the COOH-terminal PY motif of CX43 causing a 

multi-mono-ubiquitylation of CX43 and subsequent internalization (Girao et al., 2009; 

Leykauf et al., 2006). Co-immunoprecipitation studies showed the interaction of CX43 

with one of the components of the endocytic machinery, EPS15. NEDD4-mediated 

ubiquitylation of CX43 was required for this interaction, as siRNA mediated knockdown 

of NEDD4 resulted in a disruption of this association (Girao et al., 2009). Furthermore, 

this interaction was dependent on the ubiquitin interaction motif (UIM) of EPS15 and 

mutations in this domain also abrogated the interaction of CX43 and EPS15 (Girao et al., 

2009). The role of NEDD4 mediated ubiquitylation on CX43 endocytosis was further 

corroborated by siRNA knockdown of both NEDD4 and EPS15 which resulted in the 

stabilization of CX43 on the plasma membrane (Girao et al., 2009). Recent reports have 

identified two additional E3 ligases, SMURF2 and TRIM21, which can also target CX43 

for ubiquitylation (Chen et al., 2012; Fykerud et al., 2012). The HECT E3 ligase 

SMURF2, which is a member of the NEDD4 family of E3 ligases, was found to target 

CX43 on the membrane, thus helping to regulate its internalization (Fykerud et al., 2012). 
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siRNA-mediated knockdown of SMURF2 resulted in increased amounts of CX43 on the 

plasma membrane (Fykerud et al., 2012).  The RING E3 ligase, TRIM21, was found to 

co-immunoprecipitate with CX43 although the consequence of this interaction has yet to 

be determined (Chen et al., 2012). Even though it has been reported that at least two 

different E3 ligases can target CX43 and promote its internalization, none of these events 

has been associated with a change in CX43 turnover, suggesting that additional E3 

ligases might be involved. Based on our observation that transgenic mice overexpressing 

WWP1 showed a significant reduction in CX43, we hypothesize that WWP1 is the E3 

ligase involved in CX43 turnover and that it acts on internalized CX43 within the early 

endosome.  

In summary, GJIC plays a critical role in regulating cellular processes during 

development and differentiation and in maintaining homeostasis. Dysregulation of GJs is 

implicated in various pathologies including cardiac disease, neuropathologies, skin 

diseases, cataracts, bone defects and carcinogenesis (Debeer et al., 2005; Gerido and 

White, 2004; Goliger and Paul, 1995; Laird, 2006). Hence, GJ function is tightly 

regulated through different mechanisms including phosphorylation and ubiquitylation 

(Fykerud et al., 2012; Girao et al., 2009; Laird, 2005; Lampe and Lau, 2004). In this 

study we identify the HECT E3 ubiquitin WWP1 as a novel regulator of CX43 turnover 

and GJIC. 
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Table 1. 1 The NEDD4 family of E3 ubiquitin ligases  

E3 ligase Substrate References 

NEDD4 ENaC, PTEN, IGF-IR, p63, 

VEGF-R2, Cbl-b, EPS15, 

HRS.  

(Snyder, 2005; Staub et al., 

1996) 

NEDD4-2/NEDD4L ENaC, TrKA, TBR1, 

SMAD2, SMAD4, EPS15 

(Eaton et al., 2010; 

Kamynina and Staub, 2002) 

WWP1/ Tiul1 TBR1, SMAD2, SMAD4, 

KLF2, KLF5, RUNX2, p53, 

p63, ERB4, EPS15 

(Chen and Matesic, 2007; Li 

et al., 2009; Moren et al., 

2005; Zhi and Chen, 2012) 

WWP2 OCT4, ENaC (Eaton et al., 2010) 

AIP4/ITCH NF-E2, JunB, c-Jun, p63, 

p73, RNF11, Cbl, EPS15, 

Hrs, CXCR4, Notch, CFLIPL, 

HEF1,  

(Chen and Matesic, 2007; 

Lin and Mak, 2007; Melino 

et al., 2008) 

SMURF1 MEKK2, RUNX2, RUNX3, 

SMAD1-5, RhoA 

(Cao and Zhang, 2013; 

David et al., 2013) 

SMURF2 TβR1, SnoN, Smad1, 2, 4, 5, 

RUNX2, RUNX3, RNF11 

(David et al., 2013; 

Ogunjimi et al., 2005) 

HECW1/NEDL1 SOD1, DVl1 (Miyazaki et al., 2004) 

HECW2/NEDL2 P73 (Miyazaki et al., 2003) 

Table 1 Adopted from (Chen and Matesic, 2007). 
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Table 1.2 List of WWP1 targets 

Substrate Function 

p63, p53, KLF5 Apoptosis 

SMAD2, TβR1, SMAD4 TGFβ signaling 

EPS15, RNF11, ERB4 EGF signaling 

GAG Virus budding 

JUNB, RUNX2 Bone differentiation 

SPARTIN/SPG20 Neurological disorders 
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1.2. FIGURES 

       

Figure 1.1 The ubiquitylation cascade. The ubiquitylation pathway involves the 

sequential activity of three enzymes. The ubiquitin activating enzyme (E1) activtes 

ubiqutin in an ATP dependent manner. The activated ubiquitin is transferred to the 

ubiquitin conjugating enzyme (E2). The E3 ubiquitin ligase then recruits substrates and 

the activated ubiquitin is either directly transferred to the substrate when HECT E3 

ligases are involved or indirectly in the case of RING E3 ligases. 
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Figure 1.2. The type of ubiquitylation determines the fate of targeted substrates. The 

attachment of a single ubiquitin (mono-ubiquitylation) or multiple ubiquitin molecules 

(multi-mono ubiquitylation) is associated with endocytosis. K48-linked polyubiquitin 

chains are associated with proteasomal degradation whereas K63-linked polyubiquitin 

chains are associated with changes in subcellular localization, signaling and lysosomal 

degradation. 
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Figure 1.3. A schematic diagram showing the functional and structural domains of the 

WWP1 protein. The mouse WWP1 protein is 918 amino acids long and has three 

structural motifs. The C2 domain at the NH2- terminus binds membrane phospholipids. 

The 4 tandem WW domains bind proline rich motifs in substrates. The COOH-terminal 

HECT catalytic domain has a highly conserved cysteine (C) residue at the active site 

(C886) that is required for its ligase activity.   
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Figure 1.4 GJ assembly. GJ channels are composed of connexins. A. Connexins are four 

pass integral membrane proteins with two extra cellular loops (E1 and E2) and a 

cytoplasmic loop (CL). B. Six connexin molecules oligomerize to make a ring-like half 

channel termed a connexon.  A connexon from one cell docks head-on with a connexon 

from an adjacent cell to form a full channel. Between a few hundred to thousands of these 

channels are deposited on the plasma membrane to form a GJ plaque.   

 

A 

B 
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Figure 1.5 Mechanism of GJ endocytosis. GJs are endocytosed from the plasma 

membrane through the clathrin-mediated endocytosis (CME) pathway. Both membranes 

joined by the gap junctions are endocytosed into one of the cells to form a double 

membrane structure termed an annular junction. The annular junctions are then processed 

into single membrane vesicles which later fuse with the early endosome. Early 

endosomes act as sorting stations. Cargo proteins destined for degradation are 

incorporated into intraluminal vesicles (ILVs) in the formation of late endosomes (MVB). 

Late endosomes fuse with the lysosome and their contents are degraded by the lysosomal 

enzymes.  
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CHAPTER TWO 

WWP1 Mediates K27- and K29-Linked Polyubiquitylation of CX43 
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2.1. INTRODUCTION  

GJs are highly dynamic structures with cells constantly internalizing and 

assembling these channels. Unlike other integral membrane proteins, the GJ-forming 

protein CX43 is highly labile with a half-life ranging between one and five hours 

depending on the cell and tissue type considered (Beardslee et al., 1998; Laird, 2005). 

However, the molecular mechanisms regulating GJ turnover have not been exhaustively 

examined. Understanding the molecular mechanisms and pathways involved in GJ 

regulation is a critical first step in finding therapeutics for pathologies arising due to GJ 

dysregulation.   

Mounting evidence supports the role of post-translational modification in GJ 

assembly and turnover. In particular, the role of phosphorylation on CX43 half-life has 

been well described. In fact, CX43 is phosphorylated just after translation and some of 

these modifications have been reported to be critical in proper trafficking of CX43 to the 

plasma membrane, in channel assembly, as well as endocytosis from the plasma 

membrane (Laird, 2005; Laird et al., 1991; Lampe and Lau, 2004). Further, the 

phosphorylation status of CX43 changes in response to physiological and environmental 

stimuli such as acute ischemia and wounding. This altered phosphorylation is followed 

by increased CX43 internalization and turnover (Solan and Lampe, 2009, 2014; Solan et 

al., 2007; Tanguy et al., 2000). In vitro, exposure of cells to PMA and EGF induces 

cascades of CX43 phosphorylation events mediated mainly by MAPK, SRC and PKC 

kinases (Leithe and Rivedal, 2004b); (Sirnes et al., 2009; Sirnes et al., 2008). 

Interestingly, the increased phosphorylation and endocytosis of CX43 was associated 



  

24 

 

with increased CX43 ubiquitylation and turnover suggesting a role for ubiquitylation in 

CX43 turnover.  

Previous studies have shown that CX43 is ubiquitylated. Specifically, 

immunoprecipitation of CX43 followed by immunoblotting using anti-ubiquitin 

antibodies demonstrated the existence ofubiquitylated forms of CX43 (Leithe and 

Rivedal, 2007). The HECT E3 ligase NEDD4 was the first E3 ligase identified to bind 

and ubiquitylate CX43 (Girao et al., 2009; Leykauf et al., 2006). NEDD4 has three 

tandem WW domains (WW1, WW2, and WW3) in humans and binds the COOH-

terminal proline rich (PPXY) motif of CX43 through WW2 (Leykauf et al., 2006). 

NEDD4-mediated ubiquitylation seems to be important in the endocytosis of CX43. In 

particular, NEDD4-mediated ubiquitylation of CX43 has been shown to enhance the 

binding of the endocytic protein EPS15 to CX43. Deletion of the ubiquitin interacting 

(UIM) of EPS15 abrogated this interaction, suggesting there is ubiquitin-dependent 

recruitment of EPS15 (Girao et al., 2009). Furthermore, siRNA-mediated knockdown of 

NEDD44 in African green monkey kidney fibroblast like (Cos-7) cells as well as siRNA 

knockdown of Eps15 in normal rat kidney epithelial (NRK) cells was associated with 

increased levels of CX43 at the plasma membrane, confirming a role for NEDD4-

mediated ubiquitylation in the internalization of CX43 (Girao et al., 2009). However, 

NEDD4 knockdown did not result in a change in the total CX43 protein level ((Leykauf 

et al., 2006), suggesting that additional ubiquitylation events might be required for 

turnover of CX43 by the lysosome.   

The HECT E3 ligase SMAD regulatory factor 2 (SMURF2) has also recently 

been reported to regulate CX43 endocytosis. The study showed an interaction between 
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CX43 and SMURF2 in a rat epithelial cell line, IAR20 (Fykerud et al., 2012). siRNA 

mediated knockdown of endogenous Smurf2 in IAR20 cells resulted in increased CX43 at 

the membrane and a subsequent increase in GJIC, revealing a role for SMURF2 in CX43 

internalization (Fykerud et al., 2012). Finally, proteomic studies using mass spectrometry 

showed the association of CX43 with the RING E3 ligase, TRIM21, in rat glioma cells 

transfected with CX43 (C6-CX43); however, the role of this association on the regulation 

of the CX43 life cycle has not yet been described (Chen et al., 2012). 

Recent work from our lab suggests that CX43 may also be targeted by the HECT 

E3 ligase WWP1, a member of the NEDD4 subfamily of E3 ligases. In particular, we 

found that mice overexpressing WWP1 had a significant reduction (~80%) in CX43 

protein in the heart (Fig 2.1). Here, we build upon this observation by unraveling the 

molecular mechanisms by which WWP1 regulates CX43 and GJIC in vivo using an 

established tissue culture system (i.e., HeLa and 293T cells). These cells were chosen for 

a variety of reasons.  Specifically, it has been reported that CME is an important 

component of CX43 endocytosis in a  HeLa-based model system (Gumpert et al., 2008). 

Both assembly of function GJ as well as endocytosis of these structures has been 

described in HeLa cells stably transfected with CX43 (Gumpert et al., 2008; Piehl et al., 

2007). In addition, because HeLa cells are not known to express any CX isoforms 

(Gilleron et al., 2011), cell lines stably transfected with just one isoform are ideal for the 

study of homomeric, homotypic GJs.   Further, 293T cells have been described to 

mediate trafficking of exogenously expressed CX43 in a similar manner. In particular, 

siRNA-mediated knockdown of EPS15, a component of the CME machinery, in 293T 

cells resulted in the accumulation of CX43 on the membrane (Girao et al., 2009), 
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suggesting that a common mechanism for CX43 trafficking exists in both cell types cell 

types. Using this model cell culture system, we showed that WWP1 co-

immunoprecipitates with CX43 and the co-immunoprecipitation was enhanced in the 

presence of PMA. We determined that this interaction was dependent upon an intact PY 

motif in CX43.  The interaction between WWP1 and CX43 promoted the K27- and K29-

linked polyubiquitylation of CX43 as a dead ligase version of WWP1 failed to target 

CX43. Thus, this represents the first report of this unconventional polyubiquitin post 

translational modification of a GJ protein.  

2.2. MATERIALS AND METHODS  

Cell Culture 

Human embryonic kidney (HEK) 293 T cells were kindly provided by Dr. Dan 

Dixon of the University of South Carolina. Human cervical carcinoma cells (HeLa) cells 

were purchased from ATCC. Both cell lines were maintained in culture in Dulbecco’s 

Modified Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS) 

plus 1% penicillin/streptomycin in 5% CO2, and 37°C growth incubator. Transfections 

were done with JetPRIME (polyPLUS) and Lipofectamine 2000 reagent (Invitrogen) 

according to the manufacturer’s recommendations. HeLa cells stably transfected with 

CX43 (HeLa-CX43) were generated by transfecting the CX43 expression vector, 

pCDNA3.1-CX43, into HeLa cells using Lipofectamine reagent (Invitrogen) and 

selecting for transfected cells using 400 mg/mL of G418.  Western blot analysis and 

immunofluorescence staining was performed to confirm CX43 expression and formation 

of gap junctions. The function of gap junctions was also assessed using a dye 



  

27 

 

travel/scrape loading assay and clones with functional gap junctions based on dye transfer 

assay were selected. 

Plasmids  

The CX43 expression plasmid pCDNA3.1-CX43, was kindly provided by Dr. 

Alan Lau (University of Hawaii Cancer Center). The WWP1 expression plasmid pCMV-

Tag3-Myc-Cherry-WWP1 was kindly provided by Dr. Ceshi Chen (Kunming Institute of 

Zoology, Chinese Academy of Sciences). The XhoI/ApaI fragment containing the C886S 

mutation was cloned from Myc-C886S to pCMV-tag3-Myc-Cherry-WWP1 to create 

pCMV-tag3-Myc-Cherry-C886S.  The following variants of ubiquitin expression 

plasmids were purchased from Addgene and have been described before (Lim et al., 

2005; Lim et al., 2006; Livingston et al., 2009): pRK5-HA-Ub-WT, pRK5-HA-Ub-K0, 

pRK5-HA-Ub-K6, pRK5-HA-Ub-K11, pRK5-HA-Ub-K27, pRK5-HA-Ub-K29, pRK5-

HA-Ub-K33, pRK5-HA-Ub-K48, and pRK5-HA-Ub-K63. A PY motif mutant form of 

CX43 was generated by changing a conserved proline at residue 283 to a leucine (CX43-

P283L) using the QuickChange site-directed mutagenesis kit according to the 

manufacturer’s instructions (Agilent Technologies).    

Co-immunoprecipitation assay 

293T cells were transfected with JetPRIME reagent (polyPLUS). A day after 

transfection, cells were treated with 100 ng/mL PMA. Forty-eight hours post transfection, 

cells were rinsed with chilled 1X PBS and lysed with non-denaturing lysis buffer (50 mM 

Tris-Hcl, pH 7.5, 150 mM NaCl, 0.5% Triton X-100 supplemented with cocktail protease 

inhibitors plus EDTA, 10 mM iodoacetamide, 2 mM sodium orthovanadate). 500 µg of 
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cell lysate was incubated with anti-CX43 antibody (Zymed, 71-0700) overnight followed 

by incubation with 30 µL protein A/G agarose beads (Santa Cruz, SC-2003) for 3 hrs. 

Immunoprecipitated proteins were eluted with 2X Laemmli sample buffer, boiled for 5 

min at 95°C and separated by SDS-PAGE. Samples were transferred to PVDF membrane 

(BioRad) and probed with the following antibodies: anti-CX43 (Sigma, C6219) anti-HA 

(Sigma, clone HA-7), anti-Myc (Santa Cruz, 9E10).  

Ubiquitylation assay 

293T cells were transfected with CX43, either Myc-WWP1 or Myc-C886S, and 

HA-Ub. Forty-eight hours post transfection, cells were treated with 100 ng/mL of PMA 

for one hour and were subsequently rinsed with cold 1X PBS and then lysed with Triton 

X-100 non-denaturing lysis buffer (50 mM Tris-Hcl, pH 7.5, 150 mM NaCl, 0.5% Triton 

X-100, supplemented with cocktail protease inhibitors plus EDTA, 10 mM 

iodoacetamide, 2 mM sodium orthovanadate). 500 µg of cell lysate was incubated with 1 

µg of anti-CX43 antibody (Invitrogen, 71-0700) overnight. Protein-antibody immuno-

complex was formed by adding 30 µL of protein A/G agarose beads. The 

immunoprecipitated protein complex was eluted with 40 µL of 2X Laemmli sample 

buffer, boiled for 5 min at 95°C and run on 4-15% TGX polyacrylamide gel (Bio-Rad). 

The samples were blotted to PVDF membrane and blocked using a blocking buffer (5% 

non-fat dry milk in TBST (Tris-Buffered Saline plus Tween-20).  The blot was probed 

using the following antibodies: anti-HA (Sigma, HA-7), anti-CX43 (Sigma, C6219) and 

anti-Myc antibodies (Santa Cruz, 9E10). 
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Western blotting  

293T cells were harvested using Triton X-100 lysis buffer (150 mM NaCl; 50 

mM Tris-HCl, pH 7.5; 0.5% Triton X-100 supplemented with cocktail protease inhibitors 

plus EDTA, 2 mM sodium orthovanadate, and 10 mM iodoacetamide). 25-50 µg of 

protein was loaded and separated on a 4-15% gradient polyacrylamide gel, transferred to 

PVDF membrane (Bio-Rad), and blocked for 1 hour using 5% non-fat dry milk in TBST 

followed by probing with primary antibodies for 16 hours at 4°C. Images were taken 

using Fluorchem E Chemiluminescent Western blot Imaging System (ProteinSimple) and 

quantification of protein intensity was done using AlphaView imaging software.    

Immunofluorescence staining  

HeLa-CX43 cells grown on coverslips were transfected using either mCherry-WWP1 or 

mCherry-C886S plasmids. 48 hrs post transfection, cells were treated with 100 ng/mL 

PMA for 1 hr. Cells were rinsed with PBS and fixed in 4% PFA for 15 min at room 

temperature, rinsed 3X with PBS and then treated with a blocking buffer (5% normal 

goat serum, 1% BSA and 0.3% Triton X-100 in PBS) for 1 hr at room temperature. Cells 

were stained using primary antibodies overnight at 4°C followed by incubation with 

fluorophore conjugated F(ab’)2 fragment secondary antibodies (Jackson 

Immunoresearch) as indicated. Cover slips were mounted using Fluoro-Gel mounting 

media (Electron Microscopy Sciences). Images were acquired using the 100X objective 

of a Leica DMI6000B microscope with a Hamamatsu Camera C10600. 
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Statistics 

Statistical analysis of quantitative data were calculated and plotted using Prism 

software (GraphPad). All experiments were performed at least three independent times 

with similar results. Student’s t-test and one-way ANOVA were used to test for statistical 

significance and p-values ± 0.05 were considered significant.    

2.3. RESULTS 

WWP1 co-immunoprecipitates with CX43  

The role that ubiquitylation plays in CX43 turnover has only begun to emerge. 

Recent studies have identified two members of the NEDD4 subfamily of E3 ligases, 

NEDD4 and SMURF2, as regulators of the endocytosis of CX43 (Fykerud et al., 2012; 

Girao et al., 2009; Leykauf et al., 2006). These studies showed that the internalization of 

CX43 was enhanced by its interaction with and subsequent ubiquitylation by both ligases. 

However, neither of these E3 ligases induced CX43 turnover. Based on these 

observations we hypothesized that WWP1, which has been previously reported to 

localize predominantly to the early endosome (Zhi and Chen, 2012) targets endocytosed 

CX43 in the early endosome rather than at the plasma membrane.    

 To investigate whether WWP1 interacts with CX43, a co-immunoprecipitation 

(co-IP) assay was performed using 293T cells co-transfected with CX43 and either Myc-

WWP1 or a mutant version of WWP1 that lacks ubiquitin ligase activity (Myc-C886S) 

due to a cysteine to serine mutation at its active site. Our data showed the interaction of 

CX43 with both WWP1 and C886S, indicating that the ligase activity is not required for 

the interaction of these two proteins (Fig. 2.2A). Immunoprecipitation of cell lysates 
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expressing both CX43 and WWP1 with a control rabbit polyclonal IgG antibody as well 

as immunoprecipitation of untransfected cell lysates with anti-CX43 antibody resulted in 

no detectable WWP1, confirming the specificity of the interaction (Fig. 2.2A, lanes 3, 6, 

7).  Previous studies have demonstrated that exposure of cells to PMA in culture induces 

endocytosis and increased ubiquitylation of CX43 (Sirnes et al., 2008). In an effort to 

determine the effect of PMA on the interaction of CX43 on WWP1, the co-

immunoprecipitation was repeated in transfected 293T cells stimulated with PMA for 30 

min. Cell lysates were harvested after six hours of washout period followed by co-IP 

assay. Our data showed that, upon PMA exposure, there was a significant increase in the 

amount of CX43 detected in the cell lysate as well as a corresponding increase in the 

level of WWP1 that co-immunoprecipitated with CX43 (Fig. 2.2A).  

The interaction of CX43 with WWP1 is dependent upon an intact PPXY motif in 

CX43 

E3 ubiquitin ligases have protein-protein interaction domains that allow for 

specific binding to target proteins, thus providing substrate specificity. WWP1 has 4 

tandem WW domains that have affinity for proline-rich modules such as PPXY, PPLP 

and phosphorylated serine and threonine (pS/T) (Fig. 1.3). CX43 possesses a PPXY motif 

on its COOH-terminal cytoplasmic tail, and this region has been reported to bind the WW 

domain of the E3 ligase NEDD4 (REFERENCE). In an effort to determine whether the 

interaction of WWP1 with CX43 is dependent on the PPXY motif, site-directed 

mutagenesis was used to introduce a proline to leucine substitution at residue 283 of 

CX43 (CX43-P283L). When PMA stimulated 293T cells were co-transfected with CX43-

P283L and Myc-WWP1 and  the co-immunoprecipiation of  PY mutant CX43 and 
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WWP1 was examined, a dramatic reduction in the level of WWP1 pulling down with 

CX43-P283L was noted (Fig. 2.2B). These data demonstrated that the co-

immunoprecipitation of WWP1 with CX43 is dependent on an intact PPXY motif.  

Co-localization of CX43 and WWP1 in the early endosomes  

As increased interaction between CX43 and WWP1 was evidenced upon 

endocytosis-promoting PMA stimulation (Fig. 2.2A) and since previous studies have 

reported that WWP1 localizes to the early endosome (Zhi and Chen, 2012), we 

hypothesized that WWP1 might interact with CX43 in the early endosome. To test this 

hypothesis, HeLa cells stably expressing CX43 (HeLa-CX43) were transfected with 

mCherry-tagged WWP1.  Forty-eight hours following transfection, cells were treated 

with 100ng of PMA for one hour, then fixed and immunofluorescently stained with anti-

CX43 and anti-EEA1 antibodies. Co-localization of WWP1, CX43, and the early 

endosome marker EEA1 was visualized as white overlap of the three fluorochromes. Our 

data showed the co-localization of CX43 and mCherry-WWP1 in the early endosomes 

(Fig. 2.3), demonstrating that WWP1 can associate with internalized CX43 in a 

subdomain of the early endosome. 

WWP1 mediates ubiquitylation of CX43 

Given the interaction of WWP1 and CX43 proteins, we next examined whether 

WWP1 could target CX43 for ubiquitylation in vivo. This was accomplished by co-

transfecting 293T cells with CX43, HA-tagged Ubiquitin (HA-Ub) and either Myc-

WWP1 or Myc-C886S. Ubiquitylation of CX43 was assessed by immunoprecipitating 

with anti-HA antibody and then immunoblotting with anti-CX43 antibody to look for 

ubiquitylated forms of CX43. The conjugation of a single ubiquitin moiety adds about 8 
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kDa to the molecular weight of a substrate, causing a shift in migration on SDS page. Our 

data showed that CX43 is conjugated with ubiquitin and this was indicated as an increase 

in CX43 molecular weight to form a ladder-like or smear on the blot that ranged between 

50 to 100 kDa in size (Fig. 2.4A). Our data also showed this modification to be 

dependent on the ligase activity of WWP1 as the catalytically inactive form of WWP1 

showed dramatically reduced ubiquitylation activity (Fig.2.4A, lane 2). In order to 

confirm the specificity of WWP1-mediated ubiquitylation of CX43 and to rule out the 

possibility of an unknown ubiquitylated protein being pulled down with CX43, a 

reciprocal immunoprecipitation was performed using an anti-CX43 antibody followed by 

immunoblotting with an anti-HA antibody. Our reciprocal IP data confirmed that WWP1 

directly ubiquitylates CX43 and this modification was dependent on the ligase activity of 

WWP1 (Fig. 2.4B). In addition, our data revealed that overexpression of WWP1 resulted 

in a substantial reduction in CX43 protein in the input suggesting that WWP1 is causing 

CX43 turnover (Fig. 2A & B). 

WWP1 promotes K27- and K29-linked polyubiquitylation of CX43 

The ladder-like appearance on our ubiquitylation data could arise from the 

conjugation of multiple ubiquitins on different lysine residues (multi-mono-

ubiquitylation) or the addition of a polyubiquitin chain. To differentiate between multi-

mono and polyubiquitin conjugation of CX43, the ubiquitylation assay was repeated 

using a mutant HA-tagged ubiquitin (HA-K0) in which all the lysine residues were 

mutated to arginine so that it was rendered incapable of extending a polyubiquitin chain. 

Our data showed that ubiquitylation of CX43 was highly reduced upon expression of the 

mutant Ub (HA-K0) indicating that the ladder like appearance on the SDS-PAGE was in 
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fact due to the conjugation of a polyubiquitin chain instead of multi-mono ubiquitylation 

on CX43 (Fig. 2.5A, lane2).        

To determine the type of polyubiquitin linkage conjugated by WWP1, the 

ubiquitylation assay was repeated using mutant ubiquitin variants that have only one 

lysine residue to accept the growing chain while the rest of the lysine residues have 

arginine substitutions.  The results indicate that WWP1 preferentially promotes the 

conjugation of K27- and K29-linked polyubiquitin chains on CX43 (Fig. 2.5A). 

Extension of the K27-and K29-linked polyubiquitin chains was dependent on the 

catalytic activity of WWP1, as the dead ligase was unable to promote these linkages (Fig. 

2.5B). 

2.4. DISCUSSION  

In this study we demonstrated that WWP1 could co-immunoprecipitate with 

CX43 and this interaction was dependent on the PPXY motif of CX43, as mutations in 

this domain resulted in a dramatic reduction in the level of WWP1 that pulled down with 

CX43. However there was a small amount of co-immunoprecipitation of WWP1 with 

mutant CX43-P283L, which could be the result of interaction of WWP1 with the 

phospho-serine/threonine motifs of CX43-P283L since WW domains are known to have 

affinity for phosphor-S/T motifs ((Macias et al., 2002). Alternatively, it remains a formal 

possibility that the WW domains of WWP1 are binding to other proteins in the 

immunoprecipitated complex. However, co-expression of GST-tagged WWP1 with 

CX43 or P283L-CX43 protein followed by GST pull down assays will be necessary to 

rule out the above possibility. 
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PMA is known to induce hyperphosphorylation of CX43 followed by increased 

GJ endocytosis and ubiquitylation of CX43 (Leithe and Rivedal, 2004d; Rivedal and 

Leithe, 2005; Sirnes et al., 2008). PMA has also been reported to increase the 

transcription or translation of CX43 (Rivedal and Leithe, 2005). The studies described 

here show increased co-immunoprecipitation of CX43 with WWP1 in the presence of 

PMA. This could be the consequence of either more cytoplasmic CX43 being made 

available for interaction with WWP1 upon PMA stimulation (though endocytosis or via 

transcription and translation) or of increased affinity of WWP1 for phosphorylated CX43. 

In this study we saw interaction of WWP1 and CX43 even in the absence of PMA-

induced phosphorylation, albeit to a lesser extent compared to what was observed in the 

presence of PMA. Considering the fact that WWP1, CX43, and EEA1 co-localize upon 

PMA stimulation, we suggest that the endocytosis-promoting phosphorylation of CX43 

associated with PMA stimulation enhances the interaction with and subsequent 

ubiquitylation by WWP1, but this modification is not absolutely necessary for this 

interaction to occur. 

Previous studies have reported that NEDD4-mediated multi-mono-ubiquitylation 

of CX43 enhanced EPS15-dependent internalization of CX43 (Girao et al., 2009). In 

contrast, when a ubiquitylation assay was performed using a mutant (K0) ubiquitin, 

which permits multi-mono-ubiquitin conjugation of substrates but does not allow for the 

formation of polyubiquitin chains, the E3 ligase WWP1, and CX43, we found no 

detectable ubiquitylation of CX43 suggesting that closely related family member WWP1 

promotes a different kind of ubiquitylation of the same substrate and may therefore 

function in a separate step in the degradative phase of the CX43 life cycle.  Instead, 
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WWP1 promoted K27- and K29-polyubiquitylation of CX43. The role of modification by 

such atypical polyubiquitin chains on protein function and stability is underappreciated. 

A study has reported the role of K29-linked polyubiquitylation of Deltex by the HECT 

E3 ligase ITCH. K29-polyubiquitylation of Deltex was reported to increase lysosomal 

trafficking (Chastagner et al., 2006). These atypical linkages have also been associate 

with protein aggregations in Huntington pathogenesis (Zucchelli et al., 2010).   

Previously reported ubiquitylation of CX43 by both NEDD4 and SMURF2 was 

not associated with CX43 turnover. However, overexpression of wild type WWP1 was 

associated with a robust reduction in CX43 levels (Fig. 2.1 and Fig. 2.4, input), implying 

that WWP1-mediated ubiquitylation of CX43 promotes turnover of the substrate protein. 

This is seemingly at odds with a recently published study which showed that a mutant 

form of CX43 that has all its lysine residues substitutes with arginines behaved the same 

way as wild type CX43 in the presence of both proteasomal and lysosomal inhibitors 

(Dunn et al., 2012). In that report, the addition of proteasomal inhibitors was associated 

with an increase in the amount of CX43 at the plasma membrane with a corresponding 

increase in the intensity of a 50 kDa CX43 band on western blot (which happens to be the 

same size as a mono-ubiquitylated CX43). The observed increase of CX43 after 

proteasomal inhibition was shown to be secondary to the stabilization of AKT/PKB 

which directly phosphorylates CX43 to inhibit its internalization (Dunn et al., 2012). In 

contrast, our study showed that WWP1 promotes K27- and K29-linked 

polyubiquitylation of CX43.  This event was greatly enhanced by PMA stimulation, 

which promotes MAPK- and PKC-dependent phosphorylation of CX43 on different 

residues, and these changes have been associated with the increased endocytosis of CX43 
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(Solan and Lampe, 2005).  Taken together, these data suggest that CX43 is endocytosed 

in a WWP1-independent manner and WWP1 acts upon CX43 at the level of the early 

endosome.   
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2.5. FIGURES 

                      

             

 

Figure 2.1 A. WWP1 overexpressing mice display reduced cardiac CX43. Western blot 

analysis of heart samples derived from WWP1 overexpressing transgenic mice revealed a 

reduction in CX43 protein compared to WT animals in two independent transgenic lines 

(14667 and 14730).  B. Quantification of the CX43 protein level showed an eighty 

percent reduction in the CX43 protein level in transgenic mice compared to WT animals. 
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Figure 2.2 WWP1 co-immunoprecipitates with CX43 via the PPXY motif. A. 293T cells 

were co-transfected with CX43 and either Myc-WWP1 or Myc-C886S, 

immunoprecipitated using an anti-CX43 antibody, and then probed for the presence of 

WWP1 using an anti-Myc tag antibody.  This analysis revealed the interaction of both 

WWP1 and mutant WWP1 (C886S) with CX43, suggesting the association is 

independent of the ubiquitin ligase activity of WWP1. The co-immunoprecipitation was 

enhanced in the presence of PMA. Shown here are representative images from three 

independent trials. B. The co-immunoprecipitation assay was repeated in PMA-

stimulated 293T cells that were co-transfected with Myc-WWP1 or Myc-C886S and with 

either CX43 or a mutant CX43 (CX43-P283L) which bears a proline to leucine mutation 

in its PPXY motif.  The mutant CX43 showed a dramatic reduction in the amount of 

WWP1 that was pulled down, particularly as compares to wild type CX43 (compare lanes 

1 and 3 or 2 and 4).  Shown here are representative images from three independent 

experiments. 

A 
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Figure 2.3 Co-localization of CX43 with WWP1 in the early endosome. HeLa-CX43 

cells were transfected with mCherry-WWP1 (red) and then forty eight hours later were 

treated with 100 ng/mL PMA for 1 hr. Cells were fixed and immunofluorescently 

labelled using anti-CX43 (green) and anti-EEA1 antibodies (blue). Images were taken 

using Olympus IX81 (Hamamatsu C10600 camera). 2D deconvolution was performed 

using MetaMorph Basic to remove out of focus light. Our data showed intracellular co-

localization of CX43 with WWP1 (yellow) as well as co-localization of both CX43 and 

mCherry-WWP1 in the early endosomes (white).  Overlap of WWP1 and EEA1 is shown 

in magenta while overlap of CX43 and EEA1 is shown in cyan.  Shown here are 

representative images.   
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Figure 2.4  WWP1 mediates ubiquitylation of CX43. A. PMA-stimulated 293T cells were 

co-transfected with CX43, HA-tagged Ub and either Myc-WWP1 or Myc-C886S. Cells 

lysates were immunoprecipitated with anti-HA antibody and then probed with anti-CX43 

antibody to detect ubiquitylated forms of CX43. WWP1 mediates ubiquitylation of CX43 

as the high molecular weight ladder between 50 and 100 kDa is completely abrograted 

when a mutant version of WWP1 that lacks ubiquitin ligase activity was utilized. A 

significant reduction in the steady state level of CX43 was noted when wildtype WWP1 

was overexpressed (compare input for Myc-WWP1 vs. that for Myc-C886S). B. These 

results were confirmed using a reciprocal immunoprecipitation assay.  In particular, 

PMA-stimulated 293T cells were transfected with the same expression constructs as 

above and an immunoprecipitation for CX43 was performed followed by immunoblotting 

for HA-tagged ubiquitin. Again, ubiquitylation of WWP1 (in the form of a high 

molecular weight smear) was evidences only in the presence of WT WWP1 
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Figure 2.5 WWP1 mediates K27- and K29-linked polyubiquitylation of CX43. A. A 

ubiquitylation assay was performed in PMA-stimulated 293T cells by overexpressing 

CX43, Myc-WWP1 and one of the seven HA-tagged ubuquitin variants that have only 

the indicted lysine residue available to extend a polyubiquitin chain.  WWP1 

preferentially conjugates K27- and K29-linked polyubiqutin chains on CX43 (lanes 5 & 

6). B. When PMA-stimulated 293T cells were instead transfected CX43, either Myc-

WWP1 or Myc-C886S, and with the indicated version of HA-tagged ubiquitin, it was 

noted that K27- and K29-polyubiquitylation of CX43 was dependent on the ligase 

activity of WWP1.
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CHAPTER THREE 

WWP1-Mediated Ubiquitylation of CX43 Regulates CX43 Turnover and GJIC 
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3.1. INTRODUCTION 

The level of GJ communication between cells is strictly regulated through 

multiple mechanisms, including alternations in GJ channel permeability as well as rapid 

channel assembly and disassembly (Laird, 2006). The ability of a solute to pass through a 

GJ channel depends on its net charge, size and interactions with specific CXs that 

constitute GJs (Goldberg, 2003; (Nielsen et al., 2012). The conductance of a GJ channel 

depends on the type of CX isoform from which it is assembled,  and further variations in 

conductance are created by assembling homomeric (composed of the same type of CX) 

or heteromeric (composed of different CX isoforms) hemichannels (Ahmad et al., 1999). 

Gap junctional communication can also be regulated through channel gating, a term used 

to describe channel opening and closing. Channel gating is regulated by change in pH, 

voltage, Ca2+ concentration, phosphorylation and protein interactions (Musil and 

Goodenough, 1990). In this study we focused on GJ regulation via channel turnover.  

GJs are highly dynamic structures that undergo constant assembly and 

disassembly. Cells regulate the number of GJ channels by balancing the rate of synthesis 

with the turnover of CXs. CXs are characterized by their high turnover rate with constant 

deposition of newly formed channels at the edge of GJ plaques and endocytosis of 

already existing channels from the center of those plaques (Musil and Goodenough, 

1990). The high turnover rate of GJs has been suggested to be a mechanism of regulating 

GJIC.  It is hypothesized that ubiquitylation may be one mechanism for facilitating the 

rapid turnover of GJs. 

Although previous studies have identified the E3 ligases NEDD4 and SMURF2 as 

regulators of CX43 endocytosis (Fykerud et al., 2012; Girao et al., 2009), no change in 
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CX43 half-life was associated with alterations in the levels of either of these ligases.  In 

particular, NEDD4-mediated ubiquitylation of CX43 has been shown to increase CX43 

endocytosis via an increased interaction between CX43 and EPS15, one of the adaptors in 

the endocytosis pathway (Girao et al., 2009).  Although NEDD4-mediated ubiquitylation 

of CX43 has been reported, this ubiquitylation event did not result in any changes in total 

CX43 protein (Girao et al., 2009), suggesting a role of multiple E3 ligases in the 

regulation of CX43.  A recent study by Fykerud et al, indicated that SMURF2, an E3 

ligase closely related to NEDD4, also plays an important role in CX43 endocytosis 

(Fykerud et al., 2012). Although the study revealed stabilization of membrane-associated 

CX43 following siRNA knockdown of SMURF2, ubiquitylation of CX43 persisted even 

after loss of functional SMURF2 (Fykerud et al., 2012) suggesting a potential role for 

other E3 ligases in targeting CX43. Based on these observations, we posit that WWP1-

mediated ubiquitylation is involved in CX43 turnover.  

Studies described in Chapter 2 demonstrate that WWP1 polyubiquitylates CX43 

(Fig. 2.5).  Defining the molecular pathways and mechanisms involved in WWP1-

mediated ubiquitylation of CX43 and its effect on CX43 protein stability and GJIC would 

contribute to understanding how GJs are regulated. Here we report that overexpression of 

WWP1 in HeLa-CX43 cells is associated with a decrease in CX43 half-life from two 

hours to less than one hour as well as a reduction in GJIC, and this effect is dependent 

upon the ubiquitin ligase activity of WWP1. Furthermore, WWP1 siRNA-mediated 

knockdown of endogenous WWP1 in HeLa-CX43 cells resulted in increased levels 

(60%) of CX43 protein. Collectively, in this study we identified WWP1 as a novel 
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regulator of CX43 GJs that acts to modulate the level of functional CX43 at the plasma 

membrane available for GJIC.  

3.2. MATERIALS AND METHODS  

Cells and plasmids 

HEK 293T cells and HeLa-CX43 cells were maintained in culture in DMEM 

supplemented with 10% FBS plus 1% penicillin/streptomycin at 37°C with 5% CO2. 

Transfections were performed using JetPRIME (polyPLUS) or Lipofectamine 2000 

reagent (Invitrogen) according to the manufacturer’s instructions. An ON-TARGET plus 

Human WWP1 siRNA-SMART pool composed of four WWP1 targeting siRNAs (target 

sequence 1: CCAAGAUGGAUUGAAGAGUU; target sequence 2: 

GAAAAGCAACGAUAGAUUU; target sequence 3: GAACGCGGCUUUAGGUGGA; 

target sequence 4: GGUCUGAUACUAGUAAUAA) and a non-targeting pool (D-

001810-10-05) were purchased from Thermoscientific. 25 ng of siRNA was used to 

transfected cells using HiPerFect transfection reagent (Qiagen, 301704)   

Western blot analysis 

Cells were harvested using Triton X-100 lysis buffer (150 mM NaCl; 50 mM Tris-HCl, 

pH 7.5; 0.5% Triton X-100 supplemented with cocktail protease inhibitors plus EDTA, 2 

mM sodium orthovanadate, and 10 mM iodoacetamide). 50 µg of protein was loaded and 

separated on a gradient 4-15% TGX-SDS gel (Bio-Rad), and transferred to PVDF 

membrane (Bio-Rad). A blocking buffer (5% non-fat dry milk in TBST) was used to 

block non-specific binding of the primary antibodies to the membrane. The blot was 

probed using one of the following primary antibodies for 16 hours at 4°C: anti-CX43 
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(Sigma, C6219), anti-Myc (Santa Cruz, 9E10), anti-tubulin (Sigma, T5168), and anti-

WWP1 (Abnova, clone 1A7) followed by probing with the corresponding HRP-tagged 

secondary antibodies. Signals were visualized using ECL reagent (Millipore, Immobilon 

Western) and images were acquired using the FluorChem E Western blot imaging system 

(Protein Simple) and images were analyzed using AlphaView software. 

Cyclohexamide chase assay 

HeLa-CX43 cells transfected either with Myc-WWP1 or with Myc-C886S were 

treated with 100 ng/mL PMA for 1 hour followed by treatment with 100 µg/mL 

cyclohexamide (CHX). Cells were harvested using RIPA (Radio immunoprecipitation 

assay) buffer (150mM NaCl, 50mM Tris-HCl, 1% NP-40, 0.5% sodium deoxycholate, 

0.1% SDS (sodium dodecylsulphate) at 0, 1, 2, 3, and 4 hours post CHX treatment. 

Western blots were performed using the indicated primary antibodies as described above.  

The relative remaining level of CX43 was calculated by first normalizing the level of 

CX43 protein for each sample using the tubulin loading control. Subsequently a ratio of 

normalized CX43 after CHX addition to normalized CX43 before cyclohexamide 

addition was calculated for each of the four indicated time points. The experiment was 

repeated three times and error bars were calculated from triplicates. The half-life of the 

CX43 protein is estimated to be the time point after the addition CHX at which the CX43 

protein level is 50% of the CX43 at time zero. 
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Triton X-100 solubility assay 

293T cells were harvested using triton X-100 lysis buffer (150 mM NaCl; 50 mM Tris-

HCl, pH 7.5; 0.5% Triton X-100 supplemented with cocktail protease inhibitors plus 

EDTA, 2 mM sodium orthovanadate, and 10 mM iodoacetamide). Cell lysates were 

centrifuged at 22,000 x g for 30 min at 4°C. The Triton X-100 insoluble pellet was re-

suspended in Triton X-100 lysis buffer plus 0.5% SDS and sonicated three times at 50% 

amplitude for 5 seconds. Triton X-100 soluble and insoluble fractions were run on 

gradient 4-15% TGX SDS polyacrylamide gel and transferred to a PVDF membrane. 

Western blots for CX43 were performed as indicated above. Alpha View imaging 

software was used to quantify band intensities and GraphPad Prism software was used to 

perform statistical analysis and draw graphs. The experiments were repeated twice and 

the values are presented as the mean and SEM of duplicates. 

 Scrape loading assay 

HeLa-CX43 cells plated on coverslips were transfected with either mCherry-

WWP1 or mCherry-C886S. Forty eight hours post transfection, confluent cells were 

rinsed with 1X PBS, scraped using a sharp razor blade and then incubated with 0.25% 

Lucifer yellow dye for 4 min at room temperature. Cells were subsequently rinsed three 

times with 1X PBS followed by fixation with 4% paraformaldehyde (PFA) for 15 min. 

Between twenty to thirty images along the scratch were acquired with 20X objective of 

an Axio Vision Zeiss wide field epifluorescent microscope using Zeiss Axiocam MRM5 

camera. For every image, the distance between the center of the scratch and the farthest 

cell that has taken up the dye was measured and reported in arbitrary units (AU). All 
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measurements were calculated using ImageJ software (NIH) and graph plotting and 

statistical analysis was performed using GraphPad Prism.  

3.3. RESULTS 

WWP1 induces increased CX43 turnover  

To further understand the role of WWP1-mediated ubiquitylation on CX43 

protein stability described in Chapter 2, we measured the half-life of CX43 in HeLa-

CX43 cells using a CHX chase assay. In this assay, HeLa-CX43 cells transfected with 

either Myc-WWP1 or Myc-C886S were first stimulated with 100 ng/mL PMA for 1 hour 

and subsequently treated with 100 µg/mL of CHX for 1, 2, 3, or 4 hours. Cells were 

harvested, lysed, and a ratio of the amount of CX43 protein after CHX treatment to the 

level of CX43 before CHX treatment (0 hour) was calculated for each time point. All 

protein measures were standardized to a tubulin loading control. This experiment was 

done in triplicates to obtain averages and standard deviations for each time point and 

graphed as a line graph to approximate half-life (Fig. 3.1). This analysis indicated that 

overexpression of WWP1 resulted in increased CX43 turnover with a reduction in CX43 

half-life from two hours to fifty minutes compared to Myc-C886S transfected or 

untransfected cells (Fig. 3.1).  Thus, the ubiquitylation of CX43 by WWP1 resulted in 

increased turnover of this GJ protein. 

We further investigated the role of WWP1 overexpression on the levels of GJ 

incorporated versus cytoplasmic CX43 in 293T cells by co-transfecting them with CX43 

and either Myc-WWP1 or Myc-C886S after PMA stimulation for 1hour. CX43 in the GJ 

plaque is insoluble in triton X-100 lysis buffer and migrates more slowly upon 
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electrophoresis (Sirnes et al., 2008), hence a triton X-100 solubility assay was used to 

differentiate between plasma membrane (junctional) and cytoplasmic (non-junctional) 

CX43. Western blot analysis of the junctional and non-junctional fractions of CX43 

showed that WWP1 overexpression leads to a dramatic decrease in both junctional and 

non-junctional CX43 protein (90% and 75%, respectively) levels compared to cells 

transfected with the ligase-dead version of WWP1 (C886S, Fig. 3.2). These data indicate 

that overexpression of WWP1 does not preferentially affect a subset of the intracellular 

pools of CX43; rather, its effect is globally evidenced.  

Overexpression of WWP1 leads to down regulation of GJIC 

Since it appeared that the levels of CX43 at the plasma membrane were regulated 

by the ubiquitin ligase activity of WWP1, we hypothesized that GJIC would be altered 

with changing levels of WWP1. GJIC function is traditionally measured by a scrape 

loading or dye transfer assay which measures the passage of small tracer dyes such as 

Lucifer yellow through gap junctions. Lucifer yellow is impermeable through the plasma 

membrane and is introduced to cells through injection or scraping. Once introduced into 

the cell the dye travels between adjacent cells through GJ channels and the rate of dye 

migration is used as a measure of GJ function. A scrape loading assay was performed on 

a confluent layer of non-stimulated HeLa-CX43 cells overexpressing either mCherry-

WWP1 or mCherry-C886S and the lucifer yellow mobility was compared to that in 

untransfected HeLa-Cx43 cells.  The furthest distance traveled by the dye from the 

middle of the scratch was determined for each culture condition in twenty to thirty 20X 

magnification fields using ImageJ imaging software (NIH).  Values are presented as 

means and SEM and one-way ANOVA with Bartlett’s correction was performed to test 
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statistical significance. This analysis demonstrated a statistically significant reduction 

(36%) in dye transfer through the GJ channels in those cells overexpressing wild type 

WWP1 as compared to HeLa-CX43 cells transfected with mCherry-C886S or 

untransfected cells (p<0.001) (Fig. 3.3). Further, these functional changes appear to be 

dependent upon the ubiquitin ligase activity of WWP1 as the C886S ligase-dead mutant 

had no detectable effect on GJIC and suggests that dosage of WWP1 may influence 

GJIC.  

Depletion of endogenous WWP1 leads to CX43 protein stabilization 

To assess the physiological role of WWP1 on CX43 turnover, endogenous WWP1 

was depleted in HeLa-CX43 cells using a targeting siRNA pool. 48 hours post 

transfection, cells were treated with 100mg/mL PMA for one hour, and the level of CX43 

was subsequently assessed by harvesting cells using Laemmli sample buffer. Western 

blot analysis of triplicates showed that loss of functional WWP1 using the targeting 

siRNA pool yielded a 60% increase in total CX43 compared to similarly treated cells that 

were either untransfected or transfected with a non-targeting siRNA pool (Fig. 3.4A). 

These data confirm that the decrease in CX43 observed after WWP1 overexpression is 

not an artifact but that WWP1 has a physiological role in regulating CX43.  

To determine whether loss of WWP1 function affected the entire pool of CX43 or 

a particular subcellular fraction, a triton X-100 solubility assay was performed in HeLa-

CX43 cells transfected with either WWP1 targeting siRNA pool or non-targeting siRNA 

pool. Forty eight hours post transfection, cells were treated with 100ng/ml PMA for one 

hour and cells were harvested using Triton X-100 lysis buffer followed by high speed 

centrifugation to fractionate triton X-100 soluble and insoluble CX43.The experiment 
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was performed in triplicates and the level of CX43 was quantified using AlphaView 

imaging software. GraphPad statistical analysis software was used to calculate one way 

ANOVA.  Immunoblot analysis of triton X-100 soluble and insoluble fractions of CX43 

showed increased levels of junctional CX43 on the membrane. However, the level of 

cytoplasmic or non-junctional CX43 was decreased which might be a consequence of 

increased CX43 recycling to the plasma membrane or lack of CX43 internalization (Fig. 

3.4B).  

3.4. DISCUSSION 

Here we demonstrate for the first time that the E3 ubiquitin ligase WWP1 

regulates CX43 stability and GJIC. This regulation was physiologically relevant as 

opposite effects were observed with overexpression of WWP1 versus knockdown of the 

endogenous ligase in two distinct cell lines.  Further, the ubiquitin ligase activity of 

WWP1 was necessary for these effects as overexpression of a ligase-dead version of 

WWP1 showed no change relative to untransfected cells.   Although previous studies 

have identified NEDD4 and SMURF2 as regulators of CX43 endocytosis (Fykerud et al., 

2012; Girao et al., 2009) none of the studies have shown changes in CX43 half-life. In 

particular, NEDD4-mediated ubiquitylation of CX43 has been shown to increase CX43 

endocytosis via an increased interaction between CX43 and EPS15, one of the adaptors in 

the endocytosis pathway (Girao et al., 2009). A recent study by Fykerud et al, indicated 

that SMURF2, an E3 ligase closely related to NEDD4, also plays an important role in 

CX43 endocytosis (Fykerud et al., 2012). Although the study revealed stabilization of 

membrane-associated CX43 following siRNA knockdown of SMURF2, ubiquitylation of 

CX43 persisted even after loss of SMURF2 (Fykerud et al., 2012). Based on these 



  

53 

 

observations, we suggest that WWP1-mediated ubiquitylation is involved in CX43 

turnover and in this study we aimed to get a better understanding of the role of WWP1 on 

CX43 GJ level and function. Subsequent half-life measures in HeLa-CX43 cells revealed 

that overexpression of only catalytically WWP1 resulted in increased CX43 turnover.  

To further understand the role of WWP1 ubiquitylation on gap junction function, 

a scrape loading or dye transfer assay was performed on HeLa-CX43 cells. Previous 

studies have reported a transient decrease in GJIC upon treatment of cells in culture with 

PMA. To delineate the role of PMA induced phosphorylation and WWP1 induced 

ubiquitylation on GJIC, the scrape loading assay was conducted in the absence of PMA. 

The fact that GJIC was reduced upon WWP1 overexpression even in the absence of PMA 

suggests that WWP1 might be playing a role in maintaining the physiological CX43 

level. Our data indicated that WWP1 overexpression caused a significant reduction on 

dye transfer through gap junction channels. This reduction in GJIC was not seen when 

the ligase dead mutant was utilized.  Collectively, our data indicate a novel role of 

WWP1 on the CX43 stability and GJIC.   

In this study, the role of endogenous WWP1 on CX43 regulation and GJ function 

was assessed through siRNA-mediated knockdown of WWP1 in PMA-stimulated HeLa-

CX43 cells.  Loss of WWP1 expression was associated with a 60% increase in total 

CX43 protein as compared to similarly treated cells transfected with a non-targeting 

siRNA pool or to untransfected cells that were PMA-stimulated. Additionally, a Triton 

X-100 solubility assay was conducted HeLa-Cx43 cells to determine if the increased 

CX43 is due to stabilization of membrane or cytoplasmic fractions of CX43. Our data 

indicated that WWP1 knockdown is associated with increased junctional (membrane) and 
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reduced cytoplasmic CX43 levels. This observation is similar to previous reports on 

siRNA knockdown of SMURF 2 and NEDD4 that showed an increased level of CX43 on 

the plasma membrane. The reduction in non-junctional (cytoplasmic) CX43 after loss of 

WWP1 could be explained either by decreased endocytosis of CX43 or by increased 

recycling of CX43 to the plasma membrane. It is tempting to speculate that the latter is 

the cause for the effects seen upon knockdown of WWP1 since a previous study  alludes 

to the existence of a CX43 recycling pathway (Boassa et al., 2010).  Complementary to 

this observation are the results obtained from performing the triton X-100 solubility in 

PMA-stimulated 293T cells after WWP1 overexpression. With increased expression of 

WWP1, both junctional (non-soluble) and non-junctional (soluble) levels of CX43 were 

significantly decreased by ninety and seventy five percent, respectively. However, the 

decreased junctional CX43 level upon WWP1 could be explained by the degradation of 

the pool of CX43 in the cytoplasm since proteasomal and lysosomal inhibitors were not 

utilized in these assays.  To determine the molecular mechanisms of CX43 turnover, 

intracellular trafficking studies on the level of CX43 in different endocytic compartments 

will be required and we have addressed the same question in the next chapter. 
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3.5. FIGURES                                
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Figure 3.1 WWP1 overexpression increases CX43 turnover. A. HeLa-CX43 cells 

transfected either with Myc-WWP1 or Myc-C886S were treated with 100 ng/mL PMA 

followed by 100 µg/mL of cyclohexamide (CHX) for 1, 2, 3, and 4 hours at which time 

the level of CX43 protein was assessed. Tubulin was used as a loading control and the 

remaining CX43 after CHX addition was standardized against CX43 before CHX 

addition at time 0. The values are presented as means and SEM of triplicates. The half 

life of CX43 is the time at which 50% of the CX43 protein is measured as compared to 

Cx43 levels before the introduction of CHX. B. The experiment was conducted in 

triplicates and a representative western blot showing CX43 protein level is shown here.  
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Figure 3.2 WWP1 overexpression reduces junctional and non-junctional cellular pools of 

CX43. 293T cells were co-transfected with CX43 and either Myc-WWP1 or Myc-C886S. 

48 hours post-transfection cells were treated with 100ng/ml PMA for 1 hour and 

cellswere harvested using Triton X-100 lysis buffer. A. A bar graph showing Cx43 levels 

relative to mutant C886S transfected cells. WWP1 overexpression leads to a 90% 

reduction in Triton X-100 insoluble junctional CX43 compared to mutant WWP1 

(C886S). Values are presnted as means and SEM of duplicates. A student’s t-test was 

used to determine significance analysis (p=0054).  B. WWP1 over expression leads to 

decreased (75%) non-junctional/cytoplasmic CX43 proetein level compared to C886S. 

The experiment was conducted in duplicates and Student’s t-test analysis with Welch’s 

correction showed a significant reduction in CX43 protein upon overexpression of 

WWP1.(p<0.05). 
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Figure 3. 3 Over expression of WWP1 leads to down regulation of GJIC. A scrape 

loading assay was performed on unstimulated HeLa-CX43 cells transfected with either 

mCherry-WWP1 or mCherry-C886S as well as on untransfected control cells (UN). Cells 

were injured by scraping followed by the addition of 0.25% Lucifer yellow for 4 min. B. 

The farthest dye migration was measured in arbitrary units from the center of the scratch 

using ImageJ (NIH) software. A bar graph showing the means and SEM (n=30) of dye 

migration in AU. Cells transfected with WWP1 had a statistically significant decrease 

(36%) in dye transfer between adjacent cells as compared to C886S-transfected or 

untreated cells, (p<0.001) indicating that the ubiquitin ligase activity of WWP1 was 

required to down regulate GJIC.  
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Figure 3.4 Loss of function of endogenous WWP1 results in stabilization of cell 

membrane CX43. A. HeLa-CX43 cells were transfected with WWP1-siRNA or non-

targeting siRNA (NT-siRNA). 48 hours later cells were treated with 100 ng/mL PMA for 

1 hour and then harvested using Laemelli sample buffer and total CX43 was quantified  

and standardized using tubulin as a loading control and the CX43 protein relative to NT-

siRNA was calculated.The experiments were conducted in triplicates and quantification 

of protein leveles was done using AlphaView software. Knockdown of WWP1 is 

associated with a 60% increase in total CX43 level as compared to untransfected (UN) or 

NT-siRNA transfected. Values are presnted as means and SEM of triplicates. One-way 

ANOVA was used to test for significance (n=3), (p<0.005). B. HeLa-Cx43 cells were 

transfected with WWP1-siRNA pool or NT-siRNA pool. Cells were treated with 

100ng/ml PMA for 1 hour and were harvested using Triton X-100 lysis buffer followed 

by Triton X-100 solubulity assay to fractionate GJ plaque associated insoluble CX43 

versus cytoplasmic/soluble CX43. ).  Loss of WWP1 was associated with a significant 

increase in junctional (plasma membrane) CX43 and a decrease in the non-junctional 

(cytoplasmic) fraction of CX43. One-way ANOVA was perforemed to assess statitical 

significance (n=3), (p<0.05). 
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CHAPTER FOUR 

WWP1-Mediated Ubiquitylation Targets CX43 for Lysosomal Degradation 
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4.1. INTRODUCTION 

GJs are dynamic plasma membrane structures that undergo constant turnover. GJ 

internalization is reported to involve the CME machinery (Falk et al., 2012; Gumpert et 

al., 2008; Piehl et al., 2007). The CME pathway involves a complex of proteins including 

clathrin and the clathrin adaptors AP2, DAP2, DYNAMIN2, MYOSIN VI, and actin 

(Kirchhausen et al., 2014). During GJ endocytosis, both membranes forming the channel 

are endocytosed into one of the cells joined by the GJs to form a double membrane 

vesicle termed annular junction or connexesome (Piehl et al., 2007). Annular junctions 

are further processed into single membrane vesicles that will eventually fuse with the 

early endosome (Jordan et al., 2001). Ubiquitylation serves as an important signal for 

internalization and endocytic sorting of membrane proteins. Endocytic adaptors such as 

EPS15 and EPSIN have UIM and a clathrin binding domain that link ubiquitin tagged 

cargo to clathrin-coated pits during CME (Kirchhausen et al., 2014).  

Early endosomes serve as vesicular sorting stations in the endocytotic pathway 

with subdomains that promote trafficking of cargo towards the lysosome for degradation 

or to other regions that facilitate recycling of integral membrane proteins back to the 

plasma membrane (Raiborg and Stenmark, 2009). Sorting in the early endosomes is 

achieved by adaptor proteins on the endosomal membranes. One class of well 

characterized adaptors are the Rab GTPases, RAB4 and RAB5 (Henne et al., 2011; Luzio 

et al., 2009). The RABs recruit endosomal sorting complex for transport (ESCRT) 

complex proteins, which are involved in cargo sorting to various intracellular destinations 

(Henne et al., 2011). The ESCRT machinery consists of four complexes, ESCRT-0, I, II 

and III and performs three distinct but connected functions: first, it recognizes 
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ubiquitylated cargo and prevents recycling and retrograde trafficking of the cargo; 

second, it deforms the endosomal membrane allowing cargo to be sorted into endosomal 

invaginations; third, it catalyzes the final abscission of the endosomal invaginations, 

forming the intraluminal vesicles (ILVs) that contain the sorted cargo (Raiborg and 

Stenmark, 2009; Nikko and Andre, 2007).   

Components of the ESCRT complex have multiple ubiquitin binding domains that 

enable ubiquitin-dependent sorting of target proteins through selective binding of 

ubiquitylated cargo. The ESCRT-0 complex consists of the subunits HRS and STAM and 

is considered to be a filter that retains ubiquitylated cargo on the endosomal membrane 

(Luzio et al., 2009; Piper and Luzio, 2007). The HRS subunit has the ability to bind the 

endosomal lipid phosphatidylinositol-3-phosphate thereby nucleating the assembly of the 

ESCRT-0 complex at endosomal membranes. The UIMs in ESCRT-0 have low affinity 

for ubiquitin raising the question as to how this complex can function in efficient sorting 

of ubiquitylated cargo. One possibility is that these UIMs have the ability to bind 

multiple ubiquitins, thereby strengthening the overall interaction. For instance, the well 

characterized membrane receptor, EGFR, has been reported to be ubiquitylated at 

multiple residues and its multi-mono-ubiquitylation favors EGFR binding to HRS (Huang 

et al., 2006; Umebayashi et al., 2008). In addition, the multi-mono-ubiquitylation of 

EGFR has been reported to occur within  multiple subcellular domains, including at the 

plasma membrane as well as at in the early endosome after its internalization, supporting 

the idea that multiple E3 ligases can act on a single substrate to possibly increasing 

substrate affinity for UIMs (Eden et al., 2012).  
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Besides substrate binding, HRS is also responsible for recruiting the ESCRT-I 

complex to early endosomes via its binding to the TSG101 subunit of ESCRT-1 (Luzio et 

al., 2009; Raiborg and Stenmark, 2009). Vps28, another subunit of ESCRT-I, binds to 

Vps36, a component of ESCRT-II in order to recruit the ESCRT-II complex (Raiborg and 

Stenmark, 2009). Once both ESCRT-I and ESCRT-II are assembled at the early 

endosome, membrane deformation is initiated and subdomains of the plasma membrane 

bud into the lumen of the early endosomes to form ILVs. Early endosomes with ILVs 

will mature into MVBs or late endosomes and fuse with the lysosomes for their contents 

to be degraded by lysosomal enzymes (Pryor and Luzio, 2009; Raiborg and Stenmark, 

2009).  The ESCRT-III complex is involved in the transition from ILVs to MVBs by 

mediating membrane scission and recruitment of deubuquitylating enzymes (DUBs) 

(Wright et al., 2011). DUBs catalyze the removal of ubiquitin from a substrate and 

mediate the recycling of ubiquitin, thereby avoiding depletion of the cellular ubiquitin 

pool (Raiborg and Stenmark, 2009; Wright et al., 2011). Thus, by deubiquitylating cargo 

and diverting its passage away from the lysosome, DUBs act as antagonists to the E3 

ligases that promote cargo internalization towards the lumen of the early endosomes. 

Several lines of evidence indicate a role for ubiquitylation in the internalization of 

CX43 (Leithe and Rivedal, 2004d; Leithe and Rivedal, 2004b). In particular, it has been 

shown that ubiquitin is recruited to GJs in response to PMA treatment (Leithe and 

Rivedal, 2004a). Ubiquitylation of CX43 is essential for its recognition by the UIMs of 

endocytic adaptor proteins like EPS15 at the plasma membrane, as EPS15-mediated 

endocytosis of CX43 was enhanced when CX43 was ubiquitylated by NEDD4 (Girao et 

al., 2009).  In contrast, depletion of EPS15 with siRNAs led to the accumulation of CX43 
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on the plasma membrane and an increase in the size of GJ plaques (Girao et al., 2009). 

Although these studies demonstrated the importance of NEDD4-mediated ubiquitylation 

on CX43 endocytosis, no change in total CX43 protein was detected. It is tempting to 

speculate that additional ubiquitylation events occur in the early endosome to increase 

binding affinity of HRS for CX43, thus promoting trafficking of CX43 to the lysosome 

for degradation. CX43 has been shown to interact with components of the ESCRT 

machinery such as HRS.  In particular, depletion of the ESCRT complex proteins HRS 

and TSG101 using siRNA yields an accumulation of ubiquitylated CX43 in early 

endosomes as well as enlargement of early endosomes (Leithe et al., 2009). In the case of 

CX43, the ligase responsible for these additional modifications has not been identified.  

As is indicated in chapter 3 as well as in the mouse model described in chapter 2, 

increased expression of WWP1 results in decreased CX43 half-life.  Further, as shown in 

Chapter 2, WWP1 mediates K27- and K29-linked polyubiquitylation of CX43. The type 

of ubiquitylation determines the fate of a substrate, but the role of atypical polyubiquitin 

chains such as K27- and K29-linked chains is not well documented, although there has 

been some association of K29 linkages with lysosomal degradation (Chastagner et al., 

2006). In an effort to understand the role of WWP1-mediated ubiquitylation on CX43 

trafficking, we utilized immunofluorescence to analyze the co-localization of CX43 and 

markers of post-endocytic compartments including early, late, and recycling endosomes 

in response to overexpression or knockdown of WWP1. Our data demonstrate that the 

ligase activity of WWP1 promotes trafficking of CX43 from the early endosome to the 

late endosome while loss of function of WWP1 is associated with increased recycling of 

CX43. Lysosomal inhibition prevented the degradation of CX43 even when WWP1 was 
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overexpressed.  Taken together, these data place the activity of WWP1 squarely and 

prominently in the center of the intracellular CX43 sorting pathway. 

4.2. MATERIALS AND METHODS 

Tissue culture and reagents 

Human cervical carcinoma (HeLa) cells stably transfected with CX43 (HeLa-

CX43) and Human Embryonic Kidney (HEK) 293T cells were maintained in culture in 

10% complete media (DMEM, 10% FBS, 1% penicillin/streptomycin) at 37°C with 5% 

CO2. Transfections were performed using JetPRIME (PolyPLUS) and Lipofectamine-

2000 reagent (Invitrogen) according to the manufacturer’s instructions. PMA (P81391), 

Dynasore (D7693), and anti-CX43 antibody (C6219) were purchased from Sigma. Anti-

EEA1 (BD Scientific, 610456) anti-CD63 (Developmental Studies Hybridoma Bank, 

H5C6), and anti-RAB11 (Cell Signaling, 3539) antibodies were used to stain the early, 

late and recycling endosomes, respectively. ON-TARGET plus Human WWP1 siRNA-

SMART pool composed of four WWP1 targeting siRNAs (target sequence 1: 

CCAAGAUGGAUUGAAGAGUU; target sequenct 2: 

GAAAAGCAACGAUAGAUUU; target sequence 3: GAACGCGGCUUUAGGUGGA; 

target sequence 4: GGUCUGAUACUAGUAAUAA) and a non-targeting pool (D-

001810-10-05) were purchased from Thermoscientific. 25 ng of siRNA was used to 

transfected cells using HiPerFect transfection reagent (Qiagen, 301704). 
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Immunofluorescence staining 

HeLa-CX43 cells grown on coverslips were transfected using either mCherry-

WWP1 or mCherry-C886S plasmids. Forty-eight hours following transfection, cells were 

treated with 100 ng/mL PMA for one hour. Cells were rinsed with PBS and fixed in 4% 

PFA for 15 min at room temperature, rinsed 3X with PBS followed by blocking using a 

blocking buffer (5% normal goat serum, 1% BSA and 0.3% Triton X-100 in PBS) for 1 

hour at room temperature. Cells were stained using primary antibodies overnight at 4°C 

followed by incubation with fluorophore-conjugated F(ab’)2 fragment secondary 

antibodies (Jackson Immunoresearch). Cover slips were mounted using Fluoro-Gel 

mounting media (Electron Microscopy Sciences). Images were acquired using the 

following microscopes: 100X objectives of Leica DMI6000B microscope (Hamamatsu 

Camera C10600); 63X objectives of Zeiss AxioImager A1 microscope (Zeiss Axiocam 

MRM5 camera), and Olympus IX81 (Hamamatsu C10600 camera). 2D deconvolution 

was performed using MetaMorph Basic for some of the images to remove out of focus 

light. 

Co-localization and statistical analysis 

Between twenty five to thirty five transfected with mCherry-WWP1 or mCherry-

C886S (only cells with red fluorescent intensities ranging between thirty three to seventy 

five pixels were selected in order to analyze transfected cells with similar levels of 

expression) and untransfected cells were used for Pearson’s co-localization coefficient 

analysis. The NIH ImageJ co-localization threshold plugin (Schneider et al., 2012) 

software was used to calculate co-localization coefficients. The co-localization co-

efficient values range between 1 to -1 where 1 indicates perfect positive localization, 0 
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means no co-localization and -1 total negative co-localization. The transfections were 

performed at least three times in order to get the required number of cells. GraphPad 

Prism was used to perform Student’s t-test and ANOVA statistical significance analysis 

and to make graphs. 

Protein extraction and Western blot analysis 

HEK293T  and HeLa-CX43 cells were rinsed with ice cold PBS and then lysed 

using Triton X-100 lysis buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.5, 0.05% Triton 

X-100 plus a protease inhibitor cocktail; 10 mM orthovanadate and 2 mM sodium 

iodoacetamide). The cell extracts were denatured by boiling in 2X Laemmli sample 

buffer for 5 min followed by electrophoresis on a denaturing 4-15% gradient 

polyacrylamide gel and then transferred to a PVDF membrane. Membrane blocking was 

performed using 5% nonfat dry milk in TBST followed by incubation with the 

corresponding primary and secondary antibodies. Protein levels were quantified as band 

intensities using Alpha View imaging software. Experiments were repeated at least three 

times and the average of the triplicates was used to calculate averages and standard 

deviation calculations.  

Triton X-100 solubility assay 

293T cells were harvested using Triton X-100 lysis buffer (150 mM NaCl; 50 

mM Tris-HCl, pH 7.5; 0.5% Triton X-100 supplemented with cocktail protease inhibitors 

plus EDTA, 2 mM sodium orthovanadate, and 10 mM iodoacetamide).  Cell lysates were 

centrifuged at 22,000 x g for 30 min at 4°C. The insoluble pellet was re-suspended in 

Triton X-100 lysis buffer plus 0.5% SDS and sonicated twice at 50% amplitude for 5 
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seconds. Triton X-100 soluble and insoluble fractions were separated on 4-15% gradient 

polyacrylamide gels (TGX, Bio-Rad). Experiments were performed in duplicates.   

4.3. RESULTS 

PMA promotes internalization of CX43 to the early endosome   

To study the role of WWP1 in the intracellular trafficking of CX43 from the 

endosome to the lysosome, we first sought to establish an experimental system. In 

particular, we wanted to promote the internalization of CX43.  Therefore, we treated 

HeLa-CX43 cells with PMA.  In agreement with previously published studies (Falk et al., 

2012; Leithe and Rivedal, 2004d; Sirnes et al., 2008), PMA treatment changed the 

localization pattern of CX43 from being predominantly at the cell surface to being 

intracellular with a punctate pattern (Fig. 4.1A).  To verify that this treatment was 

promoting trafficking of CX43 through the endocytic pathway, PMA-treated HeLa-CX43 

were immunofluorescently labelled with antibodies recognizing CX43 and the early 

endosome marker EEA1.  Co-localization analysis showed that a subset of the CX43 pool 

did indeed localize to the early endosome (yellow in Fig. 4.1A) and that this interaction 

was maximal after one hour of PMA treatment (Fig. 4.1B). Therefore, we utilized this 

time point for subsequent analysis.   

Further confirmation of the endocytosis-promoting effect of PMA was obtained in 

the HEK293T cell line using a Triton X-100 solubility assay.  Since only the CX43 

incorporated into the GJ plaque is insoluble in Triton X-100 lysis buffer, this assay can 

discriminate between junctional CX43 and cytoplasmic pools.  Therefore, increased 

endocytosis of CX43 should correlate with increased Triton X-100 solubility. Indeed, our 
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data showed that exposure of CX43-transfected HEK293T cells to PMA decreases the 

level of membrane CX43 while increasing cytoplasmic CX43 (Fig. 4.1C). Further, 

addition of the CME inhibitor dynosore reversed this effect, highlighting the fact that 

PMA-induced CX43 endocytosis is mediated by the CME pathway (Fig. 4.1D).  

WWP1 promotes trafficking of CX43 from the early endosome to the lysosome 

To examine the role of WWP1-mediated ubiquitylation on CX43 trafficking, 

HeLa-CX43 cells were transfected with either mCherry-WWP1 or mCherry-C886S, 

treated with PMA, and then immunofluorescently labelled using anti-CX43 and anti-

EEA1 antibodies. Between 25 -35 transfected cells (defined as cells with red fluorescence 

intensities between 33-75 pixels) were selected and co-localization analysis was 

measured as Pearson’s coefficient of co-localization using the threshold co-localization 

plugin of ImageJ software.  These values were averaged and used to calculate mean and 

standard deviations. One-way ANOVA was used to test statistical significance. Our data 

showed no significant difference in the co-localization of CX43 and EEA1 among wild 

type and mutant WWP1 transfected or untransfected cells (Fig. 4.2A &B). This indicates 

that PMA alone is sufficient to mediate the internalization of CX43 from the plasma 

membrane to the early endosome as the ubiquitin ligase activity of WWP1 does not 

significantly alter this process. However, immunofluorescent staining of PMA-treated 

HeLa-CX43 cells transfected with mCherry-WWP1 or mCherry-C886S did show 

increased co-localization of CX43 with the late endosomal marker CD63 upon expression 

of wild type WWP1 compared to either mutant WWP1 transfected or to untransfected 

cells (Fig. 4.3 A & B). This indicates that trafficking of CX43 from the early endosome 

to the late endosome was promoted by the ubiquitin ligase activity of WWP1. 
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WWP1 overexpression leads to lysosomal degradation  

Because there was increased co-localization between CX43 and the late 

endosomal marker CD63 when wild type WWP1 was overexpressed in HeLa-CX43 cells 

(Fig. 4.3 A&B) and because overexpression of WWP1 resulted in decreased levels of 

CX43 (Fig. 3.1 & 3.2), we hypothesized that ubiquitylation of CX43 by WWP1 promoted 

lysosomal degradation of CX43.  To test this hypothesis, we transfected HeLa-CX43 

cells with either Myc-WWP1 or with Myc-C886S.  Forty-eight hours later, cells were 

PMA-stimulated and treated with a lysosomal inhibitor (NH4Cl) for three hours. Total 

protein was extracted from the cells using Laemmli sample buffer and the levels of CX43 

protein were measured using western blot. First the protein levels were normalized to 

tubulin and all were compared to the ratio of untreated CX43. Consistent with what we 

had observed in HEK293T cells (Fig. 3.2 A & B), overexpression of only the wild type 

form of WWP1 resulted in a significant decrease in CX43 protein (Fig. 4.4 A & B). 

However, this effect was completely abrogated upon lysosomal inhibition (Fig. 4.4 A & 

B). 

Loss of function of endogenous WWP1 results in decreased late endosomal 

trafficking of CX43  

Because our previous data were generated using overexpression, we sought to 

investigate the physiological role of WWP1 on CX43 trafficking by knocking down 

endogenous WWP1 in HeLa-CX43 cells using targeting siRNA pools and compared the 

localization of CX43 to when HeLa-CX43 cells were transfected with a non-targeting 

siRNA pool.  After staining with anti-CX43 and anti-CD63 antibodies, thirty to forty 

cells were evaluated for the co-localization of these proteins.  Pearson’s co-localization 
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coefficient values were averaged and compared to untransfected cells. One-way ANOVA 

was used to test statistical significance. Our analysis revealed a statistically significant 

reduction in the co-localization of CX43 with CD63 in the absence of WWP1 (Fig. 4.5).  

This, in combination with the complementary overexpression data, supports the assertion 

that ubiquitylation of CX43 by WWP1 is necessary for trafficking of CX43 from the 

early endosome to the late endosome, although this modification plays no apparent role in 

the internalization of CX43.  

Loss of function of endogenous WWP1 results in increased recycling of CX43 

Because there was less trafficking of CX43 from the early endosome to the late 

endosome in the absence of WWP1 accompanied by an increase in total CX43 protein, 

we hypothesized that recycling of CX43 might be affected. To investigate this possibility, 

endogenous WWP1 was knocked down in HeLa-CX43 cells using a targeting siRNA 

pool. The effect of WWP1 on CX43 recycling was measured through immunofluorescent 

staining of PMA treated HeLa-CX43 cells using a recycling endosomal marker (RAB11) 

and CX43 antibodies. Between thirty to forty cells were selected for Pearson’s coefficient 

of co-localization calculations. Values were averaged and compared relative to the Non-

targeting siRNA. Our data shows that loss of function of WWP1 is associated with 

increased recycling to the plasma membrane compared to NT-siRNA or to untransfected 

cells (Fig. 4.6), thus corroborating the physiological role of WWP1 in the intracellular of 

CX43. 
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4.4. DISCUSSION 

The cellular pathways that degrade CX43 have been previously characterized and 

debated, with evidence linking stabilization of CX43 to inhibition of either the 

proteasome or the lysosome (Dunn et al., 2012; Falk et al., 2014). Further, a role for 

NEDD4-mediated ubiquitylation in promoting the degradation of CX43 though the 

autophagy pathway (which is also dependent on lysososmal activity) has also been 

described (Falk et al., 2012). Currently, it is believed that the role of proteasomal 

inhibition on CX43 stabilization is an indirect effect of proteasomal degradation of other 

substrates (Dunn et al., 2012). This may be due, in part, to the fact that proteasomal 

inhibition leads to the accumulation of polyubiquitylated proteins, resulting in the 

depletion of the cellular ubiquitin pool required for the remainder of the cellular 

degradative pathways. Alternatively, it has been postulated that proteasomal inhibition 

may regulate the stability of CX43 interacting proteins that play a critical role in CX43 

life cycle. In particular, it has been shown that a mutant form of CX43 which cannot be 

ubiquitylated (as all lysine residues were mutated to arginine) responded to proteasomal 

inhibition similarly to wild type CX43 (Dunn et al., 2012). It was determined that the 

mechanism for the observed stabilization of CX43 at the plasma membrane upon 

proteasomal inhibition resulted from the stabilization of AKT upon proteasomal 

inhibition, as AKT is regulated by the ubiquitin-proteasome pathway (Dunn et al., 2012).  

In turn, AKT was shown to directly phosphorylate CX43, and this post-translational 

modification inhibited the internalization of CX43, thereby enhancing CX43 stability at 

the plasma membrane. In this study we demonstrated that the ubiquitin ligase activity of 
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WWP1 was necessary for the lysosomal degradation of CX43, confirming the importance 

of this pathway in the lifecycle of CX43.   

In particular, our data point to the fact that WWP1 acts on CX43 that is already 

internalized.  Certainly the intracellular localization of WWP1 supports this hypothesis.  

Previous studies have reported that WWP1 localizes to the early endosome (Zhi and 

Chen, 2012).  Similarly, we showed co-localization of mCherry-WWP1 with the early 

endosomal marker EEA1.  Further, PMA-treated HeLa-CX43 cells transfected with either 

catalytically active or inactive forms of WWP1 showed no statistically significant 

difference in the co-localization of CX43 with EEA1, nor were these values significantly 

different from untransfected cells that were PMA-stimulated.  Collectively, this suggests 

that endocytosis of CX43 is independent of the ligase activity of WWP1.  It was only 

after this step in the process that the ubiquitin ligase activity of WWP1 showed a 

significant effect in promoting the trafficking of CX43 from the early endosome to the 

late endosome and on to the lysosome for degradation. Importantly, in all of our assays, 

the C886S mutant yielded phenotypes that were statistically indistinguishable from 

untransfected cells, suggesting that this construct has no additional dominant negative 

effects. 

We also show that the ligase-dependent effects of WWP1 are not overexpression 

artifacts, as knockdown of WWP1 resulted in decreased co-localization of CX43 and 

CD63 in the late endosome and increased co-localization of CX43 with the recycling 

marker RAB11.  Our finding is in agreement with a previous study that showed the co-

localization of CX43 with RAB11 in the presumptive recycling endosome in MDCK 

cells as they were exiting mitosis (Boassa et al., 2010). In addition, a study using Sertoli 
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cells (somatic cells of the testis) transfected with CX43-mCherry and RAB11-GFP 

indicated the co-localization of CX43 with RAB11 one hour after induction of GJ 

internalization (Gilleron et al., 2011). Therefore, these reports are in agreement with our 

findings of CX43 recycling to the plasma membrane.  Our data suggest that WWP1 may 

be mechanistically linked to this default recycling pathway.  In the future, it will be 

important to examine how expression of WWP1 may change or may be post-

translationally modified during processes like mitosis to allow for changes in the rate of 

CX43 recycling.   

Taken together our data showed that WWP1-mediated ubiquitylation in the early 

endosome is required for CX43 turnover. However, the internalization of CX43 does not 

require the ubiquitin ligase activity of WWP1.  We hypothesize that that process may be 

driven by phosphorylation of CX43 as well as its ubiquitylation by NEDD4 and 

SMURF2.  Once internalized, additional ubiquitylation signals from WWP1 direct CX43 

to the late endosome and on to the lysosome for degradation.  If this signal is not 

administered (such as occurs during WWP1 knockdown), the CX43 is recycled back to 

the plasma membrane.  This finding suggests the physiological role of WWP1 in the 

recycling pathway for CX43. The increased recycling of CX43 is associated with 

increased CX43 levels on the plasma membrane which in turn is associated with 

increased GJIC.  Determining the specificity of the regulation of WWP1, and thus of 

CX43, will prove valuable in understanding normal cellular homeostasis as well as 

providing a first step to developing new therapeutics against conditions characterized by 

dysregulation of WWP1, CX43, or both. 
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4.5. FIGURES 

 

               

                

                   

Figure 4.1. Kinetics of PMA-induced internalization of CX43. A. HeLa-CX43 were 

fluorescently labelled using antibodies directed against CX43 (green) and the endosomal 

marker EEA1 (red) in the presence and absence of PMA. Treatment of cells with PMA 

caused endocytosis of CX43. B. HeLa-CX43 cells were treated with PMA for the 

indicated times and then fluorescently labelled with anti-CX43 and anti-EEA1 antibodies. 

A bar graph showing the mean and SEM of Pearson’s coefficient of co-localization 

(n=25). Maximal internalization was observed with 1hour of PMA treatment so this was 

utilized in subsequent experiments. C. 293T cells over expressing CX43 were treated 

with PMA and the level of plasma membrane and cytoplasmic CX43 was analyzed using 

the Triton X-100 solubility assay. PMA decreased the level of junctional (plasma 

membrane) with a concomitant increase in the non-junctional (cytoplasmic) CX43 level. 

D. Inhibition of the CME pathway in 293T cells using 80 µM of dynosore for 2 hours 

counteracted the PMA-induced internalization of CX43 (lane 4) suggesting that PMA 

induced endocytosis is mediated by the Clatherin machinery.   

  

A 
B 
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Figure 4.2. WWP1 activity is not required for CX43 internalization. A. PMA-stimulated 

HeLa-CX43 cells were transfected with either mCherry-WWP1 or mCherry-C886S (red) 

and compared followed by immunofluorescent staining using anti-CX43 (green) and 

EEA1 (purple) antibodies. Overlap of the latter two markers appears white. Little 

difference can be visualized among the three groups.  Representative images from at least 

three independent experiments are shown here. B. Pearson’s coefficient of co-localization 

was calculated using the co-localization threshold plugin of ImageJ software (NIH). A 

bar graph showing the average of Pearson’s coefficient of co-localization for mCherry 

expressing cells or untransfected (n=25), ±SEM. The analysis revealed the WWP1 ligase 

activity is not necessary for CX43 co-localization with the early endosome. One-way 

ANOVA was used to calculate significance. 
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Figure 4.3. WWP1 mediates increased trafficking of CX43 form the early endosome to 

the late endosome. A. PMA-treated HeLa-CX43 cells were transfected with mCherry-

Wwp1 or mCherry-C886S (red) and compared to untransfected cells that were PMA-

stimulated (UN).  All cells were fluorescently labelled using anti-CX43 (green) and anti-

CD63 (purple) antibodies. Co-localization of CX43 and CD63 appears white.  

Representative images from three independent experiments are shown. B. Bar graph 

showing the average Pearson’s coefficient of co-localization from mCherry expressing 

cells (n=30), ±SEM. One-way ANOVA was used to calculate significance (p<0.05). Our 

data showed increased co-localization of CX43 with the late endosomal marker CD63 

upon overexpression of WWP1 compared with transfection using C886S or untransfected 

(UN) cells. 
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Figure 4.4. WWP1-mediated ubiquitylation leads to lysosomal degradation of CX43. A.  

HeLa-CX43 cells were transfected either with Myc-WWP1 or Myc-C886S. 48 hours post 

transfection cells were treated with 100 ng/mL PMA for 1 hour followed by treatment 

with 25 mM NH4Cl for 3 hrs. Cells were harvested with Laemmli sample buffer and 

western blot analysis was performed using anti-CX43, anti-Myc and anti-tubulin 

antibodies. The Cx43 protein level was decreased upon overexpression of WWP1 

however lysosomal inhibition reversed the decrease in Cx43. B. A bar graph showing the 

average and ± SEM of CX43 level of duplicates relative to untransfected cells. Tubulin 

was used as a loading control. One-way ANOVA was used to test for significance. While 

overexpression of WWP1 resulted in a significant a 40% decrease in the amount of 

CX43, in the presence of lysosomal inhibitors, there was no statistically significant 

difference among untransfected cells, cells transfected with the ligase-dead version of 

WWP1, or cells transfected with wild type WWP1.  This is consistent with the assertion 

that WWP1-mediated ubiquitylation promotes lysosomal degradation of CX43.    
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Figure 4.5 Loss of endogenous WWP1 decreases CX43 trafficking to the late endosomes. 

A. HeLa-CX43 cells were transfected with WWP1 targeting siRNA or non-targeting 

siRNA (NT-siRNA) followed by immunofluorescent stating using anti-CX43 (green) and 

anti-CD63 (red) antibodies, with overlap in yellow. B. A bar graph showing the average 

Pearson’s coefficient of co-localization showed decreased co-localization of CX43 with 

CD63 upon siRNA-mediated WWP1 knockdown. A Student’s t-test was performed to 

test for significance (n=25), ± SEM (p<0.001) C. Western blot showing knockdown of 

WWP1 in HeLa-CX43 cells. 
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Figure 4.6 Loss of function of WWP1 leads to enhanced CX43 recycling. A. HeLa-CX43 

cells were transfected with targeting siRNA pool (WWP1-siRNA) or non-targeting 

siRNA (NT-siRNA) followed by immunofluorescent labelling using anti-CX43 (green) 

and anti-RAB11 (red) antibodies with overlap in yellow. Representative images taken 

from one of three independent experiments are shown.  B. A bar graph showing the 

average Pearson’s coefficient of co-localization ±SEM, (n=25).There was a statistically 

significant (p<0.00) increase in the co-localization of CX43 with recycling endosomes 

upon WWP1-siRNA knockdown. One-way ANOVA was performed to test statistical 

significance. C. Western blot demonstrating effective knockdown in the cells examined. 
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CHAPTER FIVE 

CONCLUDING REMARKS 
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Post-translational modification through ubiquitylation plays a critical role in a 

myriad of cellular processes such as signaling, cell proliferation, transcription, 

translation, DNA repair and cellular homeostasis (Chen and Matesic, 2007; Zhi and 

Chen, 2012). Ubiquitylation of a given substrate can result in one of a number of 

outcomes, including proteasomal degradation, a change in subcellular localization, 

endocytosis from the plasma membrane, signaling, activation or inactivation of 

enzymatic functions, among others (Weissman, 2001). The temporal and spatial 

specificity of the ubiquitylation cascade is accomplished via selective substrate binding 

by E3 ubiquitin ligases (Heride et al., 2014; Hicke and Dunn, 2003). The physiological 

function of one such E3 ligase, WWP1, has been implicated in a spectrum of cellular 

process ranging from intracellular protein trafficking and degradation, to cell signaling in 

apoptosis, bone differentiation and viral budding (Zhi and Chen, 2012). Because of its 

constellation of functions, it is not surprising that dysfunction of WWP1 has been 

associated with a number of pathologies including prostate and breast carcinogenesis, 

neuropathology, osteoporosis and viral infections (Chen et al., 2008; Li et al., 2009; Salah 

et al., 2012; Shu et al., 2013; Zhi and Chen, 2012). Indeed, our previous work with a 

mouse model of global WWP1 overexpression demonstrated that WWP1 dysfunction 

also plays a role in arrhythmogenesis via its regulation of a novel target, the GJ protein 

CX43.  In this study we elucidated the molecular mechanism underlying the regulation of 

CX43 by WWP1.    

In particular, we demonstrated that WWP1 co-immunoprecipitates with CX43 

through the carboxy-terminal PPXY motif of CX43.  WWP1 has four tandem WW 

domains that are known to have affinity for PPXY motifs in substrates (Chen et al., 
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2008). Consequently, a co-immunoprecipitation assay using a mutant CX43 with a 

proline to leucine substitution abrogated WWP1 pull down with CX43. These data 

suggest that WWP1 may directly interact with CX43 through the PY motif although in 

vitro pull down assays using purified GST-tagged WWP1 and CX43 needs to be 

conducted to show direct interaction.  We have also noted that the co-

immunoprecipitation was enhanced in the presence of PMA, which is documented to 

induce MAPK kinase signaling dependent phosphorylation of CX43 (Solan and Lampe, 

2005, 2014). Based on this, we speculate that WWP1 has a higher affinity for 

phosphorylated CX43, although this needs to be confirmed through co-

immunoprecipitation experiments using antibodies against phosphorylated and non-

phosphorylated forms of CX43 as well as co-IP using mutant CX43 that is resistant to 

phosphorylation or a phosphomimicking mutant CX43. Alternatively, the increased co-

immunoprecipitation of WWP1 and CX43 may be the consequence of greater quantities 

of these proteins localizing to the same intracellular compartment.  This could arise 1) if 

WWP1 were a resident early endosome-associated protein and PMA increased the 

delivery of CX43 to the early endosome, 2) if PMA affected the intracellular distribution 

of WWP1 and caused recruitment of WWP1 to the early endosome, possibly by 

phosphorylation, or 3) some combination of the two.  These possibilities remain to be 

sorted out by performing experiments that identify the subcellular localization of WWP1 

in the presence and absence of PMA. The possibility that WWP1 is regulated by 

phosphorylation is not new, in fact some members of the NEDD4 subfamily of E3 ligases 

have been reported to be regulated through phosphorylation. For instance, protein kinase 
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A (PKA) and serum/glucocorticoid kinase 1(SGK1) dependent phosphorylation of 

NEDD4-2 inhibited its ligase activity (Ismail et al., 2014).   

The association of WWP1 and CX43 was important in the ubiquitylation of 

CX43.  Specifically, we found that WWP1 targets CX43 for K27- and K29-linked 

polyubiquitylation, and this modification leads to increased CX43 turnover and 

subsequent decrease in GJIC. Our data indicate that K27- and K29-linked ubiquitylation 

of CX43 is dependent on the ligase activity of WWP1.  Even though the mutant WWP1 

C886S, which we demonstrate does not appear to exert a dominant negative effect in this 

system, is able to bind CX43, it was unable to conjugate a polyubiquitin chain and 

therefore did not result in CX43 turnover and subsequent reduction in GJIC. Although 

previous studies have implicated multi-mono-ubiquitylation of CX43 as being important 

in inducing its internalization (Girao et al., 2009), our data highlight a different linkage, 

K27- and K29- polyubiquitylation of CX43 that is associated with CX43 turnover. K29-

linked polyubiquitin linkage is rare and has been described to be conjugated by the HECT 

E3 ligase ITCH on its substrate DELTEX causing its trafficking to the lysosome 

(Chastagner et al., 2006).  The fact that CX43 is regulated by several E3 ligases is 

intriguing, although not unique since regulation by multiple E3 ligases is well 

documented for other substrates including EGFR (Eden et al., 2012) and p53 (Hock and 

Vousden, 2014). However, it would be worth identifying the types of ubiquitylation 

mediated by these E3 ligases since it is known that various ubiquitin linkages have 

unique conformations and are differentially recognized by UIMs of adaptor proteins 

(Trempe, 2011). 
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To determine the cellular mechanism by which CX43 was turned over upon 

ubiquitylation by WWP1, we examined how intracellular trafficking of CX43 was 

affected by changes in WWP1 activity.  We found that WWP1-mediated ubiquitylation 

of CX43 led to increased trafficking of CX43 from the early endosome to the late 

endosome when compared to cells transfected with the dead ligase mutant C886S and to 

untransfected, PMA-stimulated cells. However, the co-localization of CX43 with early 

endosome marker EEA1 after PMA treatment did not significantly differ among 

untransfected HeLa-Cx43 cells, cells overexpressing WWP1, or cells overexpressing 

C886S, suggesting that WWP1 might not be involved in CX43 endocytosis. On the other 

hand, PMA is known to induce CX43 phosphorylation and internalization (Leithe and 

Rivedal, 2004d; Rivedal and Leithe, 2005; Sirnes et al., 2009; Sirnes et al., 2008) and 

since  the cells have been treated with PMA in nearly all of our experiments, we suggest 

that CX43 phosphorylation is driving internalization, possibly by recruiting other E3 

ligases. It is noteworthy that previous studies have associated ubiquitylation of CX43 by 

two other E3 ligases, NEDD4 and SMURF2, with increased CX43 internalization with no 

net change in total CX43 level (Fykerud et al., 2012; Girao et al., 2009). Application of a 

lysosomal inhibitor abrogated WWP1-mediated degradation of CX43 regardless of the 

ligase activity of WWP1 further corroborating our previous data that showed increased 

CX43 trafficking to the late endosomes due to WWP1 ligase activity.  

Consistent with these changes reflecting a physiological role for WWP1 rather 

than being an overexpression artifact, knockdown experiments revealed that loss of 

endogenous WWP1 resulted in increased CX43 on the plasma membrane.  Further, we 

also noted increased co-localization of CX43 and the recycling endosome marker RAB11 
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in the absence of WWP1, suggesting that an endogenous recycling pathway for CX43 

exists. Certainly, precedent for this assertion was established in a previous study that 

showed the co-localization of mCherry-tagged CX43 with GFP-tagged RAB11 in Sertoli 

cells (Gilleron et al., 2011). Further, overexpression of WWP1 resulted in decreased co-

localization of CX43 with the recycling endosomes compared to the overexpression of 

the dead ligase WWP1, supporting the hypothesis that the activity of WWP1 is a 

lynchpin in this bifurcation of the CX43 intracellular trafficking pathway. 

Based on these observations we put forth the working model illustrated in Fig. 

5.1. NEDD4- and SMURF2-mediated ubiquitylation of CX43 along with PMA-induced 

phosphorylation promotes the internalization of CX43 from the plasma membrane via an 

association of ubiquitylated CX43 with the CME machinery.   Once the annular junction 

is disassembled and reaches the early endosome, it interacts with WWP1 which may be 

resident to that subcellular compartment or recruited there by PMA.  K27- and K29-

polyubiquitylation of CX43 by WWP1 promote the trafficking of CX43 from the early 

endosome to the late endosome and subsequently on to the lysosome for degradation.  In 

the absence of WWP1, a default recycling pathway is activated, routing some or all of the 

CX43 back to the plasma membrane where it can be reincorporated into GJ plaques.   

GJs play important roles in critical cellular processes including growth and 

differentiation, signaling, and homeostasis. Dysregulation of GJ s has been implicated in 

a number of pathologies including arrhythmia, skin disorders, cataracts, 

neuropathogenesis, and carcinogenesis (Gerido and White, 2004; Krutovskikh and 

Yamasaki, 1997; Laird, 2006; Severs et al., 2004). Here we described the molecular 

mechanisms underlying the regulation of a novel target of WWP1, the GJ protein CX43. 
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Drug discovery research targeting posttranslational modifications have made great 

advances in finding therapeutic drugs.  Drugs targeting CX43 phosphorylation have being 

developed and are on trial to treat heart diseases (Kim and Fishman, 2013; Tribulova et 

al., 2008).  Therapeutic approaches targeting the ubiquitylation cascade are also 

emerging. For instance, cancer therapeutic drugs that inhibit the proteasome are on the 

market and in clinical trial for lymphoma (Landre et al., 2014). However, this approach is 

not specific and has numerous side effects. In this regard, E3 ligases are potentially better 

drug targets for consideration since they determine substrate specificity in the 

ubiquitylation process. In particular, strategies focusing on finding small molecules that 

disrupt the interaction of E3 ligases with their substrates will help in designing better and 

more specific therapeutic drugs. One example for such an approach is the drug, Nutlin, a 

small molecule disrupting the interaction of the E3 ligase MDM2 and p53. MDM2 is up 

regulated in cancer and targets p53 for ubiquitylation causing its degradation.  

Similarly, WWP1 over expression is associated with arrhythmogenesis in the 

transgenic mouse model our lab has described, while the Wwp1 knockout is viable and 

fertile with a normal lifespan (Shu et al., 2013). This suggests that WWP1 may be a good 

target for small molecule inhibition in the treatment of pathologies associated with 

acquired loss of CX43, such as is seen in arrhythmogenesis.  Based on the data presented 

here, we would predict that inhibition of WWP1 would allow for more recycling of CX43 

to the plasma membrane, increased GJIC, and restored electroconduction of the heart.  

However, it remains to be determined if the observations described here in HeLa and 

293T cells apply directly to the regulation of CX43 in cardiomyocytes. On the other 

hand, has been suggested to have tumor suppressive role in the initiation of certain types 
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of cancer contrary to WWP1 which is suggested to have a protooncogenic role in certain 

cancer types. Therefore, findings from this study represent an important first step in the 

path towards development of therapeutic drugs targeting the interaction of WWP1 and 

CX43 that may underlie numerous pathologies.  
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Figure 5.1. A model depicting the life cycle of CX43. CX43 on the plasma membrane is 

targeted by the E3 ligases NEDD4 and SMURF2 in the presence of PMA causing its 

endocytosis as a double membrane vesicle termed annular junction.  Annular junctions 

are processed into single membrane bound organelles that eventually fuse with the early 

endosome. Further ubiquitylation of CX43 by WWP1 in the early endosome leads to 

increased trafficking of CX43 to the late endosome and from there to the lysosome for 

degradation.  Loss of function of WWP1 leads to CX43 recycling to the plasma 

membrane.
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